
Findings of the Association for Computational Linguistics: NAACL 2024, pages 4336–4350
June 16-21, 2024 ©2024 Association for Computational Linguistics

InstructEval: Systematic Evaluation of Instruction Selection Methods

Anirudh Ajith∗ Chris Pan∗ Mengzhou Xia Ameet Deshpande Karthik Narasimhan
Department of Computer Science, Princeton University

{anirudh.ajith, chrispan, mengzhou, asd, karthikn}@princeton.edu

Abstract

In-context learning (ICL) performs tasks by
prompting a large language model (LLM) us-
ing an instruction and a small set of annotated
examples called demonstrations. Recent work
has shown that precise details of the inputs used
in the ICL prompt significantly impact perfor-
mance, which has incentivized instruction se-
lection algorithms. The effect of instruction-
choice however is severely underexplored, with
existing analyses restricted to shallow subsets
of models and tasks, limiting the generalizabil-
ity of their insights. We develop InstructEval,
an ICL evaluation suite to conduct a thorough
assessment of these techniques. The suite in-
cludes 13 open-sourced LLMs of varying scales
from four model families, and covers nine tasks
across three categories. Using the suite, we
evaluate the relative performance of seven pop-
ular instruction selection methods over five
metrics relevant to ICL. Our experiments re-
veal that using curated manually-written in-
structions or simple instructions without any
task-specific descriptions often elicits superior
ICL performance overall than that of automatic
instruction-induction methods, pointing to a
lack of generalizability among the latter. We
release our evaluation suite for benchmarking
instruction selection approaches and enabling
more generalizable methods in this space.1

1 Introduction

One of the most effective insights in NLP re-
search in recent years has been that large language
models trained to perform next-token prediction
show emergent in-context learning (ICL) abili-
ties (Brown et al., 2020; Scao et al., 2022a; Zhang
et al., 2022a). While the bulk of research interest
has shifted away from task-specific models and
towards creating “foundation models" to perform
a variety of tasks using appropriately constructed

1Code: https://github.com/princeton-nlp/
InstructEval

Figure 1: InstructEval allows the assessment of instruc-
tion selection methods for ICL across a range of models
and tasks along five metrics.

prompts, the performance of ICL remains sensi-
tive to the precise details of prompt construction.
Prompt engineering remains critical for achieving
optimal ICL performance (Perez et al., 2021; Zhao
et al., 2021; Webson and Pavlick, 2022).

In practice, ICL typically involves prompting a
language model using a concatenation of a task-
specific instruction, a short sequence of annotated
in-context examples known as demonstrations, and
a test example (Figure 2). Much of the research in-
terest surrounding in-context learning has focused
on understanding the optimal selection, ordering of
demonstrations, and label-space choices (Liu et al.,
2021a; Su et al., 2022; Rubin et al., 2022; Wang
et al., 2023a; Lu et al., 2021a; Wei et al., 2023; Pan
et al., 2023). However, instruction choice remains

4336

https://github.com/princeton-nlp/InstructEval
https://github.com/princeton-nlp/InstructEval

a relatively underexplored aspect of prompt engi-
neering despite its established significance (Mishra
et al., 2022) on downstream performance.

Even among recent works exploring automatic
instruction selection (Honovich et al., 2022; Gonen
et al., 2022; Deng et al., 2022; Zhou et al., 2022),
the use of different evaluation protocols makes the
comparison of their relative performances difficult.
Existing studies typically limit their analyses to
specific models or tasks; for example, Zhou et al.
(2022) focus on a single model, and while Deng
et al. (2022) consider multiple model scales, they
all belong to a single model family. Moreover, eval-
uations often span disparate task selections with
minimal overlap and are primarily dominated by
classification tasks, neglecting other task types like
multiple-choice QA or generation. Lastly, most
previous works studying automatic instruction se-
lection tend to emphasize zero-shot accuracy, over-
looking other pertinent ICL metrics such as few-
shot accuracy and robustness measures.

To address these issues, we build InstructEval,
an evaluation suite for the comprehensive evalu-
ation of instruction selection methods. The suite
covers a diverse collection of 13 open-sourced au-
toregressive LLMs from four model families and
nine tasks spanning three task types. Addition-
ally, it also incorporates three accuracy metrics and
two sensitivity metrics that are of interest to ICL.
We perform evaluations of seven popular instruc-
tion selection methods including trivial instruction
baselines, manually curated instructions, and so-
phisticated automatic methods using our suite.

Overall, we find that the relative effectiveness of
these approaches varies significantly across differ-
ent models and task types. We discover that curated
manually-written instructions and task-agnostic in-
structions can elicit better aggregated performance
(over models) than automatically induced ones,
highlighting the lack of generalizability of the latter.
We also find that including instructions in few-shot
prompts usually tends to hurt ICL performance at
the model scales we consider. Our findings sug-
gest that it may be optimal for ICL practitioners
to omit instructions in few-shot settings and use
curated manually-written instructions in zero-shot
settings, rather than contemporary automatic induc-
tion techniques that require substantial computation
and hyperparameter tuning to achieve competitive
performance. We release the evaluation suite we
develop to aid the systematic study of even more

questions regarding prompt engineering that we do
not explicitly address in our work.

2 Related Work

In-Context Learning and Existing Benchmarks
As language models have scaled, in-context learn-
ing has emerged as a popular paradigm and remains
ubiquitous among several autoregressive LLM fam-
ilies (Brown et al., 2020; Touvron et al., 2023;
Scao et al., 2022b; Black et al., 2021; Zhang et al.,
2022b). Benchmarks like BigBench (Srivastava
et al., 2022) and HELM (Liang et al., 2022) have
been created for the holistic evaluation of these
models. BigBench focuses on few-shot abilities
of state-of-the-art large language models, while
HELM extends its evaluation to consider metrics
like robustness and bias. However, these bench-
marks focus on evaluating and ranking language
models, and do not address the systematic eval-
uation of prompting methods. Although contem-
porary work by Yang et al. (2023) also aims to
perform a similar systematic analysis of prompting
methods, they focus on simple probability-based
prompt selection while we evaluate a broader range
of methods including trivial instruction baselines,
curated manually selected instructions, and sophis-
ticated automated instruction selection.

Automated Prompt Engineering Methods
There has been interest in performing automated
prompt-engineering for target downstream tasks
within ICL. This has led to the exploration of
various prompting methods, ranging from simple
heuristics such as selecting instructions with the
lowest perplexity (Gonen et al., 2022), inducing
instructions from large language models using
a few annotated input-output pairs (Zhou et al.,
2022), to utilizing RL objectives to create discrete
token sequences as prompts (Deng et al., 2022).
However, these works restrict their evaluation
to small sets of models and tasks with little
intersection, hindering their objective comparison.

Understanding in-context learning There has
been much recent work attempting to understand
the mechanisms that drive in-context learning.
Studies have found that the selection of demonstra-
tions included in prompts significantly impacts few-
shot accuracy across most tasks (Liu et al., 2021b;
Agrawal et al., 2022; Xu et al., 2023). Works like
(Lu et al., 2021b) also show that altering the or-
dering of a fixed set of demonstrations can affect

4337

Figure 2: An example of a prompt following the tem-
plate we use for IMDB. By ‘prompt’ we refer to the
concatenation of the instruction, solved demonstrations
and an unsolved test example.

downstream accuracy. Prompts sensitive to demon-
stration permutation often exhibit lower accuracies
(Chen et al., 2023), making them less reliable, par-
ticularly in low-resource domains.

Our work aims to bridge these gaps by systemat-
ically evaluating the efficacy of popular instruction
selection approaches over a diverse set of tasks and
models, facilitating objective comparison. We eval-
uate these methods not only on accuracy metrics,
but also on sensitivity metrics to glean additional
insights. We recognize that other facets of prompt-
ing not covered by instruction engineering exist
(Wei et al.; Yao et al., 2023; Wang et al., 2023b),
and defer these explorations to future work.

3 Evaluation Suite

3.1 Prompt format
We define a ‘prompt’ as the full textual input pro-
vided to an LLM. Our evaluation suite supports
the use of any number of demonstrations, arbitrary
demonstration templates and the inclusion of cus-
tom strings anywhere within the prompt. Since the
instructions used can be set to any arbitrary strings,
users are free to use any external means to select
instructions and have them evaluated by our suite.

For consistency, we conduct all experiments in
this work using prompts that begin with an instruc-

tion, continue with a sequence of annotated training
demonstrations, and conclude with an unsolved test
example2 (Figure 2). We express each example in
a minimal, task-specific key-value format (Table 8)
that reflects task semantics.

3.2 Metrics

Accuracy metrics Accuracy is typically the pri-
mary metric of interest in ICL. While ICL is most
commonly performed in few-shot settings where a
handful of annotated demonstrations are included
in the prompt, models are also prompted zero-shot
without the use of such demonstrations. Since real-
world scenarios can often contain grammatical er-
rors and misspellings in the test input, it is desir-
able to find prompts robust to these perturbations.
Hence, we measure zero-shot accuracy, few-shot
accuracy, and perturbation accuracy3 in our eval-
uations. Following Liang et al. (2022), we mea-
sure perturbation accuracy by introducing random
capitalization, spacing, contractions and common
misspellings in the test input.

Sensitivity metrics Previous work has shown
that the accuracy obtained using a prompt tem-
plate can fluctuate significantly as a function of
the set of demonstrations included in the prompt
(Liu et al., 2021a; Su et al., 2022; Rubin et al.,
2022; Wang et al., 2023a) and the order they are
presented in (Lu et al., 2021b). It may be desirable
in practice to identify prompt templates and instruc-
tions that offer consistent performance regardless
of the choice of demonstrations and their arrange-
ment. Hence, we introduce selectional sensitivity
and permutational sensitivity metrics to measure
the sensitivity of chosen instructions respectively
to selected demonstrations, and the order in which
they are arranged. We quantify the sensitivity of an
instruction (given a model and task) using the stan-
dard deviation of accuracies obtained on varying
the selection or permutation of the demonstrations
used, each across 16 random choices.

3.3 Aggregating metrics across Models

Each instruction selection method being tested
across N models and M datasets yields NM val-
ues per metric. Comparing these NM -dimensional

2Instructions are omitted during ‘Null instruction’ evalua-
tions. Demonstrations are omitted in zero-shot evaluations.

3We choose to treat this as an accuracy metric rather than a
sensitivity metric since it is not meaningful to measure sensi-
tivity to such perturbations in situations where a prompt only
elicits near random-chance task performance from a model.

4338

instruction

(xtr
1 , ytr

1)

(xtr
2 , ytr

2)

(xtr
3 , ytr

3)

xte
1

instruction

(xtr
1 , ytr

1)

(xtr
2 , ytr

2)

(xtr
3 , ytr

3)

PERTURB(xte
1)

(a) Perturbation accuracy

instruction

(xtr
1 , ytr

1)

(xtr
2 , ytr

2)

(xtr
3 , ytr

3)

xtest
1

instruction

(xtr
1 , ytr

1)

(xtr
2 , ytr

2)

(xtr
3 , ytr

3)

xtest
1

instruction

(xtr
4 , ytr

4)

(xtr
5 , ytr

5)

(xtr
6 , ytr

6)

xte
1

instruction

(xtr
1 , ytr

1)

(xtr
2 , ytr

2)

(xtr
3 , ytr

3)

xte
1

(b) Selectional sensitivity

instruction

(xtr
1 , ytr

1)

(xtr
2 , ytr

2)

(xtr
3 , ytr

3)

xtest
1

instruction

(xtr
1 , ytr

1)

(xtr
2 , ytr

2)

(xtr
3 , ytr

3)

xtest
1

instruction

(xtr
3 , ytr

3)

(xtr
1 , ytr

1)

(xtr
2 , ytr

2)

xte
1

instruction

(xtr
1 , ytr

1)

(xtr
2 , ytr

2)

(xtr
3 , ytr

3)

xte
1

(c) Permutational sensitivity

Figure 3: We provide schematic diagrams that show prompts are modified to measure perturbation accuracy,
selectional sensitivity and permutational sensitivity. We perturb the test input to measure perturbation accuracy, and
demonstration selection and permutation respectively while measuring selectional and permutational sensitivity.

vectors directly is complex. It can be challenging
to reduce them to a single representative scalar.
Simple approaches such as computing the mean
of these NM values can prove inadequate since
the resulting scores would tend to be heavily influ-
enced by metric values that exhibit a high variance
across different inspected methods.

We opt against using aggregation techniques
used by previous works (Liang et al., 2022; Srivas-
tava et al., 2022) due to their drawbacks (Section B)
and instead adopt ‘mean relative gain’ as a means to
aggregate accuracy metrics across multiple models.
We rely on simple averaging for sensitivity metrics,
partly because we observe that these quantities do
not show much variation across methods.

3.3.1 Accuracy metrics
Considering the range of models and datasets in
our evaluation suite, we unsurprisingly observe
substantial variation in accuracy magnitudes across
model scales and tasks. However, we notice that
the degree of variation in accuracy due to instruc-
tion choice is usually considerably smaller than the
degree of variation due to model and task choice.

To meaningfully compare and aggregate the rel-
ative performance of different instruction selection
methods across models, we use a measure called
mean relative gain. First, we define the relative
gain for a value x from a population P as the per-
centage by which x exceeds the mean value of P :

r-gainP (x) = 100× x− µP

µP

Consider a collection of models M and instruc-
tions I for a task t. Given a model m, we calculate
the raw accuracy scores stmi for each instruction
i ∈ I. Taking this set Stm to be the population,
we compare the performances of the instructions

against each other by computing their correspond-
ing relative gains rtmi = r-gainStm

(stmi). Each
rtmi represents the degree by which method i out-
performs the average performance along the metric
on task t for model m.

We now define the mean relative gain as

rti =
1

|M|
∑

m∈M
rtmi

These rti values, tabulated and analyzed in Sec-
tion 5, capture not only the ordinal information
about each method’s performance on a given task
but also provide an intuitive sense of the magni-
tude by which these methods outperform others.
Specifically, if an induction method i has a mean
relative gain rti on task t, this means that method i
exceeds average performance (across I) on task t
by rti percent when averaged across models M.

3.3.2 Sensitivity metrics

To aggregate the sensitivity of an instruction selec-
tion/induction method i over all models for a task t,
we simply compute the average of the raw sensitiv-
ity scores (described in Section 3.2). Specifically, if
σtmi is the raw sensitivity score obtained for model
m and task t when using instruction i, then the
aggregated sensitivity score σti is given by

σti =
1

|M|
∑

m∈M
σtmi

We choose to avoid more sophisticated aggrega-
tion strategies like relative gain for sensitivity met-
rics since standard deviations are already secondary
metrics, hence making it unintuitive to discuss the
relative gain of the standard deviation obtained us-
ing a method over the average.

4339

Task Type Tasks

Classification (CLS)

AG News (Zhang et al., 2015)
ANLI (Nie et al., 2020)
BoolQ (Clark et al., 2019)
IMDB (Maas et al., 2011)
TweetEval Emotion (Mohammad et al., 2018)

Multiple-choice (MCQ)
CosmosQA (Huang et al., 2019)
HellaSwag (Zellers et al., 2019)

Generative QA (GQA)
NQ-Open (Kwiatkowski et al., 2019)
TriviaQA (Joshi et al., 2017)

Table 1: Tasks included in our evaluation suite.

Model Family Size

BLOOM (Scao et al., 2022b) 1.1B, 1.7B, 3B, 7.1B
GPT Neo (Black et al., 2021, 2022) 1.3B, 2.7B, 20B
LLaMA (Touvron et al., 2023) 7B, 13B
OPT (Zhang et al., 2022b) 1.3B, 2.7B, 6.7B, 13B

Table 2: Model families and corresponding model scales
included in our evaluation suite.

3.4 Tasks

While previous instruction induction (Zhou et al.,
2022; Deng et al., 2022) work has tended to focus
mostly on classification tasks, we include 9 tasks
(Table 1) in our evaluation suite spanning classifi-
cation (CLS), multiple-choice question-answering
(MCQ) and generative question-answering (GQA)
to assess the applicability of instruction selection
and induction methods to other task-types as well.
We concentrate on tasks that are challenging to
contemporary language models, and yet are not so
demanding that the performance of these models
does not exceed random chance. We exclude cer-
tain generative tasks, like summarization, which
are challenging to assess objectively. 4

3.5 Models

We include a diverse range of 13 autoregressive
LLMs (Table 2) from 4 model families of sizes
ranging from 1.1 billion to 20 billion parameters
in our evaluation suite. We choose contemporary
models that span different architectures and train-
ing paradigms which are known to show good ICL
performance. This diversity bolsters the general-
izability of insights obtained using our evaluation
suite while mitigating potential bias towards any
specific model family. Moreover, we select open-
source models which are large enough to show
non-trivial ICL performance while still being small
enough to run on reasonable consumer hardware to

4Standard summarization metrics correlate poorly with
human preferences (Liang et al., 2022; Goyal et al., 2023).

Method Task-specific Automatic induction
Null instruction ✗ ✗

Generic instruction ✗ ✗

PromptSource (Bach et al., 2022) ✓ ✗

Ad hoc ✓ ✗

Low Perplexity (Gonen et al., 2022) ✓ ✓

APE (Zhou et al., 2022) ✓ ✓

RLPrompt (Deng et al., 2022) ✓ ✓

Table 3: Instruction selection methods we evaluate

ensure the practical significance of our findings.

4 Experimental setup

We perform experiments evaluating 3 families of
instruction selection methods (listed in Table 3).

Task-agnostic instructions In practical ICL set-
tings, it is straightforward to use instructions that
contain no task-specific information.

• Null instruction: We assess the impact of omit-
ting instructions from the prompt. This amounts
to constructing prompts that consist of demon-
strations and a test example in few-shot, and only
an unanswered test-example in zero-shot settings.

• Generic instructions: We assess the im-
pact of using generic task-agnostic instruc-
tions such as Complete the following
task:. These instructions require minimal ef-
fort to write since they do not demand knowledge
of the task. We list the set of generic instructions
we evaluate in Table 10.

Manual task-specific instructions We evaluate
manually-written task-specific instructions that ICL
practitioners may use in practice.

• PromptSource: PromptSource (Bach et al.,
2022) is a public collection of manually-curated
prompt templates pertaining to 170+ datasets
which are often used off-the-shelf for ICL and
are generally considered high-quality.

• Ad hoc: ICL practitioners often create task-
specific instructions ad hoc, based on the seman-
tics of the given task. We simulate this mode of
instruction selection by asking ChatGPT to gen-
erate several paraphrases of task-specific seed
instructions we obtain from PromptSource and
randomly sampling from the generated set.

Automatically synthesized task-specific instruc-
tions We evaluate 3 popular automated instruc-
tion selection and induction methods that are repre-
sentative of previous work.

4340

• Low Perplexity: (Gonen et al., 2022) find that
the perplexity a model associates with an instruc-
tion is negatively correlated with its ICL per-
formance when using that instruction. We use
the SPELL algorithm proposed by Gonen et al.
(2022) to select the least perplexity instructions
(for each model) from a large pool of ChatGPT
paraphrased instructions.

• APE: (Zhou et al., 2022) is an automatic few-shot
method for inducing instructions by prompting a
language model to describe the given task, and
refining the set of generated prompts using ac-
curacy on a small held-out validation set. While
Zhou et al. (2022) limit their evaluation to GPT-
3 (Brown et al., 2020) and InstructGPT (Ouyang
et al., 2022), we assess APE’s applicability to a
significantly larger set of models and tasks.

• RLPrompt (Deng et al., 2022) is a
reinforcement-learning-based approach for
few-shot prompt induction. While the original
authors only evaluate their method using GPT-2
on a few classification tasks, we expand this
assessment to many more models and tasks.
Notably, we assess the extensibility of RLPrompt
to MCQ tasks, but do not test RLPrompt
performance on GQA tasks since the algorithm
is not directly applicable to generation tasks.

5 Results

We tabulate the mean relative gain values over ac-
curacy metrics in Table 4, and the mean standard
deviations corresponding to selectional and permu-
tational sensitivity metrics in Table 5.

5.1 Less sophisticated instruction selection
methods tend to show higher accuracy

We find that task-agnostic instructions dominate
in few-shot settings with Null instructions and
Generic instructions achieving the highest aggre-
gated performance in 5/9 tasks for few-shot accu-
racy and 6/9 tasks for perturbation accuracy. Al-
though both these methods show above-average
performance in few-shot settings, Null instructions
tend to perform better among the two.

Although PromptSource instructions only show
an average performance in few-shot settings,
their manually curated task-specific instructions
prove most effective in zero-shot settings, achiev-
ing the highest aggregated performance in 6/9 tasks

and usually achieving markedly higher mean rel-
ative gain values than even the runner-up method
for the task. This is especially true of GQA tasks
where PromptSource instructions outperform the
average by >17%.

Automatic task-specific instructions are usu-
ally outperformed by simple baselines. They fail
to achieve the best zero-shot performance on any
task we consider. While they do sometimes per-
form competitively with simpler baselines in the
few-shot setting, emerging as the best-performing
instructions in 2/9 tasks, this behavior is inconsis-
tent. Low Perplexity instructions and APE instruc-
tions seldom show above-average performance in
either setting while RLPrompt instructions show
above-average performance in 5/7 tasks in both
settings. They are still usually outperformed by
instructions obtained through simpler means such
as Null and PromptSource instructions.

5.2 Ranges of variation of aggregated scores
We notice that instructions have a more signifi-
cant impact in zero-shot settings as compared to
few-shot settings. For most tasks, we find that the
highest mean relative gain values achieved in the
zero-shot setting are markedly greater than those
in the few-shot setting. Accordingly, the minimum
values for each task are also relatively lower in
zero-shot settings. This finding suggests that in-
structions play a significant role in informing mod-
els of semantics in zero-shot settings whereas in
few-shot settings, most of a model’s understanding
of task-semantics comes from the demonstrations.

The degree of variation in accuracy due to in-
struction choice varies considerably across tasks.
AG News and Emotion show the highest variability
in few-shot performance while GQA tasks show
the most variability in zero-shot settings.

Table 5 shows that selectional and permutational
sensitivities vary dramatically across tasks even
though they are roughly consistent across all meth-
ods for a given task. This implies that all the
methods we evaluate are comparable in sensitivity,
which is unsurprising since none of them explicitly
optimize for it. We also find that most methods
show comparable, but usually lower permutational
sensitivity than selectional sensitivity.

5.3 Analysis
We tabulate the mean relative gain values for zero-
shot and few-shot accuracies computed separately
for “small" models with < 6 billion parameters and

4341

CLS MCQ GQA # wins
Method AG News ANLI BoolQ IMDB Emotion HellaSwag CosmosQA TriviaQA NQ-Open

Zero-shot accuracy (mean relative gain) ↑
Null Instruction 2.26 1.07 2.48 −3.52 −5.30 2.54 5.94 −3.02 −25.67 3
Generic Instruction 3.55 −0.39 0.03 1.69 2.39 −0.13 −1.67 −1.46 −5.99 0

PromptSource 5.81 1.38 −0.65 4.34 5.13 −1.54 −3.42 17.08 22.15 6
Ad hoc −0.33 0.21 0.55 1.41 0.66 −0.27 −2.46 −1.97 2.31 0

Low Perplexity −0.59 1.22 0.56 0.84 −4.07 −1.38 −2.18 −5.99 2.81 0
APE −15.63 −3.86 −1.07 −1.77 −0.26 −1.06 0.00 −4.64 4.39 0
RLPrompt 4.92 0.37 −1.89 −2.99 1.46 1.85 3.79 − − 0

Few-shot accuracy (mean relative gain) ↑
Null Instruction 4.09 −0.22 0.87 −0.80 5.89 0.17 1.33 0.45 −0.02 4
Generic Instruction 5.16 −0.20 −0.10 0.45 4.84 0.04 −0.18 0.11 0.11 1

PromptSource 0.83 0.14 −0.79 0.39 −4.39 −0.06 −0.94 −0.36 0.61 1
Ad hoc 2.18 −0.10 −0.05 0.60 −5.63 −0.21 −0.59 0.09 −0.49 1

Low Perplexity −1.96 0.31 −0.40 0.20 −6.79 −0.23 −0.61 −0.06 −0.02 1
APE −15.43 0.10 0.06 −0.69 1.17 0.02 0.17 −0.24 −0.19 0
RLPrompt 5.13 −0.02 0.40 −0.14 4.90 0.27 0.81 − − 1

Few-shot perturbation accuracy (mean relative gain) ↑
Null Instruction 4.09 −0.08 0.11 −0.27 5.98 0.11 1.10 0.81 1.28 4
Generic Instruction 5.15 −0.18 −0.16 0.56 4.23 −0.02 −0.02 0.08 0.10 2

PromptSource 1.14 0.27 −0.02 0.33 −3.92 0.06 −0.53 −0.65 0.04 0
Ad hoc 1.68 0.51 −0.34 0.37 −5.87 −0.08 −0.63 −0.28 −0.61 0

Low Perplexity −2.39 0.68 −0.12 −0.20 −6.61 −0.09 −0.66 −0.03 −0.78 1
APE −14.32 −1.20 0.28 −0.82 1.26 −0.13 0.21 0.06 −0.03 1
RLPrompt 4.65 −0.01 0.24 0.03 4.94 0.15 0.53 − − 1

Table 4: Mean relative gain values associated with zero-shot accuracy, and few-shot accuracy with unperturbed
and perturbed test inputs. Only values that correspond to the same task and metric should be compared. Positive
values represent above-average performance, and negative values represent below-average performance. The ‘#
wins’ column shows the number of tasks where a method achieved the highest aggregated performance.

CLS MCQ GQA # wins
Method AG News ANLI BoolQ IMDB Emotion HellaSwag CosmosQA TriviaQA NQ-Open

Selectional sensitivity (mean standard deviation) ↓
Null Instruction 6.69 2.45 4.73 5.28 6.97 2.46 8.10 2.59 2.28 3
Generic Instruction 6.87 2.50 4.76 5.40 6.97 2.48 8.16 2.61 2.26 0

PromptSource 6.73 2.26 4.85 5.37 6.43 2.43 8.26 2.59 2.28 1
Ad hoc 6.95 2.41 4.62 5.38 6.34 2.42 8.20 2.65 2.37 1

Low Perplexity 7.07 2.17 4.69 5.64 6.25 2.42 8.27 2.59 2.30 2
APE 7.44 2.98 4.63 5.70 6.67 2.43 8.16 2.65 2.21 1
RLPrompt 6.76 2.35 4.79 5.50 6.96 2.36 8.16 − − 1

Permutational sensitivity (mean standard deviation) ↓
Null Instruction 6.02 1.99 3.82 4.56 5.34 1.12 1.87 1.48 1.24 2
Generic Instruction 6.01 2.19 3.89 4.56 5.49 1.15 1.68 1.33 1.22 2

PromptSource 6.06 2.15 3.61 4.69 4.30 1.07 1.67 1.47 1.17 2
Ad hoc 6.10 2.37 3.77 4.61 4.37 1.11 1.66 1.41 1.23 0

Low Perplexity 6.13 2.24 3.50 4.61 4.29 1.13 1.69 1.46 1.27 2
APE 6.14 2.36 3.69 4.84 5.08 1.10 1.78 1.41 1.21 0
RLPrompt 6.26 2.06 3.82 4.89 5.64 1.08 1.65 − − 1

Table 5: Mean standard deviation of few-shot accuracy on varying selections and permutations of demonstrations
respectively. The ‘# wins’ column respresents the number of tasks where a method achieves best performance.

4342

< 6B parameters ≥ 6B parameters

Method CLS MCQ GQA CLS MCQ GQA

Zero-shot accuracy (mean relative gain) ↑
Null Instruction −2.89 1.71 −15.86 2.07 7.19 −12.58
Generic Instruction 1.71 0.69 −0.64 1.16 −2.76 −7.33
PromptSource 2.77 −2.18 25.03 3.70 −2.83 13.30
Ad hoc 1.87 −0.94 4.56 −1.11 −1.86 −4.95
Low Perplexity −2.35 −1.09 −8.24 1.85 −2.58 6.17
APE −3.13 −0.54 −4.85 −6.14 −0.51 5.39
RLPrompt 2.01 2.37 − −1.54 3.34 −
Variation Range 5.90 4.55 40.89 9.84 10.02 25.88

Few-shot accuracy (mean relative gain) ↑
Null Instruction 2.63 0.75 0.89 1.20 0.76 −0.57
Generic Instruction 3.09 −0.10 −0.15 0.80 −0.03 0.41
PromptSource −1.18 −0.58 −0.20 −0.28 −0.41 0.51
Ad hoc −0.55 −0.45 0.04 −0.65 −0.35 −0.47
Low Perplexity −2.57 −0.48 −0.30 −0.75 −0.35 0.26
APE −4.10 0.13 −0.28 −1.62 0.06 −0.13
RLPrompt 2.69 0.73 − 1.31 0.32 −
Variation Range 7.19 1.33 1.19 2.93 1.17 1.08

Table 6: Mean relative gain values for zero-shot and
few-shot accuracy computed separately over models
with < 6 and ≥ 6 billion parameters, and averaged by
task-type. We also tabulate the total range of variation
of these values in each setting.

“large" models with ≥ 6 billion parameters in Ta-
ble 6. For ease of comparison, we average the mean
relative gain values thus obtained by task-type. Al-
though the observations that PromptSource and
task-agnostic instructions tend to perform the best
across zero- and few-shot settings persist across
model scales, we find that the ranges of varia-
tion in the few-shot mean relative gain values for
large models are consistently smaller than those for
small models for every task-type. This suggests
that large models are able to grasp task semantics
from demonstrations (when provided) while small
models are more sensitive to the instruction used.

We also tabulate the mean relative gain values
for zero-shot and few-shot accuracies computed
separately for each model family in Table 7, to un-
derstand the effect that model family has on instruc-
tion performance. Although the trends we discuss
in Section 5.1 regarding task-agnostic instructions
and PromptSource instructions respectively tending
to dominate few-shot and zero-shot settings persist,
the instruction selection method that emerges the
best-performing alternative often changes on vary-
ing the choice of model family and task-type. For
instance, the automatic instruction induction meth-
ods APE and RLPrompt do show above-average
performance for certain model families and task-
types, but this behavior does not consistently ex-
tend to other families and types. This indicates a
lack of generalizability in these methods.

5.4 Discussion

Our findings reveal that in practical in-context
learning settings, simpler prompting methods, such
as task-agnostic or expert manually written instruc-
tions, often outperform automatically synthesized
ones at the model scales we consider. Task-agnostic
methods show strong performance in few-shot set-
tings, whereas expert manual instructions appear
crucial for achieving good zero-shot accuracy. The
superiority of these straightforward methods over
automatically induced instructions, which are often
not competitive even with simple baselines, sug-
gests a lack of transferability and generalizability
among automatic induction methods. The competi-
tive performance of automatic induction methods
like APE and RLPrompt as reported by their au-
thors implies either a limitation in their generaliz-
ability to a broader range of models and tasks, or
the need for substantial hyperparameter tuning to
get them to work well across models and tasks.

Our findings suggest that ICL practitioners may
often be better off forgoing computationally ex-
pensive instruction induction or selection methods
in favor of task-agnostic or manually written in-
structions, which seem to generalize better. Inter-
estingly, we also find that methods that excel for
one model and task do not necessarily also perform
well for other tasks and models. Consequently, ICL
practitioners may be forced to experiment with var-
ious instruction selection methods on a model- and
task-specific basis in a manner reminiscent of hy-
perparameter tuning to find the best choice.

On the other hand, since few-shot ICL perfor-
mance remains largely consistent regardless of the
choice of instruction, practitioners could perhaps
benefit from simply providing a few in-context
demonstrations when available. The fact that null
instructions tend to outperform all other methods
in our study in few-shot settings suggests that it
can be challenging to find instructions that reliably
inform diverse models about task semantics. When
models fail to grasp the semantics signaled by in-
structions, these may simply serve as a source of
noise, hence impairing ICL performance.

Our findings underscore a broader issue regard-
ing the inconsistent and often insufficient evalu-
ation of instruction selection and induction tech-
niques. We call for more comprehensive evalua-
tions in this space and encourage the use of our
evaluation suite to facilitate this process.

4343

BLOOM GPT Neo LLaMA OPT

Method CLS MCQ GQA # wins CLS MCQ GQA # wins CLS MCQ GQA # wins CLS MCQ GQA # wins

Zero-shot accuracy (mean relative gain) ↑
Null Instruction −1.40 3.60 −11.93 3 −1.80 1.34 −10.46 1 4.02 9.25 −9.73 3 −1.22 4.54 −22.07 4
Generic Instruction 5.03 −1.27 −0.72 1 −0.35 −0.20 −1.86 1 −2.73 −2.09 −13.25 0 1.33 −0.47 −3.47 0

PromptSource 2.03 −2.89 14.22 2 1.61 −0.69 35.75 2 10.01 −3.89 7.82 2 2.16 −2.70 18.70 4
Ad hoc 0.45 −1.15 2.93 0 2.23 0.56 0.08 2 −3.70 −2.94 −2.56 0 1.35 −2.23 −1.26 0

Low Perplexity −3.76 −2.19 3.94 1 −2.85 0.45 −20.87 1 4.97 −4.87 5.10 2 2.09 −1.50 4.32 1
APE −6.10 0.75 −8.44 0 0.14 −2.00 −2.87 1 −7.01 −0.09 12.62 2 −5.18 −0.92 3.78 0
RLPrompt 3.76 3.15 − 2 1.02 0.54 − 1 −5.57 4.64 − 0 −0.53 3.28 − 0

Few-shot accuracy (mean relative gain) ↑
Null Instruction 3.04 1.11 0.85 4 1.31 0.33 −0.11 2 1.40 0.79 −0.35 4 1.67 0.70 0.11 1
Generic Instruction 3.64 −0.24 −0.44 2 1.27 0.31 0.04 2 0.24 −0.11 0.23 2 1.89 −0.17 0.64 3

PromptSource −1.21 −0.83 0.19 1 −0.44 −0.17 −0.08 2 −0.30 −0.65 0.18 0 −0.79 −0.34 0.20 1
Ad hoc −0.35 −0.57 0.41 1 −1.02 −0.12 −0.59 0 −1.26 −0.62 0.31 0 −0.20 −0.33 −0.77 0

Low Perplexity −3.00 −0.58 −0.23 0 −1.04 −0.15 −0.15 0 −0.94 −0.59 0.25 1 −1.37 −0.38 0.07 1
APE −5.26 0.29 −0.78 0 −1.14 −0.29 0.85 2 0.29 0.38 −0.62 1 −3.64 0.05 −0.24 0
RLPrompt 3.14 0.82 − 1 1.06 0.10 − 1 0.57 0.80 − 1 2.45 0.47 − 3

Table 7: Mean relative gain values for zero-shot accuracy and few-shot accuracy computed separately over individual
model families and averaged by task-type. Positive values represent above-average performance, and negative
values represent below-average performance. We also tabulate the number of tasks where a method achieved highest
aggregated performance in the ‘# wins’ column under every model family.

6 Conclusion

We conduct the broadest attempt to our knowledge,
to systematically study the generalizability of popu-
lar instruction selection and induction methods for
ICL in LLMs. We find that simpler approaches
such as using task-agnostic instructions, expert
manual instructions, or even omitting instructions
entirely tend to show good performance more con-
sistently when evaluating across a wide variety of
tasks and models. Our work indicates the need
for more systematic and consistent evaluations in
the instruction induction space. To facilitate such
analyses, we release the InstructEval suite which
provides coverage over 13 diverse autoregressive
LLMs and 9 tasks spanning classification, multiple-
choice QA, and generative QA.

7 Limitations

For consistency, we conduct all our experiments
using prompts that begin with an instruction, are
followed by demonstrations, and end with an unan-
notated test example (as illustrated in Figure 2).
We also use 6 demonstrations in all the evaluations
we perform in the few-shot setting. We do not as-
sess the effect of varying the prompt format or the
number of demonstrations used since the choices
we experiment using are not atypical in practical
ICL settings. However, explorations into the ef-
fect of varying the prompt format and number of
demonstrations are supported by our evaluation
framework and we leave these to future work.

Our work seeks to assess the effect of instruc-

tion choice in models that can reasonably run on
consumer hardware. Hence, we do not include any
models of size >20B parameters in our evaluation
suite. As a consequence, our findings may not carry
over to much larger models.

8 Broader Impact

We perform experiments and release an evalua-
tion suite to systematically assess the effect of in-
struction choice on ICL performance. Our suite
can aid in understanding and decreasing the risk
of miscommunication between users and LLMs,
and help assess and mitigate the risk of biases that
may emerge from various prompting methods. Our
work assesses the transferability of various instruc-
tion selection methods and allows for increased
transparency and reduced statistical bias during
their assessment. A better understanding of how
LLMs respond to prompts can potentially help iden-
tify and prevent undesirable effects while promot-
ing desirable ones. However, it may also be pos-
sible for bad actors to use such evaluations to find
ways to systematically promote harmful effects.

Acknowledgements

We acknowledge support from the National Sci-
ence Foundation under Grant No. 2239363. Any
opinions, findings, conclusions, or recommenda-
tions expressed in this material are those of the
authors and do not necessarily reflect the views of
the National Science Foundation.

4344

References
Sweta Agrawal, Chunting Zhou, Mike Lewis, Luke

Zettlemoyer, and Marjan Ghazvininejad. 2022. In-
context examples selection for machine translation.

Stephen H. Bach, Victor Sanh, Zheng-Xin Yong, Albert
Webson, Colin Raffel, Nihal V. Nayak, Abheesht
Sharma, Taewoon Kim, M Saiful Bari, Thibault
Fevry, Zaid Alyafeai, Manan Dey, Andrea San-
tilli, Zhiqing Sun, Srulik Ben-David, Canwen Xu,
Gunjan Chhablani, Han Wang, Jason Alan Fries,
Maged S. Al-shaibani, Shanya Sharma, Urmish
Thakker, Khalid Almubarak, Xiangru Tang, Xian-
gru Tang, Mike Tian-Jian Jiang, and Alexander M.
Rush. 2022. Promptsource: An integrated develop-
ment environment and repository for natural language
prompts.

Sid Black, Stella Biderman, Eric Hallahan, Quentin An-
thony, Leo Gao, Laurence Golding, Horace He, Con-
nor Leahy, Kyle McDonell, Jason Phang, Michael
Pieler, USVSN Sai Prashanth, Shivanshu Purohit,
Laria Reynolds, Jonathan Tow, Ben Wang, and
Samuel Weinbach. 2022. Gpt-neox-20b: An open-
source autoregressive language model.

Sid Black, Gao Leo, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow. If you use this software, please cite it
using these metadata.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Yanda Chen, Chen Zhao, Zhou Yu, Kathleen McKeown,
and He He. 2023. On the relation between sensitivity
and accuracy in in-context learning.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In NAACL.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yi-
han Wang, Han Guo, Tianmin Shu, Meng Song,
Eric Xing, and Zhiting Hu. 2022. RLPrompt: Op-
timizing discrete text prompts with reinforcement
learning. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 3369–3391, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Hila Gonen, Srini Iyer, Terra Blevins, Noah A. Smith,
and Luke Zettlemoyer. 2022. Demystifying prompts
in language models via perplexity estimation.

Tanya Goyal, Junyi Jessy Li, and Greg Durrett. 2023.
News summarization and evaluation in the era of
gpt-3.

Or Honovich, Uri Shaham, Samuel R Bowman, and
Omer Levy. 2022. Instruction induction: From
few examples to natural language task descriptions.
arXiv preprint arXiv:2205.10782.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and
Yejin Choi. 2019. Cosmos QA: Machine reading
comprehension with contextual commonsense rea-
soning. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 2391–2401, Hong Kong, China. Association
for Computational Linguistics.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. triviaqa: A Large Scale Distantly
Supervised Challenge Dataset for Reading Compre-
hension. arXiv e-prints, page arXiv:1705.03551.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Nat-
ural questions: A benchmark for question answer-
ing research. Transactions of the Association for
Computational Linguistics, 7:453–466.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Cosgrove, Christopher D. Man-
ning, Christopher Ré, Diana Acosta-Navas, Drew A.
Hudson, Eric Zelikman, Esin Durmus, Faisal Lad-
hak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue
Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng,
Mert Yuksekgonul, Mirac Suzgun, Nathan Kim,
Neel Guha, Niladri Chatterji, Omar Khattab, Peter
Henderson, Qian Huang, Ryan Chi, Sang Michael
Xie, Shibani Santurkar, Surya Ganguli, Tatsunori
Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav
Chaudhary, William Wang, Xuechen Li, Yifan Mai,
Yuhui Zhang, and Yuta Koreeda. 2022. Holistic eval-
uation of language models.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021a. What
makes good in-context examples for gpt-3? In
Workshop on Knowledge Extraction and Integration
for Deep Learning Architectures; Deep Learning
Inside Out.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021b. What
makes good in-context examples for gpt-3?

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2021a. Fantastically or-
dered prompts and where to find them: Overcom-
ing few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786.

4345

http://arxiv.org/abs/2212.02437
http://arxiv.org/abs/2212.02437
http://arxiv.org/abs/2202.01279
http://arxiv.org/abs/2202.01279
http://arxiv.org/abs/2202.01279
http://arxiv.org/abs/2204.06745
http://arxiv.org/abs/2204.06745
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
http://arxiv.org/abs/2209.07661
http://arxiv.org/abs/2209.07661
https://aclanthology.org/2022.emnlp-main.222
https://aclanthology.org/2022.emnlp-main.222
https://aclanthology.org/2022.emnlp-main.222
http://arxiv.org/abs/2212.04037
http://arxiv.org/abs/2212.04037
http://arxiv.org/abs/2209.12356
http://arxiv.org/abs/2209.12356
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.18653/v1/D19-1243
http://arxiv.org/abs/1705.03551
http://arxiv.org/abs/1705.03551
http://arxiv.org/abs/1705.03551
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
http://arxiv.org/abs/2211.09110
http://arxiv.org/abs/2211.09110
http://arxiv.org/abs/2101.06804
http://arxiv.org/abs/2101.06804

Yao Lu, Max Bartolo, Alastair Moore, Sebastian
Riedel, and Pontus Stenetorp. 2021b. Fantastically
ordered prompts and where to find them: Over-
coming few-shot prompt order sensitivity. CoRR,
abs/2104.08786.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3470–3487, Dublin, Ireland.
Association for Computational Linguistics.

Saif Mohammad, Felipe Bravo-Marquez, Mohammad
Salameh, and Svetlana Kiritchenko. 2018. Semeval-
2018 task 1: Affect in tweets. In Proceedings of the
12th international workshop on semantic evaluation,
pages 1–17.

Yixin Nie, Adina Williams, Emily Dinan, Mohit
Bansal, Jason Weston, and Douwe Kiela. 2020.
Adversarial nli: A new benchmark for natu-
ral language understanding. In Proceedings of
the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Jane Pan, Tianyu Gao, Howard Chen, and Danqi Chen.
2023. What in-context learning"learns"in-context:
Disentangling task recognition and task learning.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho.
2021. True few-shot learning with language mod-
els. In Advances in Neural Information Processing
Systems.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2655–2671.

Teven Le Scao, Angela Fan, Christopher Akiki,
Elizabeth-Jane Pavlick, Suzana Ili’c, Daniel Hesslow,

Roman Castagn’e, Alexandra Sasha Luccioni, Franc-
cois Yvon, Matthias Gallé, Jonathan Tow, Alexan-
der M. Rush, Stella Rose Biderman, Albert Web-
son, Pawan Sasanka Ammanamanchi, Thomas Wang,
Benoît Sagot, Niklas Muennighoff, Albert Villanova
del Moral, Olatunji Ruwase, Rachel Bawden, Stas
Bekman, et al. 2022a. Bloom: A 176b-parameter
open-access multilingual language model. ArXiv,
abs/2211.05100.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, Jonathan Tow, Alexander M. Rush,
Stella Biderman, Albert Webson, Pawan Sasanka Am-
manamanchi, Thomas Wang, Benoît Sagot, Niklas
Muennighoff, Albert Villanova del Moral, Olatunji
Ruwase, Rachel Bawden, Stas Bekman, Angelina
McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile
Saulnier, Samson Tan, Pedro Ortiz Suarez, Vic-
tor Sanh, Hugo Laurençon, Yacine Jernite, Julien
Launay, Margaret Mitchell, Colin Raffel, Aaron
Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri
Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg
Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue,
Christopher Klamm, Colin Leong, Daniel van Strien,
David Ifeoluwa Adelani, Dragomir Radev, Ed-
uardo González Ponferrada, Efrat Levkovizh, Ethan
Kim, Eyal Bar Natan, Francesco De Toni, Gérard
Dupont, Germán Kruszewski, Giada Pistilli, Hady
Elsahar, Hamza Benyamina, Hieu Tran, Ian Yu, Idris
Abdulmumin, Isaac Johnson, Itziar Gonzalez-Dios,
Javier de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu,
Jonathan Chang, Jörg Frohberg, Joseph Tobing, Joy-
deep Bhattacharjee, Khalid Almubarak, Kimbo Chen,
Kyle Lo, Leandro Von Werra, Leon Weber, Long
Phan, Loubna Ben allal, Ludovic Tanguy, Manan
Dey, Manuel Romero Muñoz, Maraim Masoud,
María Grandury, Mario Šaško, Max Huang, Max-
imin Coavoux, Mayank Singh, Mike Tian-Jian Jiang,
Minh Chien Vu, Mohammad A. Jauhar, Mustafa
Ghaleb, Nishant Subramani, Nora Kassner, Nuru-
laqilla Khamis, Olivier Nguyen, Omar Espejel, Ona
de Gibert, Paulo Villegas, Peter Henderson, Pierre
Colombo, Priscilla Amuok, Quentin Lhoest, Rheza
Harliman, Rishi Bommasani, Roberto Luis López,
Rui Ribeiro, Salomey Osei, Sampo Pyysalo, Se-
bastian Nagel, Shamik Bose, Shamsuddeen Hassan
Muhammad, Shanya Sharma, Shayne Longpre, So-
maieh Nikpoor, Stanislav Silberberg, Suhas Pai, Syd-
ney Zink, Tiago Timponi Torrent, Timo Schick, Tris-
tan Thrush, Valentin Danchev, Vassilina Nikoulina,
Veronika Laippala, Violette Lepercq, Vrinda Prabhu,
Zaid Alyafeai, Zeerak Talat, Arun Raja, Benjamin
Heinzerling, Chenglei Si, Elizabeth Salesky, Sab-
rina J. Mielke, Wilson Y. Lee, Abheesht Sharma, An-
drea Santilli, Antoine Chaffin, Arnaud Stiegler, Deba-
jyoti Datta, Eliza Szczechla, Gunjan Chhablani, Han
Wang, Harshit Pandey, Hendrik Strobelt, Jason Alan
Fries, Jos Rozen, Leo Gao, Lintang Sutawika, M Sai-
ful Bari, Maged S. Al-shaibani, Matteo Manica, Ni-
hal Nayak, Ryan Teehan, Samuel Albanie, Sheng
Shen, Srulik Ben-David, Stephen H. Bach, Taewoon
Kim, Tali Bers, Thibault Fevry, Trishala Neeraj, Ur-

4346

http://arxiv.org/abs/2104.08786
http://arxiv.org/abs/2104.08786
http://arxiv.org/abs/2104.08786
http://www.aclweb.org/anthology/P11-1015
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
https://openreview.net/forum?id=ShnM-rRh4T
https://openreview.net/forum?id=ShnM-rRh4T

mish Thakker, Vikas Raunak, Xiangru Tang, Zheng-
Xin Yong, Zhiqing Sun, Shaked Brody, Yallow Uri,
Hadar Tojarieh, Adam Roberts, Hyung Won Chung,
Jaesung Tae, Jason Phang, Ofir Press, Conglong Li,
Deepak Narayanan, Hatim Bourfoune, Jared Casper,
Jeff Rasley, Max Ryabinin, Mayank Mishra, Minjia
Zhang, Mohammad Shoeybi, Myriam Peyrounette,
Nicolas Patry, Nouamane Tazi, Omar Sanseviero,
Patrick von Platen, Pierre Cornette, Pierre François
Lavallée, Rémi Lacroix, Samyam Rajbhandari, San-
chit Gandhi, Shaden Smith, Stéphane Requena, Suraj
Patil, Tim Dettmers, Ahmed Baruwa, Amanpreet
Singh, Anastasia Cheveleva, Anne-Laure Ligozat,
Arjun Subramonian, Aurélie Névéol, Charles Lover-
ing, Dan Garrette, Deepak Tunuguntla, Ehud Reiter,
Ekaterina Taktasheva, Ekaterina Voloshina, Eli Bog-
danov, Genta Indra Winata, Hailey Schoelkopf, Jan-
Christoph Kalo, Jekaterina Novikova, Jessica Zosa
Forde, Jordan Clive, Jungo Kasai, Ken Kawamura,
Liam Hazan, Marine Carpuat, Miruna Clinciu, Na-
joung Kim, Newton Cheng, Oleg Serikov, Omer
Antverg, Oskar van der Wal, Rui Zhang, Ruochen
Zhang, Sebastian Gehrmann, Shani Pais, Tatiana
Shavrina, Thomas Scialom, Tian Yun, Tomasz Lim-
isiewicz, Verena Rieser, Vitaly Protasov, Vladislav
Mikhailov, Yada Pruksachatkun, Yonatan Belinkov,
Zachary Bamberger, Zdeněk Kasner, Alice Rueda,
Amanda Pestana, Amir Feizpour, Ammar Khan, Amy
Faranak, Ana Santos, Anthony Hevia, Antigona Unl-
dreaj, Arash Aghagol, Arezoo Abdollahi, Aycha Tam-
mour, Azadeh HajiHosseini, Bahareh Behroozi, Ben-
jamin Ajibade, Bharat Saxena, Carlos Muñoz Ferran-
dis, Danish Contractor, David Lansky, Davis David,
Douwe Kiela, Duong A. Nguyen, Edward Tan, Emi
Baylor, Ezinwanne Ozoani, Fatima Mirza, Frankline
Ononiwu, Habib Rezanejad, Hessie Jones, Indrani
Bhattacharya, Irene Solaiman, Irina Sedenko, Isar
Nejadgholi, Jesse Passmore, Josh Seltzer, Julio Bo-
nis Sanz, Karen Fort, Livia Dutra, Mairon Sama-
gaio, Maraim Elbadri, Margot Mieskes, Marissa Ger-
chick, Martha Akinlolu, Michael McKenna, Mike
Qiu, Muhammed Ghauri, Mykola Burynok, Nafis
Abrar, Nazneen Rajani, Nour Elkott, Nour Fahmy,
Olanrewaju Samuel, Ran An, Rasmus Kromann,
Ryan Hao, Samira Alizadeh, Sarmad Shubber, Silas
Wang, Sourav Roy, Sylvain Viguier, Thanh Le, Tobi
Oyebade, Trieu Le, Yoyo Yang, Zach Nguyen, Ab-
hinav Ramesh Kashyap, Alfredo Palasciano, Al-
ison Callahan, Anima Shukla, Antonio Miranda-
Escalada, Ayush Singh, Benjamin Beilharz, Bo Wang,
Caio Brito, Chenxi Zhou, Chirag Jain, Chuxin
Xu, Clémentine Fourrier, Daniel León Periñán,
Daniel Molano, Dian Yu, Enrique Manjavacas, Fabio
Barth, Florian Fuhrimann, Gabriel Altay, Giyased-
din Bayrak, Gully Burns, Helena U. Vrabec, Imane
Bello, Ishani Dash, Jihyun Kang, John Giorgi, Jonas
Golde, Jose David Posada, Karthik Rangasai Sivara-
man, Lokesh Bulchandani, Lu Liu, Luisa Shinzato,
Madeleine Hahn de Bykhovetz, Maiko Takeuchi,
Marc Pàmies, Maria A Castillo, Marianna Nezhurina,
Mario Sänger, Matthias Samwald, Michael Cullan,
Michael Weinberg, Michiel De Wolf, Mina Mihalj-
cic, Minna Liu, Moritz Freidank, Myungsun Kang,

Natasha Seelam, Nathan Dahlberg, Nicholas Michio
Broad, Nikolaus Muellner, Pascale Fung, Patrick
Haller, Ramya Chandrasekhar, Renata Eisenberg,
Robert Martin, Rodrigo Canalli, Rosaline Su, Ruisi
Su, Samuel Cahyawijaya, Samuele Garda, Shlok S
Deshmukh, Shubhanshu Mishra, Sid Kiblawi, Si-
mon Ott, Sinee Sang-aroonsiri, Srishti Kumar, Ste-
fan Schweter, Sushil Bharati, Tanmay Laud, Théo
Gigant, Tomoya Kainuma, Wojciech Kusa, Yanis
Labrak, Yash Shailesh Bajaj, Yash Venkatraman, Yi-
fan Xu, Yingxin Xu, Yu Xu, Zhe Tan, Zhongli Xie, Zi-
fan Ye, Mathilde Bras, Younes Belkada, and Thomas
Wolf. 2022b. Bloom: A 176b-parameter open-access
multilingual language model.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta,
Adrià Garriga-Alonso, et al. 2022. Beyond the
imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint
arXiv:2206.04615.

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi,
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,
Luke Zettlemoyer, Noah A. Smith, and Tao Yu. 2022.
Selective annotation makes language models better
few-shot learners. ArXiv, abs/2209.01975.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Xinyi Wang, Wanrong Zhu, and William Yang Wang.
2023a. Large language models are implicitly topic
models: Explaining and finding good demonstrations
for in-context learning. ArXiv, abs/2301.11916.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023b. Self-consistency improves
chain of thought reasoning in language models.

Albert Webson and Ellie Pavlick. 2022. Do prompt-
based models really understand the meaning of their
prompts? In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2300–2344, Seattle, United
States. Association for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed H Chi, Quoc V Le, Denny Zhou,
et al. Chain-of-thought prompting elicits reasoning
in large language models. In Advances in Neural
Information Processing Systems.

Jerry W. Wei, Jason Wei, Yi Tay, Dustin Tran, Al-
bert Webson, Yifeng Lu, Xinyun Chen, Hanxiao
Liu, Da Huang, Denny Zhou, and Tengyu Ma. 2023.
Larger language models do in-context learning dif-
ferently. ArXiv, abs/2303.03846.

4347

https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167

Benfeng Xu, Quan Wang, Zhendong Mao, Yajuan Lyu,
Qiaoqiao She, and Yongdong Zhang. 2023. knn
prompting: Beyond-context learning with calibration-
free nearest neighbor inference.

Sohee Yang, Jonghyeon Kim, Joel Jang, Seonghyeon
Ye, Hyunji Lee, and Minjoon Seo. 2023. Improving
probability-based prompt selection through unified
evaluation and analysis.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022a. Opt: Open
pre-trained transformer language models. ArXiv,
abs/2205.01068.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022b. Opt: Open
pre-trained transformer language models.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In NIPS.

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2022. Large language models are human-level
prompt engineers.

A Implementation details

A.1 Evaluation

We ameliorate the effect of statistical noise
by rerunning each instruction selection/induction
method we study using 5 random seeds indepen-
dently for every task (and for every model, where
applicable) and report results for each instruction
selection/induction method by averaging the aggre-
gated scores associated with all 5 instructions.

We use K = 6 demonstrations randomly sam-
pled from the task’s training set for every experi-
ment we perform in the few-shot setting.

To maintain consistency, we perform all our ex-
periments using fixed task-specific prompt tem-
plates. Each prompt begins with the instruction
being tested, and continues into a sequence anno-
tated demonstrations and a test example, each of
which follow the templates listed in Table 8.

A.2 Instruction selection methods

PromptSource We sample and evaluate a ran-
dom subset of instructions from those included in
the public PromptSource repository for each task
in our evaluation suite.

Ad hoc We obtain the set of ad hoc instructions
we evaluate for a task by tasking ChatGPT with
generating 40 paraphrases of instructions for the
task that we obtain from PromptSource. We then
select a random sample of instructions from this
40-instruction pool and perform evaluations using
each sampled instruction.

Low Perplexity For each task, we rerank a pool
of ChatGPT paraphrases of PromptSource instruc-
tions using the SPELL algorithm described by (Go-
nen et al., 2022). When prompting a specific model,
we choose the instruction with the lowest perplexity
as measured by that model.

APE We use the official repository released by
(Zhou et al., 2022) to generate instructions for each
of the tasks we consider. To remain consistent
with the original methodology, we use the OpenAI
DaVinci to induce and evaluate instructions dur-
ing the induction phase. We opt to use the simpler
version of the methodology proposed by the au-
thors since they report that the computationally in-
tensive Monte-Carlo search strategy only provides
marginal improvements in accuracy.

RLPrompt We use the public repository released
by Deng et al. (2022) to induce instructions for the
RLPrompt baseline in our evaluations. Although
the original work only performs evaluations over
classification datasets with a fixed label-space, we
augment the codebase to allow instruction induc-
tion for MCQ tasks as well by formulating these
as cloze-style completion tasks. We create instruc-
tions for all tasks using the default settings of hy-
perparameters included with the codebase.

4348

http://arxiv.org/abs/2303.13824
http://arxiv.org/abs/2303.13824
http://arxiv.org/abs/2303.13824
http://arxiv.org/abs/2305.14877
http://arxiv.org/abs/2305.14877
http://arxiv.org/abs/2305.14877
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2102.09690
http://arxiv.org/abs/2102.09690
http://arxiv.org/abs/2211.01910
http://arxiv.org/abs/2211.01910

Tasks Demonstration template

AG News (Zhang et al., 2015) News: (text)\nCategory: (label)
ANLI (Nie et al., 2020) Premise: (premise)\nHypothetisis: (hypothesis)\nRelation: (label)
BoolQ (Clark et al., 2019) Passage: (passage)\nQuestion: (question) \nAnswer: (label)
IMDB (Maas et al., 2011) Review: (text)\nSentiment: (label)
TweetEval Emotion (Mohammad et al., 2018) Tweet: (text)\nEmotion: (label)

CosmosQA (Huang et al., 2019) Passage: (context)\nQuestion: (question)\nAnswer: (answer)
HellaSwag (Zellers et al., 2019) Sentence: (ctx)\nAnswer: (answer)

NQ-Open (Kwiatkowski et al., 2019) Question: (question)\nAnswer: (answer)
TriviaQA (Joshi et al., 2017) Question: (question)\nAnswer: (answer)

Table 8: Tasks included in our evaluation suite, and the demonstrations templates we use for each task.

Method Example instruction
Null instruction (empty string)
Generic instruction Solve the following task:

PromptSource (Bach et al., 2022) What label best describes this news article?
Ad hoc Which newspaper section is most likely to feature this news article?

Low Perplexity (Gonen et al., 2022) Which part of a newspaper do you think this article belongs to? World News,
Sports, Business or Science and Technology?

APE (Zhou et al., 2022) classify each input into one of the following categories: World, U.S.,
Business, Sci/Tech, or Sports.

RLPrompt (Deng et al., 2022) Tools undergradCam firmwareCam

Table 9: Example instructions obtained using each method for the AG News task

Generic Instructions

Solve the following task:
Find the answer below:
Complete the problem.

Find the best solution to the question below:
Complete the question below:

Table 10: Sample generic instructions

Task-agnostic We completely omit instructions
from the prompt when evaluating null instructions.
We list the set of generic instructions we evaluate
in Table 10.

We include examples of the instructions we ob-
tain for each method in Table 9.

B Drawbacks of aggregation techniques
used in previous work

Some previous works like the HELM (Liang et al.,
2022) benchmark also face similar challenges when
attempting to compare high-dimensional vectors
– each representing a model evaluated over a vari-
ety of tasks – against each other. HELM resorts
to scoring models using head-to-head win rates.
The win rate associated with a model indicates the
fraction of head-to-head comparisons between the
given model and all other models, across all scenar-
ios, where the given model performs better along
a specific metric. A notable disadvantage of this
scoring technique is that it obscures the magnitude

of variation in the metric associated with each test
model and only conveys ordinal information about
the relative performances of each model. This char-
acteristic of head-to-head win rates makes them
unsuitable for spotting broad trends across families
of prompting methods.

In other works like BIG-bench (Srivastava et al.,
2022), raw metric scores representing task perfor-
mance are normalized to vary from a range of 0-100
such that a normalized score of 0 corresponds to
poor performance, while a normalized score of 100
corresponds to excellent performance on the task.
This is done in an attempt to be able to compare the
performance of a model across a variety of tasks
of varying difficulty such that the normalization
proves more forgiving on difficult tasks. While
this score does capture cardinal information asso-
ciated with the underlying variable, it relies on
the knowledge of human experts to determine raw
score thresholds that constitute poor or excellent
performance along a given metric. To apply such a
normalization scheme in our case, one would need
access to a large array of such threshold scores
corresponding to each model scale, task, and met-
ric we consider. Obtaining such threshold scores
across all our settings is challenging given the num-
ber of tests we perform and the variety of metrics
we consider. Hence, this type of normalization
proves infeasible in our case.

4349

C Full results

We make our entire array of unaggregated
evalutation results available along with the
InstructEval codebase at https://github.
com/princeton-nlp/InstructEval.

4350

https://github.com/princeton-nlp/InstructEval
https://github.com/princeton-nlp/InstructEval

