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Abstract
In text documents such as news articles, the
content and key events usually revolve around
a subset of all the entities mentioned in a doc-
ument. These entities, often deemed as salient
entities, provide useful cues of the aboutness
of a document to a reader. Identifying the
salience of entities was found helpful in several
downstream applications such as search, rank-
ing, and entity-centric summarization, among
others. Prior work on salient entity detection
mainly focused on machine learning models
that require heavy feature engineering. We
show that fine-tuning medium-sized language
models with a cross-encoder style architecture
yields substantial performance gains over fea-
ture engineering approaches. To this end, we
conduct a comprehensive benchmarking of four
publicly available datasets using models repre-
sentative of the medium-sized pre-trained lan-
guage model family. Additionally, we show that
zero-shot prompting of instruction-tuned lan-
guage models yields inferior results, indicating
the task’s uniqueness and complexity.

1 Introduction

Many NLP studies have highlighted the impor-
tance of entities to understanding the semantics
of a document (Wu et al., 2020b; Meij et al., 2012).
Automatically identifying entities in unstructured
text documents and linking them to an underlying
knowledge base, such as Wikipedia, is one of the
core NLP tasks, with multiple shared tasks (Tjong
Kim Sang and De Meulder, 2003; Strauss et al.,
2016), benchmarks (Hoffart et al., 2011; Hovy
et al., 2006; Pradhan et al., 2013; Rijhwani and
Preotiuc-Pietro, 2020; Derczynski et al., 2016), and
studies (Kolitsas et al., 2018; Nguyen et al., 2014)
dedicated to solving them.

Although an entity may play a crucial semantic
role in document understanding, not all entities in
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Figure 1: An example of a document with salient and
non-salient entities. Entity mentions are highlighted in
text.

a text document play equal roles. Some entities
are the central subjects or actors within a docu-
ment, around which the content and the key events
revolve. Others are mentioned only to provide addi-
tional context to the main event. For example, some
entities may be actors in peripheral events, while
others are deemed uninformative to the understand-
ing of the document. Thus, entity salience in a text
is defined as a binary or ordinal rating to quantify
the extent to which a target entity is central to a
given piece of text (Gamon et al., 2013; Dunietz
and Gillick, 2014). Figure 1 provides an example
text along with the mentioned entities and their
salience. We note that the salience of an entity to a
text is independent of the user’s interest when read-
ing or searching the document (Gamon et al., 2013),
which is usually referred to as entity relevance. It
is also distinct from entity importance, which quan-
tifies the overall importance of the entity indepen-
dent of the document. Automatically inferring en-
tity salience was shown to aid search (Gamon et al.,
2013), improve ranking results (Xiong et al., 2018),
entity detection (Trani et al., 2018), and enable
entity-centric applications such as entity-centric
summarization (Maddela et al., 2022).
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In this paper, we study the effectiveness of
Transformer-based Pre-trained Language Models
(PLMs) in the task of entity salience detection.
Prior work on determining entity salience relied
on heavy feature engineering to craft features ex-
plicitly covering relevant aspects, such as entity fre-
quency (Dunietz and Gillick, 2014; Dojchinovski
et al., 2016), position of entity mentions within a
document (Dunietz and Gillick, 2014; Trani et al.,
2018), relations to other entities (Trani et al., 2018),
document features, such as its length (Gamon et al.,
2013) and lexical features, such as the name of the
entity or its context. Only a single recent work at-
tempted to use PLMs in a pipeline which included
key entity detection, albeit the scope of the eval-
uation was limited to a single high performing
dataset (Zhao et al., 2021). In contrast, our pro-
posed method uses a cross-encoder architecture
where a target entity’s name or alias and its contex-
tual mentions in a text document are encoded by
a PLM encoder. The classifier uses the contextual
representation and, optionally, positional informa-
tion about the entity encoded through the decile
position embedding vector of mentions to deter-
mine the salience score of a target entity.

We conduct experiments on four publicly avail-
able datasets, two of which were human annotated
and two that were curated semi-automatically. We
fine-tune several cross-encoders using PLMs and
demonstrate that these yield consistent and signifi-
cant improvements over feature-based methods, as
well as prompting instruction-tuned PLMs. The lat-
ter shows the novelty and complexity of the task of
entity salience detection, which requires the model
to learn significant task-specific semantic knowl-
edge for this natural language understanding task.

Our contributions in this paper are the following:

• We propose a cross-encoder style architecture
with explicit encoding of position information
for entity salience detection that shows consis-
tent improvements of 7 – 24.4 F1 scores over
previous feature engineering approaches.

• We establish a uniform benchmark of two human
annotated and two semi-automatically curated
datasets for the task of entity salience detection
that we expect to be beneficial to future study of
this task;

• A faceted analysis of the models’ predictive be-
haviour.

2 Related Work

Understanding the aboutness of a document is one
of the long-standing goals of research in both In-
formation Retrieval and Natural Language Pro-
cessing (Gamon et al., 2013). Several types of ap-
proaches have been proposed, including extracting
key-terms (Hulth, 2003; Mihalcea and Tarau, 2004),
identifying latent topics (Blei et al., 2003), or gen-
erating text summaries (Erkan and Radev, 2004).
There has been a recent focus in using entities to
understand the content of a document. Towards this
goal, the task of entity salience has been first de-
scribed for web pages in (Gamon et al., 2013) and
for news content in (Dunietz and Gillick, 2014).
This task can be viewed as a restricted form of
keyword or keyphrase extraction (Alami Merrouni
et al., 2020) if salience is binary. For the rest of
this study, we will use the concept of salience as
described in (Gamon et al., 2013).

The salience labels for entities were obtained ei-
ther by crowdsourcing labels from multiple raters
to identify salient entities (Gamon et al., 2013; Do-
jchinovski et al., 2016; Trani et al., 2018; Mad-
dela et al., 2022) or by using proxies. For example,
(Dunietz and Gillick, 2014) hypothesize that salient
entities are those that appear in the article’s abstract.
(Wu et al., 2020a) identifies an entity as salient if
the Wikinews category that corresponds to the en-
tity is also labeled as the category of the article.

Past studies mostly proposed machine learning
methods to infer the salience of a given entity that
relied on hand-crafted features. Features that can
be computed from the target entity mentions and
document alone can be categorized into the fol-
lowing: positional (e.g., position in the document,
if entity is in the abstract) (Dunietz and Gillick,
2014), count-based (e.g., number of references to
the entity) (Dunietz and Gillick, 2014; Wu et al.,
2020a), local context (Trani et al., 2018), or global
context (Ponza et al., 2019). Further, joint entity
salience resolution can be performed by creating
features using the entity graph (e.g., centrality in
the entity graph) (Dunietz and Gillick, 2014; Trani
et al., 2018). Finally, past work also showed that
incorporating external knowledge about entities
from knowledge bases can boost predictive perfor-
mance (Dojchinovski et al., 2016).

Automatically inferring salience for entities can
directly benefit multiple downstream applications,
such as improving ranking results for queries con-
taining entities (Xiong et al., 2018) or improv-
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ing the performance of entity detection by joint
modelling (Trani et al., 2018). Moreover, by in-
ferring salience, new entity-centric applications
can be built, such as highlighting salient entities
in search (Gamon et al., 2013), improving the in-
terpretability of news trends through salient en-
tities (Ponza et al., 2021), or identifying entities
for creating entity-centric summaries of news sto-
ries (Maddela et al., 2022; Hofmann-Coyle et al.,
2022).

3 Problem Definition

We use the concept of salience as introduced in (Ga-
mon et al., 2013): salient entities are entities explic-
itly mentioned in the document that are objectively
important as a function of the structure of the text.

The goal of the salience model is to produce a
single salience score ψ(e) for the entity e using
only the document D and the explicit entity men-
tions Me. We consider using external knowledge,
such as information about entities from knowledge
bases, to be outside the scope and leave integration
of such knowledge for future work.

4 Methods

Pre-trained Language Models (PLMs) have shown
a remarkable ability to encode syntactic and seman-
tic knowledge in their parameters (Tenney et al.,
2018, 2019) that can be leveraged when fine-tuned
on downstream natural language understanding
(NLU) tasks. We postulate that PLMs can be har-
nessed to help in entity salience detection, a target-
based document-level NLU task. In this section, we
present an architecture based on the cross-encoder
setup adapted to the task of entity salience detec-
tion.

4.1 Cross-encoder

Encoding Given a document D and a target en-
tity e, which is mentioned in the document, we
concatenate the target entity’s name and the docu-
ment using a special [SEP] token. We then encode
the text using a Transformer-based pre-trained en-
coder. Figure 2 shows the graphical representation
of the cross-encoder model. This setup allows the
model to have deep cross attention between the tar-
get entity and the entire document. Note that we
use special marker tokens [BEGIN_ENTITY] and
[END_ENTITY] around each mentions m ∈ Me of
entity e in document D.

Transformer

[CLS]  Target Entity’s Name[SEP]Document’s Text 

Salience Score

[CLS]’s representation

FFNN

ψ(e)

Encoded decile positions

[h [CLS],hpe]

Figure 2: Graphical representation of the cross-encoder
architecture with decile position encoding.

Position Encoding We compute the decile posi-
tions for each entity mention (m ∈ Me) in the
document D by taking a positional index pm ∈
{0, 1, . . . , 9}, indicating which part of document
the mention belongs to if the document is parti-
tioned into 10 equal chunks. Depending on the
number and positions of the mentions, the vector
can contain multiple non-zero values in the p vec-
tor. For example, if an entity e has 1 mention in the
first decile, 2 in the second decile, and 1 mention
in the fifth decile, then the input to the positional
encoder would be pm = [1, 1, 0, 0, 1, 0, 0, 0, 0, 0].
Note that we do not capture the number of men-
tions in each decile in pm. To obtain positional
embeddings, we use an embedding layer that maps
positional indices to a dense vector of dimension
dmodel, formally hpe(m) = Embedding(pm).

Scoring The output representation of the [CLS]
token is concatenated with the mean position em-
bedding vector hpe and fed to a scorer module that
produces a salience score ψ(e) ∈ [0, 1] for entity e.
The salience scorer is a feed-forward network with
a sigmoid scoring function head. Formally,

ψ(e) = σ(FFN(h[CLS]||hpe))

4.2 Optimization
We fine-tune the model described above by mini-
mizing the binary cross entropy loss that is calcu-
lated using the ground truth binary salience labels
and the predicted salience score ψ(e).

5 Datasets

In this section, we describe our entity salience
benchmark, which consists of four datasets: two
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Dataset NYT-Salience WN-Salience SEL EntSUM
# Docs 110,463 6,956 365 693
Doc Length (avg chars) 5,079 2,106 1,660 4,995
# Unique entities 179,341 23,205 6,779 7,854
# Mentions 4,405,066 145,081 19,729 20,784
% Salient entities 14% 27% 10% 39%
Ground-truth Abstract Alignment Category Alignment Human Human

Table 1: Summary statistics and label collection methods for the datasets used in our experiments.

datasets were curated using semi-automated meth-
ods and two used human annotations. We provide
summary statistics of these datasets and label col-
lection methods in Table 1.

NYT-Salience This dataset is introduced in (Duni-
etz and Gillick, 2014) and is the largest dataset
to date for entity salience detection. The dataset
is curated with an assumption that salient entities
are mentioned in the abstract of a news article in
the NYT Corpus (Sandhaus, 2008). Entities and
their mentions are identified using a classical NLP
pipeline involving POS tagging, dependency pars-
ing, and noun phrase extraction. Despite being
large-scale, the automatic dataset creation process
could introduce noise as corroborated by moderate
agreement numbers with human annotators on a
subset of the data. The dataset contains a binary
salience label for each entity.

WN-Salience Introduced in (Wu et al., 2020a), this
is another automatically curated dataset consist-
ing of Wikinews articles. These are annotated with
Wikinews categories by their authors. WN-Salience
identifies salient entities by using the hypothesis
that an entity is salient if the Wikinews category
that corresponds to the entity is also labeled as a
category of the article. Similar to NYT-Salience,
this dataset has binary salience labels.

SEL This is another dataset based on Wikinews re-
leased by (Trani et al., 2018). However, unlike WN-
Salience, this dataset is human annotated, where
multiple human annotators ranked the salience of
entities into one of four categories. To conform
with the binary labels of the other datasets, we map
the 4 categories into binary labels of {0, 1} by map-
ping the bottom two classes to not salient and the
top two classes to salient.

EntSUM This dataset was introduced in (Mad-
dela et al., 2022). To construct this dataset, a ran-
domly selected set of entities spanning a subset of
693 articles from the NYT corpus were assigned

salience labels by human annotators on a four-point
scale, ranging between [0, 3]. For each document
entity pair, two independent annotations were col-
lected, which were increased up to 5 in case of
disagreements. If the average annotation score is
greater than 1.5 for an entity, it is assigned a posi-
tive salience label.

5.1 Data Enrichment with Inferred Mentions
Except for EntSUM, the datasets do not have ex-
plicit entity mention offsets as annotations, which
are necessary for many feature-based approaches
and to compute positional embeddings. While SEL
contains only the mention surface texts per entity,
NYT-Salience and WN-Salience only provide the
start and end character indices (aka mention offsets)
of the very first mention of an entity. To this end,
we infer additional mentions of an entity within
the text using a combination of Flair NER (Akbik
et al., 2019) and pattern matching.

For SEL, since the mentions are available, we
use a pattern matching approach to match the sur-
face text of the mentions to infer mention offsets.
For NYT-Salience and WN-Salience, we first use
Flair NER to identify mentions of named entities
in the text. We attempt to match these mentions
to the first mention of each entity in the document
provided in the respective datasets. Since the sur-
face text of other mentions may differ from the first
mention, we additionally use the overlap between
a mention’s surface text and the entity name as a
candidate mention for that entity. Applying this
approach, we infer additional mentions of an en-
tity in the text and their offsets. While this process
could introduce some noise, the overall quality of
the datasets are enhanced through this process.

6 Experiments

We experiment on our entity salience benchmark
with our proposed PLM-based method, other ML
and heuristic-based approaches used in past re-
search, as well as an instruction-tuned PLM.
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6.1 Data Splits

Prior works (Dunietz and Gillick, 2014; Trani
et al., 2018; Wu et al., 2020a) use inconsistent
(or not reported) train/validation/test splits. NYT-
Salience and WN-Salience datasets are provided
with train/test splits (but no validation), whereas
SEL dataset is provided without any splits. This
makes it hard to benchmark previous works with a
fair comparison across models. To overcome this
issue, we do a temporal split of NYT-Salience’s
and WN-Salience’s original training sets into a new
train/validation sets based on the publication time
of the news stories, which provides a more realistic
testing setup (Huang and Paul, 2018; Rijhwani and
Preotiuc-Pietro, 2020). We also perform a temporal
split of SEL and EntSUM datasets into train/val-
idation/test sets. Further details about the dataset
splits are provided in Appendix A.

6.2 Baselines

First, we list all methods used in past research,
for which we report the results from the original
papers.
• First Sentence. Classifies an entity as salient if

it appears in the first sentence of the document’s
body; used in both (Dunietz and Gillick, 2014)
and (Wu et al., 2020a).

• Position & Frequency (Dunietz and Gillick,
2014). Feeds the first sentence index and the
frequency features of an entity into a logistic
regression model.

• All Features (Dunietz and Gillick, 2014). Uses a
series of features based on position, frequency,
and PageRank signals fed into a logistic regres-
sion model.

• SEL (Trani et al., 2018). Uses a combination
of features based on position, frequency, and
Wikipedia graph statistics fed into a Gradient
Boosted Decision Tree algorithm implemented
in sklearn (Pedregosa et al., 2011).

• SWAT (Ponza et al., 2019). Uses a set of fea-
tures similar to the SEL Method described above,
with the addition of features based on entity em-
beddings. All features are fed into a Gradient
Boosted Decision Tree algorithm implemented
in XGBoost (Chen et al., 2015).

• Positional Feature (Wu et al., 2020a). Uses the
index of the first sentence in which the entity is
mentioned as a feature in a logistic regression
model. This method provides best results on the
WN Salience dataset in (Wu et al., 2020a).

Next, we re-implement a set of common methods
based on the above baselines in order to be able
to test them on all four datasets. This ensures the
evaluation is performed on the same experimental
setup.

• Positional Headline. Classifies an entity as
salient whether it appears in the headline of the
input document.

• Positional Headline & Lead. Classifies an entity
as salient if it appears in the headline of the
document or in the first sentence (lead sentence)
of the document.

• Entity Frequency. Classifies an entity as salient
if they are more frequent than a given value. For
each dataset, we calculated different thresholds
and reported the best results. Thresholds can be
found in the Appendix.

• Features & GBDT. This method uses the most
common features from past works (Dunietz and
Gillick, 2014; Wu et al., 2020a; Trani et al., 2018;
Ponza et al., 2019) — i.e., entity’s first sentence
index, and entity frequency — and feeds them
into a GBDT model implemented using Light-
GBM (Ke et al., 2017).

• SEL GBDT. Follows the method from (Trani
et al., 2018) and uses sklearn’s GBDT (Pe-
dregosa et al., 2011) to train a model on the
features provided with the SEL dataset.

• Target entity masking. This method feeds the in-
put to a Transformer-based encoder (RoBERTa-
base) with the target entity mentions represented
through a special mask token. The salience pre-
diction is obtained by mean pooling the mask
token representations and passing this through a
feed-forward network.

• Zero-shot prompting. We test instruction-tuned
LLMs using zero-shot prompting. The prompt
introduces the task description, followed by the
input text and a target entity, and it asks a yes/no
question. It expects the model to generate either
’Yes’ or ’No’ as an answer. The LLMs, already
instruction-tuned on a large collection of NLU
tasks, attempt to provide an answer based on the
prompt, input text, and target entity. This family
of models has been demonstrated to be robust
and versatile on multiple benchmarks (Chung
et al., 2022). We use Flan-UL2 (20B) (Tay et al.,
2023) and LLaMa 2-Chat (7B) (Touvron et al.,
2023) for evaluation.
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Source Type Method
NYT-Salience WN-Salience

P R F1 P R F1
(Dunietz and Gillick, 2014) Heuristic First Sentence 59.5 37.8 46.2 – – –
(Dunietz and Gillick, 2014) ML Position & Frequency 59.3 61.3 60.3 – – –
(Dunietz and Gillick, 2014) ML All Features 60.5 63.5 62.0 – – –
(Ponza et al., 2019) ML SWAT 62.4 66.0 64.1 – – –
(Wu et al., 2020a) Heuristic First Sentence 56.0 41.0 47.3 47.9 53.2 50.4
(Wu et al., 2020a) ML Positional Feature 19.0 41.3 26.0 29.1 78.9 42.5
(Wu et al., 2020a) ML Features & GBDT 39.2 59.7 47.3 29.2 48.1 36.3

Our Implementations

Heuristic Positional Headline 57.5 42.0 48.5 46.1 51.5 48.7
Heuristic Positional Headline & Lead 49.8 55.4 52.5 41.0 60.0 48.7
Heuristic Entity Frequency 53.7 53.3 53.6 37.3 61.9 46.6
ML Features & GBDT 61.0 57.4 59.2 46.2 53.3 49.5
PLM (RoBERTa) Target Entity Masking 64.6 50.2 56.5 57.0 65.4 60.9

Our Models

PLM (RoBERTa) cross-encoder 75.9 87.1 81.1 71.8 73.6 72.7
PLM (DeBERTa) cross-encoder 77.5 87.4 82.1 71.5 78.3 74.8
PLM (RoBERTa) cross-encoder w/ position emb. 78.7 84.2 81.4 71.2 76.7 73.8
PLM (DeBERTa) cross-encoder w/ position emb. 75.9 88.4 81.7 73.3 76.1 74.7

Table 2: Results on the NYT-Salience and WN-Salience datasets. The ground-truth of these datasets was generated
via abstract/category alignment. The top section presents results as originally reported in the source papers.

Source Type Method
SEL EntSUM

P R F1 P R F1
(Trani et al., 2018) ML SEL (w/ 5-fold cross val.) 50.0 61.0 52.0 – – –
(Ponza et al., 2019) ML SWAT (w/ 5-fold cross val.) 58.0 64.9 61.2 – – –

Our Implementations

Heuristic Positional Headline 26.6 78.4 39.7 60.7 18.5 28.4
Heuristic Positional Headline & Lead 22.1 87.1 35.3 51.2 31.6 39.1
Heuristic Entity Frequency 13.5 57.8 21.9 48.4 54.0 51.0
ML Features & GBDT 26.6 78.4 39.7 60.7 52.0 56.0
ML SEL GBDT 71.1 47.8 57.1 – – –
PLM (RoBERTa) Target Entity Masking 36.3 13.8 20.0 63.0 41.7 50.2

Our Models

PLM (RoBERTa) cross-encoder 51.6 73.6 60.6 65.5 60.6 63.0
PLM (DeBERTa) cross-encoder 64.1 73.6 68.5 64.9 59.2 61.9
PLM (RoBERTa) cross-encoder w/ position emb. 63.0 69.9 66.3 67.5 57.0 61.8
PLM (DeBERTa) cross-encoder w/ position emb. 67.3 62.4 64.7 72.1 51.5 60.1

Table 3: Results on the SEL and EntSUM datasets. The ground-truth of these datasets was generated via human
annotation. The top section presents results as originally reported in the source papers.

6.3 Experimental Setup

We use RoBERTa-base (Liu et al., 2019) and
DeBERTa-v3-base (He et al., 2023) as the base
PLM for experiments. For each of these base mod-
els, we train both a cross-encoder model and a
cross-encoder model augmented with decile posi-
tional embeddings.

For training our proposed models, we use
AdamW (Loshchilov and Hutter, 2019) as the
optimizer. We perform a hyperparameter search
for learning rate using the following set of
values: {0.001, 0.0005, 0.0002, 0.0001, 0.00005}.
We train our models for a maximum of 10 epochs
with early stopping based on the validation set
performance. We pick the best performing model
checkpoints for each dataset based on the perfor-

mance on the validation set. In Tables 2 and 3,
we report the performance of our models and the
baselines using the standard classification metrics
(i.e., Precision, Recall, and F1) on the positive
(salient) class, following previous research on en-
tity salience.

For training and inference of each Transformer-
based model, we use a single NVIDIA V100 GPU
with 32GB GPU memory, 4 CPUs, and 128 GB of
main memory.

6.4 Results

In Tables 2 and 3, we present the experimental
results of the baselines and our proposed models
on the four datasets described in Section 5.

Comparison with feature-based methods. We
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observe that the cross-encoder model significantly
outperforms all baseline models in F1 score. It also
yields better precision compared to the baselines
for three of the four datasets. Only for the SEL
dataset does the SEL GBDT model trained on pub-
licly available pre-computed features produce a
model with better precision than the cross-encoder.
We observe that adding the decile positional em-
bedding with cross-encoder improves the precision
across all datasets, but also degrades the recall in
every dataset except NYT-Salience.

The Target Entity Masking approach, which
also leverages contextual information with a
transformer-based model yields mixed results.
Overall, the model is able to obtain better preci-
sion than the feature-based models for all datasets
except SEL, but the model suffers from poor re-
call across all datasets, resulting in significantly
worse F1 scores especially when compared to cross-
encoder models.

Our re-implementation of positional methods
and GBDT methods are consistent with the per-
formance reported in prior works. The variance
in numbers can be attributed to the enrichment of
datasets with inferred mentions (Section 5.1) and
the explicit train/dev/test data split used in our ex-
periments (Section 6.1).

6.5 Zero-shot prompting of large language
models

We formulate the problem of salience detection
with zero-shot prompting as follows: given a def-
inition of entity salience task and document text,
we ask the model to generate a "yes" or a "no" if a
particular entity is salient or not. We experimented
with two open source models (Flan-UL2 (20B)
and LLaMa 2-Chat (7B)) available on Hugging
Face 1, and present the results in Table 4. To the
best of our knowledge, this is the first evaluation of
zero-shot prompting of instruction-tuned models
for the entity salience detection task. We observe
that the LLaMa 2-Chat model with 7 billion pa-
rameters fails to yield any meaningful results as
it produces only positive labels for all data points
(hence we observe 100% recall). The Flan-UL2
model is able to generate both positive and nega-
tive labels. However, the precision remains too low
across datasets. We further discuss causes for this
performance in the Appendix (Section C), along
with the implementation details. Overall, these ex-

1www.huggingface.com

periments suggest that entity salience detection is
a unique task that is not similar to any other tasks
these two models are instruction tuned on.

7 Analysis

In this section, we perform an analysis of model
predictions in order to gain more insights into
model behavior and understand potential avenues
for further improvement. We thus break down per-
formance by different factors including: the impor-
tance of inferring all entity mentions, the position
of the first entity mention, and entity mention fre-
quency.

7.1 Impact of Inferred Mentions

In Section 5.1, we inferred additional mentions of
an entity for the NYT-Salience and WN-Salience
datasets. We compare the performance of our best
model that leverages multiple mentions of an en-
tity to its version trained with only the first men-
tions of entities in a document. The specific input
formats for this experiment are presented in Ap-
pendix B The results in Table 5 show that doing
so consistently improves the performance of our
models across all datasets. In particular, for the
largest dataset, NYT-Salience, our model achieves
a substantial gain of 27.3 F1 points. This experi-
ment showcases the importance of augmenting our
datasets with additional mentions and the impor-
tance of explicitly modelling contextual informa-
tion present around all entity mentions.

7.2 Stratified Analysis on First Mention
Position

We compare our cross-encoder models against the
Features & GBDT model, our re-implemented base-
line that relies on the most popular features used in
prior works (Dunietz and Gillick, 2014; Wu et al.,
2020a; Trani et al., 2018). As shown in the results
from Tables 2 and 3, among other features, posi-
tional features are most informative for salience.
Intuitively, if an entity is mentioned in the headline
or in the first sentence of a news article, there is
high probability of that entity being salient.

Figure 3 shows that all models perform well when
the first mention falls in the headline or the first
sentence of the document. We notice that the cross-
encoder models constantly outperform the Features
& GBDT model and the largest gains are observed
in the SEL and WN-Salience datasets. This obser-
vation indicates that the cross-encoder models are
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Model
NYT-Salience WN-Salience SEL EntSUM

P R F1 P R F1 P R F1 P R F1
Cross-encoder (DeBERTa) 77.5 87.4 82.1 71.5 78.3 74.8 64.1 73.6 68.5 64.9 59.2 61.9
Flan-UL2 31.1 72.4 43.5 30.7 90.1 45.9 16.7 98.3 28.5 27.6 83.6 41.5
LLaMa 2-Chat 14.6 100.0 25.4 27.1 100.0 42.6 9.49 100.0 17.3 19.2 100.0 32.2

Table 4: Performance comparison of cross-encoder model with zero-shot prompting of LLMs.

Model
NYT-Salience WN-Salience SEL EntSUM

P R F1 P R F1 P R F1 P R F1
Cross-encoder w/ first mention 54.2 57.5 55.8 69.6 80.4 74.6 59.8 76.1 67.0 69.1 53.2 60.2
Cross-encoder w/ all mentions 77.5 87.4 82.1 71.5 78.3 74.8 64.1 73.6 68.5 64.9 59.2 61.9

Table 5: Performance comparison of cross-encoder models with only the first mention vs. all inferred mentions.

(a) Performance with respect to the position of the mentions. There are no mentions outside of the context window for NYT.

(b) Performance with respect to the frequency of the entities. The test split of SEL dataset does not contain any entity with more
than 10 mentions in a document.

Figure 3: Stratified analysis across models and datasets.
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able to use the context to identify that mentions
that occur in the headline or the first parts of the
document are often salient without explicitly using
this information as a feature.

We also investigate the performance of the mod-
els when the first mention falls inside or outside
the context window of the PLM (here, 512 tokens).
When mentions fall inside the context window, we
observe that the cross-encoder models consistently
outperform the Features & GBDT model. When
the mention falls outside the context window, the
model predictions become close to random, which
is expected, as the model does not have immediate
contextual information around the mention. Using
models that can deal with longer inputs would be
a promising direction for improvement for these
samples (Beltagy et al., 2020). Interestingly, for
WN-Salience, the Features & GBDT model also
performs considerably worse outside the first 512
tokens.

7.3 Stratified Analysis on Mention Frequency

Similar to mention position analysis, we compare
our cross-encoder models against the Features &
GBDT model, which uses mention frequency as
one of its input features. Figure 3 shows how the
cross-encoder models and Features & GBDT com-
pare with varying frequency of entity mentions.

For salient entities with single mentions, the
cross-encoder model performs significantly better
than the Features & GBDT model. In particular, for
the NYT-Salience dataset, the Features & GBDT
model fails to predict any of the single mention
entities as salient. This observation indicates that
the cross-encoder models do not simply model the
mention frequency, but potentially leverage other
contextual information to determine the salience of
entities with a single mention.

The performance of the Features & GBDT model
improves with more mentions per entity. In fact,
for the frequency range of 6-10 mentions per en-
tity, the Features & GBDT model performs better
than the cross-encoder models for EntSUM and
SEL datasets. This observation indicates the over-
reliance of the Features & GBDT model on men-
tion frequency to determine salience, but also that
the cross-encoder cannot fully use this heuristic.

8 Conclusion

This paper aims to leverage the semantic knowl-
edge encoded in pre-trained language models for

entity salience detection. We propose the cross-
encoder method based on Transformer-based PLMs
with positional representations and compare its per-
formance to several ML-based methods, heuristic
methods, and instruction-tuned LLMs across four
different datasets, two human-annotated and two
automatically curated. Across all our experiments,
the cross-encoder model based on pre-trained lan-
guage models outperforms all other methods, often
with double digit gains in F-1 score. Analyses of
model behavior illustrate the important effects of
mention frequency, mention position, and docu-
ment length on performance, highlighting areas of
future work.

9 Limitations

We only studied salience in English-language docu-
ments, but our methods are applicable to other lan-
guages directly as long as a pre-trained language
model covering the target language is available.

We use entity mentions as annotated in our data
or inferred through entity recognition and entity
resolution for inference in some of the methods.
This information may not be available at inference
time in all applications.

The experiments with LLMs are limited to zero-
shot prompts. We did not experiment with instruc-
tion tuning which could potentially help the model
learn the salience detection task.

Finally, we do not use external knowledge about
entities and their relationships in modelling, which
was shown to marginally improve results in past
studies (Dunietz and Gillick, 2014; Trani et al.,
2018; Ponza et al., 2019). We consider this out of
the scope of our analysis and a viable direction of
future work.

10 Ethics Statement

We use publicly available datasets intended for
the task of entity salience detection. The datasets
and pre-trained models we used have permissive
licenses allowing for research use. We do not en-
vision any potential risks associated with the task
discussed in this paper.
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Appendix

A Details of Dataset Splits
Table 6 contains the train, dev, and test splits of
each of the datasets after applying a temporal split-
ting strategy described in Section 6.1. These splits
are used for model training and evaluation.

B Input Format for Experiments
As described in Section 4.1, we add special marker
tokens around each mention of the target entity (i.e.,
the entity for which the model needs to predict the
salience label.). In the following, we provide an
example:

Text

Musk completes $44 billion Twitter deal.
Elon Musk, the world’s . . .

Model Input

[CLS] Elon Musk [SEP] [BE-
GIN_ENTITY] Musk [END_ENTITY]
completes $44 billion Twitter deal.
[BEGIN_ENTITY] Elon Musk
[END_ENTITY], the world’s . . .

For the experiment with first mention reported in
Section 7.1, only the first mention is bounded by
special marker tokens as shown in the following
example:

Model Input

[CLS] Elon Musk [SEP] [BE-
GIN_ENTITY] Musk [END_ENTITY]
completes $44 billion Twitter deal. Elon
Musk, the world’s . . .

Note that the second mention of Elon Musk is
not bounded by marker tokens.

C Implementation details of zero-shot
prompting of LLMs

Figure 4 and Figure 5 show the prompts we used
for the LLaMa 2-Chat (7B) and Flan-UL2 (20B)
models respectively. Table 7 lists the generation
parameters. We speculate the following causes for
the relatively lower precision obtained using this
method:

• The instruction defines the salience task defi-
nition, but doesn’t provide any reference ex-

amples (few-shot prompting) to align with the
definition of salience. This leads to the model
identifying an entity as salient based on its fre-
quency in the document. However, creating a
few-shot prompt is challenging as we need to
limit the maximum input length of the prompt
to prevent out-of-memory issues.

• We truncate the document text so that the en-
tire prompt is 2048 tokens or less, thus throw-
ing away any potential information present
towards the end of a long document.

<s> [INST]
«SYS» The salience of an entity provides in-
formation about the importance or centrality
of that entity to the entire document text. In
the following, given an Entity and a Text, you
need to answer ’Yes’ if the Text document is
about that Entity and ’No’ if the Text is not
about that Entity. «/SYS»
Is Entity: entity salient in Text: text
[/INST]

Figure 4: Instruction for zero-shot prompting of LLaMa
2-Chat model.

### Instruction ###
The salience of an entity provides infor- ma-
tion about the importance or centrality of that
entity to the entire document text. In the fol-
lowing, given an Entity and a Text, you need
to answer ’Yes’ if the Text document is about
that Entity and ’No’ if the Text is not about
that Entity.
Text: text
Entity: entity
Question: Is the above Entity salient in the
above Text? Please answer Yes or No.
Answer:

Figure 5: Instruction for zero-shot prompting of Flan-
UL2 model.

D Thresholds for Entity Frequency baseline
Figure 6 shows the performance of the Entity Fre-
quency baseline by varying the minimum number
of times an entity has to occur in the input docu-
ment to be classified as salient.
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Dataset # Doc-Entity pairs Train Validation Test
NYT-Salience 1,910,214 1,342,092 405,335 162,787
WN-Salience 62,537 41,625 11,902 9,009
SEL 12,257 6,106 2,400 3,751
EntSUM 9,934 5,206 1,861 2,867

Table 6: Document-Entity pairs in train, validation, and test splits after applying temporal splitting.

Generation parameter Value
top_k 0
top_p 0
temperature 0
max_new_tokens 1

Table 7: Parameters for generating a salience label with zero-shot prompt.
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Figure 6: Performance of the Entity Frequency baseline over different thresholds.
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Figure 7: Schematic diagram of the Target Entity Masking model architecture.
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