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Abstract
Language-vision models like CLIP have made
significant strides in vision tasks, such as zero-
shot image classification (ZSIC). However, gen-
erating specific and expressive visual descrip-
tions remains challenging; descriptions pro-
duced by current methods are often ambiguous
and lacking in granularity. To tackle these is-
sues, we propose V-GLOSS: Visual Glosses, a
novel method built upon two key ideas. The
first is Semantic Prompting, which conditions a
language model on structured semantic knowl-
edge. The second is a new contrastive algo-
rithm that elicits fine-grained distinctions be-
tween similar concepts. With both ideas, we
demonstrate that V-GLOSS improves visual
descriptions and achieves strong results in the
zero-shot setting on general and fine-grained
image-classification datasets, including Ima-
geNet, STL-10, FGVC Aircraft, and Flow-
ers 102. Moreover, these descriptive capabili-
ties contribute to enhancing image-generation
performance. Finally, we introduce a quality-
tested silver dataset with descriptions generated
with V-GLOSS for all ImageNet classes.

1 Introduction

Language-vision models (Radford et al., 2021; Jia
et al., 2021) have made significant progress in zero-
shot vision tasks. However, in agreement with
Betker et al. (2023), we hypothesize that their ac-
curacy is limited by a lack of visual concept de-
scriptions that are both expressive and specific, that
is, glosses that detail the unique visual characteris-
tics of a concept. In this work, we investigate this
hypothesis by creating and testing a new method
for producing visual descriptions with pre-trained
language models and semantic knowledge bases.

High-quality visual descriptions are crucial in
tasks such as zero-shot image classification and
text-based image retrieval. Improved descriptions
facilitate the creation of more useful representa-
tions. These are essential in producing robust and

Class / Concept WordNet Gloss V-GLOSS (Ours)

CORKSCREW

A bottle
opener that
pulls corks.

A tool with a spiral
blade that is used
to remove corks
from bottles.

BRAMBLING

Eurasian finch. A small brown bird
with a black head
and a white patch
on its chest.

BROCCOLI

Branched
green
undeveloped
flower heads.

A green vegetable
with a thick stalk
and florets that
grow in a dense
head.

Table 1: A qualitative comparison between baseline
glosses and V-GLOSS descriptions for some ImageNet
classes. Our method describes the visual characteristics
of a class, instead of what it does or is. Many more
examples are shown in Table 6.

adaptable methods capable of understanding novel
and specific visual attributes without re-training.

Existing approaches to generating visual descrip-
tions, such as Template Ensembling (Radford et al.,
2021) and CuPL (Pratt et al., 2022), involve di-
rectly plugging class labels into fixed templates
(e.g., A photo of X), and prompting large language
models such as InstructGPT (Ouyang et al., 2022)
to generate descriptions based on class labels (e.g.,
What does X look like?), respectively. These meth-
ods suffer from two main issues: class granularity
and label ambiguity. Class granularity refers to the
difficulty in distinguishing between visually simi-
lar classes, such as ALLIGATOR and CROCODILE.
Label ambiguity is caused by using polysemous
words as labels for distinct concepts. For example,
CRANE can refer to either a bird or a construction
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(a) V-GLOSS producing a DOG description

(b) V-GLOSS for ZSCIG: generating a DOG image (c) V-GLOSS for ZSIC: classifying a test image

Figure 1: For the DOG class, we depict (a) V-GLOSS’s architecture (Section 4.2.1), along with adaptations: (b)
zero-shot image classification (ZSIC) (Section 5.4.1) and (c) zero-shot class-conditional image generation (ZSCIG)
(Section 5.4.1)

machine. These issues limit the performance of
existing models (Radford et al., 2021).

To address these challenges, we introduce
V-GLOSS, a novel method that leverages lan-
guage models (LMs) and semantic knowledge
bases (SKBs) to generate improved visual descrip-
tions – Visual Glosses. Table 1 shows some exam-
ples. By combining structured semantic informa-
tion from SKBs such as WordNet (Miller, 1998),
and BabelNet (Navigli and Ponzetto, 2012), with a
contrastive algorithm to finely distinguish similar
classes, V-GLOSS is designed to mitigate the dual
issues of granularity and ambiguity.

Our results demonstrate the effectiveness of V-
GLOSS in improving the performance of ZSIC
systems. We achieve strong improvements com-
pared to prior work on benchmark datasets such
as ImageNet (Deng et al., 2009) (+1.8%), FGVC
Aircraft (Maji et al., 2013) (+2.6%), and Flowers
102 (Nilsback and Zisserman, 2008) (+1.6%) in
the zero-shot setting. Additionally, we introduce
V-GLOSS Silver, a silver dataset constructed by
V-GLOSS, which consists of a visual description
for each ImageNet class. We show that V-GLOSS
Silver is useful for zero-shot language-vision tasks
such as ZSIC and ZSCIG, comparing favorably to
WordNet glosses.

2 Tasks

Our main task is to generate a description for a
given class or concept. For example, if an image
classification dataset has the class DOG, we aim
to produce a description such as “A dog is a furry,

four-legged canine...” We consider such a descrip-
tion to be a specific kind of gloss.

We use two downstream tasks to compare meth-
ods of generating class descriptions: zero-shot
image classification (ZSIC), and zero-shot class-
conditional image generation (ZSCIG). In ZSIC,
the goal is to classify an image based on a set of
classes, without having seen any labeled images
belonging to those classes. The set of classes de-
pends on the dataset. For example, given an image
depicting a dog, we aim to predict the class DOG.
In ZSCIG, the goal is to generate an image that cor-
responds to a specific class, again without having
seen any labeled examples. For example, given a
class DOG, we aim to generate an image of a dog.

In short, ZSIC is the task of classifying a given
image, while ZSCIG is the task of generating an
image given a class. Both involve classes and im-
ages. Visual descriptions of classes provide useful
information which can facilitate both tasks by mak-
ing it easier to either recognize or generate images
of each class. Therefore, we aim to improve per-
formance on both ZSIC and ZSCIG by developing
a novel method to improve the generation of such
descriptions.

3 Related Work

Language Models The advent of transformer-
based language models has revolutionized many
natural language processing tasks (Radford et al.,
2018; Devlin et al., 2018; Radford et al., 2019;
Brown et al., 2020; Black et al., 2022; Ouyang
et al., 2022). As these models are scaled up by
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their number of parameters and quantity of training
data, they exhibit emergent abilities such as few-
shot and zero-shot learning (Wei et al., 2022).

Language-Vision Models Significant strides
have been made in the field of language-vision
models such as CLIP (Radford et al., 2021) and
ALIGN (Jia et al., 2021). These models apply con-
trastive pre-training approaches on large image-text
datasets, leading to improved representation learn-
ing for both text and images and enhanced perfor-
mance on several multi-modal tasks (Mokady et al.,
2021; Song et al., 2022). Further advancements
have been achieved by scaling up pre-training and
incorporating auxiliary training objectives (Pham
et al., 2021; Yu et al., 2022).

Producing Descriptions & Prompting The gen-
eration of descriptions and prompting has been
explored in various studies. Radford et al. (2021)
introduced the template ensembling (TE) method,
which uses a custom set of class labels and a fixed
set of templates. Each label is inserted into these
templates, and the completed templates for each
class are aggregated into a single representation of
the class. The CuPL method (Pratt et al., 2022)
utilizes InstructGPT (Brown et al., 2020; Ouyang
et al., 2022) to generate descriptions for ImageNet
classes. Both TE and CuPL can be used for zero-
shot image classification. Hao et al. (2022) fine-
tuned GPT models (Radford et al., 2018, 2019)
to rephrase image-generation prompts, resulting
in improved images. (Zhou et al., 2022) learned
soft prompts that improve performance, but are
intractable to humans. In this work, we prompt lan-
guage models with semantic knowledge to generate
visual descriptions.

4 Method

We begin by describing how we map classes to
concepts in a semantic knowledge base (SKB), to
leverage the concept-specific information the SKB
contains. We then introduce our novel method V-
GLOSS, which has two variants, normal and con-
trastive. We conclude by describing the construc-
tion of V-GLOSS Silver, a set of class descriptions
produced using V-GLOSS.

(a) CLIP (Radford et al., 2021)

(b) CuPL (Pratt et al., 2022)

(c) V-GLOSS (Ours)

Figure 2: Class descriptions for PLATYPUS produced by
one template-based method (a) and two that use LMs (b
and c). Input prompts, output descriptions, and plugged
values are shown.

4.1 Mapping Classes to Synsets

The ImageNet classes are already mapped to Word-
Net synsets by the dataset’s creators. For the
other datasets, we employ a heuristic that starts
by mapping each class to the most frequent sense
of the class label, as determined by WordNet1. For
CIFAR-10 and STL-10, this heuristic is sufficient.
For CIFAR-100, we manually re-map 18 classes.
For instance, we needed to re-map RAY from light
to sea creature, as the light sense is most frequent,
but the RAY in the dataset refers to the sea creature.
We show mis-mapped CIFAR-100 classes in Table
7 of the appendix. We fall back to our manually-
produced definitions if no suitable synset is found
in WordNet or BabelNet. This happens 8 times
for all 1,322 classes across all datasets, with all
occurrences coming from FGVC Aircraft.

4.2 V-GLOSS

We discuss the two variants of V-GLOSS below,
normal and contrastive. In both, for each class,
we produce multiple descriptions resulting in an

1https://www.nltk.org/
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Figure 3: A sample of an SKB hypernym hierarchy.
For contrastive prompting, we only distinguish classes
that are semantically similar to the target class, like
ALLIGATOR to CROCODILE.

ensemble. Ultimately, to achieve our best results
with V-GLOSS (Normal + Contrastive) in Table 5,
we combine both normal and contrastive, by con-
catenating the descriptions from each sub-method.
Unless otherwise stated, V-GLOSS refers to this
hybrid method.

4.2.1 Normal V-GLOSS
We generate normal descriptions via in-context
learning with an LM, beginning by providing the
LM with a description of the task to be performed,
followed by multiple input-output examples. The
examples are fixed, involving the concepts EAGLE,
BAT (animal), BAT (baseball), and TELEVISION.
We selected these to expose the model to ambigu-
ous class labels (bat), a natural object (eagle), and
an artificial object (television). For each class, we
obtain the hypernyms, hyponyms, usage examples,
synonyms, and gloss of the sense to which the class
is mapped, and provide this to the LM. Figure 2c
shows a session with the LM, beginning with the
example of eagle, with output generated for the
class platypus. Table 1 compares our descriptions
to baseline glosses.

4.2.2 Contrastive V-GLOSS
During development, we observed that many er-
rors were caused by false positives involving vi-
sually similar classes. For example, the classes
CROCODILE for ALLIGATOR refer to similar-
looking animals, and are often confused with one
another. Moreover, ImageNet contains 120 distinct

Class / Concept Normal Contrastive

ALLIGATOR

A large reptile
with a long
snout, a broad
head, and a
long tail.

A large,
dark-colored
reptile with a
rounded snout,
found in
freshwater.

CROCODILE

A reptile with
a broad, flat
snout, a long
tail, and a long,
pointed snout.

A grayish-green
reptile with a
v-shaped snout,
found in brackish
or saltwater.

Table 2: Two similar classes with key differences be-
tween their normal and contrastive descriptions.

dog species, and the fine-grained datasets contain
only airplanes (FGVC Aircraft) or flowers (Flow-
ers 102). The contrastive variant of V-GLOSS is
designed to address these issues by using semantic
similarity between classes as a heuristic to estimate
visual similarity. For each class, we search for
other classes that are semantically similar, and if
any are found, we add a negative instruction to the
LM prompt, e.g. we generate a description for an
ALLIGATOR but not a CROCODILE, using the same
prompt structure as for normal V-GLOSS.

We create a similarity matrix M as follows:

Mi,j = Sim(S[i], S[j]) (1)

Sim(s1, s2) is the Wu-Palmer path-similarity
function (Wu and Palmer, 1994) comparing synsets
s1 and s2; this similarity function uses the path be-
tween two concepts in the WordNet tree (Figure
3) to measure semantic relatedness. S is the set
of all classes in a dataset, D, and i and j are in-
dices ranging from 1 to |S|. Concisely, Equation
1 defines a similarity matrix containing similarity
scores between all classes in a dataset. M is one
of the inputs to our contrastive V-GLOSS variant,
shown in Algorithm 1.

In Algorithm 1, λ is a threshold for minimum
similarity. We only generate contrastive descrip-
tions when classes have a similarity that exceeds or
is equal to λ. N indicates the maximum number of
classes to generate contrastive descriptions for. To
select N , we run a hyperparameter search (shown
in Figure 4). k is the number of distinct descrip-
tions to generate for a class pair. LMc takes in the
target class, a neighbor class, and k, then prompts
the LM to generate k descriptions that distinguish
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Figure 4: V-GLOSS Accuracy vs N , with the number
of normal fixed at 50.

the target and neighbor classes. In summary, for
each class, Algorithm 1 identifies the classes most
similar to it, excluding itself, and generates de-
scriptions that distinguish them. Table 2 compares
the normal and contrastive descriptions for ALLI-
GATOR and CROCODILE; note that distinguishing
features of the two classes are included in the LM’s
output. Table 3 shows examples of classes with
high false positive rates, and the classes they are
contrasted with.

Algorithm 1 Generate Contrastive Descriptions:
We generate contrastive descriptions to help distin-
guish the most similar classes.

Require: M : Equation 1 result
Require: λ, N , k: Hyperparameters
Require: S: All classes in dataset, D
Require: LMc: LM prompted contrastively

1: G← empty |S|-list for class descriptions
2: for i← 0 to |S| − 1 do
3: target← S[i]
4: S∗ ← top N classes : λ ≤Mi,∗ ≤ 1
5: for s∗ in S∗ do
6: samples← LMc(target, s

∗, k)
7: G[i].insert(samples)

8: return G

5 Evaluation

In this section, we present our evaluation of V-
GLOSS, alongside comparable methods. We de-
scribe our datasets, evaluation metrics, baselines,
previous methods, and experiments. To ensure
robustness, we report the mean over five random
seeds in Tables 4 and 5.

Class False Positives Contrastives

AFRICAN
ELEPHANT

TUSKER (44), ASIAN
ELEPHANT (6)

TUSKER, ASIAN
ELEPHANT

NOTEBOOK LAPTOP (22),
DESKTOP (10),
SPACE BAR (2)

LAPTOP,
DESKTOP,
SPACE BAR

Table 3: False positives and their counts vs. classes
selected by the contrastive algorithm (see Equation 1
and Algorithm 1). Hits and misses are shown.

5.1 Datasets

We evaluate our method on the test splits of six
widely used benchmark datasets, taking note to
consider both general and fine-grained datasets.

ImageNet (Deng et al., 2009) consists of 50,000
images equally distributed across 1,000 classes,
and serves as our primary benchmark.

CIFAR-10 and CIFAR-100 (Krizhevsky et al.,
2009) both comprise 10,000 test samples across 10
and 100 classes, respectively.

STL-10 (Coates et al., 2011) comprises 100,000
test samples designed for unsupervised learning.

FGVC Aircraft (Maji et al., 2013) contains
3,333 images across 100 aircraft model variants,
with ∼33 images per variant.

Flowers 102 (Nilsback and Zisserman, 2008) fea-
tures 102 flower categories common in the UK,
with 40 to 258 images per category.

For CIFAR-10, CIFAR-100, STL-10, FGVC Air-
craft, and Flowers 102, which are not pre-mapped
to WordNet, we employ the two-step process de-
tailed in Section 4.1 to map each class to a synset.

Experiment 1 (Section 5.4) involves ImageNet
alone and covers both the ZSCIG and ZSIC tasks.
In contrast, Experiment 2 (Section 5.5), our main
experiment, tests the impact of various class de-
scription methods on the ZSIC task and uses all
datasets. In Experiment 2, we allow methods to
use ensembles of descriptions of each class, while
in Experiment 1, we experiment with only a single
description.

We selected these datasets to evaluate the follow-
ing properties of V-GLOSS:

1. Performance on common benchmark
datasets with varying numbers of classes.
Each dataset has its own set of classes, ranging
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from ImageNet with 1,000 classes, to CIFAR-
100 with 100 classes, to CIFAR-10 and STL-
10, each with 10 classes.

2. Proficiency in fine-grained conceptual dis-
tinctions. Although some datasets (ImageNet
and CIFAR) cover diverse domains, we im-
portantly consider fine-grained datasets like
FGVC Aircraft and Flowers 102. This enables
testing our method’s ability to distinguish very
similar classes (e.g., distinguishing between
closely related species or types).

5.2 Evaluation Metrics

Top-1 Accuracy In ZSIC, this metric is the fre-
quency with which the model’s top prediction for
an image matches the gold label.

Fréchet Inception Distance (FID) For ZSCIG,
FID (Heusel et al., 2017) quantifies the divergence
between ground truth and generated images, with
lower scores signifying a better ability to produce
images similar to the ground truth.

Inception Score Also for ZSCIG, the inception
score (Salimans et al., 2016) uses an Inception
model’s (Szegedy et al., 2015) output probability
distribution to assess the diversity and realism of
generated images, with higher scores indicating
more diverse and convincing images. Unlike the
above metrics, this does not require ground-truth
images for comparison.

5.3 Baseline & Previous Methods

In this section, we describe the methods to which
we compare V-GLOSS. For methods that produce
ensembles of class descriptions (i.e. multiple de-
scriptions per class), a single representation of the
class is obtained by averaging individual represen-
tations for each description.

First, the 1-Template baseline inserts a class
label into a single specific template. For exam-
ple, given the class DOG, the baseline produces “A
photo of a dog.”

The next approach we consider is Template En-
sembling (Radford et al., 2021), which generates
an ensemble of descriptions for a class by inserting
the class label into each of a set of 80 templates.
For example, some descriptions for DOG are: “A
photo of a dog.”, “A blurry photo of a dog.”, and

“An origami dog.” This method uses a modified list

of class labels2 designed to reduce ambiguity.
CuPL (Pratt et al., 2022) also generates an en-

semble of descriptions for each class. The descrip-
tions are generated by prompting a LLM, Instruct-
GPT (Ouyang et al., 2022), with questions such
as: “What does a dog look like?” and “Describe
an image of a dog from the internet.” CuPL uses
the same class labels as Template Ensembling.

5.4 Experiment 1: V-GLOSS Silver

This experiment evaluates V-GLOSS’s ability to
generate a single description for each class, with-
out relying on ensembling. We then evaluate the V-
GLOSS description of each class against its Word-
Net gloss.

To construct this set of class descriptions, which
we view as a silver dataset of such descriptions,
we generate a single, normal description for each
ImageNet class via greedy decoding. We generate
only normal descriptions because they outperform
contrastive ones when only a single description is
used. We call the resulting dataset V-GLOSS Silver.

We extrinsically evaluate V-GLOSS Silver by
using it for the ZSIC and ZSCIG tasks, and com-
paring the results to those achieved using the 1-
Template baseline, and WordNet glosses. We do
not compare V-GLOSS Silver to CuPL or other
previous methods which may produce more than
one gloss for each class.

5.4.1 Technical Details

ZSIC We employ CLIP (Radford et al., 2021),
which comprises an image encoder and a text en-
coder, as the ZSIC backbone model. Our procedure
consists of three steps: First, we use the CLIP text
encoder to create an aggregate representation for
each class based on its description(s). Then, at
test time, we employ the CLIP image encoder to
generate a representation of the input image. Fi-
nally, we predict the class which maximizes the
cosine similarity between the representation of its
description(s), and the image representation (see
Figure 1c). We evaluate the predictions using top-1
accuracy.

ZSCIG For ZSCIG (see Figure 1b), we condition
Stable Diffusion (Rombach et al., 2022) on each
class description before generating an image. We
use a guidance scale of 7.5 and run 50 diffusion

2https://github.com/anishathalye/
imagenet-simple-labels
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ZSIC ZSCIG

Accuracy ↑ Inception ↑ FID ↓

Baseline (1-Template) 71.0 99.7 25.7

WordNet Glosses 44.7 58.5 30.0

V-GLOSS Silver 72.3 109.6 20.0

Table 4: Extrinsic evaluation on the tasks of ZSIC and
ZSCIG. ↓ means that lower is better.

steps. We evaluate the generated images using
Inception and FID scores.

5.4.2 Results
The results of Experiment 1 are shown in Table 4.
Based on our extrinsic evaluation on the ZSIC and
ZSCIG tasks, V-GLOSS Silver descriptions yield
better performance compared to baseline and Word-
Net Glosses. On ZSIC, we improve accuracy by
1.3%; on ZSCIG, we improve Inception and FID
scores by 9.9 and 5.7, respectively. This demon-
strates the effectiveness and utility of V-GLOSS:
our visual descriptions yield better results on ZSIC
and ZSCIG.

5.4.3 Analysis
V-GLOSS Silver descriptions are considerably
more detailed, more expressive, and better
grounded than their WordNet counterparts (see Fig-
ure 1). Specifically, we observe that V-GLOSS
descriptions make greater use of descriptive words
and phrases, e.g. spiral, brown, green, thick, small,
etc.

5.5 Experiment 2: ZSIC

Our second experiment assesses the effectiveness
of V-GLOSS descriptions in facilitating ZSIC. The
details for the ZSIC pipeline are largely similar to
those described in Experiment 1 (Section 5.4), ex-
cept that we generate an ensemble of descriptions
per class, as opposed to only one description. We
also experiment with two image encoder variants:
ViT (Dosovitskiy et al., 2020) and RN50 (He et al.,
2016). For all baselines and methods (Section 5.3,
Section 4.2.1), we follow the same evaluation pro-
cedure after generating class descriptions.

5.5.1 Technical Details
We generate class descriptions using the 6.1B-
parameter Cohere LM3. We choose Cohere over
alternatives due to its extensive free plan, reducing

3https://docs.cohere.com/docs/models

the cost of our experiments. Cohere has compara-
ble performance to the similarly-sized InstructGPT
(Brown et al., 2020; Ouyang et al., 2022) variant,
as demonstrated by Liang et al. (2022) across var-
ious benchmarks. Therefore, we do not gain any
advantage by using Cohere instead of InstructGPT.

When generating class descriptions with normal
V-GLOSS, we use a temperature of 2.5 to produce
an ensemble of 50 descriptions per class. When
generating contrastively, we use a temperature of
1.5 to generate an ensemble of 20 descriptions
per class. Like Pratt et al. (2022), we observe
that performance saturates around 50 descriptions
for normal V-GLOSS, but we also observe satu-
ration at around 20 descriptions for contrastive V-
GLOSS. Based on tuning on development data, we
set N = 5, λ = 0.5, and k = 4 (see Algorithm 1).
In total, we obtain 70 class descriptions. During
generation, we set the maximum number of to-
kens to 35, but also terminate generation when the
boundary parameter or newline token is reached.

5.5.2 Results

The results from Experiment 2, as shown in Table
5, primarily underscore the significant efficiency
and accuracy gains of V-GLOSS (Normal + Con-
trastive) over CuPL.

Key findings include: (1) V-GLOSS demon-
strates an average accuracy improvement of 4.4%
over the baseline (3.3% for ViT and 5.6% for
RN50). (2) Compared to Template Ensembling,
V-GLOSS shows an average improvement of 2.2%.
(3) Against the variant: V-GLOSS (Normal-Only),
V-GLOSS (Normal + Contrastive) improves accu-
racy by an average of 1.8%.

The standout improvements, however, show in
the comparison between CuPL and V-GLOSS. De-
spite having 28.7 times fewer LM parameters than
CuPL (6.1B vs. CuPL’s 175B), V-GLOSS exhibits
notable performance improvements, increasing by
an average of 1.8% on ImageNet, 2.6% on FGVC
Aircraft, 1.6% on Flowers 102, and 1.4% across all
datasets. The fine-grained datasets (FGVC Aircraft
and Flowers 102) show an average improvement
of 2.1%, compared to 0.9% on the general datasets
(ImageNet, CIFAR-10, and CIFAR-100), a nod to
the effectiveness of our contrastive algorithm. For
a detailed discussion on the implications of our
findings, see Section 6.
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Method Model
Accuracy (%) on Datasets # LM

Parameters
ImageNet CIFAR

100
CIFAR

10
STL
10

FGVC
Aircraft

Flowers
102

1-Template Baseline ViT 72.4 77.3 95.2 99.5 31.7 77.6 0RN50 68.7 57.7 81.0 98.4 27.4 71.6

Template Ensembling ViT 76.2 77.9 96.2 99.4 32.9 78.5 0RN50 73.2 61.3 86.8 98.3 29.7 74.3

CuPL ViT 76.7 78.6 95.8 - 36.1 79.7 175B

V-GLOSS (Normal-Only) ViT 77.3 77.5 95.6 99.4 33.2 79.2 6.1BRN50 73.3 63.5 86.8 98.3 30.8 75.1

V-GLOSS (Normal + Contrastive) ViT 78.5 78.2 97.0 99.6 38.7 81.3 6.1BRN50 74.5 64.6 87.8 98.8 35.2 77.3

Table 5: Top-1 accuracy on ZSIC. ViT-L14-336 and RN50x64 are Transformer- and ResNet-based CLIP variants.
See Table 8 for more model variants.

5.5.3 Analysis
In Section 1, we pointed out several problems in
previous methods. Here, we carefully analyze how
V-GLOSS addresses these issues.

Label Ambiguity: Without adequate context,
text models may fail to grasp the intended mean-
ing of a polysemous word. Crane is a polysemous
word, and ImageNet (Deng et al., 2009) has two
classes that refer to different senses of the word:
construction machine and wading bird. However,
they both use the same label. Thus, in 1-Template,
for example, both classes have the same descrip-
tion. This point highlights an important benefit of
linking classes to WordNet, which resolves such
ambiguities. Empirically, when compared with a
ViT backbone to the Lex Baseline, our accuracies
on CRANE (machine) and CRANE (bird) increase
from 0% and 46% to 76% and 78%, respectively.

Performance-Context Relationship: When
comparing the baselines to the other methods, we
observe that accuracy generally improves as the
amount of surrounding context increases. On one
hand, if a sentence consists of “my crane.” alone,
the sense of crane is unclear. On the other, if the
sentence is “my construction crane,” the meaning
of crane becomes clearer. We see that providing
additional context helps to disambiguate words.
When a description provides more useful context,
models can form better representations of specific
classes. By comparing V-GLOSS to the baselines
(see Table 5), we can observe that the benefits of
additional context extend to the vision-language
setting. Concretely, providing visually-grounded
context in the description improves performance.

Class Granularity: We consider pairs of classes
that are similar enough to be mistaken, such as
ALLIGATOR and CROCODILE. In WordNet, rela-
tionships between synsets are modeled through is-a
(hyponymy-hypernymy) and part-of (meronymy-
holonymy) relationships. For example, CROCODIL-
IAN is a hypernym of both ALLIGATOR and
CROCODILE, while only ALLIGATOR is a holonym
of SNOUT, since alligators have snouts while
crocodiles do not. Using our contrastive algorithm,
we generate descriptions that highlight how images
of a CROCODILE should depict a greener animal
with a rounded snout. Empirically, using ViT, the
average accuracy of V-GLOSS across these two
classes jumps from 36% to 68% when contrastive
glosses are used. This improvement highlights the
effectiveness of our contrastive V-GLOSS variant
in reducing false positives between visually similar
classes.

6 Discussion

When looking at our results, a pertinent question
arises: Why does an SKB, such as WordNet, help
us do better on tasks related to vision? In this
section, we formulate two insights on how the syn-
ergy between SKBs and LMs supports our improve-
ments.

Insight #1: SKBs represent concepts precisely
When LMs are prompted with higher-quality con-
text, they produce better output (Borgeaud et al.,
2022). WordNet provides a precise representation
of a class and its relationship to other classes, leav-
ing minimal room for ambiguity. Afterward, we
can prompt an LM with this precise information
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to produce unambiguous and high-quality class de-
scriptions.

Insight #2: Semantic similarity is a useful proxy
for visual similarity WordNet models lexical
semantics as a tree (see Figure 3), with synsets
as nodes and is-a relationships as directed edges.
The distance between different nodes reflects the
level of semantic similarity, and is by extension
an indicator of the level of visual similarity be-
tween synsets. ALLIGATOR and CROCODILE are
semantically similar because they are both kinds
of CROCODILIAN, but they are visually similar as
well (see Table 2). Semantic similarity informs
what classes we distinguish with our contrastive de-
scriptions, and why they work (see Table 3). This
is because semantic and visual similarity are highly
correlated.

7 Conclusion

This study concentrates on generating visual class
descriptions for zero-shot vision tasks. We em-
ploy a novel method that combines pre-trained
language models (LMs) and semantic knowledge
bases (SKBs) to create high-quality visual descrip-
tions. Our findings suggest that the semantic infor-
mation from an SKB can condition an LM to gener-
ate improved visual descriptions which yield higher
accuracy and expressiveness. We also show that
our contrastive algorithm improves fine-grained
discrimination between similar concepts. The inte-
gration of SKBs with LMs reveals partially latent
knowledge about visual attributes in the latter and
demonstrates a significant interplay between the
linguistic and visual domains. These results also
pave the way for future exploration into leveraging
text-only LMs in multi-modal tasks.

Limitations

The dataset must be mapped to an SKB. As
described earlier, mapping the dataset to WordNet,
although a one-time step, is not fully automatic. In
future work, we look to fully automate this step,
possibly by selecting a synset based on the simi-
larity between sample class images and potential
senses of the class label.

We are limited in terms of language, dataset
class count, and our SKB’s size. First, our
English-focused stance may prove a limiting factor
in our method being applied to ZSIC or ZSCIG

tasks based in other languages. Some classes are
strongly related to non-English languages.

Second, our largest evaluation dataset, ImageNet
(Deng et al., 2009), has 1,000 classes, representing
just 0.64% coverage of WordNet. We look forward
to evaluating our methods on a larger ImageNet
set: ImageNet-21k, which would cover 14.06% of
WordNet.

Third, although our method can be applied to
BabelNet (Navigli and Ponzetto, 2012), which has
over 1.5 billion synsets, we focus on WordNet,
which has 155,287. We look to explore alternative
SKBs such as BabelNet, or non-English wordnets,
both of which offer the benefit of being multilin-
gual.

Ethics Statement

In normal use, we discover no direct ethical issues
with our method. Note, however, that we may
inherit ethical problems from the components used
by our method. Both CLIP (Agarwal et al., 2021)
and LMs (Liang et al., 2021) have independently
been shown to exhibit some level of bias. Also,
semantic resources such as WordNet (Miller, 1998)
tend to focus on formalized concepts. This poses
a problem if our method’s use concerns people on
the fringes of society.

We noted earlier that our method is mostly
English-focused. This could be a source of bias
if our method is applied in a multilingual context.
We ask that people do not apply our method to real-
world problems where multilingual knowledge is
required. There is also the issue of semantic re-
sources for low-resource languages not being ex-
tensive enough (Magueresse et al., 2020).
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A Appendices

The appendices contain Table 6 which compares
WordNet glosses to V-GLOSS descriptions for the
first 100 classes in ImageNet. Next, we show ex-
amples of the cases where our most frequent sense
heuristic for mapping a class to WordNet failed
in Table 7. Finally, in Table 8, we show a more
detailed variant of Table 5 which compares multi-
ple variants of the CLIP backbone. The authors of
CuPL also combined their method with Template
Ensembling. The resulting method, CuPL + Tem-
plate Ensembling, combines the class descriptions
from both methods and leads to marginally better
performance.

A.1 Attention Maps

We also briefly analyze V-GLOSS attention maps
to better understand its impact on performance. Fig-
ure 5 shows the attention map for V-GLOSS (see
Table 1 for descriptions), indicating effective uti-
lization of visually-relevant context. Conversely,
Figure 6 shows the attention map for the Word-
Net glosses, where the attention score on bottle is
3.5x higher, showing less distraction in V-GLOSS.
These maps demonstrate success in steering the
model’s attention toward relevant context, thus
improving classification accuracy across different
classes and descriptions. We speculate that our
descriptions also reduce distraction in images, but
leave this to future work.

Figure 5: Attention map for V-GLOSS description

Figure 6: Attention map for WordNet gloss

A.2 Normal Prompts Per Class

We also show how accuracy changes with the num-
ber of normal prompts used for each class. This
result is similar to those shown in Pratt et al. (2022).
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Figure 7: V-GLOSS Accuracy vs. Normal Prompts.

4296



A.3 WordNet vs. V-GLOSS

Table 6: Comparison of WordNet glosses and V-GLOSS descriptions for the first 100 ImageNet classes

Class WordNet Gloss V-GLOSS

tench freshwater dace-like game fish of Europe and
western Asia noted for ability to survive outside
water

Freshwater fish of the family Cyprinidae, found
in Europe and western Asia, with a long, slender
body, a large mouth, and a forked tail.

goldfish small golden or orange-red freshwater fishes of
Eurasia used as pond or aquarium fishes

Small freshwater fishes of the family Cyprinidae,
native to East Asia, introduced to many other
parts of the world.

great white
shark

large aggressive shark widespread in warm seas;
known to attack humans

Large, white, shark-like fish with a large mouth
and sharp teeth.

tiger shark large dangerous warm-water shark with striped
or spotted body

Large warm-water shark with a dark brown
or black body, white underbelly, and white or
yellowish-white dorsal fin.

hammerhead
shark

medium-sized live-bearing shark with eyes at
either end of a flattened hammer-shaped head;
worldwide in warm waters; can be dangerous

Large shark with a flattened head and eyes at
either end of the head.

electric ray any sluggish bottom-dwelling ray of the order
Torpediniformes having a rounded body and
electric organs on each side of the head capa-
ble of emitting strong electric discharges

Sluggish bottom-dwelling rays of the order Tor-
pediniformes with electric organs on each side
of the head.

stingray large venomous ray with large barbed spines
near the base of a thin whiplike tail capable of
inflicting severe wounds

Large, flat, wingless ray with a long, whip-like
tail and sharp, barbed spines near the base.

rooster adult male bird Male bird larger than a hen with a crest of feath-
ers on its head.

hen adult female bird Bird that lays eggs.
ostrich fast-running African flightless bird with two-

toed feet; largest living bird
Large flightless bird with a long neck and
legs, large head, and long, pointed, featherless,
yellow-brown or black beak.

brambling Eurasian finch Small brown bird with a black head and a white
patch on its chest.

goldfinch small European finch having a crimson face and
yellow-and-black wings

Small bird with a bright yellow face and black
wings.

house finch small finch originally of the western United
States and Mexico

Small bird with a bright red head, black back,
and white breast.

junco small North American finch seen chiefly in win-
ter

Small brownish-gray bird with a white belly and
a dark cap, found in open areas.

indigo bunting small deep blue North American bunting Small deep blue North American bunting.
American robin large American thrush having a rust-red breast

and abdomen
Small brown bird with a red breast and a black
head and tail.

bulbul nightingale spoken of in Persian poetry Small bird with a long tail and a long, pointed
beak.

jay crested largely blue bird Crested, largely blue bird with a crest on its head
and a long tail.

magpie long-tailed black-and-white crow that utters a
raucous chattering call

Black-and-white crow with a long tail, often
seen in groups.

chickadee any of various small grey-and-black songbirds
of North America

Small grey-and-black songbird of North Amer-
ica.

American dip-
per

small stocky diving bird without webbed feet;
frequents fast-flowing streams and feeds along
the bottom

Small bird with a black head, white breast and
back, and white belly; short, thick, black bill and
a black tail with white tips.

kite (bird of
prey)

any of several small graceful hawks of the fam-
ily Accipitridae having long pointed wings and
feeding on insects and small animals

Large bird with a long pointed tail and a forked
tail, used to catch insects and small animals.

bald eagle a large eagle of North America that has a white
head and dark wings and body

Large bird of prey with a white head and dark
wings and body.

vulture any of various large diurnal birds of prey having
naked heads and weak claws and feeding chiefly
on carrion

Large bird of prey with a bald head, hooked beak,
and bare neck.

great grey owl large dish-faced owl of northern North America
and western Eurasia

Large owl with a round head, large eyes, short
tail, white face, and gray body with a white patch
on the back of the neck.

Continued on the next page...
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Table 6 is continued from previous page

Class WordNet Gloss V-GLOSS

fire salamander a kind of European salamander Small amphibian with a long tail and a long, thin
body covered in black and yellow spots.

smooth newt small semiaquatic salamander Small semiaquatic salamander with a long tail
and a long, pointed snout.

newt a newt in its terrestrial stage of development Small amphibian with a long tail, a long, thin
body and a short head.

spotted sala-
mander

glossy black North American salamander with
yellow spots

Glossy black amphibian with yellow spots.

axolotl larval salamander of mountain lakes of Mexico
that usually lives without metamorphosing

Salamander living in mountain lakes of Mexico,
usually found in muddy water.

American bull-
frog

largest North American frog; highly aquatic with
a deep-pitched voice

Large amphibian with a greenish-brown back
and dark brown or black belly; large head with
bulging eyes and a long, pointed snout.

tree frog any of various Old World arboreal frogs distin-
guished from true frogs by adhesive suckers on
the toes

Small frog with a long, thin body, long, thin tail,
and long, thin tongue.

tailed frog western North American frog with a taillike cop-
ulatory organ

Small frog with a long, thin tail used for balance
and jumping.

loggerhead sea
turtle

very large carnivorous sea turtle; wide-ranging
in warm open seas

Large, slow-moving, carnivorous sea turtle with
a hard shell and long, pointed head.

leatherback sea
turtle

wide-ranging marine turtle with flexible leathery
carapace; largest living turtle

Large marine turtle with a leathery shell and
long, pointed snout.

mud turtle bottom-dwelling freshwater turtle inhabiting
muddy rivers of North America and Central
America

Turtle living in muddy rivers and lakes in North
America and Central America.

terrapin any of various edible North American web-
footed turtles living in fresh or brackish water

Large, flat-bodied, freshwater turtle with a
diamond-shaped shell and long tail.

box turtle chiefly terrestrial turtle of North America; shell
can be closed tightly

Large, slow-moving, terrestrial turtle with a hard
shell and long tail.

banded gecko any of several geckos with dark bands across the
body and differing from typical geckos in having
movable eyelids; of United States southwest and
Florida Gulf Coast

Small lizard with dark bands across its body and
a movable eyelid.

green iguana large herbivorous tropical American arboreal
lizards with a spiny crest along the back; used
as human food in Central America and South
America

Large, bright green lizard with a spiny crest
along the back and long tail.

Carolina anole small arboreal tropical American insectivorous
lizards with the ability to change skin color

Small arboreal lizard with a long tail and color-
changing skin.

desert grassland
whiptail lizard

any of numerous very agile and alert New World
lizards

Small lizard with a long tail, usually black and
white or brown and white.

agama small terrestrial lizard of warm regions of the
Old World

Small lizards with long tails, long legs, and a
long, pointed snout.

frilled-necked
lizard

large arboreal insectivorous Australian lizard
with a ruff of skin around the neck

Large arboreal insectivorous Australian lizard
with a ruff of skin around the neck.

alligator lizard slim short-limbed lizard having a distinctive fold
on each side that permits expansion; of western
North America

Slim, short-limbed lizard with a distinctive fold
on each side permitting expansion; of western
North America.

Gila monster large orange and black lizard of southwestern
United States; not dangerous unless molested

Large, orange and black lizard with a long tail
and forked tongue.

European green
lizard

a common Eurasian lizard about a foot long Small reptile with a long tail, pointed snout, and
row of spikes along its back.

chameleon a chameleon found in Africa Small lizard with a long tail, long neck, and long,
thin body covered with many small, sharp scales.

Komodo dragon the largest lizard in the world (10 feet); found
on Indonesian islands

Large lizard with a thick, scaly body, long tail,
and large head with sharp teeth.

Nile crocodile a dangerous crocodile widely distributed in
Africa

Large crocodile with a broad, flat snout, long
tail, and long, pointed snout.

American alli-
gator

large alligator of the southeastern United States Large reptile with a long snout, broad head, and
long tail.

triceratops huge ceratopsian dinosaur having three horns
and the neck heavily armored with a very solid
frill

Large herbivorous dinosaur with three horns and
a frill on its neck.

Continued on the next page...
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Table 6 is continued from previous page

Class WordNet Gloss V-GLOSS

worm snake small reddish wormlike snake of eastern United
States

Small reddish wormlike snake of eastern United
States.

ring-necked
snake

any of numerous small nonvenomous North
American snakes with a yellow or orange ring
around the neck

Small nonvenomous snake with a yellow or or-
ange ring around the neck.

eastern hog-
nosed snake

harmless North American snake with upturned
nose; may spread its head and neck or play dead
when disturbed

Harmless North American snake with upturned
nose; may spread its head and neck or play dead
when disturbed.

smooth green
snake

either of two North American chiefly insectivo-
rous snakes that are green in color

Slender, smooth-scaled snake with a green or
yellowish-green coloration.

kingsnake any of numerous nonvenomous North Ameri-
can constrictors; feed on other snakes and small
mammals

Large, nonvenomous snake with a pattern of
alternating light and dark bands on its body.

garter snake any of numerous nonvenomous longitudinally-
striped viviparous North American and Central
American snakes

Slender, smooth-scaled, nonvenomous snake
with a long tail and a pattern of alternating light
and dark bands.

water snake any of various mostly harmless snakes that live
in or near water

Slender, elongated, usually nonvenomous snake
with a flattened head and a long tail often held
above the head.

vine snake slender arboreal snake found from southern Ari-
zona to Bolivia

Slender arboreal snake found from southern Ari-
zona to Bolivia.

night snake nocturnal prowler of western United States and
Mexico

Nocturnal colubrid snake that is black with a
white belly and a white stripe down its back.

boa constrictor very large boa of tropical America and West
Indies

Large snake with a thick body and large head
covered with scales, forked tongue.

African rock
python

very large python of tropical and southern Africa Large, heavy, non-venomous snake, grey or
brown with a black head and yellowish belly.

Indian cobra a cobra of tropical Africa and Asia Large venomous snake with a hooded head and
forked tongue.

green mamba green phase of the black mamba Large venomous snake with a green body and
black head and tail.

sea snake any of numerous venomous aquatic viviparous
snakes having a fin-like tail; of warm littoral
seas; feed on fish which they immobilize with
quick-acting venom

Venomous snake living in the sea with a long,
thin body, large head, and forked tongue.

Saharan horned
viper

highly venomous viper of northern Africa and
southwestern Asia having a horny spine above
each eye

Venomous snake with a horny spine above each
eye.

eastern dia-
mondback
rattlesnake

large deadly rattlesnake with diamond-shaped
markings

Large, venomous snake with a diamond-shaped
pattern on its back.

sidewinder rat-
tlesnake

small pale-colored desert rattlesnake of south-
western United States; body moves in an s-
shaped curve

Small pale-colored desert rattlesnake of south-
western United States; triangular head, long tail,
and rattle on its tail.

trilobite an extinct arthropod that was abundant in Paleo-
zoic times; had an exoskeleton divided into three
parts

Fossilized arthropod from the Paleozoic era with
a hard exoskeleton divided into three parts.

harvestman spiderlike arachnid with a small rounded body
and very long thin legs

Spiderlike arachnid with a small rounded body
and very long thin legs.

scorpion arachnid of warm dry regions having a long seg-
mented tail ending in a venomous stinger

Venomous arachnid with a segmented tail ending
in a stinger.

yellow garden
spider

a widely distributed North American garden spi-
der

Large spider with a black body and a yellow
abdomen.

barn spider an orange and tan spider with darkly banded legs
that spins an orb web daily

Large, hairy spider with a dark brown body and a
white, orange and black pattern on its abdomen.

European
garden spider

a spider common in European gardens Small spider with a long, thin body and a large,
round abdomen.

southern black
widow

venomous New World spider; the female is black
with an hourglass-shaped red mark on the under-
side of the abdomen

Spider with a black body and a red hourglass-
shaped mark on the underside of the abdomen.

tarantula large hairy tropical spider with fangs that can
inflict painful but not highly venomous bites

Large hairy tropical spider with fangs that can
inflict painful but not highly venomous bites.

Continued on the next page...
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Class WordNet Gloss V-GLOSS

wolf spider ground spider that hunts its prey instead of using
a web

Large, hairy spider with a long, thin body, large
head, two large eyes, and a pair of fangs.

tick any of two families of small parasitic arachnids
with barbed proboscis; feed on blood of warm-
blooded animals

Small parasitic arachnid that feeds on blood.

centipede chiefly nocturnal predacious arthropod having a
flattened body of 15 to 173 segments each with
a pair of legs, the foremost pair being modified
as prehensors

Small, segmented, wormlike arthropod with a
pair of long, segmented legs and a pair of short,
segmented antennae.

black grouse grouse of which the male is bluish-black Grouse of which the male is bluish-black.
ptarmigan large Arctic and subarctic grouse with feathered

feet and usually white winter plumage
Large grouse with a white head and neck, brown
body, and white tail.

ruffed grouse valued as a game bird in eastern United States
and Canada

Medium-sized game bird with a black body,
white breast, and a ruff of feathers around the
neck.

prairie grouse brown mottled North American grouse of west-
ern prairies

Large brown mottled North American grouse of
western prairies.

peafowl male peafowl; having a crested head and very
large fanlike tail marked with iridescent eyes or
spots

Large, colorful, iridescent bird with a fan-shaped
tail and a crest on its head.

quail small gallinaceous game birds Small game bird with a plump body, short tail,
long, pointed bill, and short, rounded tail.

partridge small Old World gallinaceous game birds Small bird with a brown body, white breast, and
black head and neck.

african grey par-
rot

commonly domesticated grey parrot with red-
and-black tail and white face; native to equato-
rial Africa

Medium-sized parrots with a grey body, red-and-
black tail, and white face.

macaw long-tailed brilliantly colored parrot of Central
America and South America; among the largest
and showiest of parrots

Large brightly colored parrot with a long tail and
long beak.

sulphur-crested
cockatoo

white cockatoo with a yellow erectile crest Large white cockatoo with a yellow erectile
crest.

lorikeet any of various small lories Small brightly colored parrot-like bird with a
long tail and curved beak.

coucal Old World ground-living cuckoo having a long
dagger-like hind claw

Large bird with a long dagger-like hind claw.

bee eater colorful chiefly tropical Old World bird having
a strong graceful flight; feeds on especially bees

Colorful Old World bird with a strong graceful
flight that feeds on bees.

hornbill bird of tropical Africa and Asia having a very
large bill surmounted by a bony protuberance;
related to kingfishers

Large tropical bird with a large bill and long tail.

hummingbird tiny American bird having brilliant iridescent
plumage and long slender bills; wings are spe-
cialized for vibrating flight

Small bird with a long slender bill and iridescent
feathers.

jacamar tropical American insectivorous bird having a
long sharp bill and iridescent green or bronze
plumage

Small, colorful birds with long bills and irides-
cent feathers.

toucan brilliantly colored arboreal fruit-eating bird of
tropical America having a very large thin-walled
beak

Large colorful bird with a long beak and crest
on its head.

duck adult male of a wild or domestic duck Male duck.
red-breasted
merganser

widely distributed merganser of America and
Europe

Large duck with a red breast and black head and
neck.

goose web-footed long-necked typically gregarious mi-
gratory aquatic birds usually larger and less
aquatic than ducks

Large bird with a long neck, short tail, usually
white with black or brown markings.
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A.4 Mis-mappings stemming from the Most Frequent Sense Heuristic

Class Wrong Sense Correct Sense

Beaver the soft brown fur of the beaver large semiaquatic rodent with webbed hind feet
and a broad flat tail; construct complex dams
and underwater lodges

Castle a large and stately mansion interchanging the positions of the king and a
rook

Cloud any collection of particles (e.g., smoke or dust)
or gases that is visible

a visible mass of water or ice particles suspended
at a considerable altitude

Flatfish sweet lean whitish flesh of any of numerous thin-
bodied fish; usually served as thin fillets

any of several families of fishes having flattened
bodies that swim along the sea floor on one side
of the body with both eyes on the upper side

Leopard the pelt of a leopard large feline of African and Asian forests usually
having a tawny coat with black spots

Lobster flesh of a lobster any of several edible marine crustaceans of the
families Homaridae and Nephropsidae and Pal-
inuridae

Otter the fur of an otter freshwater carnivorous mammal having webbed
and clawed feet and dark brown fur

Raccoon the fur of the North American racoon an omnivorous nocturnal mammal native to
North America and Central America

Ray a column of light (as from a beacon) cartilaginous fishes having horizontally flattened
bodies and enlarged winglike pectoral fins with
gills on the underside; most swim by moving the
pectoral fins

Seal fastener consisting of a resinous composition
that is plastic when warm; used for sealing doc-
uments and parcels and letters

any of numerous marine mammals that come on
shore to breed; chiefly of cold regions

Shrew a scolding nagging bad-tempered woman small mouselike mammal with a long snout; re-
lated to moles

Skunk a person who is deemed to be despicable or con-
temptible

American musteline mammal typically ejecting
an intensely malodorous fluid when startled; in
some classifications put in a separate subfamily
Mephitinae

Table a set of data arranged in rows and columns a piece of furniture having a smooth flat top that
is usually supported by one or more vertical legs

Television broadcasting visual images of stationary or mov-
ing objects; ; - Ernie Kovacs

an electronic device that receives television sig-
nals and displays them on a screen

Tiger a fierce or audacious person large feline of forests in most of Asia having a
tawny coat with black stripes; endangered

Turtle a sweater or jersey with a high close-fitting collar any of various aquatic and land reptiles having a
bony shell and flipper-like limbs for swimming

Table 7: CIFAR-100 classes where the most frequent sense heuristic failed
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A.5 A More Detailed Comparison of Methods Over CLIP variants

Method Model
Datasets # LM

ParametersImageNet CIFAR-100 CIFAR-10 STL-10

Lex Baseline ViT-B-32 55.7 60.5 87.4 96.3

0
ViT-L-14 67.7 72.2 91.4 97.7
ViT-L-14-336 69.1 71.9 91.5 98.2
RN50 51.6 34.1 69.7 91.9
RN50x64 65.9 52.6 81.1 96.4

1-Template Baseline ViT-B-32 59.4 64.5 88.3 97.3

0
ViT-L-14 71.1 77.3 95.2 99.5
ViT-L-14-336 72.4 76.6 94.8 99.5
RN50 55.6 42.1 70.3 94.4
RN50x64 68.7 57.7 81.0 98.4

Template Ensembling ViT-B-32 63.2 65.1 91.3 97.2

0
ViT-L-14 75.3 77.9 96.2 99.3
ViT-L-14-336 76.2 77.5 95.7 99.4
RN50 59.6 41.6 75.6 94.3
RN50x64 73.2 61.3 86.8 98.3

CuPL + Template Ensembling ViT-B-32 64.6 - - -

175B
ViT-L-14 76.6 - - -
ViT-L-14-336 77.6 - - -
RN50 61.3 - - -
RN50x64 75.1 - - -

Menon and Vondrick ViT-B-32 63.0 - - -

175B
ViT-L-14 75.0 - - -
ViT-L-14-336 76.2 - - -
RN50 - - - -
RN50x64 - - - -

V-GLOSS (Normal-Only) ViT-B-32 63.2 65.1 91.2 97.3

6.1B
ViT-L-14 75.3 76.5 95.9 99.5
ViT-L-14-336 77.3 77.5 95.6 99.4
RN50 57.9 45.6 76.7 94.3
RN50x64 73.3 63.5 86.8 98.3

V-GLOSS (Normal + Contrastive) ViT-B-32 65.7 66.3 92.1 97.7

6.1B
ViT-L-14 77.6 78.2 97.0 99.6
ViT-L-14-336 78.5 78.0 96.0 99.6
RN50 62.8 45.8 76.8 95.0
RN50x64 74.5 64.6 87.8 98.8

Table 8: Top-1 accuracy on ZSIC across five CLIP variants.
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