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Abstract

Sample contrastive methods, typically referred
to simply as contrastive are the foundation of
most unsupervised methods to learn text and
sentence embeddings. On the other hand, a dif-
ferent class of self-supervised non-contrastive
loss functions and methods have been consid-
ered in the computer vision community and
referred to as dimension contrastive. In this
paper, we thoroughly compare this class of
methods with the standard baseline for con-
trastive sentence embeddings, SimCSE (Gao
et al., 2021). We find that self-supervised em-
beddings trained using dimension contrastive
objectives can outperform SimCSE on down-
stream tasks without needing auxiliary loss
functions.

1 Introduction

Text embeddings are an important tool for a va-
riety of NLP tasks. They provide a general and
compute efficient solution to problems like topic
classification, document clustering, text mining and
information retrieval, among others.

Most modern techniques to learn text embed-
dings rely on minimizing a contrastive loss (Chopra
et al., 2005; van den Oord et al., 2019). This re-
quires identifying, for each example x in the train-
ing set, a positive example x+ and a set of negative
examples x−i associated to x. The choice of x+

and x−i is one of the main factors differentiating
these techniques. Unsupervised methods (Zhang
et al., 2020; Giorgi et al., 2021; Chuang et al., 2022)
rely on in-batch negatives for the x−i and data aug-
mentation for x+. Supervised or weakly super-
vised methods (Reimers and Gurevych, 2019; Ni
et al., 2022b; Wang et al., 2022; Su et al., 2022;
Muennighoff, 2022; Ni et al., 2022a) rely either
on mining heuristics or annotated datasets to build
the positive and negative pairs. For instance, a

* Equal contribution. Alphabetical order.

common choice is to use entailment and contradic-
tion pairs respectively, as in SNLI (Bowman et al.,
2015a) and MNLI (Williams et al., 2018a).

In this work, we approach the problem of learn-
ing text embedding from the point of view of which
objective function to use. We consider two self-
supervised representation learning algorithms intro-
duced in computer vision literature: Barlow Twins
(BT) (Zbontar et al., 2021) and VICReg (Bardes
et al., 2022).

What sets apart these two non-contrastive meth-
ods is their nature of being dimension contrastive
according to the classification of Garrido et al.
(2022). Usual contrastive methods, defined by
Garrido et al. (2022) as sample contrastive, avoid
the collapse of the learned representations by pe-
nalizing similarity of the embeddings correspond-
ing to different data points; dimension contrastive
methods regularize the objective function by de-
correlating the embeddings across their dimensions.
Both sample and dimension contrastive methods
rely on data augmentation in the unsupervised
setting. While good augmentation functions are
known and routinely used for image data, augmen-
tation of textual data is usually considered trick-
ier (Feng et al., 2021). One of the breakthrough
of SimCSE is the realization that using the model
stochastic dropout mask to define the augmented
views of the same data point is an effective choice.

The main goal of this paper is to compare
sentence embeddings learned through sample-
contrastive and dimension-contrastive techniques
and explore different augmentation strategies. We
use SimCSE (Gao et al., 2021) as our sample-
contrastive baseline and compare it against BT
and VICReg 1. Our main findings are: i) Barlow
Twins is competitive with unsupervised SimCSE
as a standalone objective function and outperforms

1To the best of our knowledge, we are first to use VICReg
as an objective to train sentence embeddings.
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it on a majority of MTEB tasks with a RoBERTa
based architectures. This is partly at odds with
the finding of Klein and Nabi (2022) and Xu et al.
(2023) which include new terms in the loss with
the motivation that BT alone does not get better
performances than SimCSE. A thorough compari-
son of dimension and sample contrastive methods
does not exist in the literature. ii) VICReg under-
performs Barlow Twins and SimCSE: we find it
harder to optimize it and we cannot exclude that
more hyperparameter exploration and better data
augmentation would lead to better results. iii) We
obtain mixed results by using supervision (for in-
stance from NLI datasets) in place of data augmen-
tation: in no case does supervision lead to better
performances across all MTEB downstream task
categories.

2 Contrastive techniques

All the techniques that we experiment with in the
following can be described in a unified way. Con-
sider a batch of data points sn, n = 1, . . . , N
(sentences in this work).2 The representation en
for each point is obtained through a parametrized
sentence encoder (BERT and RoBERTa are what
we will use in this paper): en = Eθ(sn). In or-
der to consider data augmentation of any type,
we assume that Eθ allows for a second (possi-
bly random) parameter ϵ specifying the augmen-
tation e′n = Eθ(sn, ϵ). When training Eθ in the
self-supervised setting we create two embeddings
(views) of each point in the batch, e(A,B)

n . Each of
them is projected to a high-dimensional space by
means of a parametrized projector zn ≡ Pθ(en).
The resulting D-dimensional vectors zn are then
used in the method specific loss function.

SimCSE − Our baseline for sample contrastive
methods is SimCSE (Gao et al., 2021). According
to the previous definitions the unsupervised version
of SimCSE minimizes the contrastive loss

∆LSimCSE = − log
esim(z

(A)
n ,z

(B)
n )/τ

∑
m esim(z

(A)
n ,z

(B)
m )/τ

(1)

summed over the batch n = 1, . . . , N . sim is a
similarity function, in this case the standard cosine
similarity. Unsupervised SimCSE uses different
dropout masks applied to the same input data point
to obtain the two views of the same sample.

2We use n,m to denote different members of the same
batch and i, j, k to denote different dimensions in the same
embedding.

Barlow Twins − BT (Zbontar et al., 2021) is
one of the two dimension contrastive methods we
consider. Each batch contributes to the loss by an
amount

∆LBT =
∑

i

(1− ρii)
2 + λBT

∑

j ̸=i

ρ2ij (2)

where ρij is the Pearson correlation between the
i-th and j-th entry of the embeddings of z(A) and
z(B). The first term in Eq. 2 enforces that the em-
bedding of the two views A and B are perfectly
correlated; the second term regularizes the first
and requires different embedding components to
be uncorrelated and, ideally, to encode different
information about the data.

VICReg − The second example of dimen-
sion contrastive technique that we examine is VI-
CReg (Bardes et al., 2022). In this case, the loss
function combines three terms:

LVICReg =
λI

N
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where I = A,B, and H = max(0, 1 − x). The
D ×D matrix C in Eq. 3 is the covariance matrix
for the component of the z(A,B) vectors estimated
within a batch. Similarly to BT, the first term in
the loss drives two views of the same data point to
be represented by the same vector, while the other
two terms are introduced to prevent embeddings’
collapse. The last term in Eq. 3 has similarities
with the regularization criteria used by BT, and it
tries to de-correlate different components of the
vectors z(A,B); the second term is a hinge loss that
encourages the variance of each of the components
of the same vectors to be of order 1.

There is extensive work trying to understand the
representation learned by contrastive (Wang and
Isola (2020) inter alia) and non-contrastive meth-
ods (Balestriero and LeCun (2022); Garrido et al.
(2022); Shwartz-Ziv et al. (2022) inter alia) and
the reason of their success. Among these works we
wish to point out Garrido et al. (2022) in which
the similarities between sample-contrastive and
dimension-contrastive objectives are extensively
discussed and the different performances of the
two classes of methods, albeit in the vision domain,
are attributed to architectural and hyperparameter
choices. Ultimately which of these methods work
better in the text modality is an empirical question
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dropout (pdo) EDA (α) shuffle (pshuffle)
0.05 0.1 0.2 0.1 0.2 0.05 0.1 0.2 0.3 0.5

Barlow Twins
BERT max 77.9 74.0 73.5 74.3 73.9 76.6 77.8 78.9 79.5 79.6

q75 75.1 73.2 72.4 72.9 72.4 75.0 76.7 78.0 78.8 78.6
q50 74.0 72.6 72.2 72.5 71.6 73.7 75.8 76.0 77.6 77.7

RoBERTa max 80.0 80.5 78.1 76.0 77.2 79.5 80.4 80.2 80.4 80.8
q75 78.6 77.4 77.0 74.2 75.8 78.2 80.0 79.9 80.1 80.0
q50 78.0 75.2 74.4 73.1 74.4 77.6 78.7 79.4 79.8 79.5

VICReg
BERT max 76.2 75.3 75.5 76.0 76.3 77.6 76.8 77.4 78.1 78.5

q75 74.8 74.2 74.0 75.0 75.1 76.4 75.4 77.2 77.8 77.7
q50 74.5 73.5 73.0 74.2 74.2 75.3 73.8 77.0 75.9 77.2

RoBERTa max 81.2 81.0 81.6 80.2 80.4 82.0 81.9 81.6 82.2 82.0
q75 80.7 80.4 80.3 79.0 79.3 79.7 80.9 81.3 81.3 81.8
q50 80.4 80.0 79.7 78.0 77.3 79.0 80.0 81.2 81.0 81.3

Table 1: We show various statistics (max, upper quartile, and median) for the distribution of STS-B Spearman’s
correlations on the dev set as a function of the data augmentation. Bold: overall best score per model, underlined:
best score per augmentation. For VICReg we only ran EDA with α = 0.1.

and attempting to answer this question is the main
goal of this paper.

3 Methods

In order to compare with Gao et al. (2021), we use
the same Wikipedia dataset3 they used to train the
unsupervised models. For our supervised experi-
ments we try two datasets. The first, used also by
Gao et al. (2021), is the set of entailment pairs from
SNLI (Bowman et al., 2015b) and MNLI (Williams
et al., 2018b). Only the positive pairs are used, as
hard negatives cannot be incorporated in our objec-
tives. The other is WikiAuto (Jiang et al., 2020),
a set of sentences from English Wikipedia aligned
with their simplified English counterpart.

We consider two base models for our experi-
ments, BERT-base and RoBERTa-base. In each
case the embedding Eθ that we use for downstream
tasks is the embedding of the [CLS] token. The pro-
jector Pθ for SimCSE is a linear layer with the same
dimension as the transformer dimension, followed
by tanh activation. For BT and VICReg we follow
Bardes et al. (2022) and use two linear layers with
batch normalization and ReLU activation, followed
by an additional linear layer all of dimension 8192.
Larger dimensions give similar results and smaller
ones progressively degrade performances.

The SimCSE models are trained with a temper-
ature τ = 0.05, and a learning rate of 3 × 10−5

3The dataset can be downloaded at this link.

for BERT and 10−5 for RoBERTa, which were
identified with a hyperparameter sweep.

We experiment with three basic types of augmen-
tations for BT and VICReg. Dropout: as in Gao
et al. (2021) we apply different dropout masks to
each view of the same data point; this augmentation
is parametrized by the dropout probability pdo =
{0.05, 0.1, 0.2}. Shuffling: for both branches we
select a fraction ps = {0.05, 0.1, 0.2, 0.3, 0.5} of
the input tokens and apply a random permutation.
EDA (Wei and Zou, 2019): we apply EDA to each
branch with the same parameter α = {0.1, 0.2} for
synonym replacement, random insertions, random
swaps, and random deletions. For each augmenta-
tion we perform a hyperparameter scan to select
the best value of the remaining parameters (learn-
ing rate and the loss coefficients in Eqs. 2 and 3).
We measure the Spearman’s rank correlation on the
STS-B (Cer et al., 2017) validation set to select the
best checkpoints as in Gao et al. (2021).

Results are shown in Table 1. Across models and
loss functions, smaller pdo and larger pshuffle values
are preferred, and the effect is more pronounced
with BT. EDA underperforms in all cases. For more
details about the scans, see Appendix A.

4 Results

We evaluate the embedding on a variety of down-
stream tasks using the Massive Text Embedding
Benchmark (MTEB) (Muennighoff et al., 2023)
and report both average performances on the test
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Method Class. Clust. PairClass. Rerank. Retr. STS Summ. Avg. ℓalign ℓunif

BERT
avg. 61.7 30.1 56.3 43.4 10.6 54.4 29.8 38.3 0.20 -1.62
SimCSE 63.7 30.5 73.1 47.0 21.5 74.8 31.2 46.6 0.21 -2.62
VICReg (pdo = 0.05) 62.9 33.0 61.8 46.0 17.4 67.8 29.3 43.9 0.16 -2.22
VICReg (pshuffle = 0.5) 59.0 33.3 63.8 46.1 19.3 67.7 29.8 43.7 0.20 -2.67
Barlow Twins (pdo = 0.05) 63.7 29.9 69.4 46.3 18.7 70.0 30.1 44.6 0.24 -2.88
Barlow Twins (pshuffle = 0.5) 59.1 27.9 73.4 45.7 16.6 70.6 29.0 42.9 0.34 -3.08

RoBERTa
avg. 60.0 21.6 54.1 40.2 5.8 53.8 29.6 34.6 0.01 -0.16
SimCSE 64.6 30.8 74.5 47.3 23.6 74.4 27.7 47.4 0.20 -2.59
VICReg (pdo = 0.2) 61.3 33.4 68.2 46.1 19.9 70.5 28.7 45.1 0.06 -0.86
VICReg (pshuffle = 0.5) 63.0 32.4 70.7 47.3 20.7 70.6 29.2 45.7 0.03 -0.44
Barlow Twins (pdo = 0.1) 65.2 33.9 70.6 47.3 24.1 71.1 28.9 47.5 0.05 -0.70
Barlow Twins (pshuffle = 0.5) 59.4 28.1 73.1 45.3 21.5 72.2 27.6 44.5 0.07 -0.72
Barlow Twins (NLI) 60.3 36.8 71.2 47.6 25.1 70.0 27.5 47.1 0.01 -0.12
Barlow Twins (WikiAuto) 58.1 33.5 67.7 45.6 25.9 70.6 31.1 46.0 0.01 -0.11

Table 2: MTEB test performances aggregated by task category for (Ro)BERT(a): average of last layers, SimCSE4

and our best hypertuned models from Tab. 1. We display the performances of the best models for both dropout and
shuffle augmentations with overall best scores in bold. We also include results from best RoBERTa Barlow Twins
models trained on alternative datasets underlying best scores. Alignment and uniformity are also shown.

set and a breakdown by task category in Table 2.
See Appendix C for additional details.

While BERT scores trail behind SimCSE by
a few percent points for both BT and VICReg
for the majority of tasks, RoBERTa with BT and
dropout outperforms SimCSE with two notable
exceptions: pair classification and STS. For pair
classification we notice that embeddings trained us-
ing shuffle augmentation outperform those trained
with dropout irrespectively of model architecture or
objective. The STS results seem to indicate some
degree of overfitting to the STS-B dev set. This
seems more severe for VICReg, for which the dev
set performances in Table 1 are above BT.

Evaluating on STS tasks is a common practice
that we also follow to select model checkpoints.
However, this has been criticized due to the lack of
correlation between STS performances and down-
stream task performances (Reimers et al., 2016;
Wang et al., 2021; Abe et al., 2022). Finally we no-
tice that models trained on supervised datasets can
outperform unsupervised methods on certain down-
stream tasks, but there is no clear winner. This
aligns with the finding of Muennighoff et al. (2023)
in which single model performance on different
tasks varies a lot with no single model winning
across all tasks.

We also report alignment and uniformity, two
metrics which are commonly considered when ana-
lyzing sample contrastive embedding techniques:

the standard sample contrastive objective optimizes
them in the limit of infinitely many negative sam-
ples (Wang and Isola, 2020). They are shown to em-
pirically correlate to the embedding performance
on downstream tasks, but an understanding of why
uniformity is needed is lacking. Huang et al. (2023)
derives an upper bound on the error rate for clas-
sification tasks based on three metrics, alignment,
divergence, and concentration. Intuitively, the lat-
ter two represent how separated the centroids of
the various classes are in the embedding space
and how concentrated around such centroid are
the representation of the augmented members of
each class. Huang et al. (2023) show that both
the InfoNCE (van den Oord et al., 2019) and BT
satisfy these criteria. See Appendix B for further
discussions of alignment and uniformity.

5 Conclusion

In this work, we compare sample contrastive (Sim-
CSE) and dimension contrastive (Barlow Twins,
VICReg) training objectives to learn sentence em-
beddings. Our results shows how these alternative
self-supervision objectives can learn good represen-
tations, performing as well as or better than those
obtained from SimCSE. Dimension contrastive
techniques are largely unexplored outside computer

4SimCSE scores differ from those reported in Muennighoff
et al. (2023) because we evaluate unsupervised models without
projector consistently with what done in Gao et al. (2021).
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vision literature and we hope this work could be a
step towards popularizing them in the NLP com-
munity.

Limitations

The goal of this short paper is to make the point that
dimension contrastive objectives are a viable alter-
native to standard sample contrastive techiniques.

While we used SimCSE as our baseline, it would
be interesting to use sample contrastive loss func-
tions on methods like DiffCSE (Chuang et al.,
2022), InfoCSE (Wu et al., 2022) and Prompt-
BERT (Jiang et al., 2022) and see whether the same
improvement in performance obtained using the
standard contrastive loss function would apply to
BT or VICReg.

It would be interesting to study different model
architectures like decoder-only models (Muen-
nighoff, 2022) or encoder-decoder ones (Ni et al.,
2022a).

Additionally, while our study is limited to sen-
tence embeddings for English documents, the meth-
ods are applicable to multilingual corpora and it
would be worth exploring them in this context.
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A Hyperparameters

In the hyperparameter search the model architec-
tures are fixed both in terms of the base models
(BERT and RoBERTa) and in terms of the projec-
tors that are used (see Sec. 3). We furthermore
fix the batch size to 256 as we did not observe
significant gains with larger batches.

All models are trained for 2 epochs. We evalu-
ate every 60 steps and the final metric we use for
checkpoint selection is the Spearman’s correlation
on the STS-B dev set.

A.1 Barlow Twins
For BT we use a grid scan to explore hyperparam-
eters and data augmentations. We use the values
reported in Table 3 for both BERT and RoBERTa
models. Augmentations are not combined, but for
each augmentation we scan learning rate and the
loss coefficient (λBT).

We find the performances to be quite insensitive
to the choice of the learning rate, but quite sensi-
tive to λBT for both model architectures. This is
shown in Fig. 1. We thus constrain λBT ≤ 0.05 for
BERT and ≤ 0.025 for RoBERTa. We show the
development set performances as a function of the
augmentation in Tab. 1.

A.2 VICReg
The parameter space of VICReg is larger than the
one of BT: the loss function depends on 3 parame-
ters λV,I,C. We fix λI = 1 and scan the remaining
two parameters. Since the parameter is larger we
use SMAC instead of grid search. Table 3 report
the parameters of the scan. Similarly to BT aug-
mentations are not combined, but for each augmen-
tation we scan learning rate, λV, and λC. For each
augmentation strategy we run a total of 50 jobs.

Parameter Domain
learning rate {1, 2, 5} × 10−5

dropout {0.05, 0.1, 0.2}
shuffle {0.5, 1, 2, 3, 5} × 10−1

EDA {0.1, 0.2}
Barlow Twins

λBT {0.5, 1, 2.5, 5, 7.5, 10, 25} × 10−3

Barlow Twins
log10 λC [−3,−1]

log10 λV [1, 4]

shuffle {0.5, 1, 2, 3, 5} × 10−1

Table 3: BERT and RoBERTa values for the BT and
VICReg hyperparameter scan. The scan over λC, V is
uniform in log space. For VICReg we only use α = 0.1
for EDA augmentation.
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Figure 1: STS-B performances as a function of the
λBT coefficient. We show both the max and the upper
quartile of the metric distribution after binning by the
value of the parameter.
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Figure 2: STS-B performances as a function of λC and
λV. We show both the max and the upper quartile of
the metric distribution after binning by the value of the
parameter.
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Figure 3: Alignment and uniformity numbers for the
models reported in Tab. 2. [CLS]-(Ro)BERT(a) repre-
sent text embedding models obtained by using the last
layer [CLS] token as the embedding. Lower values are
better for both metrics.

Similarly to BT, there is little sensitivity to the
learning rate. We find that the scan favors small
values of λC and large values of λV. The dev set
performances as a function of the augmentation
are shown in Tab. 1.

B Alignment and uniformity

We calculate the alignment and uniformity met-
rics (Wang and Isola, 2020) for the unsupervised
models shown in Tab. 2. Optimizing the unsuper-
vised objective, either sample or dimension con-
trastive, improve uniformity in all cases while it
typically degrades alignment. We notice that these
effects are particularly pronounced for the sample
contrastive objective optimized by SimCSE, in par-
ticular in terms of the improvement in uniformity.

For both BT and VICReg, and in particular for
RoBERTa, uniformity improves only marginally
through training. However this does not seem to
hurt performances on downstream tasks as shown
in Tab. 2. This is consistent with the discussion of
Huang et al. (2023).

Another representation of this fact is Fig. 4
which shows the distribution of cosine similarities
of sentence pairs on the STS-B test set stratified
by the similarity rating assigned by human annota-
tors. We see that both SimCSE, BT, and VICReg
training increase the divergence of the distributions
across buckets, but SimCSE tends, on average, to
achieve that by spreading the embeddings apart
on the hypersphere (notice the different horizontal
scale of the 3 bottom panels in Fig. 4)
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Figure 4: Histograms of cosine similarity between pairs
of sentences from the STS-B test set computed with
different RoBERTa models, vertically divided in groups
according to human ratings of similarity. Notice the
different scale of the horizontal axis.

C MTEB

The MTEB (Massive Text Embedding Bench-
mark) (Muennighoff et al., 2023) is a comprehen-
sive evaluation tool designed to assess the perfor-
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mance of text embedding models. It includes well
established benchmarks, and spans a wide range of
tasks and domains.

We report results on the 56 English language
datasets. They are divided in the following tasks
(associated evaluation metrics in parenthesis): Clas-
sification (accuracy), Clustering (v-measure), Pair
Classification (average precision), Rerank (MAP),
Retrieval (nDCG@10), STS (Spearman correla-
tion), and Summarization (Spearman correlation).
A breadkdown of all datasets, compiled with results
from our RoBERTa models, is shown in Tab. 4.
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Dataset SimCSE VICReg VICReg Barlow Twins Barlow Twins Barlow Twins Barlow Twins
(dropout) (shuffle) (dropout) (shuffle) (NLI) (WikiAuto)

Class.
AmazonCounterfactualClassification (O’Neill et al., 2021) 65.5 64.2 65.2 65.0 64.1 60.9 60.5
AmazonPolarityClassification (McAuley and Leskovec, 2013) 76.6 63.3 64.6 72.9 62.9 62.7 62.1
AmazonReviewsClassification (McAuley and Leskovec, 2013) 35.0 29.0 29.8 33.1 28.7 28.8 30.4
Banking77Classification (Casanueva et al., 2020) 78.1 77.3 76.9 77.9 76.1 75.6 67.6
EmotionClassification (Saravia et al., 2018) 46.8 42.9 44.3 44.5 46.0 42.7 40.5
ImdbClassification (Maas et al., 2011) 73.5 64.9 65.0 72.0 62.4 63.0 57.4
MassiveIntentClassification (FitzGerald et al., 2022) 61.5 61.1 64.7 64.8 57.6 60.5 58.8
MassiveScenarioClassification (FitzGerald et al., 2022) 69.4 70.0 73.6 73.7 62.0 70.9 69.5
MTOPDomainClassification (Li et al., 2021) 85.1 85.9 88.1 88.0 80.9 84.4 81.4
MTOPIntentClassification (Li et al., 2021) 61.3 59.8 64.8 68.3 59.0 56.0 51.0
ToxicConversationsClassification (url) 68.6 66.4 66.8 69.9 64.2 66.3 66.5
TweetSentimentExtractionClassification (url) 54.0 50.4 51.8 52.4 48.9 51.3 51.6

Clust.
ArxivClusteringP2P♦ 32.9 34.9 33.7 35.2 33.1 38.6 33.5
ArxivClusteringS2S♦ 21.4 21.8 23.5 23.0 17.9 25.8 23.6
BiorxivClusteringP2P♦ 30.1 31.5 30.4 31.7 30.8 36.0 30.0
BiorxivClusteringS2S♦ 22.1 22.9 24.6 23.9 16.1 26.1 22.0
MedrxivClusteringP2P♦ 26.9 29.0 27.4 28.5 28.8 31.2 28.0
MedrxivClusteringS2S♦ 24.9 25.4 26.0 26.0 21.3 28.3 25.6
RedditClustering (Geigle et al., 2021) 33.9 40.1 35.0 41.2 28.7 47.0 41.7
RedditClusteringP2P♦ 47.2 48.8 43.1 50.4 46.3 52.5 46.9
StackExchangeClustering (Geigle et al., 2021) 46.3 48.2 49.3 50.9 38.0 51.9 49.1
StackExchangeClusteringP2P♦ 29.5 30.7 30.0 30.0 28.5 30.5 33.1
TwentyNewsgroupsClustering (url) 23.8 33.5 33.1 31.9 19.4 37.2 34.8

PairClass.
SprintDuplicateQuestions (Shah et al., 2018) 86.4 70.7 77.1 74.1 88.5 84.2 84.2
TwitterSemEval2015 (Xu et al., 2015) 56.8 56.3 56.3 59.1 51.8 51.3 43.6
TwitterURLCorpus (Lan et al., 2017) 80.4 77.6 78.8 78.8 78.9 78.3 75.4

Rerank.
AskUbuntuDupQuestions (url) 53.3 51.7 51.9 52.5 51.9 52.2 50.4
MindSmallReranking (Wu et al., 2020) 29.4 29.2 30.3 29.6 27.9 30.0 31.1
SciDocsRR (Cohan et al., 2020) 66.9 65.5 68.7 67.5 62.0 69.7 66.0
StackOverflowDupQuestions (Liu et al., 2018) 39.8 38.1 38.2 39.6 39.5 38.4 34.8

Retr.♠

ArguAna 34.7 43.8 42.6 43.9 35.6 44.1 40.6
ClimateFEVER 14.5 12.8 13.0 19.2 14.2 18.2 22.0
CQADupstackRetrieval 20.4 13.9 17 20.0 18.7 19.4 18.3
DBPedia 15.7 12.0 13.2 15.2 12.8 17.6 17.2
FEVER 28.4 12.6 15.9 28.4 17.1 25.2 33.7
FiQA2018 12.6 11.6 11.3 14.4 10.3 16.1 11.3
HotpotQA 31.4 16.5 16.8 25.0 29.7 26.7 36.2
MSMARCO 8.8 5.4 6.1 7.8 7.8 8.6 12.6
NFCorpus 14.3 9.1 10.6 11.7 10.1 15.6 18.7
NQ 12.3 7.3 8.9 13.6 9.0 12.3 15.4
QuoraRetrieval 80.4 78.5 79.5 79.6 78.3 78.2 75.0
SCIDOCS 6.9 5.7 6.6 7.4 7.2 10.5 9.5
SciFact 34.1 27.3 24.3 25.6 34.7 35.2 34.5
Touche2020 10.9 10.4 9.7 11.9 10.6 13.1 10.5
TRECCOVID 28 30.9 35.1 38.0 26.1 36.7 33.6

STS
BIOSSES (url) 67.7 51.1 56.9 56.9 69.5 58.8 68.6
SICK-R (Agirre et al., 2014) 68.9 67.9 70.1 70.6 64.8 64.3 67.4
STS12♡ 70.2 64.2 63.2 62.5 65.4 66.5 66.3
STS13♡ 81.8 78.7 77.3 77.6 77.7 77.3 77.2
STS14♡ 73.2 68.1 66.6 68.1 70.5 67.7 67.4
STS15♡ 81.4 78.5 76.3 76.2 80.4 75.3 74.1
STS16♡ 80.7 77.5 77.4 79.3 76.0 75.0 74.7
STS17♡ 81.8 81.2 81.6 82.0 80.8 78.2 79.8
STS22♡ 57.7 60.2 59.8 61.0 60.8 61.9 55.5
STSBenchmark♡ 80.1 78.0 76.9 76.6 75.6 75.1 75.2

Summ.
SummEval (Fabbri et al., 2020) 27.6 28.7 29.2 28.9 27.6 27.5 31.1

Table 4: MTEB performances of RoBERTa models on all English datasets grouped by task. We display the
scores for both dropout and shuffle augmentations with overall best scores in bold. We also include scores from
best Barlow Twins models trained on alternative datasets underlying best scores. ♢: custom clustering datasets
created for MTEB, for details we refer to Muennighoff et al. (2023). ♠: retrieval datasets are a subset of the BEIR
benchmark (Thakur et al., 2021). ♡: tasks from the original STS benchmark (Agirre et al., 2012, 2013).
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https://www.kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/competitions/tweet-sentiment-extraction
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
https://github.com/taolei87/askubuntu
https://tabilab.cmpe.boun.edu.tr/BIOSSES/DataSet.html

