@inproceedings{yu-etal-2024-emotion,
title = "Emotion-Anchored Contrastive Learning Framework for Emotion Recognition in Conversation",
author = "Yu, Fangxu and
Guo, Junjie and
Wu, Zhen and
Dai, Xinyu",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2024",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-naacl.282",
doi = "10.18653/v1/2024.findings-naacl.282",
pages = "4521--4534",
abstract = "Emotion Recognition in Conversation (ERC) involves detecting the underlying emotion behind each utterance within a conversation. Effectively generating representations for utterances remains a significant challenge in this task. Recent works propose various models to address this issue, but they still struggle with differentiating similar emotions such as excitement and happiness. To alleviate this problem, We propose an Emotion-Anchored Contrastive Learning (EACL) framework that can generate more distinguishable utterance representations for similar emotions. To achieve this, we utilize label encodings as anchors to guide the learning of utterance representations and design an auxiliary loss to ensure the effective separation of anchors for similar emotions. Moreover, an additional adaptation process is proposed to adapt anchors to serve as effective classifiers to improve classification performance. Across extensive experiments, our proposed EACL achieves state-of-the-art emotion recognition performance and exhibits superior performance on similar emotions. Our code is available at https://github.com/Yu-Fangxu/EACL.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yu-etal-2024-emotion">
<titleInfo>
<title>Emotion-Anchored Contrastive Learning Framework for Emotion Recognition in Conversation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fangxu</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junjie</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhen</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinyu</namePart>
<namePart type="family">Dai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Emotion Recognition in Conversation (ERC) involves detecting the underlying emotion behind each utterance within a conversation. Effectively generating representations for utterances remains a significant challenge in this task. Recent works propose various models to address this issue, but they still struggle with differentiating similar emotions such as excitement and happiness. To alleviate this problem, We propose an Emotion-Anchored Contrastive Learning (EACL) framework that can generate more distinguishable utterance representations for similar emotions. To achieve this, we utilize label encodings as anchors to guide the learning of utterance representations and design an auxiliary loss to ensure the effective separation of anchors for similar emotions. Moreover, an additional adaptation process is proposed to adapt anchors to serve as effective classifiers to improve classification performance. Across extensive experiments, our proposed EACL achieves state-of-the-art emotion recognition performance and exhibits superior performance on similar emotions. Our code is available at https://github.com/Yu-Fangxu/EACL.</abstract>
<identifier type="citekey">yu-etal-2024-emotion</identifier>
<identifier type="doi">10.18653/v1/2024.findings-naacl.282</identifier>
<location>
<url>https://aclanthology.org/2024.findings-naacl.282</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>4521</start>
<end>4534</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Emotion-Anchored Contrastive Learning Framework for Emotion Recognition in Conversation
%A Yu, Fangxu
%A Guo, Junjie
%A Wu, Zhen
%A Dai, Xinyu
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Findings of the Association for Computational Linguistics: NAACL 2024
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F yu-etal-2024-emotion
%X Emotion Recognition in Conversation (ERC) involves detecting the underlying emotion behind each utterance within a conversation. Effectively generating representations for utterances remains a significant challenge in this task. Recent works propose various models to address this issue, but they still struggle with differentiating similar emotions such as excitement and happiness. To alleviate this problem, We propose an Emotion-Anchored Contrastive Learning (EACL) framework that can generate more distinguishable utterance representations for similar emotions. To achieve this, we utilize label encodings as anchors to guide the learning of utterance representations and design an auxiliary loss to ensure the effective separation of anchors for similar emotions. Moreover, an additional adaptation process is proposed to adapt anchors to serve as effective classifiers to improve classification performance. Across extensive experiments, our proposed EACL achieves state-of-the-art emotion recognition performance and exhibits superior performance on similar emotions. Our code is available at https://github.com/Yu-Fangxu/EACL.
%R 10.18653/v1/2024.findings-naacl.282
%U https://aclanthology.org/2024.findings-naacl.282
%U https://doi.org/10.18653/v1/2024.findings-naacl.282
%P 4521-4534
Markdown (Informal)
[Emotion-Anchored Contrastive Learning Framework for Emotion Recognition in Conversation](https://aclanthology.org/2024.findings-naacl.282) (Yu et al., Findings 2024)
ACL