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Abstract

Saliency post-hoc explainability methods are
important tools for understanding increasingly
complex NLP models. While these methods can
reflect the model’s reasoning, they may not align
with human intuition, making the explanations
not plausible. In this work, we present a
methodology for incorporating rationales, which
are text annotations explaining human decisions,
into text classification models. This incorporation
enhances the plausibility of post-hoc explanations
while preserving their faithfulness. Our approach
is agnostic to model architectures and explainabil-
ity methods. We introduce the rationales during
model training by augmenting the standard
cross-entropy loss with a novel loss function
inspired by contrastive learning. By leveraging
a multi-objective optimization algorithm, we
explore the trade-off between the two loss func-
tions and generate a Pareto-optimal frontier of
models that balance performance and plausibility.
Through extensive experiments involving diverse
models, datasets, and explainability methods,
we demonstrate that our approach significantly
enhances the quality of model explanations with-
out causing substantial (sometimes negligible)
degradation in the original model’s performance.1

1 Introduction

The complexity of text classification models and
architectures has recently grown, posing challenges
in comprehending the rationale behind their decisions.
Consequently, the latest NLP algorithms have
been called black-box algorithms. Understanding
the model’s reasoning is essential in various text
classification contexts (Ribeiro et al., 2016) (e.g., hate
speech detection). However, this task is hindered
by the black-box nature of these models. Moreover,
comprehending the model’s reasoning can help
establish trust and make informed decisions based on
the underlying justifications.

1Code and data are available at https://github.com/
visual-ds/plausible-nlp-explanations.

(a) This is such a great movie !

(b) This is such a great movie !

Figure 1: Examples of local saliency post-hoc explanations
from a hypothetical text classifier for a positive movie
review. Explanation (a) is more plausible than (b). Green
means a positive contribution to the model’s prediction,
and red is negative.

Researchers have developed popular text classi-
fication explainability techniques, such as post-hoc
local saliency (or heatmap) methods (Tjoa and Guan,
2022; DeYoung et al., 2020). These methods generate
heatmaps over tokens (paragraphs, sentences, words,
sub-words, or characters) to indicate their significance
in the final decision (Ribeiro et al., 2016; Lundberg
and Lee, 2017; Chefer et al., 2021) — although
their suitability is criticized (Bilodeau et al., 2024),
these methods are still widely applied (Kumari et al.,
2024). The estimation of importance is performed
after the decision has been made using an already
trained model (i.e., it is post-hoc). For instance,
Figure 1 illustrates word-level saliency explanations
that justify the predictions of two trained models in
determining whether a movie review is positive or
negative. In explanation (a), highlighted in green,
the most relevant words align well with human
expectations, making it intuitive. However, in
explanation (b), the highlighted words are irrelevant
from a human perspective. Both explanations may
accurately reflect the models’ reasoning (thus, they
may be faithful, according to DeYoung et al., 2020).
Nevertheless, they differ in plausibility, which refers
to the extent to which the explanation matches human
intuition (DeYoung et al., 2020) or is “convincing of
the model prediction” (Jacovi and Goldberg, 2021).

Ideally, we should be able to enhance the plausi-
bility of a “non-plausible” model by “teaching” it to
provide more plausible explanations. Previous works,
such as those by Strout et al., 2019; Ross et al., 2017;
Arous et al., 2021; Du et al., 2019; Mathew et al.,

4190

https://github.com/visual-ds/plausible-nlp-explanations
https://github.com/visual-ds/plausible-nlp-explanations


2021, have explored this concept. The reason is that
someone training the model clearly understands what
a valid explanation should entail. However, achieving
plausibility while preserving faithfulness may require
modifying the reasoning of the original model, which
in turn risks impacting its performance on the test data.
Hence, an inherent trade-off exists between model
performance and explanation plausibility (Zhang
et al., 2021; Plumb et al., 2020).

This paper introduces a methodology that enhances
the plausibility of explanations while remaining
agnostic to the model architecture and explainabil-
ity method. Our approach incorporates human
explanations, represented as rationales (i.e., text
annotations serving as ground truth for explana-
tions), into text classification models using a novel
contrastive-inspired loss. We address the trade-off
between classification and the new loss within a
multi-objective framework, enabling exploration of
the balance between performance and plausibility.
Unlike other approaches, our methodology does
not require modifying the model architecture (e.g.,
through the addition of attention mechanisms; Strout
et al., 2019) or assuming a specific type of explanation
function (e.g., a differentiable explanation function;
Rieger et al., 2020) to incorporate the explanations.

In summary, our contributions are:

(i) A proposal of a novel contrastive-inspired loss
function that effectively incorporates rationales
into the learning process.

(ii) A multi-objective framework that automatically
assigns weights to the learning loss and
contrastive rationale loss, offering multiple
trade-off options between performance and
explanation plausibility.

(iii) A series of experiments using various mod-
els, datasets, and explainability methods,
demonstrating the significant enhancement
of model explanations without compromising
(and sometimes without any detriment to) the
model’s performance. Notably, our approach
exhibits particularly improved plausibility for
samples with incorrect explanations.

We compare our methodology with a previous
method from the literature, reinforcing our results.
Furthermore, we address the social and ethical
implications of “teaching” explanations to text
classification models. We argue that these concerns
are mitigated when the explanations remain faithful
to the model’s decision-making process.

2 Related Work

Our work draws on prior research in the areas
of rationale utilization and the trade-off between
performance and explainability.

Use of Rationales. Using human annotations
to assist machine learning is not a novel concept,
as prior works have shown (Zaidan et al., 2007,
2008). Nevertheless, there has been a recent surge
in interest in machine learning explainability and
fairness, leading to an increased focus on collecting
and applying such rationales. Some studies have
leveraged rationales to enhance model fairness
(Rieger et al., 2020; Liu and Avci, 2019), while
others have explored techniques to extract (Zhang
et al., 2021; Lakhotia et al., 2021; Pruthi et al., 2020;
Sharma et al., 2020) or generate (Rajani et al., 2019;
Liu et al., 2019; Camburu et al., 2018; Kumar and
Talukdar, 2020) model explanations. The most
prevalent application of rationales lies in performance
improvement, where annotations serve as valuable
assistants during the learning process, particularly in
tasks involving textual data (Sharma and Bilgic, 2018;
Bao et al., 2018; Liu et al., 2019; Rieger et al., 2020;
Zhang et al., 2021; Arous et al., 2021; Mathew et al.,
2021; Carton et al., 2022; Ghaeini et al., 2019; Huang
et al., 2021), images (Simpson et al., 2019; Rieger
et al., 2020; Mitsuhara et al., 2021), or tabular data
(Belém et al., 2021). In this work, our focus revolves
around the incorporation of rationales during model
training to “teach” explanations, drawing inspiration
from the findings of Arous et al. (2021); Du et al.
(2019); Mitsuhara et al. (2021). In particular, Mathew
et al. (2021) collect and annotate a dataset called
HateXplain and use its annotations to train a model.
Moreover, the UNIREX framework (Chan et al.,
2022) extends this approach to a more general setting.

Importantly, our approach refrains from alter-
ing/assuming the model architecture (e.g., by using
another model for rationale extraction (Chan et al.,
2022), assuming a model architecture (Mathew et al.,
2021), or adding another layer (Strout et al., 2019;
Chen and Ji, 2020; Liu et al., 2022; Sekhon et al.,
2023)) or assuming a specific type of explanation
function (e.g., by using input gradients; Ross et al.,
2017; Ghaeini et al., 2019). Such interventions are
debatable (see Section 6) and not always possible.
Instead, we adopt a model- and explainer-agnostic
approach, using rationales to enhance the plausibility
of explanations. Noticeably, our approach also differs
from previous work that rationalizes the input but
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does not leverage human annotations (Lei et al., 2016;
Bastings et al., 2019; Jain et al., 2020).

Performance and Explainability Trade-off. The
existence of a trade-off between machine learning
performance and interpretability/explainability is
widely debated in the field. Several studies have
discussed this trade-off (Camburu et al., 2018;
Swanson et al., 2020; Dubey et al., 2022; Plumb et al.,
2020; Radenovic et al., 2022). However, differing
opinions exist on whether this trade-off always holds,
both from a theoretical perspective (Jacovi and Gold-
berg, 2021; Rudin, 2019) and a practical standpoint
(Hase et al., 2020). Furthermore, some studies have
empirically examined or explored this trade-off
(Zhang et al., 2021; Goethals et al., 2022; Naylor et al.,
2021; Paranjape et al., 2020; Jin et al., 2006). Our
work shares similarities with the study conducted by
Belém et al. (2021), as we aim to employ two distinct
learning strategies and investigate their trade-offs.
However, our approach utilizes different learning
strategies, and we conduct the trade-off exploration
using a multi-objective optimization algorithm.

3 Theoretical Background

We define crucial explainability and multi-objective
optimization concepts to facilitate a global understand-
ing of our research. We also point to an overview of
contrastive learning in Appendix C.

3.1 Explainability
Rationale. In the context of text classification, a
rationale refers to a snippet extracted from a source
text that supports a specific category (DeYoung et al.,
2020; Carton et al., 2022; Mathew et al., 2021). Typ-
ically, these rationales are annotated by humans and
serve as ground truth explanations for the correspond-
ing categories. For instance, in Figure 1, a typical
rationale for the positive class would be “great movie.”

Explanation Plausibility. The plausibility of a
model explanation refers to the extent to which
it aligns with human intuition (DeYoung et al.,
2020) or is considered “convincing of the model
prediction” (Jacovi and Goldberg, 2021). In practice,
this plausibility can be measured by evaluating the
agreement between the explanation and the ground
truth rationale (DeYoung et al., 2020; Jacovi and
Goldberg, 2021). Please refer to Section 6 for a
detailed discussion on the pursuit of plausibility.

Explanation Faithfulness. Another crucial aspect
of an explanation is its faithfulness, which reflects the

degree to which the model relies on the explanation to
make its prediction (DeYoung et al., 2020). Following
the approach of DeYoung et al. (2020), we employ the
metrics of comprehensiveness and sufficiency to quan-
tify faithfulness. We multiply sufficiency by −1 to in-
dicate that a higher value is desirable for both metrics.

3.2 Multi-objective Optimization

We aim to investigate the trade-off between model
performance and explanation plausibility. Section 4.3
addresses this trade-off exploration by concurrently
optimizing two distinct loss functions that may have
conflicting objectives. We adopt the definitions that
Raimundo et al. (2020) provided for the following
concepts.

Definition 3.1 (Multi-objective optimization prob-
lem). A multi-objective optimization problem (MOO)
is an optimization problem with more than one
objective, i.e., a problem of the form

min
x

f(x)=(f1(x),···,fm(x)),
subject to x∈Ω⊆Rn, f : Ω→Rm, f(Ω)=Ψ.

Consider two solutions x1, x2 ∈ Rn where
f1(x1)< f1(x2) and f2(x1)> f2(x2). In this case,
no clear optimal solution exists. To address this, we
introduce the concept of Pareto-optimality.

Definition 3.2 (Pareto-optimality). A solution x∗∈Ω
is Pareto-optimal if there is no other solution x∈Ω
such that fi(x)≤ fi(x

∗) for all i and fi(x)<fi(x
∗)

for some i.

The Pareto-frontier comprises objective function
values resulting from Pareto-optimal solutions.
Without considering additional criteria, there is
no definitive best solution among them. The
decision-maker holds the responsibility of selecting
the desired solution. While solving a MOO problem
poses challenges, various approaches are available.
Refer to Appendix A for an overview of the weighted
sum method and their theoretical foundations.

4 Methodology

We focus on text classification models to enhance the
quality of local saliency post-hoc explanations regard-
ing plausibility. We aim to align these explanations
with human intuition while maintaining faithfulness.
To achieve this, we leverage rationales to enhance
the explanation quality and evaluate the improvement
by comparing them with the model explanations.
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4.1 Notation Description

Consider a multi-class text classification task with
classes C and a multi-class text classification model
fθ : Rd → ∆. The model takes a text x ∈ Rd and
produces a probability vector fθ(x)∈∆, indicating
the probabilities of x belonging to each class, with
parameters θ. Examples of x include TF-IDF vectors
(Leskovec et al., 2020), BERT feature vectors (Devlin
et al., 2019), or word presence vectors (e.g., Trans-
former’s “input id” array; Vaswani et al., 2017). We
view fθ as a black box without assuming any specific
structure. Let us introduce the explanation function2

efθ,k : Rd→Rp, which assigns a score to each token
in x, representing its contribution to the fθ(x) predic-
tion for class k∈C, i.e., fθ(x)k. We also have ground-
truth human annotations (rationale) as a binary vector
ex,k∈{0,1}p, indicating the essential tokens for x to
be classified as class k. The measure of agreement
m : Rp × {0,1}p → R between efθ,k(x) and ex,k
quantifies the quality of explanations extracted from
fθ compared to canonical explanations, reflecting
their plausibility. Given a set X = {X1,··· ,XN} of
training texts and a set y = {y1,··· ,yN} of training
class labels, the commonly used cross-entropy loss
is employed during training, defined as:

Lθ(X,y)=− 1

N

N∑

i=1

|C|∑

k=1

1yi=kln
egθ(Xi)k

∑|C|
j=1e

gθ(Xi)j
, (1)

where, gθ represents the logits (pre-softmax) obtained
from fθ, and f corresponds to the softmax function
applied to gθ. It is worth noting that θ can represent
the training weights of a linear function (in the case
of multinomial logistic regression) or a more complex
function, such as a neural network.

4.2 Contrastive Rationale Loss

To enhance the plausibility of model explanations, we
incorporate rationales into the model training process.
Unlike previous approaches (Rieger et al., 2020; Du
et al., 2019; Ross et al., 2017), we do not utilize
an explanation-based function in the loss function
to compare model explanations with ground truth
explanations. Instead, we construct a loss function for
training the text classification model using a modified
dataset Ẋ = {Ẋ1, ··· , ẊN}. During training, we
replace the full-text Xi ∈Rd with the rationale text
Ẋi∈Rd. By exclusively teaching the model with ra-
tionales, we expect them to become the primary basis

2d refers to the dimension of the text vector space (e.g.,
BERT’s 768), and p is the number of tokens of a sample.

for the model’s decision-making process, leading to
correspondingly reflected model explanations3.

In a more general context, Ẋ may encompass
rationales from a subset or superset of texts in X, or
even both. In this scenario, ẏ denotes the labels of
Ẋ. Drawing inspiration from the contrastive learning
domain (Chen et al., 2020; Khosla et al., 2020), we
introduce a novel auxiliary loss function known as
the contrastive rationale loss:

L̇θ(Ẋ,ẏ)=− 1

N

N∑

i=1

|C|∑

k=1

1ẏi=kln
egθ(Ẋi)k

∑m
j=1e

gθ(X̃i,j)k
,

(2)

where {X̃i,j}mj=1 is a set of m sample rationales of
Xi, i.e., rationales that may be or may be not a ground
truth explanation forXi. For instance, this set includes
the ground truth explanation Ẋi and other m−1 ran-
dom rationales, which we call negative rationales —
random tokens of Xi uniformly sampled. The nu-
merator seeks to maximize the model’s output for the
rationale in the correct class. At the same time, the de-
nominator aims to minimize the model’s output for the
random (negative) rationales in the same class. Notice
that we do not include the explanation function efθ,k
(Section 4.1) in Equation 2, contrary to previous work
(Section 2). This is because we do not want to “train
the explainer” or “teach the model how to tweak the
explainer.” For an in-depth discussion, see Section 6.

The contrastive rationale loss constitutes a particu-
lar case when the classifier is a multinomial logistic re-
gression. Further details can be found in Appendix B.

4.3 Trade-off Exploration

Section 4.2 proposes an auxiliary contrastive
rationale loss function L̇θ to incorporate rationales
during model training. The simultaneous optimization
of both cross-entropy Lθ and L̇θ gives rise to a
multi-objective optimization (MOO) problem (see
Section 3.2). It is important to note that optimizing
both objectives without a trade-off is not feasible.
We leverage existing MOO algorithms to explore the
trade-off between model performance and explanation
plausibility (Cohon, 1978).

In simple terms, MOO solvers such as NISE
(Cohon, 1978), employing the weighted sum method

3In this formulation, we assume the explanation function is
perfectly faithful, i.e., the explanation results genuinely reflect
the model’s reasoning. Such a function is not apparent; however,
our experimental results suggest that the explainability methods
we have access to are sufficient.
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(Appendix A), enable trade-off exploration by incor-
porating hyperparameters w1 and w2 (both ≥0) with
w1+w2=1, and solving the uni-objective problem:

Lθ(X,y,Ẋ,ẏ)=w1·Lθ(X,y)+w2·L̇θ(Ẋ,ẏ).

Intuitively, the weight vectorw=[w1,w2] controls the
trade-off between model performance (original cross-
entropy loss) and explanation plausibility (contrastive
rationale loss). Increasing w2 from 0 to a positive
value explicitly assigns more weight to the contrastive
rationale loss. This indicates that the model is trained
on data (Ẋ, ẏ) that differs from the underlying
distribution of (X,y). Consequently, the model’s
performance on test data, which follows the same
distribution as (X,y), is expected to decline. However,
since we fit the model using rationales, we alter the
model’s reasoning, emphasizing the significance of
positive rationales within the texts. This emphasis
should be reflected in the explanations, as argued in
Section 4.2 and demonstrated in our experiments.

MOO solvers like NISE effectively sample rep-
resentative sets W1 and W2 of trade-off parameters
w1 and w2. From the loss optimization process (e.g.,
lbfgs, SGD, Adam, etc.), these sets yield a set of
model weights Θ, where each θ∈Θ corresponds to
a different classifier fθ ∈FΘ. Finally, by searching
within the set FΘ, we can identify Pareto-optimal
models that exhibit both performance and plausibility.

5 Experiments

This section describes experiments to test the method-
ology proposed in Section 4, employing diverse mod-
els, datasets, and explainability techniques. We aim to
verify the usefulness of the contrastive rationale loss
(Section 4.2) in incorporating human rationales and
the effectiveness of the MOO solver (Section 4.3) in
finding models that well-represent the Pareto-frontier.
Furthermore, we also compare our methodology
with previous work. Implementation and execution
information can be found in Appendix E.

5.1 Models

To evaluate the effectiveness of our method, we assess
two types of models: language models and classic
NLP models.

DistilBERT and BERT-Mini. As language model
representatives, we test DistilBERT (Sanh et al.,
2020) and BERT-Mini (Turc et al., 2019), lightweight
versions of the popular BERT (Devlin et al., 2019).
For fine-tuning on the HateXplain dataset, refer to

Appendix D. Refer to Appendix F for an additional
analysis with BERT-Large.

TF-IDF with Logistic Regression. For classical
models, we train a multinomial logistic regression
model using TF-IDF vectors (Leskovec et al.,
2020) (unigrams) with dimensionality reduction
to 200 achieved through Truncated Singular Value
Decomposition (Manning et al., 2008).

5.2 Datasets and Data Preprocessing
HateXplain. This dataset contains annotated hate
speech detection samples with human-annotated ratio-
nales (Mathew et al., 2021). It consists of three classes:
normal (without rationales), offensive, and hate
speech. To address the confounding correlation be-
tween offensive and hate speech classes and their ratio-
nales, we simplify the dataset by excluding the offen-
sive class (hatexplain dataset). We also explore
a version including all labels (hatexplain_all
dataset). Hereafter, “HateXplain” refers to hatex-
plain unless specified otherwise.

Twitter Sentiment Extraction (TSE). The TSE
(Maggie et al., 2020) is a sentiment analysis dataset
containing positive, negative, and neutral tweets with
human-annotated rationales. Since neutral class lacks
rationales4, we simplify the classification, excluding
this class (tse dataset). An alternative version
includes all labels (tse_all dataset). Hereafter,
“TSE” refers to tse unless specified otherwise.

Movie Reviews. This dataset comprises positive
and negative movie reviews with rationales annotated
by humans to support classification (Zaidan et al.,
2007).

5.3 Explainability Methods
We utilize two well-known explainers for generating
continuous salient maps in textual datasets.

LIME. Short for Local Interpretable Model-
agnostic Explanations (Ribeiro et al., 2016), it creates
post-hoc explanations by randomly removing tokens
from the text sample and locally approximating
the original model predictions using a simpler,
interpretable model, which is used to explain the
sample’s prediction.

SHAP. SHapley Additive exPlanations (Lundberg
and Lee, 2017) is a model-agnostic explainer that
employs Shapley values to explain model predictions.

4TSE neutral class rationales exist but are uninformative
because they are the whole sample text in most cases.
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(a) ugh i hate d*kes

(b) ugh i hate d*kes

Figure 2: Examples of explanations of the hate speech
class. Explanation (a) is from the original model, and (b) is
from the model with top-AUPRC. Green means a positive
contribution to the model’s prediction. The top-1 token
was selected for visualization purposes. More examples
in Table 6.

5.4 Explainability Metrics

Plausibility. We employ the Area Under the
Precision-Recall Curve (AUPRC) metric to assess
the plausibility of model explanations generated
by LIME and SHAP. This metric is constructed by
varying the threshold over continuous token scores
and calculating precision and recall at the token level
(DeYoung et al., 2020).

Faithfulness. We require discrete explanations
to evaluate comprehensiveness and sufficiency (as
described in Section 3.1). To address this, we consider
the top 1, 5, 10, 20, and 50% of tokens and average
the results, which we refer to as the Area Over the
Perturbation Curve (AOPC) (DeYoung et al., 2020).

5.5 DistilBERT and HateXplain

In this section, we present experimental results to
tackle the following research questions: Does the pro-
posed loss improve explanation plausibility without
affecting the performance? Does the MOO solver
effectively assist in finding a model with better ex-
planations? We first present a case study with the
DistilBERT model and HateXplain dataset to show-
case the main results of our experiments. Section 5.6
shows other results. The explainability metrics (plausi-
bility and faithfulness) are computed only for the hate
speech class because the normal class lacks rationales.

The DistilBERT model trained only with cross-
entropy loss achieves a test accuracy of 84.8% with
balanced recall among classes. Figure 2 (a) illustrates
an example of a bad explanation extracted from this
model. It shows that even high-performing classifiers
can also present unreasonable explanations.

We employ NISE (Cohon, 1978) to find 30 models
that well-represent the Pareto-frontier using the
cross-entropy and the contrastive rationale loss (using
2 random, negative rationales) on the training data.
Figure 3 (a) reveals that the two losses are conflicting,
particularly for non-extreme values of w1.

For each model in the frontier, we evaluate the
model’s performance and the explanation plausibility
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Figure 3: (a) Trade-off between the two losses on
the training data. (b) Trade-off between accuracy and
plausibility of the test data. The color scale represents
the cross-entropy weight w1 (Section 4.3). We ignore the
model with w1=0 as it is out of scale. Results including
w1=0 and shared scale between axes are in Appendix F.

on the test data (Figure 3 (b)). Plausibility was
measured using mean AUPRC, comparing LIME’s
explanations with ground truth rationales. Figure 3 (b)
shows that, as NISE increases the weight of the con-
trastive rationale loss during training, the plausibility
increases almost without hurting performance: the
top-plausibility model had a relative increase of 1.4%
in AUPRC (an absolute increase of 1.1%), despite
a relative decrease of 0.9% in accuracy (an absolute
decrease of 0.8%). At some point, performance and
explanation quality deteriorate, given that the training
without the cross-entropy is meaningless. We noticed
that around 51% of the best-explained samples
originally had AUPRC equal to 1. By disregarding
these samples, the AUPRC relative increase becomes
5.3% (absolute increase becomes 3.3%). At the same
time, the high AUPRC explanations have a relative
and absolute decrease of less than 1% (Figure 7). The
inadequate explanations are being improved without
significantly harming the good explanations (see
example in Figure 2; more examples in Table 6).

Finally, we must guarantee faithful explanations
(i.e., they genuinely represent the models’ reasoning)
when we strengthen the training with rationales.
Figure 4 presents the trade-off between performance
and explanation faithfulness on test data. Sufficiency
tends to increase as we strengthen the training with
rationales, while comprehensiveness tends to decrease.
However, the explanations are becoming more suffi-
cient without significantly losing comprehensiveness
(sufficiency’s variation is an order of magnitude
higher than the comprehensiveness’).

In summary, the results present a desirable scenario
in which one trades-off a small decrease in accuracy

4195



0.6 0.8

0.0

0.1

0.2

0.3
S

u
ffi

ci
en

cy

0.6 0.8

0.3

0.4

0.5

0.6

C
o
m

p
re

h
en

si
ve

n
es

s
Accuracy

Figure 4: Trade-off between accuracy and faithfulness
(sufficiency and comprehensiveness) on test data. Higher
values are better. The color scale is the same as the
previous figures. The data scale is equal between the two
graphics and their x- and y-axes.

for a reasonable increase in explainability quality
(both plausibility and sufficiency), especially for orig-
inally bad explanations. The MOO solver effectively
assists in finding a model with better explanations.

5.6 Experiments With All Models and Datasets
Now, we evaluate our framework in all models,
datasets, and explainability techniques that we
consider in this paper. Specifically, we aim to
discover whether the previous results (usefulness of
the contrastive loss and effectiveness of the MOO
solver) extend to the general case. Figure 5 overviews
all performance vs. plausibility trade-offs on test data.
The number of random (negative) rationales used is 2,
and the explainer is LIME. To comprehend its effect,
we also test with 5 rationales and/or explainer SHAP
(Appendix F). Figure 5 shows a non-constant shape of
the final frontier across all experiments. For instance,
while TF-IDF trades accuracy for plausibility in the
HateXplain dataset, it increased both dimensions in
TSE. However, the shape is the same when changing
the number of negative rationales (Figure 16) and
similar when the explainer is SHAP (Figures 17 and
18). Finally, despite the TSE dataset having a higher
number of poor-performing models, the improvement
for a well-selected model is not negligible (Table 1).

The green dots in Figure 5 represent the models
manually selected as “good choices” of the trade-off
between performance and plausibility. We analyzed
them more carefully and compared them to the
original models (i.e., w1 = 1, darkest point on the
figures). For example, the green dot of DistilBERT
with HateXplain is an obvious choice because it
improves AUPRC without harming performance.
Conversely, TF-IDF with HateXplain trades one
metric for the other. Thus, a few dots were chosen
with some degree of “good judgment.” Table 1
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Figure 5: Trade-offs between performance (accuracy,
x-axis) and plausibility (AUPRC, y-axis, in percentage
(%)) for all models and datasets (test data). There are 2
random (negative) rationales, and the explainer is LIME.
Green dots are the models chosen to be analyzed more
carefully. The color scale is the same as the previous
figures. We ignore the model with w1=0 in all graphics
as it is out of scale. Larger figure and results including
w1 =0, 5 rationales and/or SHAP, shared scale between
axes, and Pareto-frontiers are in Appendix F.

compares the original and selected models. All
models improved the plausibility of their explanations,
in some cases marginally (as for the TSE dataset).
The accuracy generally varies slightly, positive and
negative, except for a significant drop of TF-IDF with
HateXplain. Finally, sufficiency is generally positive,
with significant improvements for the language
models. At the same time, the comprehensiveness is
usually negative but an order of magnitude smaller
than the improvements in sufficiency. Results for
SHAP and 5 negative rationales are in Table 8 and,
because the trade-off shapes of Figures 5, 16, 17
and 18 are similar, they present similar conclusions,
showing the robustness of our framework for different
explainers and number of rationales. For examples
of explanation improvement, refer to Tables 6 and 7.

In general, all models improve their explanation
quality in plausibility (and the majority of them in
sufficiency, too) without harming the performance sig-
nificantly, showing the robustness of our framework.
The multi-objective exploration was essential to find
the best trade-offs. Conclusions are similar for non-
binary classification (see Appendix F).

4196



Table 1: Comparison between the original model (cross-entropy only) and the chosen model (green dots on Figure 5)
for each performance and explainability metric on test data. “rel.” means relative variation. The column w1 indicates the
weight w1 of the chosen model’s cross-entropy loss during training. Number of negative rationales is 2, and the explainer
is LIME. A complete table (with 5 negative rationales and/or SHAP) is available in Appendix F.

Dataset Model w1 Acc. % AUPRC % AUPRC rel. % Suff. Comp.

HateXplain
DistilBERT 0.20 -0.80 1.11 1.37 0.25 -0.03
BERT-Mini 0.29 -0.84 2.46 3.49 0.40 -0.05

TF-IDF 0.002 -9.35 6.96 10.79 0.13 -0.10

Movie Reviews
DistilBERT 0.12 -0.28 0.50 4.39 0.25 -0.05
BERT-Mini 0.26 0.28 0.39 3.61 0.00 -0.02

TF-IDF 0.09 0.56 0.85 6.95 0.00 0.01

TSE
DistilBERT 0.64 0.09 1.32 1.98 0.05 0.00
BERT-Mini 0.19 0.37 0.64 1.01 0.06 0.01

TF-IDF 0.42 0.24 0.40 0.64 0.01 -0.02
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Figure 6: Comparison between BERT-HateXplain ( )
and our methodology ( ) on test data. Number of negative
rationales is 2 for our method. Color scales indicate the
explanation weights λ (for HateXplain, log scale) and
w2 (for our method). As usual, we ignore the model with
w2=1 as it is out of scale. Circled points are the chosen
models for each method to be analyzed more carefully.
Data scale is equal between x- and y-axes.

5.7 Methodology Comparison

In HateXplain’s paper (Mathew et al., 2021), the
authors test their dataset by proposing BERT-
HateXplain, a BERT version incorporating the ra-
tionales as an additional input. They incorporate
the annotations using a novel loss function over
the attention weights of the last layer of BERT5,
which is a particular case of the UNIREX frame-
work (Chan et al., 2022) . We compare our method-
ology with the BERT-HateXplain model, using the
same dataset (hatexplain_all), model (bert-
base-uncased), and explainer (LIME), and set-
ting the number of random (negative) rationales to 2.

Figure 6 presents the trade-off between accuracy
5Their attention loss is multiplied by a “trade-off” hyperpa-

rameter λ. We use their suggestion of λ values (Appendix E).

Table 2: Comparison between the chosen models (circled
points in Figure 6) of BERT-HateXplain and our method
on test data. Accuracy and AUPRC are in percentage (%).

Model Acc. AUPRC Suff. Comp.
HateXplain 67.47 72.00 0.12 0.53
Ours 66.54 73.02 0.14 0.40

and plausibility (mean AUPRC) on test data for BERT-
HateXplain and our methodology after optimization
on training data. For BERT-HateXplain, we use the
suggested hyperparameters from their paper (Mathew
et al., 2021). The shape of our curve is similar to
the other experiments involving language models.
BERT-HateXplain has a less stable curve because
their model training is stochastic, while our method-
ology is deterministic (Section 4.3). The circled dots
are the chosen models using a “good judgment” of
improving AUPRC without hurting too much accu-
racy. Table 2 compares the selected models for each
method. Our methodology has better plausibility,
while BERT-HateXplain has better accuracy. Ad-
ditionally, our methodology has better sufficiency,
while BERT-HateXplain has better comprehensive-
ness. These results align with the canonical BERT-
HateXplain results (Mathew et al., 2021) in their abso-
lute values and conclusion: they improve performance
and comprehensiveness while decreasing sufficiency.
Importantly, our method does not require any assump-
tion of model architecture, while BERT-HateXplain
does. This comparison expands the results of the other
experiments, showing that our methodology can trade
a little of performance to improve explanation quality
(by improving plausibility while keeping faithfulness)
in a model-agnostic approach.
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5.8 Further Experiments

We performed additional experiments to assess our
methodology further (Appendix F). We found that
the performance of our method for larger models is
similar to other experiments and that we can improve
out-of-distribution performance.

6 Discussion

Should We Model Plausibility? Jacovi and Gold-
berg (2021) argue that explanation plausibility should
not be pursued because it is an ethical issue: the ex-
plainer would pursue convincing the user of the model
decision, possibly providing unfaithful justifications.
Our perspective is different: the explainer is never
adjusted to convince the user (the model explainer
is not “trained” with rationales, and the model does
not learn how to tweak the explainer). Instead, we
update the model’s internal decision, aiming for better
explanations. Our perspective is more aligned with
Zhou et al. (2022) who defends that plausibility con-
tributes to understandability: “given the same level
of correctness, a higher-alignment explainer may be
preferable” (Zhou et al., 2022).

Is There Really a Trade-Off? The hypothesis of
this work is the existence of a trade-off between model
performance and explanation plausibility. This hap-
pens because, once we fix the model’s architecture,
it is impossible to promote more alignment with the
rationales without changing its optimal. The Pareto
frontier in Figure 19 clearly shows that there is not
any model that is better than all the others in both
metrics (exceptionally for one case), further indicating
the presence of a trade-off in its classic sense. Sec-
tion 2 presents references that argue both in favor and
against in the debate of the existence of a trade-off.
This work contributes to this debate by proposing an
explicit trade-off formulation (Equations 1 and 2) and
experiments exploring the existence of this trade-off.

Model and Explainer Agnosticism. Our approach
claims to be model- and explainer-agnostic because
we only influence the training procedure by adding
another loss function that incorporates the rationales.
We do not specify model type (Strout et al., 2019;
Mathew et al., 2021) or ask for a specific type of
explanation function (Rieger et al., 2020).

Light Hyperparameter Search. The trade-off is
explored using a MOO solver to identify optimal
weights. Model training is confined to the classifi-
cation layer, akin to training logistic regression in

the latent space (see Appendix E). Inference across
the language model occurs just once. This approach
eliminates the need for fine-tuning, rendering the
optimization process both convex and expedient.

Data Distribution Shift. The introduction of
rationales, with a decurrent performance drop, can
be interpreted as a data distribution shift. To limit
its effect on the performance, we keep the original
classification loss and find the right balance between
explanation plausibility and performance drop.

Other Benefits. To change the shortcuts that neural
networks explore to perform tasks, it is necessary to
update most, if not all, of the model’s weights. De-
spite our work training weights of the final layer only,
we believe that reducing network shortcuts with our
method should be explored in future work. Training
models to have more plausible reasoning can decrease
biases, improving users’ trust. In future work, we
intend to perform a large-scale user trust evaluation.

Datasets Diversity. We explored a diverse set of
datasets used in the literature (Mathew et al., 2021;
Atanasova et al., 2020). They vary in text and ratio-
nale length, text distribution, and number of classes
(Appendix F). They include complex and ambiguous
rationales (e.g., Movie Reviews) and those with nu-
anced classification categories, such as the “offensive”
and “hatespeech” classes in HateXplain (Table 4).

7 Conclusion

We propose a novel approach for enhancing the
explanation plausibility of text classification models
by incorporating human rationales, which capture hu-
man knowledge. Our method is model-agnostic and
explainability method-agnostic, making it compatible
with various model architectures and explainers. We
introduce a new contrastive-inspired loss function
that integrates the rationales into the learning process.
We demonstrate the feasibility of finding models that
achieve a trade-off between improved plausibility
and a minimal or negligible decrease in model
performance. A comparative analysis establishes the
superior effectiveness of our approach in enhancing
plausibility while maintaining faithfulness and model
agnosticism. We validate our method using a diverse
set of explainers, datasets, and models encompassing
modern and traditional NLP models. Furthermore,
we envision the potential extension of our approach
to accommodate other explainers, datasets, and
models, offering a seamless pathway to enhancing
the plausibility of text classification algorithms.
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Limitations

Model Agnosticism. The employed multi-objective
optimization (MOO) solver, NISE, demands convex
objective functions. We claim our method is agnostic
to any classification model, and this is true. How-
ever, when dealing with models that do not satisfy the
convexity condition, e.g., complex neural networks,
one should employ other MOO algorithms. To cir-
cumvent this limitation with the language models, we
trained only the classification layer or first fine-tuned
the model with cross-entropy loss (Appendix E).

DistilBERT and BERT-Mini. DistilBERT and
BERT-Mini, as they are Transformer encoder-based
models, do not scale to long texts because of the
limited input size. We did not approach this limitation
in this work, and we plan this for future work. For
our long text dataset, Movie Reviews, we truncated
the text to the input size of the model, which may
have impacted the results.

Larger Datasets. To the best of our knowledge,
there is a limitation in the literature regarding the
availability of large classification textual datasets with
human annotations in the sentence/phrase/word/token
level (Wiegreffe and Marasovic, 2021). Other tasks,
such as natural language inference (Camburu et al.,
2018), are out of the scope of this work. Conducting
large dataset annotations is intended for future work.

Model Scaling. In our methodology, only the
classifier layer is trained, diminishing the benefits
of further scaling the underlying model responsible
for generating representations. Additionally, com-
putational limitations become a significant factor
when evaluating models with explainers, as these
methods necessitate thousands of inferences for each
sample. Despite these constraints, our experiments
with BERT-Large indicate that findings are consistent
even with larger models. It is also noteworthy that
BERT-based models remain relevant benchmarks
in recent language model research, as evidenced by
studies such as from Du et al. (2023).

Annotation Efforts. We are aware of the additional ef-
fort required to collect annotations for textual datasets
and how this limits the extension of our work’s ap-
plication. However, we notice that, to make models
“learn with humans,” human efforts must be made to
“teach machines.” We believe this is a limitation of
the problem (“learning with explanations”) instead
of our work (a specific methodology to incorporate
the explanations). Even so, there is a relevant avail-
ability of textual datasets with annotations (Wiegreffe

and Marasovic, 2021). Finally, recent advances in
crowdsourcing annotation systems allow an efficient
annotation of datasets at scale (Drutsa et al., 2021).
Human Study. Consistent with precedents in the field
(Mathew et al., 2021; Ross et al., 2017), we did not
conduct a separate human evaluation. This decision
is based on the redundancy of such an evaluation with
the existing human annotations in our dataset. Any
human assessment would only assess the machine’s
rationale against individuals’ subjective interpretations
of the rationale. This process is equivalent to the
annotation process already undertaken.
Methodology Comparison. BERT-HateXplain is
an appropriate baseline for our approach, sharing
the same explanation method, dataset, and metrics.
It aptly represents other baseline methods (Chan
et al., 2022; Zhang et al., 2021; Lakhotia et al., 2021;
Arous et al., 2021; Strout et al., 2019), which also
integrate rationale extraction in the forward pass and
learn from annotated rationales. Future work will
include comparisons with gradient saliency-based
baselines (Ghaeini et al., 2019; Huang et al., 2021).
Furthermore, BERT-HateXplain is a specific instance
of UNIREX (Chan et al., 2022). The only difference
in its “Share LM” variant (model and extractor with
shared parameters) is an additional faithfulness loss
beyond our current scope. The “Double LM” variant
of UNIREX, featuring a distinct architecture for expla-
nation extraction, is also outside our study’s purview.

Ethics Statement

Some authors consider pursuing plausibility as an
ethical issue (Jacovi and Goldberg, 2021). Part of
this work argues this is not the case (Section 6). In
this work, we utilize a hate speech detection dataset
and train models with this data. We do not intend
to publicly distribute the trained models as they may
incorporate strong, toxic biases.
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A Multi-objective
Optimization Theorems and Definitions

The weighted sum method is an approach to solve a
MOO problem. It balances the objective functions
and converts the problem into a uni-objective form.

Definition A.1 (Weighted sum method). Given a
MOO problem as in Definition 3.1, the weighted sum
method transforms the problem into

min
x

w⊺f(x),

subject to x∈Ω⊆Rn,f : Ω→Rm,f(Ω)=Ψ,
m∑

i=1

wi=1,w∈Rm
+ .

With a few assumptions, solving the weighted
problem is necessary and sufficient to search for the
Pareto-frontier of the original MOO problem.

Theorem 1 (Necessity). If w ∈ (R∗
+)

m and x∗ is
a solution of the weighted problem, then x∗ is a
Pareto-optimal solution of the original MOO problem.

Proof. Following Raimundo et al. (2020), sup-
pose, by contradiction, that x∗ is a solution to
the weighted problem (with weights w) but not
a Pareto-optimal solution. Then, there exists x
such that, for some i, fi(x) < fi(x

∗) and, for all
j, fj(x)≤ fj(x

∗), by definition. Then there exists
ε ≥ 0 such that f(x) + ε = f(x∗), with εi > 0.
Finally, w⊺f(x) + w⊺ε = w⊺f(x∗), which means
w⊺f(x)<w⊺f(x∗). Absurd.

Theorem 2 (Sufficiency). If the original MOO
problem is convex, for any Pareto-optimal solution
x∗ there exists a weighting vector w such that x∗ is
the solution of the weighted problem.

Proof. This theorem was proved by Miettinen (1998,
Theorem 3.1.4).

The equivalence between the MOO problem and
the weighted problem, established when the MOO
problem is convex, is crucial. It enables multi-
objective optimization algorithms that characterize
the Pareto-frontier using the weighted sum method
(e.g., NISE, Cohon, 1978).

B Contrastive Loss for Logistic Regression

The logistic regression as the classifier is a particular
case that deserves a highlight. When the model fθ is
a multinomial logistic regression over text embedding

vectors, we can represent the contrastive rationale loss
function in the following way:

L̇θ(Ẋ,ẏ)=

− 1

N

N∑

i=1

|C|∑

k=1

1ẏi=kln
exp(Ẋi·θk)∑m

j=1exp(X̃i,j ·θk)
.

(3)

The dot product between two vectors is commonly
used as a similarity function in a contrastive learning
context (Khosla et al., 2020). When minimizing
Equation 3, one is training an anchor θk to approx-
imate a positive rationale Ẋi and to distance negative
rationales {X̃i,j}mj=1 \{Ẋi}, just like in contrastive
learning. However, positive and negative vectors
cannot be optimized in our case.

The multinomial logistic regression as a model
is analogous to a neural network with all but the
classification layer’s weights frozen. When there are
only two classes, it is easy to prove that binary and
multinomial logistic regression are equivalent. Finally,
the logistic regression results in a loss function L̇ that
is convex with respect to the weights θ, easing the
search for the model performance vs. explanation
plausibility Pareto-frontier through the employing of
convex multi-objective optimization algorithms, e.g.,
NISE (Cohon, 1978; Appendix A).

C Contrastive
Learning Theoretical Background

Consider a scenario where samples belonging to a
group p follow the distribution Tp. In contrastive learn-
ing, the objective is to ensure that the representations
of samples originating from the same distribution,
{Tp,i}i ∼ Tp, exhibit similarity in the vector space
while samples from different distributions are
positioned further apart. To achieve this, the learning
process aims to maximize a chosen agreement
metric among vector representations of samples
from the same distribution while simultaneously
minimizing this agreement for samples from different
distributions.

In visual representations, Chen et al. (2020) employ
a contrastive loss function in the latent space to
maximize the agreement between two preprocessed
versions of the same image while minimizing the
agreement between preprocessed versions of different
images. Similarly, Khosla et al. (2020) propose
a supervised contrastive loss that maximizes the
agreement between images belonging to the same
class while minimizing the agreement between
images from different classes.
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D DistilBERT and
BERT-Mini Fine-tuning on HateXplain

The rationales of the HateXplain dataset contain
words not included in the original distilbert-
base-uncased6 and bert-mini7 model’s
vocabulary because they are offensive and hate
speech words. However, when training a model
to incorporate rationales, including these tokens
in the vocabulary may be important. Otherwise,
the results would be underestimated. In the train
portion of the dataset, we filtered the most popular
out-of-vocabulary tokens (those with more than ten
occurrences), added them to the models’ vocabularies,
and fine-tuned the models in this portion. We used
a masked language modeling probability of 0.15 with
a batch size of 8 for 15 epochs in a GPU NVIDIA
GeForce GTX 1070. We do not apply this process for
the methodology comparison to keep similarities with
the original HateXplain work (Mathew et al., 2021).

E Implementation and Execution

Logistic Regression. We implemented the Logistic
regression with Scikit-learn. Its implementation was
adapted to incorporate the contrastive rationale loss.
The experiments used the following hyperparameters:
tolerance of 1e-4, max iterations of 1e3, l2 penalty,
lbfgs solver, and multinomial implemen-
tation. The C hyperparameter was chosen with
cross-validation on the training set. The regularization
term is added to the two losses (cross-entropy and
contrastive rationale loss). Therefore, when the two
losses are weighted by w, the regularization term
comes with weight 1.

DistilBERT and BERT-Mini. The DistilBERT
version used in this work was the distilbert-
base-uncased8, while the BERT-Mini version
was the prajjwal1/bert-mini9. The models
are used for text classification; therefore, we plug a
classification head on top of the [CLS] output vec-
tor. We keep all but the classification layer’s weights
frozen to guarantee the loss convexity (as we pointed
out in Appendix B), and the models are easier to train.
These models were not trained with gradient descent

6Available at https://huggingface.co/
distilbert-base-uncased

7Available at https://huggingface.co/
prajjwal1/bert-mini

8Available at https://huggingface.co/
distilbert-base-uncased

9Available at https://huggingface.co/
prajjwal1/bert-mini

because only a classification layer was trained. The
classification layer was implemented as a multinomial
logistic regression and trained accordingly (see previ-
ous paragraph). The inference over the DistilBERT
and BERT-Mini models was performed using GPUs
NVIDIA Quadro RTX 6000 and NVIDIA GeForce
GTX 1070. The running time of all experiments took
the order of magnitude of a month. The models trun-
cate the input text to their input limit length of 512.
The LIME’s disturbed text input has its tokens sub-
stituted by [MASK] for these models, keeping the
original text sample length.

Datasets. In the HateXplain dataset, because more
than one annotator is used for each sample, we
apply majority consensus to both rationale and class
assignments, disregarding non-consensual samples.

The HateXplain dataset is already tok-
enized, and Movie Reviews was tokenized
with Python’s str.split(). Tweet Sen-
timent Extraction (TSE) was tokenized using
re.split(f"([\\s{punctuation}])",
str) with punctuation imported from
string and with regex special characters escaped.
Table 3 presents a description of the datasets.

Table 3: Description of the datasets after filtering (Sec-
tion 5.2). HateXplain average rationale length is calculated
over the hate speech class only, and hatexplain_all,
over hate speech and offensive classes.

Dataset Samples
Average
sample
length

Average
rationale

length
HateXplain 13749 23.9 3.4

hatexplain
_all

19228 23.4 3.3

Movie
Reviews

1800 741.7 62.1

TSE 16330 17.5 4.7
tse_all 27378 17.0 9.2

LIME. The LIME explainer was implemented us-
ing 1000 samples, and the number of features was the
number of tokens of the text sample. It applied the per-
turbations using each dataset’s tokenization and filled
the perturbed tokens in accordance with the model re-
quirements. For instance, DistilBERT and BERT-Mini
required the perturbed tokens to become [MASK] to-
kens to keep the input sequence length unchanged.

Comparison with HateXplain. To compare our
methodology with HateXplain’s (Mathew et al., 2021),
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we implement their model in both their and our frame-
work. We tried to keep the implementation, including
methods and hyperparameters, as close as possible
to the details in their paper (Mathew et al., 2021) and
in their GitHub repository10. We use the three-class
HateXplain dataset (hatexplain_all), the
model bert-base-uncased, and the explainer
LIME. In our method, we also use 2 negative
(random) rationales. In particular, BERT’s input
length limit is set to 128 tokens. Finally, we use the
BERT’s pooled_output vector as input to the
classification layer, in contrast to the other language
models in this paper, in which we use the [CLS]
token output vector.

In our methodology, before exploring the trade-off
between cross-entropy and the contrastive rationale
loss using NISE, we fine-tune the model with the
cross-entropy loss only. This is done to maintain
performance compatibility between our method and
HateXplain’s, which fine-tunes the model to train the
attention. However, we do not apply the fine-tuning
procedure of Appendix D, i.e., incorporating new
tokens into the model’s vocabulary and training the
model in the masked language model task (MLM).
This could be performed, but it would differ from
what was done in HateXplain’s work.

The model’s hyperparameters (in their methodol-
ogy and in our fine-tuning) were set to the following
values: learning rate of 2e − 5, attention softmax
temperature parameter of 0.2, Adam optimizer,
standard BERT dropouts of 0.1, 6 heads of attention
supervision in the last BERT layer, batch size of
16, 20 epochs, and epsilon of 1e− 8. The authors
indicated these hyperparameters as the best ones.

Their novel attention loss was implemented as a
cross-entropy between the attention values and the ra-
tionale (the mean of attention losses for each attention
head) by using an additional hyperparameter λ:

loss=cross-entropy+λ·attention loss.

We explore the trade-off between their two losses
(cross-entropy and attention loss) by varying λ from
0.001 to 100 on a logarithmic scale, as suggested
by the authors. Because our method considers
the rationale binary (a token is either a rationale
token or not), we also incorporated the rationales in
BERT-HateXplain as binary, differently from their
implementation, which uses the mean of the binary
rationales (one for each annotator) as the rationale.

10https://github.com/hate-alert/
HateXplain

Doing this was necessary for a fair comparison
between the two methods.

Even though we implement BERT-HateXplain with
a few reasonable, justified modifications, our experi-
mental results of their model are comparable to their
paper’s (Mathew et al., 2021), as pointed in Sec-
tion 5.7.

F Additional Results

F.1 Main Results
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Figure 7: Trade-off between performance and plausibility
on test data for originally good (AUPRC = 1) and
originally bad (AUPRC<1) explanations differently. The
color scale is the same as the previous figures.
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Figure 8: Trade-off between per class recall and plausibility
on test data for DistilBERT and HateXplain dataset. The
color scale is the same as the previous figures.

F.2 Results in Non-Binary Classification

Sections 5.5 and 5.6 present results for all datasets
but are binary classification. As pointed out in Sec-
tion 5.2, this procedure simplifies the learning task.
Our methodology, however, is agnostic to the number
of classes and can handle non-binary classification
by default—we sum over any number of classes in
Equation 2. Figure 9 presents the trade-off between
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accuracy and plausibility for hatexplain_all
(with TF-IDF) and tse_all (with DistilBERT)
(test data), i.e., with all the three labels, and a num-
ber of negative rationales of 2. The trade-off frontier
shapes are similar to the binary classification, with
similar conclusions from Section 5.6. However, differ-
ent datasets lead to different absolute values. Finally,
in a similar way to Section 5.6, Table 4 compares
the original and chosen models, leading to similar
conclusions: positive AUPRC improvement and a
small decrease of performance. TSE had similar faith-
fulness results, while HateXplain had slightly worse
faithfulness results.
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Figure 9: Trade-offs between performance (accuracy,
x-axis) and plausibility (AUPRC, y-axis) for hatex-
plain_all (i.e., with all labels, and with TF-IDF) and
tse_all (i.e., with all labels, and with DistilBERT)
(test data). The number of random (negative) rationales
is 2. The color scale is the same as the previous figures.
We ignore the model with w1=0 in all graphics as it is out
of scale. Green dots are the models chosen to be analyzed
more carefully.

F.3 Results of Larger Models
Section 5 presents experiments with DistilBERT and
BERT-Mini, which are small language model en-
coders. To further evaluate our methodology with
a larger model, we performed a series of experiments
with BERT-Large (Devlin et al., 2019): datasets Hat-
eXplain and TSE, explainers LIME and SHAP, 2 nega-
tive rationales, BERT-Large without MLM fine-tuning.
The shapes of the model frontiers (Figure 10) were
similar to other language model frontiers of Figure 5

in the main paper. Additionally, Table 5 compares the
original and chosen models (in green). It reinforces
our previous results regarding plausibility gain and
minor performance degradation while improving or
keeping faithfulness. We also highlight the existence
of an experiment with BERT-Base (Devlin et al., 2019)
in the baseline comparison, a larger model than Distil-
BERT and BERT-Mini used in the main experiments.
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Figure 10: Trade-offs between performance (accuracy,
x-axis) and plausibility (AUPRC, y-axis, in percentage
(%)) for BERT-Large with HateXplain and TSE (test data).
The number of random (negative) rationales is 2, and the
explainers are LIME and SHAP. The color scale is the
same as the previous figures. We ignore the model with
w1=0 in all graphics as it is out of scale. Green dots are
the models chosen to be analyzed more carefully.

F.4 Out-of-Distribution Results
To test out-of-distribution (OOD) performance, we
additionally evaluated the DistilBERT trained on
HateXplain (Section 5.5 of the main paper) on Hat-
Eval (Basile et al., 2019), a similar dataset of hateful
tweets but with a different data distribution (it focuses
on hate speech against specific groups). We indeed
observed an increase in OOD performance. The
frontier shape of HatEval performance in Figure 11
is roughly similar to the frontier shape of HateXplain
performance (in the same Figure and in Figure 3)
but with the x-axis reversed (OOD performance
increases with the plausibility, except for very small
w1 values). For the selected model (green dot in
Figure 11), while original accuracy decreases by 0.8%
and plausibility increases by approximately 1.1%,
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Table 4: Comparison between the original model (cross-entropy only) and the chosen model (green dots on Figure 9)
for each performance and explainability metric on test data. “rel.” means relative variation. The column w1 indicates
the weight w1 of the chosen model’s cross-entropy loss during training. Number of negative rationales is 2.

Model w1 Acc. % AUPRC % AUPRC rel. % Suff. Comp.
hatexplain_all-lime-tf_idf 0.19 -3.17 7.09 12.16 -0.00 -0.06
hatexplain_all-shap-tf_idf 0.19 -3.17 6.42 11.30 -0.00 -0.06
tse_all-lime-distilbert 0.25 -0.37 0.88 1.09 0.01 -0.01
tse_all-shap-distilbert 0.25 -0.37 2.58 3.26 -0.02 -0.00

Table 5: Comparison between the original model (cross-entropy only) and the chosen model (green dots on Figure 10)
for each performance and explainability metric on test data. “rel.” means relative variation. The column w1 indicates
the weight w1 of the chosen model’s cross-entropy loss during training. Number of negative rationales is 2.

Model w1 Acc. % AUPRC % AUPRC rel. % Suff. Comp.
hatexplain-lime-bert_large 0.33 -0.73 2.51 3.61 0.13 0.03
hatexplain-shap-bert_large 0.33 -0.73 8.79 14.29 0.12 0.06
tse-lime-bert_large 0.30 -0.15 0.94 1.44 0.06 -0.01
tse-shap-bert_large 0.43 -0.12 1.71 2.68 0.05 -0.00
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Figure 11: Trade-offs between (HateXplain and Hat-
Eval) performance and (HateXplain) plausibility with
DistilBERT (test data). The number of random (negative)
rationales is 2, and the explainer is LIME. The color scale
is the same as the previous figures. We ignore the model
with w1=0 in all graphics as it is out of scale. Green dots
are the model chosen to be analyzed more carefully.

the out-of-distribution performance also increases by
0.47%. We also found it possible to increase by 0.97%
of plausibility and 1.32% of OOD performance at the
expense of a 3.64% drop in original accuracy.

F.5 Other Results
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plausibility on the test data. The color scale represents
the cross-entropy weight w1 (Section 4.3). We include the
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Table 6: Examples of explanations of the hate speech class of the HateXplain dataset. Examples were selected based
on the size and quality of the explanation and model predictions. The “original” explanation comes from the original
model trained with cross-entropy loss only (Section 5.5), while the “selected” explanation comes from the model with
top-AUPRC studied in Section 5.5 (DistilBERT, HateXplain, LIME, 2 negative rationales). Green means a positive
contribution to the model’s prediction. The top tokens were selected for visualization purposes, and the number of tokens
is the same as the original rationales.

Model Example
Original bhad bhabie we hate your nasty smelly *ss
Selected bhad bhabie we hate your nasty smelly *ss
Original i tole sum brillohaided n****r bich off last nite cuz it try to get uppity wit me
Selected i tole sum brillohaided n****r bich off last nite cuz it try to get uppity wit me
Original london mayor s*ckdiq kahn has room for a fellow m**zie terrorist
Selected london mayor s*ckdiq kahn has room for a fellow m**zie terrorist

Original
no <number> million white children r***d by p*ki muslims <number> million p*kis
in the uk for their crime the whole community must be expelled

Selected
no <number> million white children r***d by p*ki muslims <number> million p*kis
in the uk for their crime the whole community must be expelled

Original
the russians buying that and purging all the blue haired d*kes was glorious
that may well be the genesis of the russian bot narrative

Selected
the russians buying that and purging all the blue haired d*kes was glorious
that may well be the genesis of the russian bot narrative

Original
give a n****r an inch they take a mile lol r*tarded creatures they f*ck
themselves over every time

Selected
give a n****r an inch they take a mile lol r*tarded creatures they f*ck
themselves over every time

Original
and if u have to drink and drive make sure u drive home through as many
n****r gh*ttos as possible [emoji]

Selected
and if u have to drink and drive make sure u drive home through as many
n****r gh*ttos as possible [emoji]
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Table 7: Examples of explanations of the Tweet Sentiment Extraction dataset. Examples were selected based on the size and
quality of the explanation and model predictions. The “original” explanation (LIME) comes from the original DistilBERT
model trained with cross-entropy loss only (Section 5.6), while the “selected” explanation comes from the selected model
with a green dot (Section 5.6, Figure 5) (2 negative rationales). Green means a positive contribution to the model’s prediction.
The top tokens were selected for visualization purposes, and the number of tokens is the same as the original rationales.

Label Model Example

positive
Original in rye . . happy mothers day mums ily mummy lol
Selected in rye . . happy mothers day mums ily mummy lol

positive
Original I ‘ ll try that , thanks
Selected I ‘ ll try that , thanks

positive
Original LOVE your show !
Selected LOVE your show !

positive
Original _ O _ ASH I do too plus more happy mothers day Sweety
Selected _ O _ ASH I do too plus more happy mothers day Sweety

positive
Original hopefully today will work in our favor
Selected hopefully today will work in our favor

positive
Original Rachmaninoff makes me a happy panda .
Selected Rachmaninoff makes me a happy panda .

positive
Original You must like my song .
Selected You must like my song .

negative
Original _ [user] aww that sucks
Selected _ [user] aww that sucks

positive
Original Digging a downloaded film with mi familia . We love iTunes
Selected Digging a downloaded film with mi familia . We love iTunes

positive
Original Happy Mommy Day
Selected Happy Mommy Day
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Table 8: Comparison between the original model (cross-entropy only) and the chosen model (green dots on Figures 5,
16, 17, 18) for each performance and explainability metric on test data. “rel.” means relative variation. The column w1

indicates the weight w1 of the chosen model’s cross-entropy loss during training.

Model w1 Acc. % AUPRC % AUPRC rel. % Suff. Comp.
hatexplain-lime-distilbert-2 0.20 -0.80 1.11 1.37 0.25 -0.03
hatexplain-shap-distilbert-2 0.67 -0.29 0.85 1.06 0.15 -0.01
hatexplain-lime-distilbert-5 0.25 -0.91 1.19 1.47 0.25 -0.03
hatexplain-shap-distilbert-5 0.80 0.00 0.85 1.06 0.14 -0.01
hatexplain-lime-bert_mini-2 0.29 -0.84 2.46 3.49 0.40 -0.05
hatexplain-shap-bert_mini-2 0.29 -0.84 3.17 4.67 0.40 -0.05
hatexplain-lime-bert_mini-5 0.37 -0.80 2.67 3.78 0.41 -0.04
hatexplain-shap-bert_mini-5 0.37 -0.80 3.25 4.80 0.40 -0.05
hatexplain-lime-tf_idf-2 0.002 -9.35 6.96 10.79 0.13 -0.10
hatexplain-shap-tf_idf-2 0.002 -9.35 5.98 9.60 0.13 -0.09
hatexplain-lime-tf_idf-5 0.002 -9.45 7.79 12.08 0.13 -0.10
hatexplain-shap-tf_idf-5 0.002 -9.45 6.71 10.79 0.14 -0.10
movie_reviews-lime-distilbert-2 0.12 -0.28 0.50 4.39 0.25 -0.05
movie_reviews-shap-distilbert-2 0.36 -0.56 0.50 3.58 0.13 -0.02
movie_reviews-lime-distilbert-5 0.15 -0.28 0.61 5.43 0.25 -0.02
movie_reviews-shap-distilbert-5 0.81 0.83 0.17 1.23 0.04 0.00
movie_reviews-lime-bert_mini-2 0.26 0.28 0.39 3.61 0.00 -0.02
movie_reviews-shap-bert_mini-2 0.26 0.28 0.76 5.49 -0.01 -0.02
movie_reviews-lime-bert_mini-5 0.43 0.56 0.28 2.60 0.02 -0.01
movie_reviews-shap-bert_mini-5 0.43 0.56 0.85 6.16 0.01 -0.01
movie_reviews-lime-tf_idf-2 0.09 0.56 0.85 6.95 -0.00 0.01
movie_reviews-shap-tf_idf-2 0.07 0.28 0.99 6.26 0.01 0.01
movie_reviews-lime-tf_idf-5 0.10 1.67 0.82 6.73 -0.02 0.01
movie_reviews-shap-tf_idf-5 0.10 1.67 1.07 6.77 -0.02 0.02
tse-lime-distilbert-2 0.64 0.09 1.32 1.98 0.05 -0.00
tse-shap-distilbert-2 0.64 0.09 4.79 7.61 0.00 0.02
tse-lime-distilbert-5 0.51 -0.12 1.42 2.14 0.07 0.00
tse-shap-distilbert-5 0.36 -0.15 5.29 8.41 0.04 0.03
tse-lime-bert_mini-2 0.19 0.37 0.64 1.01 0.06 0.01
tse-shap-bert_mini-2 0.19 0.37 1.31 2.09 0.06 0.01
tse-lime-bert_mini-5 0.43 0.40 0.54 0.85 0.06 0.01
tse-shap-bert_mini-5 0.43 0.40 1.14 1.81 0.05 0.01
tse-lime-tf_idf-2 0.42 0.24 0.40 0.64 0.01 -0.02
tse-shap-tf_idf-2 0.42 0.24 0.78 1.28 0.01 -0.02
tse-lime-tf_idf-5 0.75 0.24 0.23 0.36 0.00 -0.01
tse-shap-tf_idf-5 0.75 0.24 0.43 0.70 0.00 -0.01
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Figure 13: Trade-offs between performance (accuracy,
x-axis) and plausibility (AUPRC, y-axis, in percentage
(%)) for all models and datasets (test data). The number
of random (negative) rationales is 2, and the explainer is
LIME. The color scale is the same as the previous figures.
We include the model with w1=0 in all graphics.
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Figure 15: Trade-offs between performance (accuracy, x-axis) and plausibility (AUPRC, y-axis) for all models and
datasets (test data). The number of random (negative) rationales is 2, and the explainer is LIME. The color scale is the
same as the previous figures. We ignore the model with w1=0 in all graphics as it is out of scale. Green dots are the
models chosen to be analyzed more carefully.
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datasets (test data). The number of random (negative) rationales is 5, and the explainer is LIME. The color scale is the
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with w1=0 in all graphics as it is out of scale.
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Figure 21: Pareto-frontier of trade-offs between performance (accuracy, x-axis) and plausibility (AUPRC, y-axis) for
all models and datasets (test data). The number of random (negative) rationales is 2, and the explainer is SHAP. The
color scale is the same as the previous figures. Gray dots are models not on the Pareto-frontier. We ignore the model
with w1=0 in all graphics as it is out of scale.
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Figure 22: Pareto-frontier of trade-offs between performance (accuracy, x-axis) and plausibility (AUPRC, y-axis) for
all models and datasets (test data). The number of random (negative) rationales is 5, and the explainer is SHAP. The
color scale is the same as the previous figures. Gray dots are models not on the Pareto-frontier. We ignore the model
with w1=0 in all graphics as it is out of scale.
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