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Abstract
Comparative knowledge (e.g., steel is stronger
and heavier than styrofoam) is an essential com-
ponent of our world knowledge, yet understud-
ied in prior literature. In this paper, we har-
vest the dramatic improvements in knowledge
capabilities of language models into a large-
scale comparative knowledge base. While the
ease of acquisition of such comparative knowl-
edge is much higher from extreme-scale mod-
els like GPT-4, compared to their considerably
smaller and weaker counterparts such as GPT-2,
not even the most powerful models are exempt
from making errors. We thus ask: to what ex-
tent are models at different scales able to gener-
ate valid and diverse comparative knowledge?

We introduce NeuroComparatives, a novel
framework for comparative knowledge distil-
lation overgenerated1 from language models
such as GPT-variants and LLaMA, followed by
stringent filtering of the generated knowledge.
Our framework acquires comparative knowl-
edge between everyday objects, producing a
corpus of up to 8.8M comparisons over 1.74M
entity pairs—10X larger and 30% more diverse
than existing resources. Moreover, human eval-
uations show that NeuroComparatives out-
perform existing resources in terms of valid-
ity (up to 32% absolute improvement). Our
acquired NeuroComparatives leads to perfor-
mance improvements on five downstream tasks.
We find that neuro-symbolic manipulation of
smaller models offers complementary benefits
to the currently dominant practice of prompting
extreme-scale language models for knowledge
distillation.

1 Introduction

In their book “Surfaces and Essences” on con-
cepts and analogies, Hofstadter and Sander (2013)

∗Equal contribution
1We use “overgenerate” throughout this work to indicate

that we generate more knowledge from the language model
than we intend to keep after rigorous filtering and selection.

elucidate how concept learning requires compar-
ing a pair of concepts, and parsing out their sim-
ilarities and dissimilarities. Indeed, comparative
knowledge is an essential component of our world
knowledge (Ilievski et al., 2021; Davis, 2023), un-
derpinning some of the classical commonsense
reasoning problems. For example, the problem

“The large ball crashed right through the table be-
cause it was made of [steel/styrofoam]. What was
made of [steel/styrofoam]?” in Winograd Schema
Challenge (Levesque et al., 2011) requires compar-
ing the relative strength between steel and styro-
foam. Yet, compared to general knowledge acqui-
sition, there has been relatively little research focus
on comparative knowledge acquisition, possibly
due to the longstanding challenges of high-quality
knowledge acquisition itself, let alone comparative
knowledge. The few resources for comparative
knowledge, all derived from web mining, however
limited in size and diversity (§5), have nonetheless
been useful for challenging multimodal reasoning
tasks (Wang et al., 2018), highlighting the value of
comparative knowledge.

In this paper, we draw inspirations from such
literature about concept learning and inquire two
related questions on comparative knowledge: (1)
how well do models at different scales fare at the
task of producing large-scale, high-quality compar-
ative knowledge about a broad range of concepts?
and (2) what are the implications for downstream
tasks? Compared to prior resources of common-
sense knowledge acquired either via crowdsourcing
(Speer et al., 2017; Sap et al., 2019) or via infor-
mation extraction (e.g., WebChild (Tandon et al.,
2017) and ASER (Zhang et al., 2020)), our attempt
to (re-)focus on the task of comparative knowl-
edge acquisition takes the perspective of “language
models as knowledge bases” (West et al., 2021;
AlKhamissi et al., 2022), motivated by the dramatic
improvements in the capabilities of extreme-scale
neural language models.
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Figure 1: Our neuro-symbolic framework to distill NeuroComparatives. (1) We seed entity pairs for comparison
from Wikidata, and expand the set with CategoryBuilder to construct templated prompts for a language model. (2)
Next, we use these prompts to overgenerate comparatives from different language models to ensure our generations
contain valid comparisons between a given pair of entities. (3) Finally, we discard contradictory and otherwise
lower quality generations via various clustering and filtering techniques. Our resultant corpus NeuroComparatives
contains 8.8 million comparisons over 1.74 million entity pairs.

We build on such research, but in addition to few-
shot inference with extreme-scale model APIs such
as GPT-4, also rely on customized inference with
smaller language models (See et al., 2019; Sheng
et al., 2020; Liu et al., 2021). We ask a seemingly
implausible question: can considerably smaller and
weaker language models such as GPT-2 (Radford
et al., 2019), complement the capabilities of their
large-scale counterparts in the acquisition of com-
parative knowledge between a pair of concepts?
To this end, we follow an overgenerate-and-filter
mechanism (Langkilde and Knight, 1998; Walker
et al., 2001) to create a large-scale, high-quality
resource: NeuroComparatives, a corpus with up
to 8.8 million comparisons over 1.74 million pairs
of entities. Our framework is illustrated in Figure 1.

Compared to the only other large-scale common-
sense KG containing comparative knowledge (Tan-
don et al., 2017, WebChild), NeuroComparatives
is up to 10x larger, 30% more diverse, and has a
19% higher human acceptance rate. Additionally,
we show that a knowledge discriminator model can
further improve the the human acceptance rate of
our knowledge to 90%, representing a 32% abso-
lute gain compared to WebChild while still being
over 2X larger in scale. Our analyses also show
that NeuroComparatives are, on aggregate, more
diverse than WebChild comparatives and more ef-
fective on three different downstream benchmarks.
Overall, our findings motivate customizable neuro-
symbolic manipulation of smaller scale models as a

cost-effective complement to the dominant practice
of performing simple inferences under extreme-
scale yet closed language models. We make our
code2 and dataset3 publicly available.

2 Distilling NeuroComparatives

Our framework for distilling comparatives from
an autoregressive LM comprises three stages, il-
lustrated in Figure 1. First, we collect comparable
entities to construct prompts for eliciting compara-
tive knowledge statements (§2.1). Next, we employ
LMs to overgenerate (potential) comparatives for
every pair of selected entities (§2.2). Finally, we
filter the generations (§2.3) to obtain a large-scale,
high-quality collection of comparative statements,
which we call NeuroComparatives (NCs) (§3).

2.1 Collecting Comparable Entities

One unique challenge in probing language models
for knowledge acquisition, as opposed to extracting
pre-existing knowledge from web text, is knowing
exactly what to probe LMs for, i.e., concept pairs
for comparison. For practical applications, the com-
paratives are more likely to be useful when they
are about entities sharing some common proper-
ties, e.g., “red wine” and “white wine” (Fig. 4),
rather than unrelated ones e.g., “cucumber” and

2https://github.com/IntelLabs/multimodal_
cognitive_ai/tree/main/NeuroComparatives

3https://huggingface.co/datasets/Intel/
NeuroComparatives
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Figure 2: Wikidata hierarchical class structure for re-
trieved entities ‘blender’ and ‘food processor’.

“car”. Identifying a vast array of diverse yet rel-
evant concepts for comparison is complex; thus,
we developed a systematic process below: retrieval
(§2.1.1), expansion (§2.1.2), and filtering (§2.1.3).

2.1.1 Retrieving Seed Entity Sets

We start our entity collection using two broad Wiki-
data (Vrandečić and Krötzsch, 2014) classes, as our
seed classes: physical object and artificial physical
object. Each seed class contains entities and sub-
classes, which themselves may contain additional
entities. Figure 2 illustrates an example Wikidata
class structure for “blender” and “food processor”,
with “physical object” as the root. Using a breadth-
first traversal of Wikidata, we retrieve all classes
up to two levels4 below the root class. Overall,
we retrieved 1.5K classes with 23K entities from
Wikidata. While Wikidata provides a good starting
point, we find that many of its classes are incom-
plete, a common challenge with any taxonomic
resource. Thus, we next expand our entity sets to
increase the coverage.

2.1.2 Expanding the Coverage of Entity Sets

We expand our entity collection using Category-
Builder (Mahabal et al., 2018), a system for lexical
entity set expansion. We append each retrieved en-
tity set from Wikidata with the top n = 100 related
terms identified by Category Builder using the hy-
perparameter ρ = 3.0 for context weighting. This
results in a total of 40K entities corresponding to
1.5K Wikidata classes. Noting the presence of ob-
scure entities, e.g., “home keg tapper” and “prensa
ironing” in the “home appliance” class (Fig. 1), we
then moved to eliminate these obscure entities.

2.1.3 Filtering Obscure Candidate Entities

Obscure entities would occur infrequently, thus we
discard entities which occurred less than n = 100

4We use a maximum search depth of two based on the ob-
servation that descending lower in Wikidata results in entities
that are too specific or obscure for generating comparatives.

times in the language model’s training corpus.5

We additionally discard all classes with less than 2
entities after this filtering step. These filtering steps
are applied twice: first on the original Wikidata
entities, and then again after we expand the entity
sets with Category Builder. This results in 568
classes with a total of 15,476 entities.

2.1.4 Templating Comparative Prompts
We generate comparison candidates by pairing
entities within each class. For each such pair,
(entity1, entity2), we use the following tem-
plate6 to form the prompt for generation:

Compared to entity1, entity2 . . . (1)

As a final step, we further filter 30% of the created
prompts using GPT-2 XL perplexity to remove po-
tentially disfluent or nonsensical prompts. This
results in a total of 1,741,962 prompts.

2.2 Overgenerating Comparatives

Since there’s no supervision available, we follow
an inference-only process for generating the initial
set of comparative statements. We employ two ap-
proaches: constrained decoding with open-source
LMs (§2.2.1) and few-shot prompting of propri-
etary LLMs (§2.2.2). We hypothesize that both
approaches may offer complementary benefits.

2.2.1 Generation with open-source LMs
We experiment with GPT-2 XL and Llama-2 7B,
two open-source models where inference can be
customized to generate comparatives. We use a
customized controlled decoding algorithm, Neu-
roLogic (Lu et al., 2021) to guide the generation
using the prompts constructed above (§2.1).

Formulating the Constraint Sets We classify
our constraints into three types: positive, negative,
and comparative adjectives. Positive constraints
ensure tokens appear in the output; we include
auxiliary verbs (e.g., ‘have’, ‘are’, ‘would’) and
adverbs of frequency (e.g. ‘typically’, ‘often’) (Ap-
pendix A for details). Negative constraints ensure
tokens do not appear in the output to reduce hallu-
cinations; we include certain punctuation charac-
ters, pronouns, discourse connectives, and relative
clauses(Table 9 in Appendix A for details).

5The only corpus we have access to is the open-source
counterpart of GPT-2’s training corpus, OpenWebText.

6We experimented with other templates but found that this
one was most consistent at generating valid comparisons
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Constrained decoding with NeuroLogic We
adapted NeuroLogic constrained decoding for flu-
ent text generation under specific lexical constraints
(NeuroLogic accepts clauses {Ci | i ∈ 1, · · ·m}
as constraints; see details in App. A.1).

To encourage diversity in the generated compara-
tives, the generator must use different comparative
adjectives, without explicit enumeration. Hence,
we dynamically promote top-k comparative adjec-
tives with the highest probabilities at each decoding
time step (we use k=5). We customize this as a spe-
cial type of positive constraint (§2.1.4).

We additionally modify NeuroLogic to handle
ordered constraint satisfaction, for fine-grained con-
trol. For each clause Ci, we assign one or more
order indices mi ∈ {1, ...,m} which correspond
to the positional order in which clause Ci can ap-
pear in the generation. Specifying more than one
order index allows a clause to appear in multiple
different positions. Ordered constraint satisfaction
provides more fine-grained control for generating
valid comparatives, as illustrated in Figure 4.

2.2.2 Generation with Proprietary LLMs
Many recent LLMs are proprietary, disabling our
ability to customize the decoding process due in-
ability to modify the decoding process. Hence, we
leverage their in-context learning abilities to over-
generate completions for each entity pair. Specif-
ically, we use six in-context examples of com-
paratives followed by our templated comparative
prompt (details in App. C).

2.2.3 Scale of Overgeneration
Given its open-source availability and relatively
low computational cost, we overgenerate the most
comparatives using GPT-2-XL as our base LM.
In total, we perform 30 passes of NeuroLogic
with GPT-2 over the 1.74 million entity pairs from
§2.1.4, where each iteration uses a different combi-
nation of the positive constraints, while adhering to
the same negative and comparative adjective con-
straints. Each pass produces 10 generations, result-
ing in 300 candidate comparatives for each entity
pair. This process produces a total of 522 million
overgenerations across the 1.74 million entity pairs.
We similarly use Llama-2-7b with NeuroLogic to
generate comparatives for 50K entity pairs, which
produces 15 million overgenerations.

In addition, we utilize three propriety LLMs (In-
structGPT, ChatGPT, and GPT-4) to overgenerate
comparatives for a smaller set of 2.3k entity pairs

due to the much higher inference cost. For each
entity pair, we return 128 completions, which is the
maximum allowed via the inference API. This pro-
duces a total of 300k overgenerated comparatives.

2.3 Filtering Overgenerated Comparatives

Despite using a combination of effective language
generation, we achieve quality control through ag-
gressive filtering of the overgenerated compara-
tives. This last filtering step consists of dedu-
plication (§2.3.1), filtration by constraint satisfac-
tion (§2.3.2), filtration of contradictory knowledge
(§2.3.3), and additional filtering via a knowledge
discriminator model (§2.3.4).

2.3.1 Deduplication
To address LM’s tendency to generate redundant
comparisons, we deduplicate our generations. We
use agglomerative clustering of all generated com-
paratives using the inner product of their sentence
T5 embeddings (Ni et al., 2021) as the distance.
For each cluster, we retain only the generation with
the best decoding score, S7 (App. A.1). Approxi-
mately 17% of the original generations remain.

2.3.2 Filtration by Constraint Satisfaction
After deduplication, we group the remaining gener-
ations by how they satisfied the positive constraints
to encourage greater diversity in our knowledge
base. Specifically, we group generations by the
generated auxiliary verb, adverb of frequency, and
comparative adjective and select only the genera-
tion with the best S5. This further reduces the total
number of generations to approximately 9% of the
overgenerated comparatives.

2.3.3 Filtration by Contradiction
The tendency of language models to hallucinate in-
formation (Ji et al., 2022) sometimes results in unre-
liable generations which contradict each other. Us-
ing a RoBERTa contradiction classifier (Liu et al.,
2019; Wang et al., 2022), we discard comparatives
that contradict others more often than not. To in-
crease the precision of the pre-trained classifier,
we set a high threshold probability for classifying
contradiction and entailment (0.99 and 0.85, resp.).
Approximately 5% of the overgenerated compara-
tives remain after this stage of filtering, from which
we select only the k = 5 best-scoring generations
by their S5 for each entity pair.

7For proprietary LLMs, we use length-penalized perplexity
from GPT-2 XL in lieu of the decoding score, S.
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Prompt WebChild Assertions Completions in NeuroComparatives (Ours)

Compared to helicopters, planes . . . . . . were cooler ✓✓✗ . . . are more stable in flight ✓✓✓

. . . are noisier ✓✓✗ . . . typically have higher operating costs ✓✓✗

. . . are better ✓✓✗ . . . can often carry more cargo ✓✓✓

Compared to floppy disks, hard drives . . . . . . are better ✓✓✓ . . . are generally considered more reliable ✓✓✓

Compared to cars, motorcycles . . . . . . are cheaper ✓✗✓ . . . generally have fewer moving parts ✓✓✓

. . . are smaller ✓✓✗ . . . generally have lower fuel consumption ✓✓✓

. . . are cooler ✗✗✗ . . . tend to have shorter range ✓✓✓

Compared to blenders, food processors . . . . . . are larger ✓✓✓ . . . can often be more expensive ✓✓✓

. . . work better ✓✓✓ . . . can often handle more ingredients ✓✓✓

Table 1: Generations from NeuroComparatives and WebChild assertions for the same entity pair. Each example
was annotated by three human workers: ✓indicates acceptance and ✗ rejection. In contrast to WebChild assertions,
NeuroComparatives can be more specific to the entity pairs under consideration, diverse and less subjective.

2.3.4 Discriminative Filtering
To further increase the quality of our retained
knowledge, we build a final discriminator, ad-
justable to the desired balance between knowledge
quantity and quality. We train a knowledge dis-
criminator using crowdsourced annotations of valid
and invalid knowledge generations, following prior
work (West et al., 2021). For a random 10K sam-
ple of our generated comparatives for unique entity
pairs, we crowdsource the validity of each compar-
ison (using the same setup described subsequently
in §3.1). We train a classifier to discriminate be-
tween aggregated “Accept” and “Reject” crowd-
sourced labels (see Appendix B for additional de-
tails) and vary the threshold for the “Accept” class
to filter at different levels of knowledge precision.

3 NeuroComparatives

Our large-scale generation effort produced 8.8m
comparatives before discriminative filtering (details
in App. A), which we refer to as NC-XL. Specif-
ically, NC-XL includes 8.7M comparatives gener-
ated from GPT-2 XL, 78K from Llama-2-7b, 16.3K
from InstructGPT, 10.7K from ChatGPT, and 6.6K
from GPT-4. We further apply our knowledge
discriminator model on NC-XL to create subsets
containing only the top-50% and top-20% of com-
paratives, which we refer to as NC-L and NC-S,
respectively. While NC-XL contains the greatest
breadth of comparative knowledge, the more strin-
gent filtering applied to produce NC-L and NC-S
results in the highest knowledge quality, without
hurting diversity.

The largest existing resource of comparative
commonsense knowledge is WebChild (Tandon
et al., 2017), collected via information extraction

methods. While WebChild contains over 18M gen-
eral assertions covering 2M concepts and activi-
ties, we focus on its comparative knowledge, which
spans 813K assertions over 335K entity pairs. Com-
pared to WebChild, our NC-XL corpus is 10x larger.
Table 1 provides examples of NC-XL in contrast to
WebChild assertions across four pairs of entities.
For ease of comparison, we convert the WebChild
assertions from OpenIE triplets to a natural lan-
guage format, similar to ours.

The first set of examples for the entity pair
(helicopters, planes) illustrates the more detailed,
domain-specific properties, such as “operating
costs”, “more cargo”, and “stable in flight” in
NC-XL. In contrast, WebChild assertions are more
generic (e.g., “cooler”, “better”) and not specific to
the domain of flight. This example also highlights
how NC-XL assertions are more informative and
interesting to humans, as evidenced by their lower
rate of rejection shown in Table 1.

We also compare our generated knowledge to
ATOMIC (Sap et al., 2019) and ConceptNet (Speer
et al., 2017). Although neither explicitly con-
tains comparative knowledge, they do contain re-
lations from which comparatives can be inferred.
We use the AtLocation and MadeUpOf relations
in ATOMIC, as well as the AtLocation, PartOf,
and MadeOf relations in ConceptNet, to infer size
comparisons over entities. We convert these en-
tries to our NCs format for evaluation; for e.g., the
ATOMIC triple (human body, MadeUpOf, brain)
results in the comparative: “Compared to brains,
human bodies are larger.”. We use human (§3.1)
and automatic (§3.2) evaluation to compare the
quality and diversity of NeuroComparatives with
existing comparative knowledge resources.
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3.1 Human Evaluation of Validity

We task 3 workers from Amazon Mechanical Turk
with classifying each comparative into one of six
categories: ‘True’, ‘False’, ‘Too subjective to
judge’, ‘Too vague to judge’, ‘Too unfamiliar to
judge’ and ‘Invalid’.8 We discard examples where
there was no majority consensus among the 3 work-
ers, and those marked as ‘Too unfamiliar to judge’
by a majority vote. Examples marked as ‘True’
are considered valid, and all others, invalid. Ap-
pendix D.2 details our annotation process (Fig. 6).

Source Size Accept. ↑ SB2 ↓ SB3 ↓

E
xi

st
in

g
K

B
s � ConceptNet 34,355 91.8% 1.00 1.00

� ATOMIC 23,566 89.6% 1.00 1.00
WebChild 812,862 58.1% 0.77 0.71

Fe
w

-s
ho

t
L

L
M

s InstructGPT - 72.7% 0.91 0.89
ChatGPT - 86.2% 0.90 0.88
GPT-4 - 89.4% 0.87 0.84

N
C

s
(G

PT
-2

) NC-XL 8,709,810 76.9% 0.64 0.58
NC-L 4,354,905 84.4% 0.64 0.58
NC-S 1,741,962 90.1% 0.65 0.59

N
C

s
(O

th
er

L
L

M
s)

NCs (LLaMA-7b) 77,798 90.0% 0.64 0.59
NCs (InstructGPT) 16,300 83.8% 0.60 0.56
NCs (ChatGPT) 10,756 88.6% 0.48 0.44
NCs (GPT-4) 6,630 89.0% 0.52 0.48

Table 2: Size, human acceptance rates (on a 0.5k subset)
and diversity measures, Self-BLEU-2 (SB2) and Self-
BLEU-3 (SB3) for different comparatives. � indicates
human-authored comparatives. NCs generated from
GPT-2 achieve a better trade-off between acceptance
and diversity than generations from few-shot LLMs
(no filtering); our filtered NCs from LLMs fare even
better. Discriminative filtering of NeuroComparatives
improves acceptance without hurting diversity.

We evaluate 500 randomly sampled compara-
tives from NC-XL, WebChild, ConceptNet, and
ATOMIC. For evaluation of comparative knowl-
edge extracted from GPT-3, ChatGPT, and GPT-
4 without our framework (i.e., without any filter-
ing), we obtain a sample of 500 completions to
the same prompts used to generate the sampled
NeuroComparatives (see Appendix C for addi-
tional discussion on the impact of filtering on Chat-
GPT and GPT-4). Human acceptance results are
shown in Table 2 along with the size (total num. of
comparatives) of different sources of comparative
knowledge. While human-authored comparatives
in ConceptNet and ATOMIC have the highest ac-
ceptance, these sources are the smallest in size,

8This is an absolute evaluation scheme; relative compar-
isons of pairs of comparatives are somewhat unfair since the
comparisons might be along different dimensions.

0% 20% 40% 60% 80% 100%
Percentage of generations filtered by knowledge discriminator

80.0%

85.0%

90.0%

95.0%

100.0%

Hu
m

an
 a

cc
ep

ta
nc

e 
ra

te

Figure 3: As our knowledge discriminator gets stricter,
human acceptance of NeuroComparatives increases.

involved expensive human efforts and cannot be
arbitrarily scaled. Among generated comparatives,
NC-XL achieves nearly a 20% absolute improve-
ment in human acceptance relative to WebChild,
while containing over 10x more comparative knowl-
edge. On average, few-shot prompting without fil-
tering achieves lower acceptance than our NCs with
the same LLMs, highlighting the benefits of our
approach. NCs generated by LLaMA-7b achieved
a similar human acceptance rate as that generated
by GPT-2, suggesting that high-quality knowledge
may be acquired from smaller-scale LMs.

Filtering Contradictions improves NeuroCom-
paratives We conduct an ablation to study the
impact of filtering contradictions on generating
NeuroComparatives (§2.3.3). We obtain a sam-
ple of comparatives from GPT-2-XL without the
contradiction filter. The overall acceptance rate of
these comparatives is 69.1%, which is an absolute
decrease of 7.8% compared to NC-XL, confirming
the importance of contradiction filtration.

Impact of Discriminative Filtering Figure 3 and
Table 2 show that NC-L, which includes only the
top-50% of our generated knowledge, achieves an
acceptance rate of 84.4%, a 7.5% absolute increase
relative to NC-XL. The top-20% filtering used to
produce NC-S improves the acceptance rate even
further to 90.1%, which exceeds the acceptance of
few-shot prompting with both ChatGPT and GPT-4
(without our filtering) and is on par with human-
authored sources. At this level of filtering, NC-S
is still over 2x larger than WebChild while hav-
ing an approximately 32% absolute gain in human
acceptance rate.

4507



3.2 NeuroComparatives’ Diversity

We report Self-BLEU (Zhu et al., 2018), using both
bigrams (SB2) and trigrams (SB3), to compare the
diversity of comparatives from different sources
in Table 2. We randomly sample 500 entity pairs
from WebChild containing at least 5 comparisons.
For few-shot prompting with GPT-3, ChatGPT, and
GPT-4, we use the same prompts (see §3.1) to ob-
tain the top-5 generations for each entity pair. For
each source, we compute Self-BLEU among the 5
candidates. Since the comparatives from Concept-
Net and ATOMIC are limited to a single relation
(size), measure of diversity doesn’t apply. NC-
XL and NC-L exhibit the greatest diversity, with a
31% reduction in Self-BLEU-3 relative to few-shot
prompting with GPT-4. Crucially, knowledge dis-
crimination does not impact the diversity of NC-S.

While NC-XL by design contain 5 comparisons
for each pair of entities, the amount of comparative
knowledge per entity pair in WebChild is heavily
skewed: approximately 80% of the entity pairs
have only 1 comparison and over 10k assertions
comparing the entities “man” and “woman.” We-
bChild is also heavily skewed towards a small num-
ber of frequently-occurring relations (e.g., “better”).
We illustrate the skew in Figure 5 in Appendix D.1.

To further quantify the diversity of compara-
tives in NC-XL and WebChild, we consider iden-
tical relations from each source by considering
unique comparative adjective phrases. We build
a frequency-based probability distribution for re-
lations in each source, and use it to compute their
respective entropies— higher entropy indicates
greater diversity of comparative relations. Our re-
sults show that the entropy of NC-XL is 7.9, which
is 30% higher (indicating greater diversity) than
the WebChild entropy of 6.1.

4 Downstream Task Performance

While NeuroComparatives are demonstratably di-
verse (§3.2), the impact on downstream task can
be measured via their coverage on existing bench-
marks. Here, we demonstrate NCs’ wide knowl-
edge coverage without compromising knowledge
quality on three benchmarks.

To this end, we use two existing benchmarks:
Elephant (Elazar et al., 2019) and Verb Physics
Reannotated (Elazar et al., 2019, VPR). Elephant
contains 486 comparisons of sizes of various trans-
portation vehicles and animals. VPR reannotates
VerbPhysics Forbes and Choi (2017) by filtering

out the examples where the objects were not com-
parable, or the annotators disagreed among them-
selves. This re-annotation results in 2964 examples
of object relations (1927 unique pairs of objects)
along the dimensions of speed, length and mass.

The unstructured knowledge in NeuroCom-
paratives facilitates easy integration with LLMs
through natural language, therefore enabling the
use of comparative reasoning abilities of LLMs. As
there are no benchmarks for systematically evaluat-
ing the comparative reasoning capabilities, we con-
structed a new comparative reasoning QA bench-
mark, ComparativeQA to investigate this ques-
tion. Specifically, we identified all comparatives
that were unanimously assigned a label of ‘True’
by annotators in our human evaluation of validity
experiments (§3.1). We then rephrased these com-
paratives as questions in order to construct a QA
benchmark (see App. E.2). This produced a total
of 656 comparative reasoning questions.

Finally, the COPEN dataset (Peng et al., 2022)
is a benchmark for probing conceptual knowledge
in pre-trained language models. Two tasks from
COPEN (Conceptual Similarity Judgement and
Conceptualization in Contexts) are related to our
task of acquiring comparative knowledge. There-
fore, we evaluate the benefit of our framework on
these two additional downstream tasks.

4.1 Coverage on Elephant
We evaluated five different versions of NeuroCom-
paratives that differed by model scale: NC-S gen-
erated from GPT-2 XL, NCs from LLaMA-2-7b,
from GPT-3, from ChatGPT, and from GPT-4; all
variants went through discriminative filtering. Be-
cause NeuroComparatives are generated without
restrictions on the attribute used for comparison,
only a subset of these comparisons are along the
size dimension corresponding to the 486 compar-
isons in Elephant. We identify this subset via a
simple string matching approach and filter out the
remaining generations for this evaluation.

As shown in Table 3, GPT-4 NCs achieved nearly
perfect exact match accuracy—98.7% express the
correct size relationship according to the Elephant
annotations, and higher overlap with the Elephant
dataset. We observe a very clear trend that more
capable models generate NCs with higher quality.

4.2 Coverage on VPR
We used our framework to generate NCs with the
unique object pairs in VPR and additionally filtered
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Elephant VPR

NCs Source #Overlap Acc. ↑ #Overlap Acc. ↑
NC-S (GPT-2 XL) 205 66.7% 869 66.7%
NCs (LLaMA-2-7b) 132 90.2% 760 71.2%
NCs (InstructGPT) 250 76.8% 1106 76.2%
NCs (ChatGPT) 189 97.9% 1090 88.2%
NCs (GPT-4) 226 98.7% 1351 93.3%

Table 3: Coverage (overlap) and accuracy of NCs on
486 examples in the Elephant dataset as well as 2964
examples in the VPR dataset.

LLaMA-2-7b Finetuning Source Acc. ↑
None (5-shot) 60.7%

NC-S (GPT-2) 91.0%
NC-S (GPT-2 + ChatGPT + GPT-4) 92.7%

Reversed-NC-S 14.6%
WebChild 79.0%

Table 4: LLaMA-2-7b performance on comparative
reasoning QA. fine-tuned on 50k sampled comparatives
from various sources. All results are 5-shot.

them to contain comparisons only along speed,
length, and mass using few-shot classification with
Falcon-40b-instruct. We then used a BART-large
model trained on MNLI to determine if a pair of
NCs and VPR entail each other. Entailment means
that our generated knowledge agrees with VPR
used as ground truth (see Appendix E.1 for details).

In Table 3, we can see that GPT-4 NCs again
achieved the best overall accuracy of 93.3% as well
as the highest coverage, highlighting the value of
large-scale models. On top of being accurate, our
NCs generates much more diverse knowledge be-
yond these three evaluated attributes, not directly
reflected in the results.

4.3 Results: ComparativeQA

We used a LLaMA-2-7b model for QA on our con-
structed ComparativeQA benchmark. As shown in
Table 4, vanilla LLaMA-2-7b achieves only 60.7%
accuracy on this dataset, using a prompt with five
in-context examples. After finetuning LLaMA-2-
7b for 3 epochs on a separate dataset of 50k QA
comparatives sampled from NC-S from GPT-2, its
accuracy on the test dataset increases to 91%. This
is despite the lack of overlap between the entity
pairs in the 50k NCs sampled for training and the
test set. On additionally including 17k NC-S from
ChatGPT and GPT-4 for finetuning, we see a fur-
ther increase in validation accuracy to 92.7%.

As a control experiment, we finetuned on di-
rectionally reversed comparatives on the sampled
NC-S. Finetuning on this set of incorrect compara-
tives degrades the accuracy of LLaMA-2-7b on the
test set to 14.6%, highlighting the quality of our
NCs. In addition, we also finetuned LLaMA-2-7b
using a random sample of 50k comparatives from
WebChild, and this results in an accuracy of 79%.

4.4 Results: COPEN Dataset

The Concept Similarity Judgment (CSJ) task from
the COPEN dataset is related to a component of our
framework which aims to identify entity pairs shar-
ing common attributes. Specifically, our compara-
tive prompt construction and filtering method (Sec-
tion 2.1.4) implicitly performs a concept similarity
judgment between pairs of entities. We therefore
applied this approach to query and candidate enti-
ties in the CSJ test set, using our GPT2-XL length-
penalized perplexity score of comparative prompts
to identify the best candidate which matches the
concept corresponding to each query.

In the zero-shot setting, we found that our ap-
proach produces a 19% relative improvement in
the performance of GPT-2-XL on the development
set (increasing from 11.3 to 13.44) and a 14% rela-
tive improvement on the test set (increasing from
11.7 to 13.3). Note that these results were obtained
without any additional training of the model.

We also found that the Conceptualization in Con-
texts (CiC) task from the COPEN dataset can bene-
fit from our approach. This task requires the model
to identify the best concept for an entity in a context.
The baseline performance of GPT-3.5-turbo-1106
in the zero-shot setting for this task is 40.9%. We
used GPT-2-XL to generate NeuroComparatives
among candidate concepts and used them as addi-
tional context in the prompt, which improved the
accuracy of GPT-3.5-turbo-1106 to 42.8%. These
results demonstrate the utility of our NeuroCom-
paratives KB and knowledge acquisition frame-
work for improving performance on downstream
tasks without the need for additional model train-
ing.

5 Related Work

Comparative Knowledge: Despite the signifi-
cance of comparative knowledge (Hofstadter and
Sander, 2013), resources for the same are few and
far between. Those that do exist have been col-
lected almost exclusively via IE and data min-
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ing methods (Jindal and Liu, 2006; Cao et al.,
2010; Jain and Pantel, 2011; Jang et al., 2012;
Tandon et al., 2014, 2017; Elazar et al., 2019,
i.a.), raising questions about coverage and diversity.
Our approach is designed to address such issues
via distilling knowledge from models at different
scales. Most modern knowledge resources such as
ATOMIC (Sap et al., 2019), VerbPhysics (Forbes
and Choi, 2017) and DoQ (Elazar et al., 2019) may
contain implicit comparisons via relationships be-
tween and properties of entities. A few knowledge
resources involve explicit comparisons, but only
along a few specific dimensions like physical prop-
erties (e.g. size (Bagherinezhad et al., 2016) or
number (Narisawa et al., 2013)). Recently, Yu et al.
(2023) collect data from structured and unstruc-
tured sources on specific real-world entities. Shiv-
ade et al. (2015) compare gradable lexical items,
primarily adjectives and adverbs. In contrast, our
NCs involve explicit comparisons between nomi-
nal everyday concepts, without restrictions on the
comparison dimensions.
LM Knowledge Distillation: The ascendance of
LLMs has begun to replace expensive, manually
constructed knowledge bases due to their cover-
age benefits (AlKhamissi et al., 2022). LLMs have
been used to create resources of factual knowledge
(Petroni et al., 2019), structured knowledge graphs
(Hao et al., 2022), instructions for further train-
ing (Wang et al., 2023) and training data for dif-
ferent tasks (Liu et al., 2022; Chakrabarty et al.,
2022, i.a.). Our overgenerate and filter framework
is inspired by West et al. (2021) who distill GPT-3
into a commonsense KG with a supervised critic.
Our NCs focuses on comparative knowledge dis-
tilled from (among others) GPT-2 and LLaMA-2
with neuro-symbolic constrained decoding; All-
away et al. (2022) and Bhagavatula et al. (2022)
use a related method to distill generics knowledge
(Hampton, 2012) from GPT-2. Beyond knowledge
distillation, neuro-symbolic constrained deocding
with NeuroLogic has been applied to tasks such
as counterfactual generation (Howard et al., 2022)
and prompt engineering (Rosenman et al., 2023).

6 Conclusion

We demonstrate distillation of high-quality compar-
ative knowledge from LMs at different scales and
produce NeuroComparatives: the largest compar-
ative knowledge corpus to date. NC-XL is 10x
larger, 30% more diverse, and 19% more human

acceptable than existing sources; with knowledge
discrimination, we additionally achieve over 90%
human acceptance. Our work highlights the value
of comparative knowledge and exploits both neuro-
symbolic manipulation of small-scale models and
extreme-scale models for knowledge distillation.
In our evaluations which demonstrated the utility
of NeuroComparatives for downstream tasks, we
primarily focused on comparative reasoning since
it is most directly related to the knowledge we ac-
quired. However, a promising direction for future
research would be investigating other downstream
tasks which can benefit from training on Neuro-
Comparatives.

Limitations

NeuroComparatives is a collection of fully gener-
ated data with limited manual verification. Caution
must be exercised around training and deploying
models on such data, due to reasons outlined below.

While our work centers around distilling knowl-
edge from language models, it is well known that
language models generate misinformation as well
as toxic content. The scale of generations in our pa-
per makes it challenging to manually analyze each
generation. We expect that our filtering stage (§2.3)
and knowledge discriminator (§2.3.4) are able to
filter out many contradictory statements, but the
veracity of the filtered remainder is challenging
to determine. It is conceivable that there remain
some fallacies in the data. As our comparisons are
designed to be restricted to be between physical
objects (as our root seed entities), we avoid com-
parisons between animate entities and any toxic
content that might be associated with such compar-
isons.

NeuroComparatives is a resource in English
only. Further, we restricted our entities to be ob-
jects in the real world which are nouns. However,
there could be many potentially useful comparisons
among verbs and adjectives. Due to limited re-
sources, we leave the investigation of those to fu-
ture work.
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Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78–85.

Marilyn A. Walker, Owen Rambow, and Monica Rogati.
2001. SPoT: A trainable sentence planner. In Sec-
ond Meeting of the North American Chapter of the
Association for Computational Linguistics.

Peng Wang, Qi Wu, Chunhua Shen, Anthony Dick, and
Anton van den Hengel. 2018. FVQA: Fact-Based
Visual Question Answering. IEEE Trans. Pattern
Anal. Mach. Intell., 40(10):2413–2427.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proc. of
ACL (to appear).

Peter West, Chandra Bhagavatula, Jack Hessel, Jena D
Hwang, Liwei Jiang, Ronan Le Bras, Ximing
Lu, Sean Welleck, and Yejin Choi. 2021. Sym-
bolic knowledge distillation: from general language
models to commonsense models. arXiv preprint
arXiv:2110.07178.

Mengxia Yu, Zhihan Zhang, Wenhao Yu, and Meng
Jiang. 2023. Pre-training language models for com-
parative reasoning.

Hongming Zhang, Xin Liu, Haojie Pan, Yangqiu Song,
and Cane Wing-Ki Leung. 2020. Aser: A large-scale
eventuality knowledge graph. In Proceedings of the
web conference 2020, pages 201–211.

4512

https://aclanthology.org/P13-1038
https://aclanthology.org/P13-1038
https://aclanthology.org/P13-1038
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://doi.org/10.18653/v1/N19-1170
https://doi.org/10.18653/v1/N19-1170
https://doi.org/10.18653/v1/2020.findings-emnlp.291
https://doi.org/10.18653/v1/2020.findings-emnlp.291
https://doi.org/10.3115/v1/N15-1051
https://doi.org/10.3115/v1/N15-1051
https://ojs.aaai.org/index.php/AAAI/article/view/8735
https://ojs.aaai.org/index.php/AAAI/article/view/8735
https://aclanthology.org/N01-1003
https://doi.org/10.1109/TPAMI.2017.2754246
https://doi.org/10.1109/TPAMI.2017.2754246
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560
http://arxiv.org/abs/2305.14457
http://arxiv.org/abs/2305.14457


Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan
Zhang, Jun Wang, and Yong Yu. 2018. Texygen: A
benchmarking platform for text generation models.

A Additional Details on the Generation of
NeuroComparatives

A.1 NeuroLogic Background

NeuroLogic accepts a series of constraints D(a,y)
which are true iff ‘a’ appears in the generated
sequence ‘y’. where each constraint is a set of
clauses {Ci | i ∈ 1, · · ·m} consisting of one
or more predicates in Conjunctive Normal Form
(CNF):

(D1 ∨D2 · · · ∨Di)︸ ︷︷ ︸
C1

∧ · · ·∧(Dk ∨Dk+1 · · · ∨Dn)︸ ︷︷ ︸
Cm

.

(2)
Each constraint D might be positive or negative;
D(ai,y) is satisfied (i.e., evaluates as true) if ai is
present or absent, respectively, in y

NeuroLogic employs a beam search approxima-
tion of an objective function which maximizes the
probability of the generated sequence while penal-
izing deviations from m clauses:

ŷt = argmax
y∈Y

pθ(yt|y<t)− λ

m∑

j=1

(1− Cj) (3)

where λ ≫ 0 penalizes deviations from the con-
straints.

Candidates are scored at each t per their (partial)
satisfaction of the constraints:

f(y≤t) = log pθ(y≤t|x) + λ max
D(a,y≤t)

|â|
|a| (4)

where â represents a subsequence of a in the cur-
rent generation. This has the effect of preferring
candidates which at least partially satisfy multi-
token constraints; for example, a generated se-
quence y≤t = “Compared to train tickets, airline
tickets are generally more” would be rewarded for
partially satisfying the constraint a = “more ex-
pensive” via its subsequence â = “more”.

Unlike the top-k selection strategy used in tra-
ditional beam search, NeuroLogic performs prun-
ing, grouping, and selection steps to identify the
best candidates which satisfy the given constraints.
Specifically, candidates which irreversibly violate
one or more constraints are pruned, and the re-
maining candidates are grouped according to their
number of satisfied clauses in order to encourage
diversity. The best candidate within each group is

Auxiliary verbs Adverbs of frequency

have typically
need often
may always
are generally
would normally

Table 5: Positive constraint sets.

then selected according to the scoring function in
Equation 4.

Each pass of NeuroLogic returns multiple gen-
erations, which are scored according to the sum of
their length-penalized log probabilities:

1

Nα

N∑

t=1

log pθ(yt|y<t)

where N denotes the length of the generated se-
quence y and α is a length penalty to encourage
shorter generations (we use α = 0.1). We refer to
this score as as the S.

A.2 Constraint Sets for NeuroLogic

Table 5 provides the positive constraints used in
NeuroLogic decoding. The table lists tokens used
for two different positive constraint sets. For each
of the 30 pairwise combinations of these auxiliary
verbs and adverbs, we generate a completion of the
prompt where the corresponding auxiliary verb and
adverb is required to be present in the generation.

Prompt Aux. Verb Adverb

Compared to cherries, peaches . . . have typically
Compared to cherries, peaches . . . have often
Compared to cherries, peaches . . . have always
...

...
...

Compared to cherries, peaches . . . would normally

Table 6: Example of the prompt and 30 combi-
nations of positive constraints for the entity pair
(cherries, peaches).

An illustration of the prompt and the positive
constraint combinations used to generate compar-
isons for an entity pair is provided in Table 6.

Table 5 provides the negative constraints used in
NeuroLogic decoding.

We use GPT-2 XL as our language model, which
has 1,542M parameters. For decoding with Neu-
roLogic, we use a beam size of 15, length penalty
of 0.1, and an n-gram size of 3 for preventing rep-
etitions. We use β = 1.25 as the reward factor
for in-progress constraint satisfaction and set the
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Constraint (aux verb), (adverb), (comparative adjective)

Order

Examples

Compared to red wines, white wines often have less tannins.

Compared to red wines, white wines are better always.

1 or 2 3

✓

Figure 4: Examples of generated comparatives which
satisfy and violate our constraint ordering.

constraint satisfaction tolerance to 3, which means
that only candidates which have a number of satis-
fied constraints within 3 of the maximum are kept
at each step. The hyperparameters are manually
curated. Please refer to Lu et al. (2021) for details
on these hyperparameters.

Our experiments were conducted on a cluster
with Nvidia RTX A6000 GPUs. We distributed
the generation across 64 GPUs, with each GPU
running 4 decoding iterations in parallel. The total
compute time to generate our knowledge base in
this environment was approximately 5 weeks.

A.3 Ordered Generation

We additionally modify NeuroLogic to handle or-
dered constraint satisfaction, for fine-grained con-
trol. For each clause Ci, we assign one or more
order indices mi ∈ {1, ...,m} which correspond
to the positional order in which clause Ci can ap-
pear in the generation. Specifying more than one
order index allows a clause to appear in multiple
different positions. Ordered constraint satisfaction
provides more fine-grained control for generating
valid comparatives, as illustrated in Figure 4.

B Details of knowledge discriminator
model

We use 80% of the labeled data for training the
knowledge discriminator and 20% for validation.
We trained the knowledge discriminator on a
Ubuntu 18.04 system with a single Nvidia RTX
3090 GPU. Specifically, we finetune RoBERTa-
large previously trained on MNLI9 using a learn-
ing rate of 5e-6, a batch size of 32, and a dropout
probability of 0.1. Hyperparameters are manually
curated. We train the model for a maximum of 50
epochs and monitor precision at recall = 80% on
the validation set, terminating training if this metric
fails to improve for 5 consecutive epochs. The total
training time of the model was 13 minutes. Preci-
sion and recall on the validation set were 0.589 and

9https://huggingface.co/roberta-large-mnli

0.642, respectively.

C Details of experiments with
InstructGPT, ChatGPT, and GPT-4

To compare our knowledge generations to Instruct-
GPT, ChatGPT, and GPT-4, we use a prompt which
instructs each model to complete a statement com-
paring two entities. The instruction is followed
by five hand-crafted examples and the prefix that
we want the model to complete in order to form
a comparative knowledge statement. An example
of the full prompt used to generate a comparative
knowledge statement for the entity pair (computer
keyboards, game controllers) is provided below.

Complete a statement which compares two entities.
Compared to blueberries, pineapples are heavier.
Compared to chairs, sofas are larger.
Compared to salad, pizza is less healthy.
Compared to a knife, a machete is more dangerious.
Compared to a bicycle, a skateboard is slower.
Compared to computer keyboards, game controllers

We use OpenAI’s API with the text-davinci-001
model for InstructGPT, gpt-3.5-turbo-0613 for
ChatGPT, and gpt-4-0613 for GPT-4 results. We
use the default parameter settings for each model
and evaluate human acceptance using the first gen-
eration returned for each prompt. For diversity
evaluations, we utilize the first 5 generations re-
turned by the API for each prompt.

D More on Evaluation

D.1 More on diversity of
NeuroComparatives

Figure 5 depicts the top-20 most frequent relations
in each source, showing that the WebChild relations
are more skewed, with its most-frequent relation
(“better”) representing over 12% of all relations.
In contrast, the most frequent relation in NC-XL
(“more expensive”) represents only 4% of all rela-
tions. The most-frequent relations in NeuroCom-
paratives are also generally more descriptive and
less subjective than those in WebChild.

D.2 Crowdsourced evaluation details

Our crowdsourced evaluations utilized Amazon
Mechanical Turk workers who were required to
have completed at least 5,000 HITs, have a lifetime
task acceptance rate ≥ 95%, and have achieved the
‘Masters’ qualification. A reward of $0.07 was paid
to the workers for each submitted label.
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Figure 5: The distribution of the top-20 relations in WebChild is more skewed than NC-XL.

Figure 6: Validity labeling interface for crowdsourced
workers

To ensure that all sources of knowledge were
evaluated in the same form, we transformed triples
in WebChild into a comparative knowledge state-
ment format. Specifically, we pluralized the head
and tail entities of each triple using the inflect
Python package and then formed a comparative
knowledge statement using the following template:
“Compared to {tail}, {head} {relation}”.

We provided the following set of instructions
and examples to the workers.

D.3 Instructions

In this task, you will be given a sentence which
compares two entities.

• Determine whether the comparison is true or
false (or indicate that you cannot determine its

truthfulness) by selecting one of the 6 options.

• If the sentence is incoherent or not a valid
comparison, select "Invalid". Please be for-
giving of spelling or grammatical errors and
avoid labeling it as invalid if the sentence only
has minor grammatical mistakes.

• If the comparison is too vague or requires
additional information to determine its truth-
fulness, select "Too vague to judge".

• If the comparison is overly subjective or ex-
presses a personal opinion which is not com-
monly held by most people, select "Too sub-
jective to judge".

• If the terms are too obscure or you do not
know the truth of the comparison, it is okay
to select "Too unfamiliar to judge". If you
can answer (e.g., based on likelihood), please
provide a response.

• If a comparison in unjudgeable due to more
than one of the above reasons, select the op-
tion corresponding to the primary reason it
cannot be judged.

D.4 Examples
True: "Compared to homes, office buildings are
more expensive to build."

False: "Compared to doctorates, master’s degrees
are more difficult to obtain."
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Invalid: "Compared to toothbrushes, utility knives
may be less efficient at cleaning always on."
Explanation: It is unclear what being "less efficient
at cleaning always on" means.

Too vague to judge: "Compared to text messages,
video chats generally have higher levels."
Explanation: Higher levels of what? The compari-
son lacks details needed to determine its truthful-
ness.

Too subjective to judge: "Compared to french
toast, pancakes are better."
Explanation: Although this comparison may be
true for many people, it is a subjective opinion
which varies substantially from person-to-person.

True: "Compared to frozen foods, fresh foods are
healthier."
Explanation: While this comparison could also be
considered an opinion, it is one which is widely
held by most people and therefore should be la-
beled as True.

Too unfamiliar to judge: "Compared to gyro-
scopes, microelectromechanical systems may often
provide better performance."
Explanation: I am too unfamiliar with "gyro-
scopes" and "microelectromechanical systems" to
judge this comparison.

E Case Study

E.1 Verb Physics

Filtering Here is the prompt used for filtering:

Solve a textual classification task by having a Thought,
then Finish with your answer. Thought can reason about
the current situation. Finish[answer] returns the answer
and finishes the task. There are 4 classes you need to
decide among speed, length, mass, and others. Don’t
answer with anything else. Here are some examples:
{FEW-SHOT EXAMPLES}
(END OF EXAMPLES)
Sentence:

Some examples are manually labeled and annotated
and put in the place of {FEW-SHOT EXAMPLES}
above(refer to Tab. 7 for a complete list of few-shot
examples). We make sure those examples are not
in the final evaluation set.

Classification We then used a BART-large model
trained on MNLI10 to determine if a pair of Neu-
roComparatives and VPR entail each other. We
perform this entailment classification twice—first
using NeuroComparatives as the premise and
VPR examples as hypothesis, and second with the
premise and hypothesis reversed. To better illus-
trate how the NLI is done, here is a quick exam-
ple of the entailment classification: (ENT1, ENT2,
length, 1) is one example in VPR where length
means this is a comparison of length and 1 means
ENT1 is longer than ENT2. Then we set the Neu-
roComparatives generated with this entity pair as
the premise, and [‘ENT1 is longer than ENT2’,
‘ENT1 is shorter than ENT2’] as the hypothesis.
Then entailment classification is run with each hy-
pothesis and get respective entailment probability.
The hypothesis with higher entailment probability
out of the two is chosen as the predicted entailment.
If this predicted entailment complies with the orig-
inal VPR example, we say our NeuroCompara-
tives and the example in VPR entail each other,
otherwise not. E.g., if ‘ENT1 is longer than ENT2’
has higher entailment probability, that means we
our the example in the VPR is an entailment to our
NeuroComparatives. This same process is done
a second time but with premise being the example
in VPR and hypothesis being our VPR (we just
reverse the entities in our NeuroComparatives to
get the counterfactual hypothesis). We count our
NeuroComparatives as conformed / agreed by
VPR if either of these two evaluations result in an
entailment. Overall, we find that NeuroCompar-
atives have a 66.7% entailment rate in this study,
which is consistent with our previous analysis on
the accuracy of matching NeuroComparatives to
the Elephant dataset (§4.1).

E.2 Comparative Reasoning QA

Here is an example of the QA transformation from
comparative data:

Comparative:
Compared to graham crackers, kiwifruits can be consid-
ered healthier”,
QA Format:
Question: Which of the following can be considered
healthier?
A. graham crackers
B. kiwifruits
Answer: B

10https://huggingface.co/facebook/
bart-large-mnli
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F Terms and Licenses

We use all of the datasets and models the way it is
intended to be used if specified. For the Compar-
ativeQA dataset we release, we intend its use for
research only.
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Few-shot Examples for Dimension Classification

Sentence: Compared to boats, trains are typically a lot slower.
Thought: Let’s think step by step. we can analyze the words and their context to determine
the appropriate class. In this case, the sentence compares the speed of boats and trains,
implying that the class we should assign is "speed."
Action: Finish[speed]

Sentence: Compared to cars, horses are often considered less practical.
Thought: Let’s think step by step. "Less practical" specifically refers to the practicality of
horses in comparison to cars. We can conclude that the appropriate class for this sentence
is "practicality," as it discusses the comparative practicality of horses compared to cars.
However, practicality is not one of the 4 classes (speed, length, mass, and others) we are
supposed to choose from. Therefore, we should assign the class "others" to this sentence.
Action: Finish[others]

Sentence: Compared to chins, heads often have more muscle mass.
Thought: Let’s think step by step. "More muscle mass" specifically refers to the muscle
mass of heads in comparison to chins. Considering all these factors, we can conclude that
the appropriate class for this sentence is "mass," as it discusses the comparative muscle
mass of heads compared to chins.
Action: Finish[mass]

Sentence: Compared to fingers, arms are always longer. Thought: Let’s think step by step.
"Longer" specifically refers to the length of arms in comparison to fingers. Considering all
these factors, we can conclude that the appropriate class for this sentence is "length," as it
discusses the comparative length of arms compared to fingers.
Action: Finish[length]

Sentence: Compared to dresses, purses can typically hold more goods.
Thought: Let’s think step by step. "smaller" specifically refers to the size or dimensions of
purses in comparison to dresses. Considering all these factors, we can conclude that the
appropriate class for this sentence is "size" or "dimensions," as it discusses the comparative
size of purses compared to dresses.
Action: Finish[length]

Table 7: Few-shot examples used to classify NeuroComparatives into 4 dimensions: speed, length, mass and others.
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Comparative Adjectives

littler, denser, sweeter, dumber, itchier, rawer, skinnier, righter, bloodier, harder
wider, creepier, cheaper, sorrier, sillier, hairier, odder, worthier, idler, cooler
higher, sourer, softener, unhappier, sadder, stingier, hotter, busier, slimmer, narrower
subtler, sharper, shorter, sparser, lesser, needier, drier, greasier, pricklier, neater
lighter, cuter, shyer, sweatier, floppier, shadier, fitter, lazier, crazier, muddier
purer, sooner, nearer, fresher, further, louder, chubbier, whiter, crueler, thirstier
slighter, flakier, clumsier, greener, rougher, fatter, prettier, calmer, damper, politer
fiercer, messier, darker, poorer, lovelier, lower, handier, steeper, deadlier, jointer
greedier, cleverer, steadier, headier, blunter, blander, outer, younger, dirtier, wiser
direr, graver, greater, riper, milder, noisier, likelier, meaner, sneakier, unlikelier
tougher, upper, angrier, stronger, shinier, stricter, smoother, fuzzier, tenther, sorer
classier, fairer, gentler, brighter, trickier, grainier, looser, harsher, extremer, grander
juicier, guiltier, colder, ruder, tighter, sunnier, newer, stickier, wealthier, crankier
quicker, dustier, trendier, cleaner, rosier, richer, braver, prouder, shaggier, earlier
larger, lengthier, windier, fonder, sleepier, heartier, bluer, filthier, worser, taller
worse, spicier, heavier, quirkier, stockier, scarier, creamier, roomier, smarter, curlier
clearer, goofier, hardier, breezier, grosser, laster, firmer, mushier, quieter, chewier
plainer, jumpier, lonelier, madder, touchier, readier, smokier, mightier, bitterer, sexier
unhealthier, snowier, wilder, norther, closer, later, saner, crispier, flatter, nastier
deeper, briefer, finer, smaller, cozier, hungrier, curvier, tastier, bigger, happier
smellier, faster, simpler, easter, tinier, kinder, fainter, thinner, blacker, bolder
funnier, holier, weightier, poppier, sturdier, nobler, livelier, hipper, duller, fuller
slower, cloudier, rustier, rarer, wetter, coarser, better, leaner, firer, crunchier
gloomier, speedier, abler, riskier, warmer, blanker, soggier, nicer, keener, moister
shallower, yellower, stranger, weirder, stiffer, stupider, lousier, humbler, friendlier
stealthier, straighter, softer, bossier, icier, fancier, broader, uglier, nexter, loftier, naughtier
scarcer, worldlier, tanner, luckier, sincerer, bulkier, oilier, easier, warier, healthier
earthier, wobblier, less, more, choppier, swifter, longer, saltier, truer, weaker
older, fussier, steepler, fewer, safer, slimier, fattier, chillier, thicker, nimbler

Table 8: Full list of comparative adjectives (290 words).
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Punctuation & Nonsensical Characters (separated by tab)
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Pronouns

I / think / you / You / He / he / he. / They they / they. / she / she. / She / my / my. / We / we /
Discourse Connectives & Relative Clause

without / without. between / between. / much / much. / either / either. / neither / neither. /
and / and. / when when. / while / while. / although / although. / am / am. / no / no. / nor /
nor. not / not. / as / as. / because / because. / since / since. / although / although. / finally
finally. / however / however. / therefore / therefore. / because / because. / consequently
/ consequently. / furthermore / furthermore. nonetheless / nonetheless. / moreover /
moreover. / alternatively / alternatively. / henceforward / henceforward. / nevertheless /
nevertheless. / whereas whereas. / meanwhile / meanwhile. / this / this. / there / there. /
here / here. / same / same. few / few. / similar / similar. / the following / the following. /
by now / by now. / into / into. / than / than. / and

Table 9: Full list of negative constraint sets separated by "/".
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