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Abstract

Parameter-efficient fine-tuning (PEFT) meth-
ods are increasingly vital in adapting large-
scale pre-trained language models for diverse
tasks, offering a balance between adaptability
and computational efficiency. They are impor-
tant in Low-Resource Language (LRL) Neural
Machine Translation (NMT) to enhance trans-
lation accuracy with minimal resources. How-
ever, their practical effectiveness varies signif-
icantly across different languages. We con-
ducted comprehensive empirical experiments
with varying LRL domains and sizes to evalu-
ate the performance of 8 PEFT methods with in
total of 15 architectures using the SacreBLEU
score. We showed that 6 PEFT architectures
outperform the baseline for both in-domain and
out-domain tests and the Houlsby+Inversion
adapter has the best performance overall, prov-
ing the effectiveness of PEFT methods.

1 Introduction

Advances in large-scale pre-trained language mod-
els have transformed the field for high-resource
languages (Min et al., 2023), but these data and
compute-hungry models are not viable for the
more-than-7000 low-resource languages (LRLs)
in the world (Stap and Araabi, 2023; Robinson
et al., 2023; Zhang et al., 2023). Ideal for the lim-
itations of LRLs, parameter-efficient fine-tuning
(PEFT) methods (Houlsby et al., 2019; Pfeiffer
et al., 2020b; Hu et al., 2021) are designed to strate-
gically update a small number of parameters within
a pre-trained model to be more efficient and adapt-
able without retraining the entire model. Their
architecture significantly saves computational re-
sources and storage space while achieving results
comparable to full fine-tuning in downstream tasks
(Ruder et al., 2022). Üstün and Stickland (2022)
examined the applicability of 4 PEFT methods
specifically in the context of language translation.
Moreover, it did not address truly LRLs (Üstün and

Stickland, 2022), nor did it incorporate variation in
domains that would allow for an assessment of the
models’ generalization capabilities.

As a result, while the PEFT methods have shown
potential in fine-tuning specific tasks, domains, and
languages, the effectiveness of this collection of
PEFT methods for LRL translation has not been
systematically examined. In this paper, we explore
the performance of different PEFT architectures
in the LRL Neural Machine translation (NMT) by
comparing in-domain and out-of-domain test re-
sults, as well as training times. We also investigate
the effectiveness of PEFT methods in translating
LRLs, focusing specifically on their architectures
and performance across various datasets.

The contributions of our paper are 1) comprehen-
sive experimentation of PEFT architectures to re-
veal the suitability of translating non-Latin scripts
and LRL pairs; 2) an in-depth assessment of 15
PEFT architectures using 8 distinct methods to eval-
uate their effectiveness in LRL translation; and 3)
a systematic exploration of experimental settings,
including variations in dataset domains and sizes,
aimed at enhancing model generalization capabil-
ities. As the field continues to advance rapidly,
these PEFT guidelines provide practical recom-
mendations for improving LRL translations, thus
narrowing the language gap.

2 The PEFT Methods

We focus on the comparative performance of an ex-
tensive list of PEFT methods for LRL NMT under
various settings (Figure 1), offering a broader and
distinctive understanding of adapter utility.

Among all the PEFT methods, some share
the same structure. For example, the bottleneck
adapters include bottleneck feed-forward layers in
each layer of a transformer model. These layers can
be added to various positions within transformer
blocks. The Houlsby adapter (Houlsby et al., 2019)
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Figure 1: Full list of 8 PEFT methods and 15 archi-
tectures. Each color box represents a specific structure
appearing in the PEFT methods. The same color repre-
sents the PEFT methods that share a similar structure.

adds the layers after both the multi-head atten-
tion and feed-forward blocks. The Pfeiffer adapter
(Pfeiffer et al., 2020b) only adds the layers after the
feed-forward block. The Parallel adapter (He et al.,
2021) deploys the layers parallel to the transformer
layers. Similarly, the invertible adapters share a
similar architecture with bottleneck adapters but
with an added invertible adapter layer to the lan-
guage model embedding layer. The Compacter ar-
chitecture replaces only the linear down-projection
and up-projection with a parameterized hypercom-
plex multiplication layer (Karimi Mahabadi et al.,
2021).

In addition, Prefix Tuning is a lightweight alter-
native inspired by prompting (Li and Liang, 2021)
that introduces additional parameters in the multi-
head attention blocks of each transformer layer.
The LoRA method allows the training of specific
dense layers in a neural network indirectly by opti-
mizing the rank-decomposition matrices of specific
dense layers during adaptation with the pre-trained
weights frozen (Hu et al., 2021). (IA)3 is built to
improve LoRA with modifications. While LoRA
uses additive composition, (IA)3 uses element-wise
multiplication (Liu et al., 2022).

Some PEFT methods combine multiple methods.
The Mix-and-Match (MAM) Adapter combines
LoRA, Prefix Tuning, and Parallel adapter to form
a new adapter (He et al., 2021). Similarly, UniPELT
integrates bottleneck adapters, Prefix Tuning, and
LoRA into a unified setup (Mao et al., 2021).

Lastly, the language adapter captures language-
specific knowledge for application in various down-
stream tasks. It is not a distinct adapter architec-
ture; rather, it represents a method of utilizing pre-
existing architectures. We expected that this ap-

proach would enhance the model’s performance,
given its preexisting familiarity with the language
in question. We employed a pre-existing bottleneck
adapter for diverse language datasets, training it
with Masked Language Modelling on an extensive
collection of articles (Pfeiffer et al., 2020c).

3 Experimental Setup

LRLs Selection We chose Sinhala (SI), Tamil
(TA), Hindi (HI), and Gujarati (GU) as our primary
languages to run our translation task (See Table 1).
SI and TA were paired to run the translation task in
both directions, and HI and GU were paired.

Language Family Joshi
class

mBART coverage
in tokens (M)

Hindi (HI) Indo Aryan 4 1715
Gujarati (GU) Indo Aryan 1 140
Sinhala (SI) Indo Aryan 1 243
Tamil (TA) Dravidian 3 595

Table 1: Language details. The smaller the value of
the Joshi et al. (2020) class, the more low-resource the
language is.

Data Collection The data summary is given in Ta-
ble 2. More details about the datasets can be found
in Appendix A.1. Note that No Language Left Be-
hind (NLLB) (Costa-jussà et al., 2022) corpora are
derived from metadata for bitext mining released by
Meta AI, which lacks coverage and human quality
control, and is only suitable for training purposes.
Therefore, we performed an out-of-domain evalu-
ation by using FLORES-101 (Goyal et al., 2022)
and FLORES-200 (Costa-jussà et al., 2022) as the
test dataset.
Pre-trained Model Selection We performed base-
line experiments by fine-tuning all parameters us-
ing several pre-trained models, including mBART-
50 (Tang et al., 2020), M2M-100 (Fan et al., 2020),
and NLLB (Costa-jussà et al., 2022). Model se-
lection process is given in Appendix A.2. Based
on our results, we selected mBART-50 as our pre-
trained model for the rest of our experiments. The
mBART-50 model is a multilingual Sequence-to-
Sequence (Seq2Seq) model. Its introduction aims
to demonstrate the feasibility of developing multi-
lingual translation models via the process of multi-
lingual fine-tuning.
Experimental Design We also experimented by
systematically varying the number of fine-tuned pa-
rameters that the method updates with the Houlsby
adapter. It allowed us to investigate the impact of
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Dataset Quality Languages Train Size Test Size

FLORES-101 Sourced from English Wikipedia and translated by professional translators HI, GU, TA Test only 1k
FLORES-200 Sourced from web articles and translated by professional translators SI Test only 1k

NLLB Automatically gathered from web sources and monolingual datasets, using web
crawls and LASER3 encoders for parallel sentence identification

HI, GU, SI, TA 25k, 100k 2k

Gvt Parallel government documents dataset with manual cleaning and aligning SI, TA 25k 2k
Sam Sourced both from existing corpora and new, diverse data collected via automated

web crawling and sentence alignment, with human evaluation ensuring its reliability
HI, GU 25k 2k

Table 2: Dataset statistics

the number of parameters that are updated and then
select the most suitable reduction factor for all the
PEFT architectures.

The trainer employed in our study is sourced
from the Adapter Transformers (Pfeiffer et al.,
2020a). Each adapter’s performance was evaluated
using the Sacre BiLingual Evaluation Understudy
(SacreBLEU) Score (Post, 2018). Training details
are given in Appendix A.2.

We evaluated the performance of our PEFT ar-
chitectures using direct fine-tuning with the pre-
trained model as the baseline. In total, we tested
15 PEFT architectures supported by the Hugging
Face Adapter Hub (Pfeiffer et al., 2020a) trained on
SI-TA 100k NLLB language dataset to identify the
best methods for further analysis; both the NLLB
test dataset and the FLoRes test dataset were used
to test these models. We then narrowed down the
selection to the top two methods with the highest
SacreBLEU scores from each of the test results,
the NLLB and the FLoRes dataset. An additional
PEFT architecture was selected based on those that
outperformed the baseline for both test datasets and
with the shortest training time. Extensive experi-
ments were then conducted with these top-selected
methods across additional LRL and dataset sizes
to determine the optimal configuration. After all
experiments were completed, the average perfor-
mance was calculated to mitigate any variation due
to GPU randomness.

4 Experimental Results

Number of fine-tuned parameters Table 3
shows that the performance of the same PEFT ar-
chitecture can vary with the number of parame-
ters. Initially, when the reduction factor is set to
2, both the in-domain and out-domain results show
improvement over the baseline. Specifically, the
in-domain performance increases significantly to
33.34, while the out-domain performance also sees
a modest improvement to 7.62. However, an in-
teresting trend emerges as the reduction factor is
further increased to 4: the in-domain test results

begin to decline, dropping to 30.67, while the out-
domain results experience only a slight increase
(0.07 compared to reduction factor 2). This pattern
suggests that increasing the reduction factor beyond
2 may lead to underfitting. Subsequent increases in
the reduction factor exacerbate this trend, causing
both in-domain and out-domain results to decrease
compared to the reduction factor of 2. Therefore,
the reduction factor of 2 is considered optimal for
the remainder of the experiments, balancing model
complexity with performance gains.

Reduction
factor

# PEFT
parameters

% PEFT
parameters

In-domain
(SacreBLEU)

Out-domain
(SacreBLEU)

Runtime
(hours)

- - - 30.25 5.52 59.44
2 50,405,376 7.62 33.34 7.62 78.65
4 25,227,264 3.97 30.67 7.69 53.83
8 12,638,208 2.03 31.05 7.52 93.58
16 6,343,680 1.03 26.67 7.12 76.73
32 3,196,416 0.52 23.81 7.35 74.18

Table 3: Comparison of Fine-tuning Results with Dif-
ferent Reduction Factors on 100k NLLB SI-TA with
mBART-50 Using the Houlsby Adapter. The first line
represents the full fine-tuning baseline without using
any PEFT architecture, the second line onwards shows
fine-tuning with the Houlsby Adapter with different re-
duction factors.

Top-4 Selected PEFT Architectures To evaluate
the PEFT architectures’ performance, we compared
their in-domain test, out-domain test, and training
time for 100k NLLB SI-TA training dataset (Ta-
ble 4). For methods that did not surpass the base-
line in both tests, we inferred that these methods
are not suitable for tasks in LRL translation.

For NLLB in-domain testing, the Houlsby
adapter performs the best at 33.34 (10.20% bet-
ter than baseline), followed by Scaled-parallel
(9.21% improvement). For FLoRes out-of-domain
testing, the Houlsby adapter remains the best at
7.62 (38.23% better than baseline) followed by
Houlsby+Inversion adapter (34.51% improvement).
The Pfeiffer adapter runs the fastest at 52.59 while
outperforming the baseline for both tests.
Domain Similarity of Test Dataset We ex-
panded our training to additional dataset do-
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Architecture In-domain ∆% Out-domain ∆% Runtime (hours) ∆%

Baseline 30.25 - 5.52 - 59.44 -
Houlsby 33.34 10.20% [1] 7.62 38.23% [1] 78.65 32.32% [10]

Scaled-parallel 33.04 9.21% [2] 6.62 20.00% [7] 93.68 57.60% [12]
Pfeiffer+Inversion 32.58 7.69% [3] 6.84 24.06% [4] 78.31 31.75% [9]

MAM 33.26 6.62% [4] 6.51 18.08% [8] 95.73 61.05% [13]
Houlsby+Inversion 32.23 6.55% [5] 7.42 34.51% [2] 63.54 6.90% [6]

Pfeiffer 31.24 3.27% [6] 6.96 26.25% [3] 52.59 -11.52% [3]
Language Adapter (TA) 29.98 -0.88% [7] 6.31 14.47% [9] 98.23 65.26% [14]

Parallel 27.63 -8.66% [8] 6.62 20.04% [6] 26.85 -54.83% [1]
Prefix tuning 23.62 -21.93% [9] 6.71 21.72% [5] 77.25 29.96% [8]

LoRA 18.63 -38.41% [10] 5.76 4.45% [10] 58.1 -2.25% [5]
Compacter 13.36 -55.82% [11] 4.27 -22.61% [11] 106.56 79.27% [15]

Compacter++ 12.56 -58.49% [12] 4.12 -25.36% [12] 84.22 41.69% [11]
Prefix tuning flat 12.25 -59.50% [13] 3.93 -28.75% [13] 55.29 -6.98% [4]

(IA)3 11.10 -63.30% [14] 3.63 -34.14% [14] 63.81 7.35% [7]
Unipelt 0.38 -98.74% [15] 0.12 -72.54% [15] 39.47 -33.60% [2]

Table 4: Full list of fine-tuning results with the 100k NLLB SI-TA language dataset. The table shows the predicted
SacreBLEU score for both the In-domain test dataset (the NLLB test dataset), the Out-domain test dataset (the
FLoRes test dataset), and the models’ training time. ∆% represents the percentage increase in terms of the baseline
results. Bold means that the model’s performance is better than the baseline (higher SacreBLEU score/shorter
training time). Underline means that the corresponding PEFT architectures are selected for further testing.

mains (Appendix Table 6). For the in-domain
test, Houlsby adapter exhibits superior perfor-
mance at 31.53; for the out-of-domain test,
Houlsby+Inversion performs best at 10.02 (a 0.1
better than Houlsby). Since the FLoRes out-of-
domain test results in a more robust and objective
evaluation of the model’s translation performance
across many domains (Goyal et al., 2022), we pri-
oritize the out-of-domain results and conclude that
the Houlsby+Inversion adapter has the best perfor-
mance overall. Lastly, in terms of training time
(Appendix Table 7), the Pfeiffer adapter has the
shortest runtime as expected, saving 8 hours on
average compared to the baseline.

5 Discussion

Result Generalization Our results demonstrate
the robust generalizability of our PEFT architec-
tures across different training dataset sizes and do-
mains. Figure 2 shows that our model consistently
outperforms the baseline, on average, in both in-
domain and out-of-domain testing. Specifically for
models trained on other domains, the ∆% increase
over the baseline is over 50%, demonstrating the
ability of PEFT methods to excel at tasks beyond
their training domain. In terms of training dataset
sizes, our selected PEFT architectures show a con-
tinuous trend for performance increase compared
to the baseline. It is worth noting that our Table 6 in
the appendix shows that increasing the training size

has led to improved performance. However, the
magnitude of the improvement difference shows di-
minishing returns, suggesting a potential saturation
effect as identified in previous studies (Lee, 2021).

Figure 2: Average ∆% compared to baseline for each
dataset tested on in-domain and out-of-domain.

Effect of Bottleneck Architecture on LRL The
similarity among the outperforming PEFT archi-
tectures highlighted in Table 4 is that they all in-
clude bottleneck adapters in the architecture. While
some other PEFT architectures such as UniPELT
and Compacter adapters also adapt the bottleneck
architecture, they do not exhibit comparable per-
formance. In the subsequent discussion, we will
examine the difference between these architectures
and outperforming ones to find out which part of
the bottleneck architecture design makes the per-
formance better.

First, UniPELT integrates bottleneck adapters
into a unified setup. Compared with the MAM
adapter, UniPELT adds the bottleneck only after the
Feed-Forward Network (FFN) layers (Mao et al.,
2021), while MAM also adds an adapter after the
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attention layer (He et al., 2021). This observation
suggests that the efficiency of the architecture is
not solely determined by the presence of the bot-
tleneck adapter, but also by the specific placement
of the adapter within the architecture. This could
be because FFN learns task-specific text patterns
(Geva et al., 2022), while attention learns pairwise
positional interactions. In our LRL translation task,
pairwise positional interactions are more important
than textual patterns. Removing the adapter from
the attention layer may lead to a decrease in the
SacreBLEU score.

Second, Compacter modifies the bottleneck
adapter but does not achieve good results. The
difference between a bottleneck adapter and Com-
pacter is that it replaces the linear down and up
projection with a parameterized hypercomplex mul-
tiplication (PHM) layer. This layer can break the
importance of the parallel position in the transla-
tion task. This highlights the importance of the
original up-and-down projection layer present in
the bottleneck adapters.
Adapter for Domain Adaptation We found
that in-domain testing performs better than out-
of-domain testing due to memorizing patterns in
the dataset, leading to falsely inflated performance.
When fine-tuning on a new domain, rapid domain-
specific overfitting and catastrophic forgetting re-
duce the performance on all other domains (Sen-
nrich et al., 2015; Barone et al., 2017; Bapna et al.,
2019). However, by freezing the parameters of
the original pre-trained model and training only
task-specific parameters, the adapter avoids catas-
trophic forgetting of the knowledge learned during
pre-training and can maintain performance when
testing in other domains (McCloskey and Cohen,
1989; Lai et al., 2022; Üstün et al., 2021).
Language Family and Pre-Training Size We ob-
served notable disparities in performance among
different language pairs (Figure 3). The LRL SI-
TA pair demonstrates lower performance with a
smaller dataset size (i.e., 25k) but improves as the
dataset size increases, suggesting that the amount
of training data is a critical factor in enhancing the
translation quality for LRL (Lee et al., 2022).

The SI-TA pair yields lower performance com-
pared to the HI-GU pair, underscoring the intricate
dynamics of linguistic relationships and the avail-
ability of resources (Table 1). Linguistically, HI,
GU and SI are part of the Indo-Aryan language
family, while TA is Dravidian; thus suggesting the
lower performance of SI-TA. Notably, GU’s closer

Figure 3: Performance of LRL Translation Pairs by
Fine-Tuning Dataset Size (In-Domain only).

linguistic affinity to HI may have facilitated enhanc-
ing its performance through cross-lingual transfer,
despite its smaller pre-training dataset size. How-
ever, its smaller gains due to dataset size increase
may be due to the high-resource saturation of HI.

6 Conclusion

Our study delved into a wide range of PEFT meth-
ods to identify the most effective ones for LRL-
NMT. Particularly focusing on non-Latin scripts
and LRL-to-LRL translation pairs, our research
stands as a valuable guide for LRL-NMT. We found
that certain adapters consistently outperformed oth-
ers, offering enhanced translation accuracy and ef-
ficiency in challenging linguistic contexts. Fur-
thermore, the adapters’ effectiveness was tested
and generalized across various dataset domains and
sizes, ensuring the applicability of our findings to a
broad spectrum of LRL scenarios. Looking ahead,
these insights pave the way for further advance-
ments in PEFT methods, aiming to optimize the
balance between efficiency and quality in NMT,
especially in the challenging context of LRL.

Limitation and Future Work

Language Specific Adapters We tested the PEFT
architectures at adapting to our LRLs, and not
the specific fine-tuned models of language-specific
adapters. We hope this comparison can provide an
agnostic baseline for others to follow. Surprisingly,
the language adapter we tested does not perform
above the baseline; therefore, we need to explore
other language-specific fine-tuning strategies. In
the future, we will explore more language-specific
adapter; but the scope of this study only covers the
generic PEFT architectures.
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Increase Domain While it is worth noting that
three of the four LRLs we have provided transla-
tions for belong to the Indo-Aryan language fam-
ily and the other one is a Dravidian language, we
suggest broadening our experimentation to include
more diverse languages to increase the credibility
of our results. As with dataset sizes of 100k and
25k, we could experiment with sizes in between.
Evaluation Criteria Our assessment of translation
performance relied on SacreBLEU scores, but rely-
ing on a single metric may not be sufficient to sup-
port our conclusions. In future research to evaluate
the model’s performance, it would be advantageous
to use metrics such as ChrF and COMET, which are
reportedly better correlated with human judgments
(Dixit et al., 2023). Additionally, the variations
between distinct methods lack strong indications.
Consequently, statistical significance tests would
be fundamental to further confirm the significance
of the improvements.
PEFT Composition This paper focuses solely on
the impact of a single PEFT architecture. However,
there is an ongoing exploration into the potential
of combining multiple methods as a composition.
AdapterHub recently published a paper that ex-
panded its support to include various composition
methods, including stack, fuse, split, and average
(Poth et al., 2023).
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A Appendix

A.1 Supplementary Material on Datasets

No Language Left Behind (NLLB) The NLLB
(Costa-jussà et al., 2022) corpus consists of trans-
lation training datasets for low-resource languages
and is automatically created through the process
of bitext mining. We employed a selection process
based on the LASER score, where we chose the
top 100,000 and 25,000 translation pairs from the
selected language pair for dataset size variation.
However, NLLB lacks coverage and human quality
control due to the noisy nature of the entire proce-
dure and is only suitable for training purposes.
Government corpus (Gvt) The government doc-
ument corpus (Fernando et al., 2020) is a multi-
way parallel corpus for Sinhala, Tamil, and En-
glish. It comprises a range of official Sri Lankan
government documents, including annual and com-
mittee reports, content sourced from government
websites, procurement-related documents, and leg-
islative acts.
Samanantar corpus (Sam) The Samanantar cor-
pus (Ramesh et al., 2023) is the largest publicly
available Parallel Corpora Collection for 11 Indic
Languages. The data is derived from two sources:
existing databases and new data automatically col-
lected through web crawling and sentence align-
ment techniques.
FLORES The FLORES dataset (Goyal et al., 2022)
is a multiway multilingual translation evaluation
dataset. FLORES-101 is comprised of translations
from 842 unique web articles, comprising a total of
3001 sentences. Because all translations are fully
aligned, the resulting dataset allows for a more ac-
curate assessment of model quality on the long tail
of LRLs, including the evaluation of many-to-many
multilingual translation systems. The professional
rigor and reliability of the results are strengthened
by using an out-of-domain evaluation of this type,
resulting in a more robust and objective evaluation
of the model’s translation performance across many
domains. FLORES-200 expands the language cov-
erage to twice that of FLORES-101. We used
FLORES-200 (Costa-jussà et al., 2022) for Sin-
hala since it is not in FLORES-101, and dev-test
split for both FLORES-101 and FLORES-200.

A.2 Supplementary Material on
Experimental Setup

Selection of Pre-trained Models. We conducted
experiments with several MT models, such as

mBART-50 (Tang et al., 2020), M2M-100 (Fan
et al., 2020) and NLLB (Costa-jussà et al., 2022).
Specifically, we fine-tuned these models on the SI-
TA 100k NLLB language dataset to identify the
most effective methods for further analysis. Both
the NLLB test dataset and the FLoRes test dataset
were utilized to evaluate the performance of these
models. Subsequently, we narrowed down the se-
lection criteria to prioritize models with high Sacre-
BLEU scores, low runtime, and lower computa-
tional resources. We found that nllb-200-distilled-
1.3B, the largest model that we experimented with,
has the best performance in both the in-domain and
out-domain test sets (Table 5). However, the supe-
rior performance of larger models comes with the
caveat of increased hardware requirements, making
them less accessible for practitioners, particularly
when it comes to LRLs. In contrast, mBART-50
offers a robust alternative that does not demand
additional computational resources, making it a
practical choice for LRL applications. With these
factors into account, we chose mBART-50 for our
experiments.

Model # of parameters In-domain Out-domain Runtime (hours)

m2m100-418M 483,905,536 32.35 6.03 75.96
mbart-large-50 610,879,488 30.25 5.52 59.44

nllb-200-distilled-600M 615,071,744 35.15 9.25 50.49
m2m100-1.2B 1,239,470,080 32.22 6.22 187.91

nllb-200-distilled-1.3B 1,370,636,288 37.75 10.30 60.96

Table 5: Baseline experiments with different pre-trained
models with the 100k NLLB SI-TA language dataset.

Choice of Trainer The integration of PEFT meth-
ods into language models is facilitated by a modi-
fication of AdapterHub, a centralized store of pre-
trained adapter modules.

In the context of language translation, the pro-
cess involves utilizing a translation code to refine
the pre-existing model and assess the performance
of transformers to translation-oriented assignments.
In this case, we used Seq2SeqTrainingArguments.
GPU Details It consists of Dell nodes, each
equipped with four NVIDIA V100-32GB GPUs,
32 CPU cores, 32GB of GPU memory, and two
Intel Silver 4216 Cascade Lake processors running
at 2.1GHz. All GPUs are connected via NVLink
and SXM2. They are well suited for processing
large language models with a 7.0 capability.
Trainer Setup There are several parameters that
we have specified for the execution of the model.
For the evaluation strategy, the evaluation is done
at the end of each epoch (Wolf et al., 2020). We
set the number of training epochs to 40 so that the
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Language Dataset Size No PEFT Houlsby Houlsby+inv Pfeiffer Scaled-parallel
In-domain FLoRes In-domain FLoRes In-domain FLoRes In-domain FLoRes In-domain FLoRes

SI-TA NLLB 25k 21.8171 3.9573 24.7268 (+2.9097) 5.7709 21.6649 5.8532 (+1.8959) 21.9808 5.4773 24.0997 5.3101
100k 30.3961 5.4352 33.6794 (+3.2833) 7.6977 (+2.2625) 32.2317 7.4188 31.2395 6.9635 33.0374 6.6186

Gvt 25k 21.2982 1.3255 21.0242 2.2491 21.6247 (+0.3265) 2.1965 19.5961 2.347 (+1.0215) 20.5064 2.0723

TA-SI NLLB 25k 22.3512 5.3989 25.1825 6.641 25.434 (+3.0828) 7.0094 (+1.6105) 24.5575 6.1987 24.9486 6.4323
100k 34.0925 7.1264 35.3707 (+1.2782) 8.3163 34.8269 8.6788 (+1.5524) 34.7869 7.9525 33.4139 7.8196

Gvt 25k 31.9105 2.4346 31.7150 3.2406 31.7034 3.259 28.6959 3.2433 28.86 3.3824 (+0.9478)

HI-GU NLLB 25k 35.8082 11.2997 39.3775 (+3.5693) 12.3927 38.2209 12.4318 38.7203 12.4832 38.4944 12.807 (+1.5073)
100k 39.1754 12.0767 41.5658 (+2.3904) 14.2947 41.4993 15.057 (+2.9803) 40.9938 14.5054 41.0432 14.2797

Sam 25k 11.1118 5.2094 12.6581 9.5945 12.6111 9.0768 12.7405 9.9535 (+4.7441) 12.8279 (+1.7161) 9.9509

GU-HI NLLB 25k 43.2111 13.9272 45.9313 17.3196 (+3.3924) 45.8927 17.2129 45.9704 17.0236 46.341 (+3.1299) 17.1825
100k 47.6282 17.5709 50.6256 (+2.9974) 19.3265 49.5878 19.0191 48.826 19.2495 49.9162 19.4532 (+1.8823)

Sam 25k 14.3543 10.0847 16.4453 12.1565 16.6844 (+6.5997) 13.0219 16.5667 13.0903 16.6316 13.5055 (+3.4208)
Average 29.4296 7.9872 31.5252 9.9167 30.9985 10.0196 30.3895 9.8740 30.8434 9.9012

Table 6: Comparison of Fine-Tuning Results for Selected PEFT Methods Across Various Language Datasets and
Dataset Sizes on the in-domain Test Datasets and FLoRes Test Datasets. In-domain means that the test dataset
comes from the same distribution as the training dataset. Bold score means that the SacreBLEU score is the highest
among all listed fine-tuning experiments within the same dataset.

Language Dataset Size No PEFT Houlsby Houlsby+inv Pfeiffer Scaled-parallel
25k 00-14:22:48 00-22:10:17 00-17:20:46 00-08:41:54 00-16:36:20NLLB 100k 02-23:47:07 03-12:06:21 02-15:32:23 02-04:35:37 (-19:11:30) 03-21:40:44SI-TA

Gvt 25k 01-20:35:13 00-23:09:18 01-06:25:42 00-10:29:23 (-01-10:05:50) 00-18:55:42
25k 00-09:51:53 00-19:04:15 01-06:57:42 00-21:56:10 00-21:12:29NLLB 100k 03-23:18:56 03-21:35:37 03-00:14:17 03-19:41:43 02-13:40:04 (-01-09:38:52)TA-SI

Gvt 25k 02-01:01:03 01-14:06:04 02-02:11:33 00-20:36:14 00-10:26:10 (-01-14:34:53)
25k 00-07:42:33 00-17:45:38 00-10:43:29 00-15:47:21 00-06:50:13NLLB 100k 01-05:37:21 01-02:22:44 01-00:18:21 00-19:28:39 (-10:08:42) 00-22:16:01HI-GU

Sam 25k 00-16:27:37 00-07:43:53 00-07:27:22 00-05:51:51 00-05:29:49 (-10:57:48)
25k 00-07:34:30 00-04:59:17 (-02:35:13) 00-07:20:46 00-05:47:51 00-06:23:02NLLB 100k 00-20:17:54 01-07:19:39 01-02:59:59 00-21:23:38 00-20:35:02GU-HI

Sam 25k 00-04:54:57 00-04:54:34) 00-05:51:34 00-04:59:19 00-04:46:03 (-00:08:54)
Average 01-06:57:39 01-07:06:28 01-04:57:00 00-23:16:38 01-00:04:18

Table 7: Comparison of Training Time for Selected PEFT Methods Across Language Datasets and Dataset Sizes.
Bold time means that the training time is the shortest among listed fine-tuning experiments with the same dataset.

Parameter Value

Evaluation Strategy Epoch
Number of Training Epoch 40

Patience 3
Batch Size 2

Metric for Best Model Evaluation SacreBLEU

Table 8: Full list of trainer parameters used and corre-
sponding value.

model could be finished running in a maximum of
4 days. The patience level is set to 3 based on some
small experiments. A lower level of patience will
cause the model to stop too early as there is still
room for improvement; a higher level of patience
will cause overfitting, and the model will only stop
until the last epoch; there will be no early stopping,
which is not what we expected. Since our task is
simple fine-tuning, we set the batch size to 2. A
smaller batch size introduces more stochasticity
into the training process by updating the model
parameters more frequently.

Evaluation Metrics SacreBLEU (Post, 2018) of-
fers benefits over BLEU scores, which cannot be
directly compared across papers, as it allows for
easy computation of shareable, comparable, and
reproducible SacreBLEU scores.

B Direct Fine-Tuning Results With
Selected PEFT Architectures Across
Different Domains

We selected Houlsby, Houlsby+Inversion, and
Scaled-Parallel Adapter for the next experiments
based on their performance, with Houlsby emerg-
ing as the best performer for both testing results.
Pfeiffer adapter was selected for its short training
time compared to the baseline. The results dis-
played in Table 6 indicate that the Houlsby adapter
exhibit superior performance over all other meth-
ods in the in-domain test with an average Sacre-
BLEU score of 31.5252. For the FLoRes test
dataset, Houlsby+Inversion performs better with
an average SacreBLEU score of 10.0196, a 0.1 dif-
ference from Houlsby.

In terms of training time shown in 7, the Houlsby
adapter does not have the advantage and even be-
comes the longest runtime on average. The Pfeiffer
adapter, which we chose for its runtime, has the
shortest runtime as expected, saving 8 hours on
average compared to the baseline.
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