
Findings of the Association for Computational Linguistics: NAACL 2024, pages 4414–4428
June 16-21, 2024 ©2024 Association for Computational Linguistics

Targeted Augmentation for Low-Resource Event Extraction

Sijia Wang, Lifu Huang
Virginia Tech

{sijiawang,lifuh}@vt.edu

Abstract
Addressing the challenge of low-resource infor-
mation extraction remains an ongoing issue due
to the inherent information scarcity within lim-
ited training examples. Existing data augmen-
tation methods, considered potential solutions,
struggle to strike a balance between weak aug-
mentation (e.g., synonym augmentation) and
drastic augmentation (e.g., conditional genera-
tion without proper guidance). This paper intro-
duces a novel paradigm that employs targeted
augmentation and back validation to produce
augmented examples with enhanced diversity,
polarity, accuracy, and coherence. Extensive
experimental results demonstrate the effective-
ness of the proposed paradigm. Furthermore,
identified limitations are discussed, shedding
light on areas for future improvement1.

1 Introduction

Event extraction (EE) (Grishman, 1997; Chinchor
and Marsh, 1998; Ahn, 2006) is the task of iden-
tifying and categorizing event mentions in natural
language text. While supervised methods deliver
impressive performance, they depend heavily on
extensive manual annotations (Chen et al., 2020;
Du and Cardie, 2020; Lin et al., 2020; Liu et al.,
2020; Li et al., 2020a; Lyu et al., 2021). Gener-
alizing these approaches to low-resource learning
setting poses challenges (Pasupat and Liang, 2014;
Huang et al., 2016; Huang and Ji, 2020; Lai et al.,
2020b; Shen et al., 2021b; Lyu et al., 2021; Zhang
et al., 2021b; Wang et al., 2023b).

Data augmentation is one direction for efficiently
addressing the low-resource event extraction prob-
lem. However, it’s remained unexplored what
data augmentation strategies are the best for low-
resource event extraction given its unique chal-
lenges. Previous studies show that weak augmen-
tations, such as synonym augmentation (Wei and

1The source code, model checkpoints, and data are
publicly available at https://github.com/VT-NLP/
TALOR-EE.

Zou, 2019) or through back translation (Edunov
et al., 2018), contribute minimally to distribution
enrichment, while drastic augmentations can lead-
ing to misguided acquisitions (Cao et al., 2015; Gao
et al., 2022). Drastic augmentations usually under-
mine existing event structure, resulting in gram-
matical incorrectness, structure misalignment, or
semantic drifting (Wang et al., 2023a).

In this work, we explore several dimensions
for data augmentation, including diversity, polar-
ity, accuracy, and coherence. Our focus revolves
around enhancing diversity in the context of tar-
geted augmentation for low-resource event extrac-
tion (TALOR-EE). This involves enriching event
structures with entities drawn from a targeted sub-
set (Gao et al., 2022). Simultaneously, we address
the issue of polarity by not only generating posi-
tive event mentions based on actual occurrences but
also incorporating negative event mentions, e.g., hy-
pothetical event mentions (Linguistic Data Consor-
tium, 2005). This approach is particularly valuable
for overcoming limitations in generative event ex-
traction models (Hsu et al., 2022; Liu et al., 2022).
To ensure both accuracy and coherence in our gen-
erated content, we introduce a back-and-forth vali-
dation module BACK-VALIDATION. The rationale
behind this module is that an accurate generation
should align with the given event structure, while
coherent generation should seamlessly integrate
with the same structure.

Our research encompasses a series of compre-
hensive experiments conducted across various low-
resource learning scenarios, including zero-shot
and few-shot learning settings. These experiments
span different event extraction models. The out-
comes of these experiments consistently highlight
the effectiveness of targeted augmentation in low-
resource event extraction. Notably, among all the
dimensions investigated, diversity emerges as the
most crucial factor. Additionally, we meticulously
scrutinize the quality of the generated sentences,
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Back-Validation

now it 's up to the appeals court and the board of pardon
and paroles to officially clear their names.

The court cleared Paul Laxalt, as advised by the board of pardon and paroles.
The court refused to clear Paul Laxalt in 1988, as advised by the board of pardon and paroles.
The court would clear Paul Laxalt if he behaved well in the past two years, as advised by
the board of pardon and paroles.
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Figure 1: TALOR-EE framework overview.

shedding light on the limitations inherent in the
proposed framework.

The contributions of this work are as follows:

• We explore the application of data augmenta-
tion techniques for low-resource event extrac-
tion.

• We develop a novel augmentation method
that incorporates enriched event structures and
contextual entities, retrieved from external cor-
pus. The generated examples are validated
through a back-validation module, ensuring
accuracy and coherence.

• Comprehensive experiments are conducted
to assess the effectiveness of the proposed
paradigm across various models and datasets.

2 Related Work

Low-resource Event Extraction Although some
studies have employed meta-learning (Kang et al.,
2019; Li et al., 2021; Xiao and Marlet, 2020; Yan
et al., 2019; Chowdhury et al., 2021), or metric
learning (Sun et al., 2021; Wang et al., 2020a;
Zhang et al., 2021a; Agarwal et al., 2021) to align
candidate event semantics with a few examples of
novel event types for few-shot event detection, their
performance is inherently constrained by the lim-
ited examples provided (Lai et al., 2020a; Deng
et al., 2020; Lai et al., 2020b; Cong et al., 2021;
Chen et al., 2021; Shen et al., 2021b). Recent stud-
ies (Wei et al., 2023; Han et al., 2023; Li et al.,

2023) have explored in-context learning by provid-
ing task instructions and a handful of in-context
examples. Nevertheless, their experimental find-
ings reveal a notable performance gap between
in-context learning and approaches based on fine-
tuning.

Data Augmentation creates synthetic data from
the existing data. Traditional data augmentation ap-
proaches focus on expanding lexical diversity (Wei
and Zou, 2019; Feng et al., 2020; Ng et al., 2020)
or syntax variation (Kim et al., 2022; Loem et al.,
2022; Hussein et al., 2022; Wang et al., 2023a).
Post selection (Yang et al., 2020) or representative
selection (Edwards et al., 2021) helps to prevent a
waste of resources and time in generating new doc-
uments. Yet existing augmentation methods suffer
from gradual drift problem (Hu et al., 2021a,b).
The previous work (Ma et al., 2023) utilizes lan-
guage models for training data synthesis but lacks
assurance in the soundness and naturalness of event
structures due to the random combination of sam-
pled triggers and arguments. Additionally, it falls
short by primarily relying on the self-reflection
capability of language models, without fully lever-
aging annotations for existing event annotations.
Thus, in addition to the lexical and syntactical di-
versity, we leverage the large-scale pre-trained au-
toregressive models to generate contextually diver-
sified free texts.

Controlled Text Generation approaches (Ghosh
et al., 2021) generate text with specific constraint.
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Approaches that promote similarity (Guan et al.,
2021) or coherence (Shen et al., 2021a; Wang et al.,
2021a) towards the original sentences lack contex-
tual diversity and might produce over-confident
probability estimation (Wang et al., 2021a; Gowda
and May, 2020). Rule-based constraint generation
might generate meaningless tokens to meet con-
straints (Wang et al., 2021b), while template-based
constraint generation (Cao and Wang, 2021) is dif-
ficult to generalize to new domains without human
effort.

Learning with noisy labels Many works learn
with noisy labels by detecting corrupted instances,
e.g., (Han et al., 2018; Yu et al., 2019; Huang et al.,
2019; Yao et al., 2020; Wei et al., 2020; Jiang et al.,
2020; Zhang et al., 2021c), and their application to
low-resource learning setting (Wang et al., 2020b;
Li et al., 2020b; Cheng et al., 2021). However,
joint training of the sample selection module and
the target task model takes considerable iterations
to converge. Traditional data-centric methods (Zhu
et al., 2022) face limitations in low-resource set-
tings due to biased neighbor information. This
study demonstrates that training with relatively fair-
quality labels can be effective.

3 Model

3.1 Problem Formulation

Given a sentence, the Event Extraction (EE) task
aims to extract event mentions, represented by an
event trigger and a set of event arguments. For-
mally, given a sentence w = {w1, ..., wn}, and a
target event type ei, if there is an event occurrence
of ei in w, a EE system aims to extract an event trig-
ger t and its argument mentions a = {a1, ..., ag}.
In this work, we focus on zero-shot and few-shot
learning settings of EE. For few-shot EE (FSEE),
training data contains two parts: (1) A large-scale
data set Dbase = {(xi,yi)}Mi=1 that covers the
seen event types (named base types), where M de-
notes the number of base event types; (2) a smaller
data set Dnovel = {(xj ,yj)}N×K

j=1 that covers N
novel event types, with K examples each. Note
that the base and novel event types are disjoint
except for the Other class, indicating non-event
type. In zero-shot event extraction (ZSEE), the
training data set only contains a large-scale set
Dbase = {(xi,yi)}Mi=1 for the base event types.
The model f will be optimized on base event types
and evaluated on the novel types. Following previ-

ous work, we set N = 5, 10 and K = 0, 1, 5, 10 in
this work.

3.2 Targeted Augmentation [Diversity]

In contrast to previous data augmentation ap-
proaches (Wei and Zou, 2019; Feng et al., 2020;
Ng et al., 2020; Kim et al., 2022; Loem et al., 2022;
Hussein et al., 2022; Wang et al., 2023a), we have
improved upon the conventional conditional gen-
eration method by transitioning from random sam-
pling to a targeted selection strategy. The targeted
augmentation module serves as a mechanism to
ensure diversity. Theoretically, it can retrieve an
infinite number of entities from the external cor-
pus, seamlessly incorporating these entities into
the given event structure. Consequently, the mod-
ule can generate an infinite variety of new event
structures. Thus, the targeted augmentation pro-
vides a theoretical framework for sampling and
augmenting an extensive array of entities, particu-
larly beneficial when working with a limited set of
annotated event mentions.

Dependent Context Retrieval For a given event
structure, we retrieve context candidates from the
corpus that share tokens with the event structure. In
our experiments, we gathered sentences containing
the mention of the event trigger. To extract context
information from the sampled sentences, we uti-
lized the spaCy Named Entity Recognition (NER)
parser2 to identify entity mentions. Consequently,
the extracted entity mentions from each sampled
sentence serve as context candidates for the given
event structure. The context corpus employed in
this study is the NYT Annotated Corpus3.

Targeted Generation Given an event structure
ei = {ti, a1, ..., ap} and a sampled context candi-
date c = {c1, ..., cq}, a generator is leveraged to
generate a corresponding sentence. If the sampled
context entities could potentially serve as argument
roles in the original event structures, we employ an
add-or-replace strategy, to further tailor the event
structure. The feasibility of integrating an entity
into the event structure depends on its entity type. If
the argument role is vacant in the original structure,
and the entity type of the sampled entity aligns with
the argument role, we add the entity to the event

2https://spacy.io/usage/
linguistic-features

3https://catalog.ldc.upenn.edu/
LDC2008T19
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The court<Adjudicator> in Nevada<Place> clear
Paul Laxalt<Defendant>, as advised by the board
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Figure 2: Event mention accuracy verification module.

structure. If the argument role is already populated,
we substitute it with the sampled entity.

For example, given an annotation on the sen-
tence "now it ’s up to the appeals
court and the board of pardon and
paroles to officially clear their
names.", a Justice:Pardon event is represented
by the event structure {Trigger: clear, Adjudicator:
court, Adjudicator: board of pardon and paroles}.
A complete Justice:Pardon structure may also
include two argument roles, namely Defendant and
Place. From the sampled context entities [Paul
Laxalt, 1988, Nevada], Nevada is
added to the event structure as an Place role, and
Paul Laxalt is added as a Defendant role.
Note that "Nevada" is added because it is a GPE
entity and a GPE entity is one of the possible
entity types for a Place role. Similarly, Paul
Laxalt is added as a Defendant because it is a
PER entity. Here we present a generated sentence
with the enriched event structure: "The court
in Nevada clear Paul Laxalt, as
advised by the board of pardon
and paroles." The process is illustrated in
Figure 1.

3.3 Negative Augmentation [Polarity]

Polarity is maintained through the negative aug-
mentation design. This process generates not only
positive event mentions but also negative mentions,
including hypothetical mentions and believed event
mentions. For event extraction, we focus on identi-
fying event that occurs, and also negative mentions.
For example, in the sentence “John Hinkley de-
nied his attempt to assassinate Ronald Reagan.”,
a model, especially generative models, might over-
look this Conflict:Attack mention triggered by the
token assassinate, because this is not an actual
event that happens. More specifically, negative
event mentions include (1) explicit negative men-
tions: expressed with a negative word such as not
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Figure 3: Event mention coherence verification module.

or never, or a negative lexical context such deny,
refuse or disobey, (2) asserted mentions: including
hypothetical events, believed events, or promised
events, etc (Linguistic Data Consortium, 2005).

Thus in addition to augmenting high-quality
positive training examples, particular attention is
paid to augmenting negative training examples.
In this work, we write negative/asserted expres-
sion prompts to guide their generation. Prompts
and generated negative augmentation examples are
listed in Table 6 and Table 7 in Appendix B.

3.4 Back-Validation

Given noisy training examples, previous research
has utilized methods to detect and rectify corrupted
data during training (Han et al., 2018; Yu et al.,
2019; Huang et al., 2019; Yao et al., 2020; Wei
et al., 2020; Jiang et al., 2020; Zhang et al., 2021c),
but such approaches necessitate extensive training.
In our context, where the generated data is consid-
ered of reasonable quality, we propose the incorpo-
ration of a back-and-forth validation module. This
module aims to ensure the accuracy and coherence
of the generated content, thereby enhancing the
reliability of the augmented examples.

Event Mention Accuracy Verification [Accu-
racy] For each generated example, its accuracy
can be verified through an entailment verification
module. As shown in Figure 2, given the generated
sentence and its source event structure, we first tex-
tualize the event structure into a passage to express
the event structure, by a pre-defined template (Hsu
et al., 2022). Then the two texts will be passed
into an NLI entailment verification module. The
intuition is that, for a valid generation, it should
entail the template passage with the event structure.
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Event Mention Coherence Verification [Coher-
ence] In addition to ensuring generation accu-
racy, we aim for the generated sentence to exhibit
strong coherence with the provided event struc-
ture. Specifically, there should be no extraneous
or omitted arguments when compared to the given
event structure. The intuition is that if the gener-
ated sentence aligns coherently with the provided
event structure, a template passage incorporating
the event structure should entail the generated sen-
tence, and vice versa. A distinctive scenario arises
when the event structure is incomplete. In such
instances, we adapt the missing argument role in
the template with the expression "an unspecific [ar-
gument role]." Illustrated in Figure 3, if the Place
argument role is absent, we want to ensure that
the generated event mention does not introduce an
extraneous arbitrary Place argument role. Conse-
quently, we substitute "[Place]" with "[an unspe-
cific Place]." This modification ensures that the
generated sentence fails the forward-and-backward
entailment test in such scenarios.

3.5 Generative Event Extraction Model

DEGREE (Hsu et al., 2022) is a generative event
extraction model that conceptualizes event extrac-
tion as a conditional generation problem. Given
a sentence and a crafted prompt, DEGREE gener-
ates an output following a specified format. The
predictions for event triggers and argument roles
can be then parsed from the generated output us-
ing a deterministic algorithm. In contrast to earlier
classification-based models, the generation frame-
work offers a versatile approach to incorporate sup-
plementary information and guidance. Through the
creation of suitable prompts, DEGREE can better
capture the dependencies between entities and, con-
sequently diminish the requisite number of training
examples.

The EE template defines the anticipated output
format and is organized into two main parts. The
initial segment is referred to as the trigger template,
structured as “Event trigger is <Trigger>”, with
“<Trigger>” acting as a placeholder for event trig-
ger in the original passage. The subsequent section
is the argument template, and its composition varies
based on the specific event type. For instance, the
argument template for a Conflict:Attack event is
“some people or some organization in somewhere
was ordered by some adjudicator to pay a fine.”
Each underlined string, beginning with "some-,"

Algorithm 1 Robust Fine-tuning
Input: Base data set Dbase; few shot training set Dnovel;
synthesized training set Dgen.
Output: Model M , validator V

fine-tune V with back-validation data constructed from
Dtrain

pass Dgen into V , collect D′
gen that pass back-validation

for each epoch t do
Sample meta batch Dt

base from Dbase

Sample noisy batch Dt
gen from D′

gen

Update model M with Dt
train, Dnovel, and Dt

gen

Discard corrupted data by semantic distance to the cen-
ter instances
end for

Model Time/Sentence(s) Cost/Sentence($)

Vicuna-7B 2.7 0

LLaMA2-7B 8.7 0

GPT-3.5-turbo 2.4 ∼0.0035

Table 1: Augmentation cost per sentence.

serves as a placeholder corresponding to an argu-
ment role for a Justice:Fine event. For example,
"somewhere" corresponds to the Place where the
event occurs. Note that every event type has its own
argument template. Event extraction templates and
the construction details can be found in (Hsu et al.,
2022).

3.6 Robust Fine-tuning

Given the synthesized training samples Dgen that
augment Dtrain for fine-tuning a classification M .
The primary concern is the presence of label noise,
where some generated samples may inaccurately
align with their corresponding labels, potentially
degrading model performance when using standard
supervised learning. To address this challenge, we
employ a noise-robust training procedure to en-
hance stability. We first fine-tune the back-validator
V with the training data constructed from the base
dataset. For negative examples, we construct two
datasets: (1) sample unpaired event structures and
sentences within the corpus and (2) replace argu-
ment roles in the template with "an unspecific [ar-
gument role]". Then we validate the augmented
examples with the fine-tuned validator V , and val-
idated examples are then used for fine-tuning the
EE model M . Finally, we employ a random sample
selection on the base data set Dbase and the synthe-
sized training set Dgen, along with the entire few
shot training set Dnovel to update the EE model M .
The algorithm is shown in Algorithm 1.
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Method K-shot Common 5 Common 10

Tri-I Tri-C Arg-I Arg-C Tri-I Tri-C Arg-I Arg-C

Matching Baseline full 42.7 42.1 - - 46.3 46.3 - -
Lemmatization Baseline full 51.5 50.2 - - 56.0 56.0 - -
OneIE full 72.7 70.5 52.3 49.9 74.5 73.0 51.2 48.9
DEGREE full 68.4 66.0 51.9 48.7 72.0 69.8 52.5 49.2

BERT_QA

1-shot 10.0 1.4 1.3 1.3 8.2 1.6 1.1 1.1
5-shot 14.0 12.6 11.1 10.8 20.8 15.4 14.6 13.9

10-shot 37.8 11.3 22.9 22.1 32.0 27.8 19.5 18.6

OneIE

1-shot 4.2 4.2 1.5 1.5 4.1 2.7 2.0 2.0
5-shot 39.3 38.5 24.8 22.8 41.9 41.9 29.7 27.2

10-shot 54.8 53.3 36.0 34.9 61.5 57.8 41.4 39.2

DEGREE

0-shot 53.3 46.8 29.6 25.1 60.9 54.5 42.0 31.4
1-shot 60.1 53.3 38.8 31.6 61.2 60.9 41.1 34.7
5-shot 57.8 55.5 40.6 36.1 65.8 64.8 45.3 42.7

10-shot 63.8 61.2 46.0 42.0 72.1 68.8 52.5 48.4

TALOR-EE (Vicuna)

0-shot 66.1 62.3 38.7 32.9 71.6 68.7 40.7 35.9
1-shot 63.5 55.7 37.5 32.0 69.2 64.5 47.8 43.2
5-shot 67.0 65.2 46.6 43.1 72.7 70.0 50.1 44.9

10-shot 70.4 66.2 46.4 42.7 73.9 71.7 49.2 44.9

TALOR-EE (LLaMA)

0-shot 65.0 62.5 41.0 36.5 65.6 64.8 47.5 43.8
1-shot 66.5 61.0 42.3 34.4 71.5 66.7 45.4 42.4
5-shot 70.2 63.9 46.3 42.4 71.7 70.1 50.5 46.7

10-shot 70.0 67.6 46.2 43.3 70.5 70.2 51.2 49.5

TALOR-EE (GPT)

0shot 67.9 66.1 46.1 40.0 72.5 70.3 46.9 42.8
1-shot 68.5 64.8 42.1 35.6 72.5 68.1 46.5 42.8
5-shot 67.9 64.2 44.6 42.6 73.6 70.6 48.5 44.7

10-shot 70.2 67.4 43.0 41.4 74.2 70.5 48.3 47.7

Table 2: Low-resource EE results on ACE05-E. Bold represents the highest score for the current setting.

4 Experiments

We perform experiments on three public bench-
mark datasets, including ACE05-E (Automatic
Content Extraction)4 and ERE (Entity Relation
Event) (Song et al., 2015). To showcase the ef-
fectiveness of the proposed method under low re-
source settings, experiments are conducted under
Nway-Kshot learning setting, where N ∈ {5, 10},
and K ∈ {0, 1, 5, 10}.

Compared baselines We consider the following
baselines: (1) Matching baseline5, a proposed base-
line that makes trigger predictions by performing
string matching between the input passage and the
event keywords. (2) Lemmatization baseline, an-
other proposed baseline that performs string match-
ing on lemmatized input passage and the event
keywords. (3) BERT_QA(Du and Cardie, 2020),
(4) OneIE (Lin et al., 2020), (5) DEGREE (Hsu
et al., 2022) and (6) QueryExtract (Wang et al.,

4https://catalog.ldc.upenn.edu/
LDC2006T06

5(1) and (2) are baselines for event detection tasks, thus
only trigger detection results are reported.

2022). The implementation details can be found in
Appendix A.

Generation Agents Three generation agents
are experimented in this work, including
vicuna-7b-v1.3 (Vicuna), Llama-2-7b
(LLaMA), and gpt-3.5-turbo (GPT). For
each agent, we list the augmentation cost in Table
1, where two factors are listed including generation
time and cost per sentence.

4.1 Main results

The experimental results for low-resource Event
Extraction (EE) are presented in Table 2 and Fig-
ure 4 for ACE05-E, and Table 3 and Figure 5 for
ERE, respectively. From the experiment results,
several conclusions can be drawn: (1) With the aug-
mented examples, the performance of low-resource
EE generally exhibits improvement, evident in both
zero-shot learning and few-shot learning settings.
This improvement is consistent across different gen-
eration agents (Vicuna, LLaMA, and GPT) and
backbone EE models. Table 8 displays experimen-
tal results on ACE05-E with QueryExtract as the
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Figure 4: Experimental results on ACE05-E. (a-b) are visualizations for Common 5, and (c-d) for Common 10.

Method K-shot Common 5 Common 10

Tri-I Tri-C Arg-I Arg-C Tri-I Tri-C Arg-I Arg-C

DEGREE full 54.7 53.1 45.4 44.7 58.8 58.2 51.3 50.8

DEGREE

0-shot 32.2 26.8 16.1 15.5 47.7 45.4 28.7 28.0
1-shot 34.4 33.8 28.0 26.2 39.4 39.4 30.7 29.9
5-shot 44.8 39.2 28.9 28.7 56.3 55.5 44.5 42.7
10-shot 48.4 45.8 39.3 38.8 59.3 57.8 48.4 47.8

TALOR-EE (Vicuna)

0-shot 41.9 40.2 31.0 28.9 50.6 49.0 37.9 36.6
1-shot 48.5 38.7 31.3 30.4 47.8 41.6 35.9 34.8
5-shot 45.8 43.0 35.8 33.4 56.2 53.7 42.5 41.0
10-shot 55.7 52.0 40.6 37.6 58.2 56.7 47.8 44.9

TALOR-EE (LLaMA)

0-shot 40.8 34.7 26.2 23.8 51.6 45.4 37.8 36.4
1-shot 47.4 39.1 33.4 33.2 47.3 44.4 46.2 44.6
5-shot 48.9 44.5 37.7 34.8 55.3 54.6 48.5 47.8
10-shot 58.1 55.7 45.5 42.5 58.2 57.5 52.2 48.4

TALOR-EE (GPT)

0-shot 49.3 41.9 34.0 32.4 57.1 55.8 43.1 40.8
1-shot 50.3 42.0 34.5 32.1 51.6 44.3 43.7 42.1
5-shot 52.9 48.2 39.1 37.3 57.5 56.0 49.4 45.5
10-shot 56.9 54.6 43.5 43.0 62.4 61.7 53.4 49.6

Table 3: Low-resource EE results on ERE. Bold represents the highest score for the current setting.

backbone model, highlighting the effectiveness of
augmented training examples across various EE
models. (2) The observed improvement is more
pronounced in extremely low-resource scenarios,
particularly in zero-shot, 1-shot, and 5-shot scenar-
ios. The impact is less significant when more clean
training examples are available, such as in the 10-
shot setting. (3) We observe that the performance
of zero-shot augmented training can surpass that of
1-shot training with clean examples. This discrep-
ancy arises because some sampled clean training
examples may not straightforwardly express event
information. For instance, the token “open” could
trigger a Start-Organization event, introducing con-
fusion in the semantics of the Start-Organization
event type. (4) Augmented examples generated by
different generation agents consistently enhance
low-resource EE performance. Notably, greater
performance gains are achieved with examples gen-

erated by LLaMA and GPT.

Additionally, we have evaluated the generation
quality and the effectiveness of the proposed mod-
ules. Notably, for diversity, there is a substantial
increase in unique argument roles compared to the
few-shot examples. For example, in the common
10 and 5-shot settings, the count of unique argu-
ment roles surged from 142 to 1184, marking a
remarkable increase of 2502 percentage points, on
average across the generation models. Regarding
polarity, among the 30 sampled augmentations veri-
fied through human evaluation, the generated event
mention expressions consistently align with the tar-
geted negative expression types. In terms of back-
validation, the evaluation involved two annotators
who each assessed 200 randomly sampled genera-
tions (100 for with back-validation generations and
100 for generations without back-validation). On
average, seven generations were deemed not fluent
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Figure 5: Experimental results on ERE. (a-b) are visualizations for Common 5, and (c-d) for Common 10.

Method K-shot
Common 5 Common 10

Tri-I Tri-C Arg-I Arg-C Tri-I Tri-C Arg-I Arg-C

TALOR-EE (LLaMA)
1-shot 66.5 61.0 42.3 34.4 71.5 66.7 45.4 42.4
5-shot 70.2 63.9 46.3 42.4 71.7 70.1 50.5 46.7
10-shot 70.0 67.6 46.2 43.3 70.5 70.2 51.2 49.5

- enriched context
1-shot 61.2 52.1 35.9 28.3 72.9 64.6 46.2 40.6
5-shot 68.5 64.2 43.5 41.1 73.2 70.0 45.7 44.6
10-shot 67.0 63.4 43.1 39.5 74.7 71.7 46.4 43.2

- negative augmentations
1-shot 70.5 65.1 41.8 34.4 74.1 67.4 44.4 38.8
5-shot 69.3 62.6 41.8 39.3 77.4 73.4 48.4 42.8
10-shot 69.1 61.3 40.8 39.6 74.1 70.5 46.6 44.3

- back-validation
1-shot 61.2 52.1 35.9 28.3 72.7 66.0 47.3 42.2
5-shot 68.0 62.8 43.1 38.6 76.1 74.6 48.6 44.4
10-shot 67.2 65.2 42.1 40.2 75.3 71.2 47.3 46.7

Table 4: Ablation study on ACE05-E.

when utilizing the back-validation module, while
19 generations were identified as not fluent without
the back-validation module.

4.2 Ablation Studies

An ablation study was conducted to assess the effec-
tiveness of each proposed module, and the experi-
mental results are presented in Table 4. (Omitting
the enriched context in the setting entails bypassing
the Dependent Context Retrieval module, resulting
in the absence of newly generated event structures.)
On average, across all settings, the performance of
trigger classification decreased by 2.5% and 1.9%,
and argument classification decreased by 8.3% and
7.1%, in the absence of enriched context or back-
validation, respectively. Without negative augmen-
tations, the argument classification decreases by
7.5%, while trigger classification performance is
on par with TALOR-EE (LLaMA). This highlights
that the designed modules have a more pronounced
impact on argumentation classification than on trig-
ger detection. The absence of enriched context
led to the most significant decrease in argument
classification performance, emphasizing the cru-

cial role of augmentation diversity in mitigating
low-resource argument extraction.

4.3 Error Analysis

Table 5 illustrates several challenging examples.
For event trigger detection, most of the errors are
from the insufficient understanding of the trig-
ger phrase. For example in example (a) in Ta-
ble 5, linking the phrase “crumbling” to the End-
Org(anization) event is challenging given the lim-
ited trigger training examples from either clean
data or augmented data. Example (b) is challeng-
ing because the token “combination” entails closer
semantic relation to the Merge-Org event. Example
(c) illustrates a case where the current data augmen-
tation model falls short in generating intricate event
expressions. Example (d) illustrates a scenario in
which the use of augmented data could potentially
cause confusion. In this case, the actual event per-
tains to a film release rather than a judicial release.
Despite inadequate context information, there is a
likelihood that the augmented data might have gen-
erated a false prediction with increased confidence.
One potential solution to this challenge is the abil-
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ID Text GTH Predictions

(a)
Hoon said Saddam ’s regime was crum-
bling under the pressure of a huge air
assault .

crumbling; End-Org; regime:
Org; None

(b)

The combination of the banking opera-
tions of Barclays Spain and Zaragozano
will bring together two complementary
businesses.

combination;
Transfer-Ownership; Barclays

Spain: Buyer; Zaragozano:
Artifact;

combination, Merge-Org;
businesses, Org

(c) Married for the second time , Hariri has
five children. Married, Marry; Hariri: Person; None

(d)

However the firm announced on Friday
that it had reached a deal with the British
arm of French distributors Pathe to show
four releases.

None releases; Release-Parole; firm:
Entity;

Table 5: Case study for challenging examples

ity to distinguish between multiple meanings of the
same word.

In contrast to event trigger detection, argu-
ment extraction presents greater challenges, as im-
provements in argument extraction prove less pro-
nounced than those in trigger detection. Our con-
clusion stems from a meticulous analysis of the gen-
erated outputs and prediction results, revealing two
primary reasons. The first reason is the lack of clear
and comprehensive explanations for certain argu-
ment roles, for example, the argument role “agent”
in the Start-Org event type. According to the defini-
tion (Linguistic Data Consortium, 2005), an “agent”
in a Start-Org event is a “PER”, “ORG”, or “GPE”
entity responsible for the “START-ORG” Event.
However, it requires tremendous expert knowledge
to write precise instructions for argument roles like
this. The second reason pertains to the lack of clear
distinctions among argument roles in generation
prompts. We recognize that elucidating the pur-
pose and differentiation of each argument role can
be intricate. For instance, we observed minimal
or even adverse effects of augmented data on the
event type “Transfer-Ownership”. This complex-
ity arises from the potential confusion surround-
ing three specific argument roles: “Beneficiary”,
“Buyer”, and “Seller”, particularly when the trigger
involves terms like “sell” or “acquire”. Notably, al-
tering the trigger from “sell” to “acquire” induces a
substantial change in the sentence’s entire syntactic
structure.

5 Conclusion

In conclusion, this study proposes a new paradigm
for tackling low-resource event extraction tasks.

Generation agents are employed to create a diverse
training dataset for event structures enriched with
domain-invariant entities. The generated exam-
ples undergo a thorough back-and-forth validation
process to assess accuracy and coherence. Our
research encompasses extensive experiments in
diverse low-resource learning scenarios, such as
zero-shot and few-shot learning settings, across
various event extraction models. The outcomes
of these experiments highlight the effectiveness
of the proposed framework. Furthermore, our pro-
posed methodology can inspire researchers from di-
verse domains to embrace a comparable paradigm
or delve into the investigation of data augmenta-
tion methods as a means of enriching their training
datasets.

Limitations

TALOR-EE establishes a powerful starting point
for advancing few-shot learning research, offering
a flexible framework for framing new tasks through
our proposed augmentation method. It encourages
a systematic exploration of general and resilient
enhancements for low-resource event extraction
systems. However, augmenting non-event exam-
ples takes appropriate attention, as the proposed
system may tend to predict additional event men-
tions. The absence of a clear distinction between
an actual event and a non-event mention, due to the
lack of a precise definition, underscores the need
for appropriate action. We extend a warm invita-
tion to future low-resource research endeavors and
augmentation methods to delve into the structural
aspects of event generation within a contrastive
setting.
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A Implementation

For a fair comparison with baseline approaches,
we use the pre-trained bert-large-uncased
model for fine-tuning and optimizing our model
with BertAdam. We optimize the parameters
with grid search: training epoch 10, learn-
ing rate ∈ [3e-6, 1e-4], training batch size ∈
{8, 12, 16, 24, 32}, dropout rate ∈ {0.4, 0.5, 0.6}.
Our experiments run on one Quadro RTX 8000.
For trigger detection, the average runtime is 3.0
hours. For argument detection, the average run-
time is 1.3 hours. We use Spacy to generate POS
tags. We use three random seed 0, 39, 42 for all
experiments, and report the mean scores.

Sampling Strategy Note that in the context of
few-shot learning with an Nway-Kshot setting, the
variable K denotes the number of event mentions
rather than training examples. The original cor-
pus contains numerous instances where a single
sentence includes multiple event mentions, present-
ing a challenge for the few-shot example sampling
process. Without regularization, the sampled ex-
amples may probably exceed the specified K event
mentions.

To address this issue and ensure that, for every
setting, the sampled examples with novel event
types do not surpass K, we employ a sorting
mechanism based on the frequency of event types
in decreasing order. This involves sorting the
event types and then sampling in the sorted or-
der. For instance, consider the examples with "Jus-
tice:Acquit" mentions, one of which also includes
a "Justice:Convict" mention. If we were to first
sample examples for "Justice:Convict" and this par-
ticular example is omitted, we would miss the op-
portunity to include this crucial instance for "Jus-
tice:Acquit." This becomes especially significant
in settings such as 5-shot or 10-shot, where "Jus-
tice:Acquit" has a total of four examples. Without
this sampling approach, the mentioned example
may be excluded from the training procedure, im-
pacting the model’s performance.

Generation Instruction The following instruc-
tion are used to prompt generations given the
event structure: “You are a helpful assistant in
generating fluent and reasonable sentences with
event mentions. An Event is a specific occur-
rence involving participants. An Event is some-
thing that happens. An Event can frequently be
described as a change of state. Please be sure

the given event information is in the generated
sentence. However, the given context informa-
tion is optional in generation. Generate a sen-
tence with {event_type_name} event, with optional
context information: {list_of_context_entitites}.
{event_template}.” The {event_template} refers
to the textual representation given the event struc-
ture, as presented in (Hsu et al., 2022).

B Negative Event Mentions Prompts

Table 6 list generation instructions of negative
event mentions for generation agents. Table 7
shows negative augmentation examples.

C Experimental Results with QE

Table 8 shows Experimental results for ACE05-E
with QueryExtract (QE) as the baseline model.

D Features Contributed by Augmented
Data

The features that are better captured by the pro-
posed approach include (1) The mapping between
candidate triggers and event types. The presence
of a greater variety of event mention expressions
within diverse contexts enhances the robustness
and comprehensiveness of the mapping between
candidate triggers and event types. (2) The map-
ping between negative expressions and event types.
Due to the limited occurrence of negative events
in the training data, their availability as few-shot
examples is restricted. With the integration of the
negative augmentation module, the mapping be-
tween negative expressions and event types be-
comes clearer. (3) The relation between candi-
date triggers and arguments. The generated sen-
tences exhibit a comparatively higher prevalence
of straightforward event expressions than those
present in annotated data, such as ACE2005. These
less complex expressions contribute to a good fit
for features related to the relation between candi-
date triggers and arguments, in the low-resource
settings.

4427



Event Expression Type Instruction Prompt

Negative Events

An Event is NEGATIVE when it is explicitly indicated that the Event did not occur. Negative
example 1: His wife was sitting in the backseat and was ’not hurt’. Negative example 2: Yeltsin
ordered Skuratov’s suspension, but parliament repeatedly ’refused to sack’ him. Given the
generated sentence, “[SENT]”, change it into a negative expression that the Event did not occur.

Believed Events

Believed Events are event mentions that some people or organizations think or believe would
happen but are not necessarily real or true event occurrences. Example 1: Rumors of ’arrests’
circulated in Vancouver. Example 2: The charity was suspected of ’giving’ money to al Qaeda.
Given the generated sentence you provide, ’[SENT]’, change it into a believed event sentence:

Hypothetical Events

Hypothetical events are event mentions that are supposed to happen but are not necessarily real
or true event occurrences. Example 1: Should he not ’pay’ the money, they would ’kill’ him.
Example 2: A demonstration of how he would behave if he were to ’become’ President. Given
the generated sentence you provide, ’[SENT]’, change it into a hypothetical event sentence:

Promised Events

Promised Events are event mentions that are promised to happen but are not necessarily real or
true event occurrences. Example 1: He said he would ’leave’ town. Example 2: Promises of ’aid’
made by Arab and European countries. Given the generated sentence you provide, ’[SENT]’,
change it into a promised event sentence:

Desired Event
Desired events are event mentions that are desired to happen but not necessarily real or true event
occurrences. Example: They wanted to ’acquire’ the company last year. Given the generated
sentence you provide, “[SENT]”, change it into a Desired event sentence:

Table 6: Negative/asserted expression generation template. “[SENT]” is a placeholder for the generated sentence
with a positive event expression. The instruction is adapted from (Linguistic Data Consortium, 2005).

id Note Content

1

Event Structure Trigger: bankruptcy. Org: Hazelhurst & Associates Inc.
Context 10 percent, yesterday, $22.5 million

Positive mention Hazelhurst & Associates Inc. declared bankruptcy yesterday, with $22.5 million in debts.
Negative mention Hazelhurst & Associates Inc. did not declare bankruptcy yesterday, with $22.5 million in debts.

Asserted mention: It is believed that Hazelhurst & Associates Inc. will declare bankruptcy tomorrow, with $30
million in debts.

2

Event Structure Trigger: pardon, Place: Jordan, Adjudicator: Abdullah II, Defendant: Rich
Context Republicans, today, his darkest hours

Positive mention Rich received a pardon from Abdullah II during his darkest hours , as Republicans gathered
today to offer their support .

Negative mention Rich’s pardon from Abdullah II was canceled during his darkest hours, as Republicans did not
gather.

Asserted mention Rich desired to receive a pardon from Abdullah II during his darkest hours, as Republicans
gathered last year to offer their support.

Table 7: Negative Augmentation Example

Method K-shot Common 5 Common 10

Tri-I Tri-C Arg-I Arg-C Tri-I Tri-C Arg-I Arg-C

QE
1-shot 58.6 48.7 33.1 29.3 58.6 51.2 37.5 30.1
5-shot 61.9 57.1 37.6 33.1 66.7 61.1 41.7 36.5

10-shot 64.1 62.2 40.3 38.6 72.0 67.2 45.6 45.2

TOLAR-QE (Vicuna)
1-shot 60.6 58.0 41.8 34.2 60.4 58.0 41.4 35.0
5-shot 65.4 62.1 44.3 35.8 70.8 68.8 47.2 41.6

10-shot 65.7 64.0 43.4 39.6 69.5 68.1 50.8 43.7

TOLAR-QE (LLaMa)
1-shot 64.7 57.6 39.3 28.3 57.8 54.9 43.5 33.9
5-shot 61.6 59.4 42.3 37.1 71.2 65.1 46.2 40.9

10-shot 66.0 64.9 44.1 39.8 68.2 67.4 49.4 44.9

TOLAR-QE (GPT)
1-shot 64.8 58.7 38.4 31.3 62.8 61.2 43.8 36.1
5-shot 67.5 59.6 41.4 36.5 66.1 66.1 47.5 43.6

10-shot 67.4 65.2 42.7 39.1 71.1 70.4 49.2 46.5

Table 8: Few-shot Event Extraction results with data augmentation on ACE05-E with QueryExtract (QE).
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