
Findings of the Association for Computational Linguistics: NAACL 2024, pages 4556–4579
June 16-21, 2024 ©2024 Association for Computational Linguistics

On Evaluating the Integration of Reasoning and Action in LLM Agents
with Database Question Answering

Linyong Nan1 Ellen Zhang1 Weijin Zou2 Yilun Zhao1

Wenfei Zhou3 Arman Cohan1

1Yale University 2LinkedIn 3NVIDIA Corporation
{linyong.nan, ellen.zhang}@yale.edu

Abstract

This study introduces a new long-form database
question answering dataset designed to evalu-
ate how Large Language Models (LLMs) inter-
act with a SQL interpreter. The task necessi-
tates LLMs to strategically generate multiple
SQL queries to retrieve sufficient data from a
database, to reason with the acquired context,
and to synthesize them into a comprehensive
analytical narrative. Our findings highlight that
this task poses great challenges even for the
state-of-the-art GPT-4 model. We propose and
evaluate two interaction strategies, and provide
a fine-grained analysis of the individual stages
within the interaction. A key discovery is the
identification of two primary bottlenecks hin-
dering effective interaction: the capacity for
planning and the ability to generate multiple
SQL queries. To address the challenge of accu-
rately assessing answer quality, we introduce
a multi-agent evaluation framework that simu-
lates the academic peer-review process, enhanc-
ing the precision and reliability of our evalu-
ations. This framework allows for a more nu-
anced understanding of the strengths and lim-
itations of current LLMs in complex retrieval
and reasoning tasks.

1 Introduction

Significant advancements in natural language pro-
cessing have been driven by the development of
Large Language Models (LLMs) (Devlin et al.,
2019; Radford et al., 2019; Brown et al., 2020;
Chowdhery et al., 2022; OpenAI, 2023), which
have become fundamental components of numer-
ous products used by millions, reshaping people’s
habits on accessing information. Despite their
widespread adoption and impact, LLMs face in-
trinsic limitations due to their design, including
limited context window, stochastic nature which
makes them less suited for tasks requiring high
standards of precision, and extensive computations
(Mialon et al., 2023; Ji et al., 2023; Wang et al.,

2023a). Many studies have explored ways to miti-
gate these constraints by augmenting LLMs with
modules/tools of complementary features (Nakano
et al., 2022; Lewis et al., 2020; Lazaridou et al.,
2022; Gao et al., 2023a; Parisi et al., 2022; Schick
et al., 2023). In our study, we focus on augment-
ing LLMs with a symbolic module - a SQL code
interpreter - and assess their performance using the
long-form database question-answering task that
we introduce, illustrated in Figure 1. Such augmen-
tation is inevitable for tasks involving databases,
as they often far exceed the size of LLMs’ context
windows1, making information retrieval through
any means other than SQL inefficient. Addition-
ally, the use of SQL queries brings transparency to
the reasoning process of LLM agents, providing a
means to validate the accuracy of their generated
responses.

LLMs augmented with external modules/tools
possess two primary abilities: the capacity to act,
which involves the use of tools, and the capabil-
ity to reason, which encompasses planning and
analyzing the outcomes of actions (Mialon et al.,
2023; Madaan et al., 2023; Paul et al., 2023; Yao
et al., 2023; Yoran et al., 2023; Shinn et al., 2023).
While numerous studies have evaluated these abili-
ties in different contexts, we contend that some of
them focus more on evaluating tool selection and
tool employment with less focus on evaluating how
LLM agents reflect or synthesize the action results
(Parisi et al., 2022; Schick et al., 2023; Zhuang
et al., 2023; Li et al., 2023). Other research (Shus-
ter et al., 2022; Yao et al., 2023; BehnamGhader
et al., 2023) does examine both the action and rea-
soning capacities of LLM agents, yet the actions’
complexity is not as demanding as in studies with
a stronger focus on the action aspect. Our goals
are twofold: firstly, to introduce a task that places

1Enterprise databases can easily store hundreds of millions
of records for real-world applications.

4556

Database
ModuleLLM Agent

 Planning

We need to extract following
information: singers
citizenship, singers’ net worth
from ‘singer’ table, and sales
of each song...

 Employing Tools

SELECT Singer_ID, Name,
Net_Worth_Millions, Citizenship
FROM singer; SELECT Song_ID,
Singer_ID, Sales,
Highest_Position FROM song; ...

 Synthesizing

After analyzing the data, we
found the following
correlations between singers’
citizenship and their net...

“Investigate any
correlations between
singers' citizenship
and their net worth,
song sales, or
highest chart
positions.”

Figure 1: Illustration of our long-form database question answering task. The LLM agent is expected to perform a
series of tasks requiring reasoning and actions to interact with the database module.

equal emphasis on the complexities of both action
and reasoning, requiring a concerted interaction be-
tween them, and secondly, to assess the proficiency
of various LLM agents merging these dual aspects
into a cohesive performance. Here are our main
contributions:

• We introduce a new long-form database ques-
tion answering task, requiring retrieval, reasoning
and synthesis of diverse information from database.
We develop a systematic approach for collecting
questions, databases, and corresponding answers
in a way that ensures the answers are definitive and
indisputable, lending greater validity to the evalu-
ation process. The task is challenging in retrieval:
on average, it requires the formulation of three
SQL queries to gather sufficient information to an-
swer the questions. Our dataset and the prompts
used for dataset construction and experiments can
be found at https://github.com/linyongnan/
Database-Agent.

• We explore the benefits of augmenting LLMs
with the SQL code interpreter for our task, by com-
paring the performance of baseline LLMs given the
complete database records but without SQL capa-
bilities against LLM agents that are given database
schema and SQL generation capacity.

• In evaluating the performance of agents across
all sub-tasks, we identify that planning and tool
utilization are the critical challenges in achieving
effective coordination. We also delve into the rea-
sons behind their shortcomings. We extend our
examination to the generalizability of our results
across various LLMs, measuring the disparity in
performance between agents using proprietary and
open-source LLMs as their foundation.

• Finally, we introduced a multi-agent evaluation
framework aimed at enhancing the precision and
consistency of the output assessments using GPT-4
evaluators.

Property Value

Evaluation Dataset Size 200
- # Conclusive Questions 98
- # Interpretive Questions 102

Reference Answer Length
- Conclusive Questions (Avg.) 132
- Interpretive Questions (Avg.) 209

Database size
- # Tables (Med.) 4
- # Columns (Med.) 4
- # Data Records (Med.) 11

Table 1: Dataset Statistics. Avg. stands for average and
Med. stands for median.

2 Data Collection

In constructing our evaluation dataset, we priori-
tize a robust set of desiderata. These include the
intensive retrieval of diverse information from the
database, the application of rigorous reasoning over
the information retrieved, and the synthesis of facts
and inferences into a coherent and comprehensive
long-form answer. Our methodology employs a
hybrid annotation framework: we leverage the ca-
pabilities of GPT-4 to generate preliminary anno-
tations, then these annotations are selected and re-
fined through manual intervention to ensure quality
and relevance. The specifics and quantitative de-
tails of our evaluation dataset are presented in Table
1. We detail the collection of questions in Section
2.1 and the acquisition of answers in Section 2.2.

2.1 Question Generation
Our starting point is the databases from the Spider
dataset (Yu et al., 2018). We introduce a question
generation pipeline designed to generate questions
and iteratively refine them, addressing common is-
sues encountered during preliminary experiments
with GPT-4 generated queries. This pipeline can
be described as Control-Condense-Confirm, it
begins by exerting control over the question gener-
ation. We direct GPT-4 to generate questions that

4557

https://github.com/linyongnan/Database-Agent
https://github.com/linyongnan/Database-Agent

pertain to specific entities or keywords by using
the original questions from the Spider dataset as
the basis. These questions are instrumental as they
concentrate on distinct column sets from various
tables, providing a targeted focus that counters the
LLM’s propensity to formulate overly broad and in-
distinct questions. Following the initial control, we
often find the questions to be exceedingly detailed.
To address this, we condense the content, remov-
ing superfluous information. This pruning process
not only ensures the questions remain challenging
but also leaves room for the model to demonstrate
its inferential capabilities. The final phase is the
manual review of questions to confirm they are un-
ambiguous and meet all predefined criteria for the
task. This step guarantees that the questions are of
high quality and align with the specified desiderata
of our dataset.

2.2 Answer Annotation
Building upon the question generation strategy out-
lined in the previous section, the task of annotating
answers to questions is generally an effort-intensive
task as it requires the formulation of multiple SQL
queries. This task is further complicated by the fact
that many databases, such as those in the Spider col-
lection, often contain an insufficient number of data
records for a comprehensive answer. We propose
a method that employs a Conjecture-Construct-
Conclude strategy to circumvent these issues.

The process begins by prompting GPT-4 with
the question alongside the database schema to
conjecture an answer. Subsequently, we con-
struct database records that corroborate this con-
jectured answer, formatted as INSERT statements.
These statements are integrated with the original
database’s CREATE statements, resulting in a be-
spoke synthetic database aligned with the question.
To ensure the integrity of the synthetic database,
we execute the merged statements to confirm the
absence of errors and manually inspect the data
records’ alignment with the conjectured answer.
As the final step of our method, we task GPT-4
to conclude with a substantiated answer, ensuring
that it aligns with the evidences we injected to the
synthetic database. This procedure ensures that
each question is matched with a definitive answer,
backed by verifiable evidence from the database
records.

Finally, we examine the question and its corre-
sponding answer. We noticed that a substantial
number of questions allow for multiple plausible

answers, each subject to interpretation of certain ab-
stract word in the question.2 To refine the fairness
of evaluations against a reference answer, we cate-
gorize all questions as either "Interpretive" or "Con-
clusive". "Conclusive" questions typically result
in definitive answers: yes, no or unknown, while
"Interpretive" questions can yield multiple valid
answers depending on the interpretation of certain
terms in the question. We provide demonstrative
examples in Figure 5 of the appendix to illustrate
the distinction between these categories. The dis-
tribution of questions across these categories is
detailed in Table 1.

3 Methods

We aim to evaluate how effective LLMs are at per-
forming a complex task that necessitate working
with external modules. We explore five main as-
pects: (1) the proficiency of LLMs in completing
our proposed task through interaction with exter-
nal modules; (2) the extent of improvement LLMs
gain from engaging with external modules; (3) the
impact of various interaction strategies on LLM
performance and the identification of the most ef-
fective one; (4) the challenges that hinder effective
interaction; (5) the generalizability of our findings
across diverse LLMs and the performance dispari-
ties attributed to the usage of different LLMs. We
can address the first, second and last aspects by
directly evaluating the quality of the final answer
generated by LLMs. To delve into the third and
fourth aspects, we need to first dissect the "inter-
action" process within our task into its constituent
components.

We propose to decompose the LLMs’ expected
workflow for our task into three distinct sub-tasks:
interaction planning, tool employment, and infor-
mation synthesis. Interaction planning involves
the LLM determining its interaction strategy with
the external module, considering the question and
past interactions. Tool employment is the phase
where the LLM generates module-specific com-
mands for the actual interaction. Information syn-
thesis requires the LLM to review the interaction
history and any newly acquired context to com-
pile the key information for the final answer. This
framework allows us to refine our second objec-
tive into assessing how different compositions of
these sub-tasks affect the quality of the final answer,
and also to define the most effective composition.

2Such as "impact", "success", "notable trends", etc.

4558

The third objective can be addressed by evaluating
LLM’s execution within each sub-task.

While the potential configurations of these sub-
tasks are vast, this study will narrow its focus to
two primary interaction strategies for feasibility:

• Sequential: The LLM agent systematically
tackles the sub-tasks in a linear, step-by-step
fashion, with predetermined sequence: inter-
action planning, tool employment, and infor-
mation synthesis. The agent’s focus should be
on prioritizing both precision and comprehen-
siveness throughout each juncture.

• Iterative: The LLM agent cyclically alter-
nates between interaction planning and tool
employment, similar to the self-ask prompting
(Press et al., 2023). The key aspect of interac-
tion planning in this context is to identify the
most crucial information to extract from the
database given the previous interactions. The
strategy calls for the agent to ensure precision
in every single interaction and to achieve com-
prehensiveness by deciding when to terminate
the interaction cycle.

Equipped with these strategies, we proceed to
empirically explore our central questions.

4 Experiments

4.1 Design
To prove the key areas identified in Section 3, we
designed two sets of experiments. The first set
evaluates three different types of LLM agents:

• No-Interaction: This LLM is tasked with
deriving the final answer with a chain-of-
thoughts prompting without engaging with
the SQL module, i.e. generating SQL queries.
To ensure fairness, we supply the complete
database records within the prompt for con-
text.

• Sequential-Interaction: We implement an
LLM agent that utilizes the sequential strategy
when working with the SQL module. It begins
by devising a plan in natural language to iden-
tify the needed information and its sources,
proceeds to generate SQL queries to retrieve
this information, and concludes by integrating
the data into the final answer.

• Iterative-Interaction: This strategy employs
an LLM agent that iteratively determines the

most crucial information to retrieve given the
interaction history. The agent articulates this
in natural language, crafts the corresponding
SQL query, and repeats this process until it
elects to stop. The final step involves consoli-
dating the gathered information into a conclu-
sive answer.

The second set of experiment focuses on evaluat-
ing the generalizability of our findings across vari-
ous LLMs, as well as comparing their performance.
We tested two proprietary LLMs: GPT-4 and
GPT-3.5-turbo, and six open-source LLMs of dif-
ferent sizes and capabilities: Llama-2-[7, 13]b,
Code-Llama-[7, 13, 34]b, and Mistral-7b.
The Llama-2 models were tested using their chat
versions, while the Code-llama and Mistral mod-
els were evaluated using versions fine-tuned for
instruction-following.

4.2 Evaluation
To rigorously assess the performance, we imple-
mented two distinct evaluation methods. Both in-
volve using an LLM for the evaluation process, yet
they differ in terms of their reliance on a reference
answer. Throughout both evaluation methods, we
use GPT-4 to ensure consistency.

4.2.1 Reference-based Evaluation
In this method, we utilize an LLM to compare the
system-generated answer against a reference an-
swer, whose acquirement is detailed in Section 2.2.
The evaluation protocol is adapted to suit the na-
ture of the question: for conclusive questions that
demand a specific answer, the LLM evaluator pro-
vides a straightforward verdict of either "match"
or "not match" and offers a rationale for its deci-
sion. For interpretive questions, which permit a
spectrum of answers, the LLM assigns a nuanced
score ranging from 1 (no match) to 5 (exact match),
reflecting the degree of information overlap with
the reference. The scoring rubric for this nuanced
evaluation is outlined in Figure 7 of the appendix.

4.2.2 Reference-free Evaluation
Assessing LLM performance on individual sub-
tasks is essential, yet the multitude of potential an-
swer pathways complicates the annotation process,
making reference-based evaluation impractical. To
navigate this challenge, we devised a reference-free
evaluation using a multi-agent framework mod-
eled after the academic peer-review system, as illus-
trated in Figure 6 in the Appendix. This framework

4559

enlists a group of reviewers and meta-reviewers
to evaluate the system outputs. Each reviewer re-
ceives the question, database schema, and the LLM
agent’s output for individual sub-tasks. Their role
is to critically assess each output across various
dimensions and determine if it is "perfect" or "not
perfect". Meta-reviewers are then presented with
the reviewers’ assessments and verdicts. Their task
is to discern consensus or discrepancies among the
reviewers’ opinions, evaluate the validity of their
critiques, and render a final decision of "perfect" or
"not perfect". The ultimate evaluation outcome is
derived from the majority ruling among the meta-
reviewers. To ensure a diversity of perspectives
and avoid uniformity in judgment, we configured
each GPT-4 evaluator with a temperature of 0.7.
The specific guidelines used to direct reviewers
and meta-reviewers are detailed in Figures 8, 9, 10
in the Appendix. We conducted a manual examina-
tion of all the reviews and, based on our findings,
adopted a meta-review revision process to enhance
the results. The details and rationale behind this
approach are elaborated in Section A of the Ap-
pendix.

4.3 Results
The experimental outcomes are presented in Fig-
ures 2, 3, 4 and Tables 2, 3, 5, addressing the main
research questions posed by our study.

LLM Agent Performance on Proposed Task
Examining Figures 2, 4, and Tables 2, 5, it be-
comes evident that even the state-of-the-art GPT-4,
when utilizing a better interaction strategy, cor-
rectly answers only 30% of conclusive questions
and achieves an average score of 2.34 on a 1-5 scale.
The multi-agent evaluation echoes this, with 36%
(IP), 56% (TE), and 67% (IS) of instances deemed
perfect for individual step, and only 22% of in-
stances considered perfect for all steps, indicating
considerable room for improvement.

Improvement from SQL Module Interaction
Table 3 compares LLM agents’ performances with
and without SQL module interaction. A significant
improvement is observed in LLMs’ performance
on conclusive questions when augmented with SQL
modules. However, this is not the case for inter-
pretive questions. It is important to note that this
result applies to instances with small databases
where complete records fit within the context win-
dow provided to non-interactive LLMs. This sug-
gests that direct interaction with external modules

is particularly beneficial for tasks that demand high
precision in retrieval, reinforcing our arguments of
LLM limitations in Section 1.

The Impact of Interaction Strategies Figure 2
reveals that, generally, a sequential strategy yields
better results across most LLMs, with iterative
strategies favoring Llama-2-13b and Mistral-7b.
We investigate this trend by analyzing the length
of plans, the number of generated SQL queries,
and their validity. Notably, when employing itera-
tive strategies, both Llama-2-13b and Mistral-7b
engage minimally with the SQL module, with
the Mistral-7b agent does not engage with the
database at all (empty plan), indicating that it es-
sentially guesses the answers. We set the perfor-
mance of Mistral-7b with iterative strategy as a
reference point for guess-based answers, marked
by vertical lines in the figures, and make a note
that performances close to this baseline likely re-
sult from guesswork. Additionally, we can also
notice that agents using iterative strategies tend to
plan less and interact minimally with SQL modules,
contributing to their underperformance compared
to sequential strategies.

Barriers to Effective Interaction Figures 4 and
Table 5 highlight that planning and tool employ-
ment (i.e. SQL generation) are the main hurdles
preventing agents from performing well on the pro-
posed tasks. Conversely, agents generally excel at
synthesizing retrieved information to produce an
accurate and comprehensive answer. This indicates
that eliciting better interaction planning via more
effective prompting and enhancing LLMs’ ability
to generate multiple SQL queries in parallel from
extended text descriptions are promising areas for
future research.

Generalizability Across Different LLMs The
conclusions regarding interaction strategy appear
consistent across various LLMs. However, our hy-
pothesis of interaction barriers primarily holds for
the more capable proprietary LLMs like GPT-4 and
GPT-3.5-turbo, and to a lesser extent, Llama-2
and Code-Llama models. The remaining LLMs
did not engage in any meaningful interaction, thus
no discernible patterns were noted.

Interaction Depth and Answer Quality Figure
3 suggests a weak correlation between the num-
ber of valid interactions (i.e., agent-generated SQL
queries that yield non-empty results) and perfor-
mance, hinting that more successful retrieval aids

4560

LLM Interaction
Mode

Match Score
(C/I)

Plan Length
(C/I)

Generated
SQLs (C/I)

Valid
SQLs (C/I)

Answer
Length (C/I)

GPT-4
Sequential 0.30 / 2.34 437 / 474 2.96 / 3.28 2.72 / 2.94 197 / 221
Iterative 0.24 / 2.21 83 / 101 0.99 / 1.18 0.79 / 0.80 157 / 199

GPT-3.5-turbo
Sequential 0.28 / 2.04 297 / 321 2.23 / 2.63 1.84 / 2.30 202 / 193
Iterative 0.15 / 1.49 223 / 252 1.06 / 1.10 0.89 / 0.81 94 / 90

Llama-2-7b
Sequential 0.21 / 1.95 364 / 347 2.88 / 2.58 1.29 / 1.04 285 / 283
Iterative 0.23 / 1.88 63 /92 0.65 /1.03 0.13 / 0.14 252 / 292

Llama-2-13b
Sequential 0.06 / 1.41 398 / 401 3.05 / 1.83 1.32 / 0.86 336 / 339
Iterative 0.18 / 1.72 16 / 16 0.20 / 0.28 0.01 / 0.01 310 / 359

Code-llama-7b
Sequential 0.13 / 1.60 368 / 390 3.25 / 3.67 1.59 / 1.89 306 / 325
Iterative 0.11 / 1.57 0 / 0 0 / 0 0 / 0 234 / 240

Code-llama-13b
Sequential 0.17 / 1.62 389 / 396 4.34 / 5.36 1.95 / 2.78 292 / 314
Iterative 0.15 / 1.51 115 / 110 0.66 / 1.59 0.26 / 0.70 243 / 245

Code-llama-34b
Sequential 0.19 / 1.93 359 / 377 2.79 / 3.31 1.39 / 1.72 314 / 352
Iterative 0.13 / 1.85 39 / 47 0.4 / 0.33 0.28 / 0.18 248 / 294

Mistral-7b
Sequential 0.16 / 1.71 384 / 379 1.01 / 0.91 0.57 / 0.37 231 / 282
Iterative 0.19 / 1.71 0 / 0 0 / 0 0 / 0 207 / 267

Table 2: Reference-based evaluation results and other measurements of the interaction process. C stands for
conclusive and I stands for interpretive. Valid SQL indicate SQL queries that are generated by the LLM agent that
have non-empty execution results.

(a) Match Rate for Instances with Conclusive Questions (b) Match Score for Instances with Interpretive Questions

Figure 2: Reference-based evaluation results across various interaction strategies and LLMs, with a vertical line
representing the performance achieved by a non-interactive LLM agent lacking database context, serving as the
baseline for guessing.

in generating more precise and comprehensive an-
swers.

Diversity and Consensus in Multi-agent Evalu-
ation Aggregating multiple diverse evaluations
and meta-evaluations from LLMs appears to de-
crease result variance, as evidenced by the in-
creased consensus among meta-reviewer LLMs
compared to reviewer LLMs shown in Table 5.
The scores from meta-reviewers are consistently
lower than those from reviewers, indicating that the
meta-review process critically considers the issues
highlighted by reviewers. This multi-tiered review

mechanism ensures that our evaluation framework
effectively balances both precision and recall.

4.4 Human Evaluation

We conducted human evaluations in both reference-
based and reference-free setting, aiming to com-
pare the evaluation outcomes of LLM evaluators
with human judgment. As detailed in Table 4,
we present the average results from three internal
human evaluators and the proportion of instances
where human assessment aligned with LLM eval-
uations regarding the output of our most powerful

4561

LLM Interaction
Mode

Conclusive
Questions

Match Rate

Interpretive
Questions

Match Score

GPT-4
No 0.19 2.37

Sequential 0.27 2.40

GPT-3.5-turbo
No 0.24 2.12

Sequential 0.30 2.13

Table 3: LLM agents with vs. without interaction with
SQL modules. Entire database records are provided in
the context for LLMs that disable interaction. We sam-
pled 161 out of 200 questions to report their reference-
based evaluation results because some databases are too
large to fit into LLM’s context window.

baseline - GPT-4 agent employing a sequential strat-
egy. In both scenarios, human evaluators received
identical materials (outputs of GPT-4 agent and
scoring guidelines) as provided to the LLM eval-
uators. In the reference-based setting, we found
that human evaluations concurred with LLM as-
sessments in over 80% of cases. A similar level of
agreement was observed in the reference-free set-
tings across all IP, TE and IS steps, reinforcing our
assertion that significant improvement potential ex-
ists in our task. Notably, the most advanced GPT-4
agent primarily faced challenges in planning inter-
actions for interpretive questions, with only 26% of
its attempts deemed accurate, whereas planning for
conclusive questions demonstrated higher success
rate.

4.5 Error Analysis

In our analysis of the GPT-4 agent’s performance
across the IP, TE and IS steps, we identified sev-
eral recurrent error types, supplemented by specific
examples in Figures 11-15 of the Appendix for clar-
ity. During the planning stage, we observed that
the agent often: (1) misinterpreted column con-
tents (Figure 11); (2) made incorrect assumptions
about column contents (Figure 12); (3) overlooked
key columns essential for analysis to answer the
question (Figure 13); (4) exhibited oversight or
sampling bias in data retrieval for subsequent anal-
ysis (Figure 14). In the tool employment step, the
agents often failed to execute statistical analyses,
such as computing the correlation coefficient (Fig-
ure 15). While Python might be more appropriate
for such task, its exploration is beyond the scope
of this study. Regarding the information synthesis
step, it is important to note that many negative eval-
uations in this stage stemmed from failures in the
previous step. When SQL execution results were

(a) Match Rate vs. Valid Interaction for Instances
with Conclusive Questions

(b) Match Score vs. Valid Interaction for Instances
with Interpretive Questions

Figure 3: Correlation between answer quality and num-
ber of valid interaction (SQL queries that returned non-
empty results)

lacking, leaving no information for synthesis, the
agent struggled to respond accurately, leading to
predominantly negative reviews of this phase.

Question type Reference-based Reference-free

Match / %Agree IP / %Agree TE / %Agree IS / %Agree

Conclusive 0.25 / 0.82 0.60 / 0.83 0.58 / 0.96 0.7 / 0.75
Interpretive 2.2 / 0.833 0.26 / 0.88 0.58 / 0.88 0.76 / 0.84

All N/A 0.43 / 0.85 0.58 / 0.92 0.73 / 0.80

Table 4: Human evaluation results for reference-based
and reference-free settings based on outputs of our
strongest baseline - GPT-4 agent with sequential inter-
action strategy. % Agree represents the proportion of
instances in which human and LLM evaluations concur.

5 Related Work

5.1 Augmented Language Models
The use of external tools to augment language
model outputs and mitigate model hallucination

3When calculating the agreement for match scores of inter-
pretive questions, we reclassify the original scores (scale of 1
to 5) into three levels: scores of 1 to 3 were assigned as low, a
score of 4 as medium, and a score of 5 as high. This process
is employed due to the guidelines given to human evaluators,
which suggest that scores from 1 to 3 reflect varying extents of
fact omission. Precisely differentiating between these degrees
can be difficult, hence the need for reclassification.

4562

Figure 4: Reference-free multi-agent evaluation results
for different sub-tasks and LLMs, all employing sequen-
tial interaction strategy.

has been previously studied in other domains and
tasks (Mialon et al., 2023). Models augmented
with tools like internet search (Lazaridou et al.,
2022), Python interpreters (Gao et al., 2023b), math
equation-generating models (Imani et al., 2023),
and question-answering models (Guu et al., 2020)
have empirically shown improvements in accuracy
in comparison to their counterpart baseline mod-
els. Other models like TALM (Parisi et al., 2022)
and Toolformer (Schick et al., 2023) for question
answering and ToolWriter (Gemmell and Dalton,
2023) for tabular question answering have built on
top of these to limit reliance on humans to select
tools for question answering models by fine-tuning
the models to learn how and when to use tools.
Our work differs from these previous works in that
we augment language models to use tools in the
data-to-text generation domain specifically where
the model is expected to not only query from a
database with the use of external tools, but also
aggregate these results and interpret the data to
produce a paragraph-length response to a not nec-
essarily close-ended question.

5.2 Reasoning and Action

Our work draws on elements of frameworks that
either prompt the model to repeatedly reason, act
upon the reasoning, and update the action plan until
the answer is found (Yao et al., 2023) or plan out
the different components needed to answer ques-
tions before retrieving and generating the answer
(Su et al., 2021). Other frameworks used additional
language models as the planner to aggregate in-

formation retrieved by a diverse inventory of tools
(Lu et al., 2023). Our work builds upon some of
these frameworks and investigates these in context
of the task of long-form data-to-text generation.
(Liu et al., 2023a) assess LLMs’ proficiency in in-
terfacing with databases through SQL, specifically
investigating their performance in question answer-
ing tasks that involve selection-type SQL queries,
evaluated via exact string match comparison be-
tween the generated and reference answers, as well
as tasks requiring database modification, such as
insert or update SQL queries, evaluated through
a database match metric. In contrast, our study is
centered on question answering tasks that demand
extensive retrieval and reasoning capabilities, and
we report findings using both reference-based and
reference-free metrics for evaluating the generated
answers.

5.3 Text-to-SQL

The field of Text-to-SQL has been extensively stud-
ied as the standard method for database question an-
swering, with significant contributions from a range
of studies (Berant et al., 2013; Zhong et al., 2017;
Yu et al., 2018; Yin and Neubig, 2018; Yu et al.,
2019; Wang et al., 2020; Yin et al., 2020; Scholak
et al., 2021; Ren et al., 2021; Xie et al., 2022;
Cheng et al., 2023; Nan et al., 2023, inter alia).
Traditionally, Text-to-SQL focuses on generating a
singular SQL query in response to a question. In
contrast to this, our study innovates by introducing
a question-answering task over databases that de-
mands the generation of multiple SQL queries to
formulate the answer.

5.4 Text Generation Evaluation

Development in automatic evaluation metrics have
emerged, utilizing LLMs to evaluate the quality of
generated texts (Fu et al., 2023; Liu et al., 2023b).
These methods have also been adapted for eval-
uating text pertaining to tabular data (Rebuffel
et al., 2021) and hallucination detection (Manakul
et al., 2023). (Wang et al., 2023b) introduced
self-consistency sampling, which has been shown
to improve the reasoning performance of the sys-
tem. This approach involves generating a set of
diverse answers and selecting the most common
one through majority vote. In our study, we propose
a reference-free multi-agent evaluation framework
that synthesizes these ideas.

4563

6 Conclusion

In conclusion, our investigation reveals the current
limitations of LLMs in complex retrieval and rea-
soning tasks. Augmentation with a SQL module
proved beneficial, particularly for conclusive ques-
tions, and pointed to the necessity of strategic in-
teraction planning and proficient tool employment.
Our findings stress the need for improvement in
these areas to enhance LLM effectiveness. Despite
the challenge of varying performance across differ-
ent models, our multi-agent evaluation framework
provides a scalable and rigorous method for assess-
ing agent capabilities. We hope that our proposed
task and findings will encourage further investi-
gations in LLMs’ capabilities of interacting with
external modules, inching towards LLMs capable
of handling complex tasks with enhanced precision.

Limitations

This study acknowledges several constraints that
much be considered when interpreting the results.
First, our evaluation dataset is small in scale, a
limitation primarily due to budget constraints. We
plan to expand our dataset to enhance the statistical
significance of our findings. Second, while this
study concentrated on tasks that require intensive
action and reasoning capabilities, there is room to
explore how LLM agents would perform with ex-
ternal modules on similar tasks with less stringent
requirements. Third, this study’s investigation is
limited to specific modules, leaving the examina-
tion of a broader spectrum of modules unaddressed.
Expanding our research to include a more diverse
set of modules is a direction we plan to explore in
our future work. Lastly, it is important to acknowl-
edge a potential bias in our evaluation methodology
stemming from the exclusive use of GPT-4 for gen-
erating reference answers as well as for evaluating
system-generated responses. This reliance could
skew the evaluation in favor of GPT-4 agent’s an-
swers.

Acknowledgements

We are grateful for the compute support provided
by Microsoft Research’s Accelerate Foundation
Models Research (AFMR) program. We would
also like to thank the anonymous reviewers for
their valuable comments.

References
Parishad BehnamGhader, Santiago Miret, and Siva

Reddy. 2023. Can retriever-augmented language
models reason? the blame game between the retriever
and the language model.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544, Seattle, Wash-
ington, USA. Association for Computational Linguis-
tics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
Noah A. Smith, and Tao Yu. 2023. Binding language
models in symbolic languages. In The Eleventh Inter-
national Conference on Learning Representations.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of

4564

http://arxiv.org/abs/2212.09146
http://arxiv.org/abs/2212.09146
http://arxiv.org/abs/2212.09146
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=lH1PV42cbF
https://openreview.net/forum?id=lH1PV42cbF
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei
Liu. 2023. Gptscore: Evaluate as you desire.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023a. PAL: Program-aided language
models. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages
10764–10799. PMLR.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023b. Pal: Program-aided language
models.

Carlos Gemmell and Jeffrey Dalton. 2023. Generate,
transform, answer: Question specific tool synthesis
for tabular data.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training.

Shima Imani, Liang Du, and Harsh Shrivastava. 2023.
Mathprompter: Mathematical reasoning using large
language models.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput.
Surv., 55(12).

Angeliki Lazaridou, Elena Gribovskaya, Wojciech
Stokowiec, and Nikolai Grigorev. 2022. Internet-
augmented language models through few-shot
prompting for open-domain question answering.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 9459–
9474. Curran Associates, Inc.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. Api-bank: A comprehensive
benchmark for tool-augmented llms.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Ao-
han Zeng, Zhengxiao Du, Chenhui Zhang, Sheng
Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie
Huang, Yuxiao Dong, and Jie Tang. 2023a. Agent-
bench: Evaluating llms as agents.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023b. G-eval:
Nlg evaluation using gpt-4 with better human align-
ment.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2023. Chameleon: Plug-and-play com-
positional reasoning with large language models.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Iterative
refinement with self-feedback.

Potsawee Manakul, Adian Liusie, and Mark J. F. Gales.
2023. Selfcheckgpt: Zero-resource black-box hal-
lucination detection for generative large language
models.

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christo-
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu,
Asli Celikyilmaz, Edouard Grave, Yann LeCun, and
Thomas Scialom. 2023. Augmented language mod-
els: a survey.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
Krueger, Kevin Button, Matthew Knight, Benjamin
Chess, and John Schulman. 2022. Webgpt: Browser-
assisted question-answering with human feedback.

Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu
Ri, Jaesung Tae, Ellen Zhang, Arman Cohan, and
Dragomir Radev. 2023. Enhancing few-shot text-to-
sql capabilities of large language models: A study on
prompt design strategies.

OpenAI. 2023. Gpt-4 technical report.

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. Talm:
Tool augmented language models.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beat-
riz Borges, Antoine Bosselut, Robert West, and Boi
Faltings. 2023. Refiner: Reasoning feedback on in-
termediate representations.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A. Smith, and Mike Lewis. 2023. Measuring
and narrowing the compositionality gap in language
models.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Clément Rebuffel, Thomas Scialom, Laure Soulier, Ben-
jamin Piwowarski, Sylvain Lamprier, Jacopo Staiano,
Geoffrey Scoutheeten, and Patrick Gallinari. 2021.

4565

http://arxiv.org/abs/2302.04166
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
http://arxiv.org/abs/2211.10435
http://arxiv.org/abs/2211.10435
http://arxiv.org/abs/2303.10138
http://arxiv.org/abs/2303.10138
http://arxiv.org/abs/2303.10138
http://arxiv.org/abs/2002.08909
http://arxiv.org/abs/2002.08909
http://arxiv.org/abs/2303.05398
http://arxiv.org/abs/2303.05398
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
http://arxiv.org/abs/2203.05115
http://arxiv.org/abs/2203.05115
http://arxiv.org/abs/2203.05115
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
http://arxiv.org/abs/2304.08244
http://arxiv.org/abs/2304.08244
http://arxiv.org/abs/2308.03688
http://arxiv.org/abs/2308.03688
http://arxiv.org/abs/2303.16634
http://arxiv.org/abs/2303.16634
http://arxiv.org/abs/2303.16634
http://arxiv.org/abs/2304.09842
http://arxiv.org/abs/2304.09842
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.08896
http://arxiv.org/abs/2303.08896
http://arxiv.org/abs/2303.08896
http://arxiv.org/abs/2302.07842
http://arxiv.org/abs/2302.07842
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2305.12586
http://arxiv.org/abs/2305.12586
http://arxiv.org/abs/2305.12586
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2205.12255
http://arxiv.org/abs/2205.12255
http://arxiv.org/abs/2304.01904
http://arxiv.org/abs/2304.01904
http://arxiv.org/abs/2210.03350
http://arxiv.org/abs/2210.03350
http://arxiv.org/abs/2210.03350

Data-questeval: A referenceless metric for data-to-
text semantic evaluation.

Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Michi-
hiro Yasunaga, Haitian Sun, Dale Schuurmans, Jure
Leskovec, and Denny Zhou. 2021. Lego: Latent
execution-guided reasoning for multi-hop question
answering on knowledge graphs. In Proceedings of
the 38th International Conference on Machine Learn-
ing, volume 139 of Proceedings of Machine Learning
Research, pages 8959–8970. PMLR.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Noah Shinn, Federico Cassano, Edward Berman, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: Language agents with verbal rein-
forcement learning.

Kurt Shuster, Mojtaba Komeili, Leonard Adolphs,
Stephen Roller, Arthur Szlam, and Jason Weston.
2022. Language models that seek for knowledge:
Modular search & generation for dialogue and
prompt completion.

Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang,
and Nigel Collier. 2021. Plan-then-generate: Con-
trolled data-to-text generation via planning. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 895–909, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for text-
to-SQL parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578, Online. Association for
Computational Linguistics.

Cunxiang Wang, Xiaoze Liu, Yuanhao Yue, Xiangru
Tang, Tianhang Zhang, Cheng Jiayang, Yunzhi Yao,
Wenyang Gao, Xuming Hu, Zehan Qi, Yidong Wang,
Linyi Yang, Jindong Wang, Xing Xie, Zheng Zhang,
and Yue Zhang. 2023a. Survey on factuality in large
language models: Knowledge, retrieval and domain-
specificity.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023b. Self-consistency improves
chain of thought reasoning in language models.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Vic-
tor Zhong, Bailin Wang, Chengzu Li, Connor Boyle,
Ansong Ni, Ziyu Yao, Dragomir Radev, Caiming
Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith,
Luke Zettlemoyer, and Tao Yu. 2022. UnifiedSKG:
Unifying and multi-tasking structured knowledge
grounding with text-to-text language models. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 602–631,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models.

Pengcheng Yin and Graham Neubig. 2018. TRANX:
A transition-based neural abstract syntax parser for
semantic parsing and code generation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 7–12, Brussels, Belgium. Association
for Computational Linguistics.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8413–8426, On-
line. Association for Computational Linguistics.

Ori Yoran, Tomer Wolfson, Ben Bogin, Uri Katz, Daniel
Deutch, and Jonathan Berant. 2023. Answering
questions by meta-reasoning over multiple chains
of thought.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1962–
1979, Hong Kong, China. Association for Computa-
tional Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

4566

http://arxiv.org/abs/2104.07555
http://arxiv.org/abs/2104.07555
https://proceedings.mlr.press/v139/ren21a.html
https://proceedings.mlr.press/v139/ren21a.html
https://proceedings.mlr.press/v139/ren21a.html
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2203.13224
http://arxiv.org/abs/2203.13224
http://arxiv.org/abs/2203.13224
https://doi.org/10.18653/v1/2021.findings-emnlp.76
https://doi.org/10.18653/v1/2021.findings-emnlp.76
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
http://arxiv.org/abs/2310.07521
http://arxiv.org/abs/2310.07521
http://arxiv.org/abs/2310.07521
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2022.emnlp-main.39
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2210.03629
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745
http://arxiv.org/abs/2304.13007
http://arxiv.org/abs/2304.13007
http://arxiv.org/abs/2304.13007
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,
and Chao Zhang. 2023. Toolqa: A dataset for llm
question answering with external tools.

4567

http://arxiv.org/abs/2306.13304
http://arxiv.org/abs/2306.13304

Appendix

A Reference-free Evaluation
Meta-Review Revision

Upon completing our evaluations and conducting
an error analysis based on reviews from our multi-
agent framework, we observed that a substantial
portion of the negative reviews pertained to the in-
consistency between the execution results of SQLs
generated by the agent and the database description
in the prompt, which included three sample rows
to demonstrate data types. It should be noted that
these records were intended only for demonstration
and do not encompass the entire database. This as-
pect was not sufficiently emphasized in our prompt,
leading GPT-4 reviewers and meta-reviewers to in-
correctly perceive any additional data from SQL
execution as erroneous. Furthermore, we identified
that reviewers placed a high emphasis on the data
type consistency of columns used for joining two
tables, even though many join keys in our databases
are of compatible types, capable of implicit con-
version by the SQL compiler. We believe these
two types of criticisms to be overly stringent for
evaluating the agent’s capability in our task. Con-
sequently, we have instructed GPT-4 to re-evaluate,
considering the meta-reviews of each stage and
specifically disregarding the two types of errors
mentioned. The original and revised scores, pre-
sented in Table 5, demonstrate the considerable
impact of these errors on the evaluation of tool
employment.

4568

• Conclusive questions:

1. Do dual-enrolled students tend to perform better or worse than their peers in the same degree
programs?

2. Analyze the relationship between teachers’ experience and their performance based on the
grades received in the courses they have taught.

3. Investigate any correlations between poker players’ performance and factors such as nationality,
age, and height.

• Interpretive questions:

1. Compare the success metrics between French and non-French singers.
2. Analyze the impact of record companies on the success of orchestras based on their performance

ratings and attendance.
3. Analyze the performance of the TV series by language and country, and identify any notable

patterns or trends.

Figure 5: Examples of Conclusive and Interpretive Questions

GPT-4
Reviewer 1

GPT-4
Reviewer 2

GPT-4
Reviewer 3

Review &
Decision 1

Review &
Decision 2

Review &
Decision 3

GPT-4
Meta-Reviewer 1

GPT-4
Meta-Reviewer 2

GPT-4
Meta-Reviewer 3

Meta-Review &
Decision 1

Meta-Review &
Decision 2

Meta-Review &
Decision 3

Evaluation
Result

Majority
Vote

QA
Context

System
Generated
Answer

Figure 6: Illustration of our multi-agent evaluation framework. It consists of two tiers of evaluation process.

4569

LLM Sub-Task
Reviewer Meta-Reviewer Revised

Perf. Rate Agree. Perf. Rate Agree. Perf. Rate

GPT-4

IP 0.48 0.54 0.28 0.88 0.36
TE 0.41 0.69 0.28 0.93 0.56
IS 0.61 0.72 0.53 0.93 0.67

GPT-3.5-turbo

IP 0.14 0.80 0.09 0.96 0.09
TE 0.18 0.82 0.13 1.00 0.35
IS 0.26 0.79 0.22 0.95 0.40

Llama-2-7b

IP 0.02 0.97 0.01 0.99 0.01
TE 0.01 0.99 0.01 1.00 0.01
IS 0.01 0.99 0.00 1.00 0.00

Llama-2-13b

IP 0.03 0.96 0.02 0.98 0.03
TE 0.01 0.98 0.01 0.99 0.02
IS 0.01 0.99 0.01 0.99 0.02

Code-llama-7b

IP 0.02 0.93 0.01 0.99 0.01
TE 0.01 0.98 0.01 0.99 0.04
IS 0.02 0.98 0.01 1.00 0.02

Code-llama-13b

IP 0.01 0.96 0.01 1.00 0.01
TE 0.02 0.98 0.02 1.00 0.03
IS 0.02 0.97 0.02 1.00 0.03

Code-llama-34b

IP 0.04 0.90 0.01 0.98 0.01
TE 0.02 0.97 0.01 0.99 0.02
IS 0.04 0.96 0.04 0.99 0.04

Mistral-7b

IP 0.03 0.96 0.01 0.99 0.01
TE 0.01 0.98 0.00 1.00 0.03
IS 0.05 0.94 0.03 0.98 0.05

Table 5: Reference-free multi-agent evaluation - fine-grained results for different LLMs adopting Sequential
interaction strategy. IP stands for Interaction Planning, TE stands for Tool Employment, and IS stands for
Information Synthesis. Perf. Rate stands for percentage of instances that (meta-)reviewers considers perfect, and
Agree. stands for agreement, and it is calculated with the percentage of instances that (meta-)reviewers reach in
unanimous agreement. For additional context regarding the revised results, please see Section A of the Appendix.

4570

Given the following inputs:
Question: {question}
Reference (Gold) Answer: {gold_answer}
System Generated Answer: {answer}
Evaluation Process:
Read the gold answer carefully to understand the precise information it conveys.
Examine the system-generated answer to identify the information presented.
Check for the presence of critical information (such as conclusions) from the gold answer in
the system-generated answer.
Evaluation Criteria:
The system-generated answer is considered a "Match" if it contains all the critical information
from the gold answer. The presence of additional non-contradictory information in the system-
generated answer is acceptable, provided that all the information from the gold answer is
included.
Output Format:
If the system-generated answer includes all the critical information from the gold answer, the
output should be: "Conclusion: Match"
If any critical information from the gold answer is missing or misrepresented in the system-
generated answer, the output should be: "Conclusion: Not Match"
Conclusion:

(a) Scoring Metrics for Conclusive Questions

Given the following inputs:
Question: {question}
Reference (Gold) Answer: {gold_answer}
System-Generated Answer: {answer}
Evaluation Process:
Familiarize yourself with the gold answer to understand the full scope of information it contains.
Analyze the system-generated answer to identify the information that has been captured.
Compare the two answers to determine how much of the gold answer’s information is reflected
in the system-generated answer.
Scoring Metrics:
Score 1: The system-generated answer lacks almost all the key points that the comprehensive
gold answer provides.
Score 2: The system-generated answer includes some key points from the gold answer but
misses others, and it may include additional details not found in the gold answer.
Score 3: The system-generated answer captures most of the key information from the gold
answer, but there are noticeable omissions or additions.
Score 4: The system-generated answer encompasses all key points from the gold answer and
also introduces more information not covered in the gold answer.
Score 5: The system-generated answer perfectly mirrors the gold answer, containing all the
information with no omissions or additions.
Output Format:
Provide a score between 1 to 5 based on the evaluation. The output should be: "Score:
[1/2/3/4/5]"
Score:

(b) Scoring Metrics for Interpretive Questions

Figure 7: Prompts used for evaluating system generated answers for conclusive and interpretive questions

4571

Problem Context:
A planning agent has been tasked to devise a solution to a user question related to a database. Given the
question and the database’s description, the agent proposes a plan detailing the type of information it
would retrieve from the database to answer the question effectively.
Your Task:
You are to evaluate the plan’s relevance and comprehensiveness. Assess whether the plan can indeed
retrieve the necessary information to address the user’s question.
Inputs:
User Question:
{question}
Database Description:
{database_text}
Agent’s Proposed Plan:
{plan}
Evaluation Criteria:
Relevance: Does the plan target relevant pieces of information from the database that directly pertain to
the user’s question?
Comprehensiveness: Is the plan exhaustive, ensuring all necessary pieces of information are retrieved to
fully answer the user’s question?
Plan Definitions:
Perfect Plan: A plan that is both relevant and comprehensive, ensuring that the user’s question can be
answered completely without missing any essential data points.
Imperfect Plan: A plan that misses out on some relevant information, or includes unnecessary steps, thus
not providing a complete or accurate solution to the user’s question.
Response Format:
Rationale: Begin with a detailed explanation of your evaluation. Discuss the strengths or weaknesses of
the plan based on the relevance and comprehensiveness criteria.
Final Decision: After providing the rationale, conclude with one of the following decisions:
- Perfect: If you believe the plan meets both the relevance and comprehensiveness criteria effectively.
- Imperfect: If you find the plan lacking in any aspect, be it relevance or comprehensiveness.

(a) Review Criteria for Interaction Planning

Problem Context:
As the "editor-in-chief", you are tasked with evaluating the reviews provided by multiple reviewers on
a planning agent’s proposed plan to answer a database-related user question. Each review contains a
detailed rationale and a final decision.
Your Task:
Your goal is to compare and assess the rationales provided by the reviewers, and then make a final,
conclusive decision about the planning agent’s proposal. This decision should be based on a comprehensive
understanding of the reviewers’ perspectives and the evidence they present.
Inputs:
User Question:
{question}
Database Description:
{database_text}
Agent’s Proposed Plan:
{plan}
Reviewers’ Rationales and Decisions:
{IP_reviews}
Evaluation Criteria:
Review Consistency: Are the reviewers’ rationales and decisions consistent with each other?
Evidence Quality: Is the evidence provided in the rationales substantial and convincing enough to make a
definitive conclusion?
Final Decision Basis: Does the aggregated perspective of the reviewers lead to a clear final decision?
Response Format:
Rationale: Begin with a detailed explanation comparing the rationales provided by the reviewers. Highlight
consistencies or discrepancies among them and discuss how these influenced your final decision.
Final Decision: After providing the rationale, conclude with one of the following decisions:
- Perfect: If the aggregated insights from reviewers suggest that the planning agent’s proposal is both
relevant and comprehensive.
- Imperfect: If the combined reviews indicate that the planning agent’s proposal is lacking in either
relevance or comprehensiveness.

(b) Meta-Review Criteria for Interaction Planning

Figure 8: Prompts used for reviewing and meta-reviewing interaction planning

4572

Problem Context:
An agent is given a question, a database for retrieving relevant context, and a plan of how to perform the
retrieval. It has been tasked to translate the plan into accurate and executable SQL queries. These queries
should correspond to the given plan and effectively retrieve the relevant information from the database to
address the user’s question, adhering to the database structure provided.
Your Task:
You are to evaluate the correctness and alignment of the SQL queries generated by the agent based on the
plan provided. Also, review the execution results to determine if they fulfill the user’s requirements as
stipulated in the plan.
Inputs:
User Question: {question}
Database Description: {database_text}
Search Plan: {plan}
Agent’s Proposed SQL Queries and Execution Results: {sql_results}
Evaluation Criteria:
Correctness: Are the SQL queries syntactically and semantically correct, and do they retrieve the expected
data from the database?
Alignment: Do the SQL queries align with the steps outlined in the initial plan?
Execution Results: Does the outcome of the SQL queries correspond to the desired results based on the
user’s question and the initial plan?
Query Definitions:
Perfect Queries: All SQL queries are correct, aligned, and ensure that the user’s question is addressed in
accordance with the initial plan.
Imperfect Queries: There is at least one SQL query that has errors, misalignments, or does not produce
the expected results as outlined in the initial plan.
Response Format:
Rationale: Begin with a detailed explanation of your evaluation. Address the SQL queries’ correctness,
their alignment with the initial plan, and the resulting output’s relevance to the user’s query.
Final Decision: After providing the rationale, conclude with one of the following decisions:
- Perfect: If all SQL queries are correct, aligned with the plan, and the results answer the user’s question
as expected.
- Imperfect: If you find any discrepancies in correctness, alignment, or the execution results of the proposed
SQL queries.

(a) Review Criteria for Tool Employment

Problem Context:
As the "editor-in-chief", you are presented with multiple reviews evaluating an agent’s capability to
generate SQL queries from a given plan to answer a user question using a specified database. Each review
contains an in-depth rationale and a final decision regarding the correctness, alignment, and execution
results of the SQL queries.
Your Task:
Your goal is to compare and assess the rationales provided by the reviewers, weighing their evidence and
perspectives, and then make a final, conclusive decision regarding the agent’s SQL queries based on the
aggregated reviews.
Inputs:
User Question: {question}
Database Description: {database_text}
Search Plan: {plan}
Agent’s Proposed SQL Queries and Execution Results: {sql_results}
Reviewers’ Rationales and Decisions: {TE_reviews}
Evaluation Criteria:
Review Consistency: Do the reviewers agree in their evaluations, or are there conflicting perspectives?
Evidence Quality: Are the rationales provided by reviewers substantial and convincing?
Final Decision Basis: Based on the aggregated insights of the reviewers, is there a clear and justifiable
final decision?
Response Format:
Rationale: Begin with a detailed comparison of the rationales provided by the reviewers. Address any
consistencies or discrepancies in their evaluations, emphasizing how these observations influenced your
final decision.
Final Decision: After analyzing the rationales, conclude with one of the following decisions:
- Perfect: If the collective insights suggest that all the agent’s SQL queries are accurate, aligned, and
answer the user’s question as stipulated.
- Imperfect: If the combined reviews reveal issues in correctness, alignment, or the execution results of the
agent’s SQL queries.

(b) Meta-Review Criteria for Tool Employment

Figure 9: Prompts used for reviewing and meta-reviewing tool employment

4573

Problem Context:
An agent is presented with a user’s question, a plan to extract more context for answering the question,
and a search history containing SQL queries used to retrieve this context from the database. The agent’s
task is to synthesize all the given information to construct a coherent answer to the question.
Your Task:
You are to evaluate the synthesis produced by the agent. Assess whether the agent’s response accurately
interprets the SQL queries and their execution results. Furthermore, determine if the synthesized answer
addresses the user’s question both correctly and comprehensively.
Inputs:
User Question:
{question}
Database Description:
{database_text}
Search Plan:
{plan}
SQL Queries and Execution Results:
{sql_results}
Agent’s Synthesized Answer:
{answer}
Evaluation Criteria:
Interpretation Accuracy: Does the agent’s answer demonstrate a correct understanding of the SQL queries
and their execution results?
Answer Correctness: Is the agent’s synthesized answer accurate in terms of the given information?
Comprehensiveness: Does the agent’s answer cover all aspects of the user’s question based on the context
retrieved?
Answer Definitions:
Perfect Answer: An answer that accurately interprets the SQL queries and results, and addresses the user’s
question both correctly and comprehensively.
Imperfect Answer: An answer that either misinterprets the SQL information, or does not completely and
accurately address the user’s question.
Response Format:
Rationale: Begin with a detailed explanation of your evaluation. Discuss the strengths or weaknesses
of the agent’s synthesized answer based on the criteria of interpretation accuracy, correctness, and
comprehensiveness.
Final Decision: After providing the rationale, conclude with one of the following decisions:
- Perfect: If you believe the agent’s answer meets all evaluation criteria effectively.
- Imperfect: If you identify any shortcomings in interpretation accuracy, correctness, or comprehensiveness
of the answer.

(a) Review Criteria for Information Synthesis

Problem Context:
As the "editor-in-chief", you are tasked with evaluating multiple reviews that assess an agent’s synthesis
of an answer based on a user’s question, a search plan, and the results of executed SQL queries. Each
review contains a detailed rationale and a final decision on the agent’s capability to coherently integrate
the information and answer the user’s question.
Your Task:
Your role is to compare and evaluate the rationales provided by the reviewers, integrating their insights
and perspectives. Based on this aggregated understanding, make a final, conclusive decision about the
agent’s synthesized answer.
Inputs:
User Question:
{question}
Database Description:
{database_text}
Search Plan:
{plan}
SQL Queries and Execution Results:
{sql_results}
Agent’s Synthesized Answer:
{answer}
Reviewers’ Rationales and Decisions:
{IS_reviews}
Evaluation Criteria:
Review Consistency: Are there shared perspectives among the reviewers, or do they have conflicting
views?
Evidence Quality: Do the reviewers present substantial and compelling evidence in their rationales?
Final Decision Basis: Does the collective insight of the reviewers lead to a clear, definitive conclusion
about the agent’s answer?
Response Format:
Rationale: Start with a comprehensive comparison of the rationales given by the reviewers. Address any
commonalities or differences in their evaluations and describe how these factors influenced your final
decision.
Final Decision: After dissecting the reviewers’ insights, decide on one of the following: - Perfect: If the
collective evaluations suggest that the agent’s synthesized answer meets all the required criteria.
- Imperfect: If the integrated reviews indicate issues in the agent’s interpretation, correctness, or compre-
hensiveness.

(b) Meta-Review Criteria for Information Synthesis

Figure 10: Prompts used for reviewing and meta-reviewing information synthesis
4574

Database:
Title: "employee"
Header: [’Employee_ID’, ’Name’, ’Age’, ’City’]
Title: ’shop’
Header: [’Shop_ID’, ’Name’, ’Location’, ’District’, ’Number_products’, ’Manager_name’]
Title: ’hiring’
Header: [’Shop_ID’, ’Employee_ID’, ’Start_from’, ’Is_full_time’]
Title: ’evaluation’
Header: [’Employee_ID’, ’Year_awarded’, ’Bonus’]

Question:
Investigate the relationship between the number of employees and the number of shops in each city.

GPT-4 agent plan:
Information Extraction: To investigate the relationship between the number of employees and the number
of shops in each city, we need to extract the following information:
The city where each employee works
The number of employees working in each city
The number of shops in each city
Identification of Relevant Tables and Columns: To gather the necessary information, we need to look into
the following tables and columns:
From the ’employee’ table, we need the ’Employee_ID’ and ’City’ columns.
From the ’shop’ table, we need the ’Shop_ID’ and ’Location’ columns.
From the ’hiring’ table, we need the ’Shop_ID’ and ’Employee_ID’ columns.
Description of Retrieval Process: To retrieve the required information, we will perform the following
steps:
First, we will join the ’employee’ and ’hiring’ tables on the ’Employee_ID’ column. This will give us a
combined table with information about which employee works at which shop.
Next, we will join the resulting table with the ’shop’ table on the ’Shop_ID’ column. This will give us a
table containing information about the city where each employee works.
Now, we will group the data by the ’City’ column from the ’employee’ table and the ’Location’ column
from the ’shop’ table. This will allow us to count the number of employees and shops in each city.
For each city, we will count the number of unique ’Employee_ID’ values to get the total number of
employees working in that city.
Similarly, for each city, we will count the number of unique ’Shop_ID’ values to get the total number of
shops in that city.
Finally, we will create a summary table with columns for ’City’, ’Number_of_Employees’, and ’Num-
ber_of_Shops’. This table will show the relationship between the number of employees and the number
of shops in each city.

Figure 11: Example 1 - misinterpreting column contents: agent confuses employee.city with shop.location

4575

Database:
Title: ’Addresses’
Header: [’address_id’, ’line_1’, ’line_2’, ’line_3’, ’city’, ’zip_postcode’, ’state_province_county’,
’country’, ’other_address_details’
Title: ’Courses’
Header: [’course_id’, ’course_name’, ’course_description’, ’other_details’]
Title: ’Departments’
Header: [’department_id’, ’department_name’, ’department_description’, ’other_details’]
Title: ’Degree_Programs’
Header: [’degree_program_id’, ’department_id’, ’degree_summary_name’, ’de-
gree_summary_description’, ’other_details’]
Title: ’Sections’
Header: [’section_id’, ’course_id’, ’section_name’, ’section_description’, ’other_details’]
Title: ’Semesters’
Header: [’semester_id’, ’semester_name’, ’semester_description’, ’other_details’]
Title: ’Students’
Header: [’student_id’, ’current_address_id’, ’permanent_address_id’, ’first_name’, ’middle_name’,
’last_name’, ’cell_mobile_number’, ’email_address’, ’ssn’, ’date_first_registered’, ’date_left’,
’other_student_details’]
Title: ’Student_Enrolment’
Header: [’student_enrolment_id’, ’degree_program_id’, ’semester_id’, ’student_id’, ’other_details’]
Title: ’Student_Enrolment_Courses’
Header: [’student_course_id’, ’course_id’, ’student_enrolment_id’]
Title: ’Transcripts’
Header: [’transcript_id’, ’transcript_date’, ’other_details’]
Title: ’Transcript_Contents’
Header: [’student_course_id’, ’transcript_id’]

Question:
Do dual-enrolled students tend to perform better or worse than their peers in the same degree programs?

GPT-4 agent plan:
Information Extraction: To answer the user’s question, we need to extract the following information:
The performance of dual-enrolled students in their courses.
The performance of non-dual-enrolled students in the same degree programs as the dual-enrolled students.
Identification of Relevant Tables and Columns: The relevant tables and columns needed to gather the
necessary information are:
’Student_Enrolment’ table: degree_program_id, semester_id, student_id, and other_details columns.
’Student_Enrolment_Courses’ table: student_course_id, course_id, and student_enrolment_id columns.
’Transcript_Contents’ table: student_course_id and transcript_id columns.
’Transcripts’ table: transcript_id and other_details columns.
Description of Retrieval Process: To retrieve the required information, we would perform the following
steps:
a. Identify dual-enrolled students:
Filter the ’Student_Enrolment’ table to find rows where the ’other_details’ column contains information
about dual enrollment. This will give us a list of dual-enrolled students and their corresponding
degree_program_id, semester_id, and student_id.
b. Identify non-dual-enrolled students in the same degree programs:
Filter the ’Student_Enrolment’ table to find rows where the ’other_details’ column does not contain
information about dual enrollment and the degree_program_id matches the degree_program_id of the
dual-enrolled students identified in step a. This will give us a list of non-dual-enrolled students in the
same degree programs as the dual-enrolled students.
c. Retrieve course performance for dual-enrolled students:
For each dual-enrolled student identified in step a, find the corresponding student_enrolment_id in the
’Student_Enrolment_Courses’ table. Using the student_course_id from the ’Student_Enrolment_Courses’
table, find the corresponding transcript_id in the ’Transcript_Contents’ table.
Using the transcript_id, retrieve the performance information (e.g., grades) from the ’Transcripts’ table’s
other_details column. d. Retrieve course performance for non-dual-enrolled students:
For each non-dual-enrolled student identified in step b, find the corresponding student_enrolment_id in the
’Student_Enrolment_Courses’ table. Using the student_course_id from the ’Student_Enrolment_Courses’
table, find the corresponding transcript_id in the ’Transcript_Contents’ table.
Using the transcript_id, retrieve the performance information (e.g., grades) from the ’Transcripts’ table’s
other_details column. e. Compare the performance of dual-enrolled and non-dual-enrolled students:
Calculate the average performance of dual-enrolled students and non-dual-enrolled students using the
performance information retrieved in steps c and d.
Compare the average performance of both groups to determine if dual-enrolled students tend to perform
better or worse than their peers in the same degree programs.

Figure 12: Example 2 - making incorrect assumptions about column contents: student_enrolment.other_detail does
not contain information about dual-enrollment 4576

Database:
Title: ’TV_Channel’
Header: [’id’, ’series_name’, ’Country’, ’Language’, ’Content’, ’Pixel_aspect_ratio_PAR’,
’Hight_definition_TV’, ’Pay_per_view_PPV’, ’Package_Option’]
Title: ’TV_series’
Header: [’id’, ’Episode’, ’Air_Date’, ’Rating’, ’Share’, ’18_49_Rating_Share’, ’Viewers_m’,
’Weekly_Rank’, ’Channel’]
Title: ’Cartoon’
Header: [’id’, ’Title’, ’Directed_by’, ’Written_by’, ’Original_air_date’, ’Production_code’, ’Channel’]

Question:
Identify common themes or factors in the top-rated episodes and potential reasons for low ratings in the
least-rated episodes of a TV series.

GPT-4 agent plan:
Information Extraction: To answer the user’s question, we need to extract the following information:
Top-rated episodes of the TV series
Least-rated episodes of the TV series
Common themes or factors in the top-rated episodes
Potential reasons for low ratings in the least-rated episodes
Identification of Relevant Tables and Columns: From the given database, the relevant tables and columns
to gather the necessary information are:
’TV_series’ table: This table contains information about the episodes, their air dates, ratings, and other
related data. The relevant columns from this table are:
’Episode’: The name of the episode
’Rating’: The rating of the episode
’Air_Date’: The date the episode was aired
’Channel’: The channel on which the episode was aired
’TV_Channel’ table: This table contains information about the channels, their content, and other related
data. The relevant columns from this table are:
’id’: The unique identifier of the channel
’Content’: The type of content aired on the channel
’Package_Option’: The package option for the channel
Description of Retrieval Process: To retrieve the required information, we would perform the following
steps:
Filter the ’TV_series’ table to only include rows related to the TV series in question.
Sort the filtered ’TV_series’ table by the ’Rating’ column in descending order to identify the top-rated
episodes.
Sort the filtered ’TV_series’ table by the ’Rating’ column in ascending order to identify the least-rated
episodes.
For the top-rated episodes, join the ’TV_series’ table with the ’TV_Channel’ table on the ’Channel’ and
’id’ columns, respectively. This will provide information about the content and package options for the
channels on which the top-rated episodes were aired.
Analyze the joined data to identify common themes or factors in the top-rated episodes, such as the type
of content aired on the channels, the package options, or any patterns in the air dates.
For the least-rated episodes, join the ’TV_series’ table with the ’TV_Channel’ table on the ’Channel’ and
’id’ columns, respectively. This will provide information about the content and package options for the
channels on which the least-rated episodes were aired.
Analyze the joined data to identify potential reasons for low ratings in the least-rated episodes, such as the
type of content aired on the channels, the package options, or any patterns in the air dates.

Figure 13: Example 3 - overlooking key columns: only tv_channel.package_option is retrieved for the analysis,
while many other columns could also be influential factors, such as tv_channel.country, tv_channel.language, etc.

4577

Database:
Title: ’singer’
Header: [’Singer_ID’, ’Name’, ’Birth_Year’, ’Net_Worth_Millions’, ’Citizenship’]
Title: ’song’
Header: [’Song_ID’, ’Title’, ’Singer_ID’, ’Sales’, ’Highest_Position’]

Question:
Compare the sales and highest chart positions of top-selling songs by singers who have over 300,000
sales.

GPT-4 agent plan:
Information Extraction: To answer the user’s question, we need to extract the following information:
Singer names with over 300,000 sales
The titles of their top-selling songs
The sales of these top-selling songs
The highest chart positions of these top-selling songs
Identification of Relevant Tables and Columns: To gather the necessary information, we will need to use
the following tables and columns from the database:
From the ’singer’ table, we will need the ’Singer_ID’ and ’Name’ columns
From the ’song’ table, we will need the ’Title’, ’Singer_ID’, ’Sales’, and ’Highest_Position’ columns
Description of Retrieval Process: To retrieve the required information, we will follow these steps:
First, we will filter the ’song’ table to only include rows with ’Sales’ greater than 300,000. This will give
us a list of songs that meet the sales criteria.
Next, we will join the filtered ’song’ table with the ’singer’ table using the ’Singer_ID’ column as the
common key. This will allow us to associate each song with its respective singer.
After joining the tables, we will group the resulting dataset by the ’Singer_ID’ and ’Name’ columns. This
will help us identify the top-selling songs for each singer.
Within each group, we will sort the songs by their ’Sales’ in descending order. This will allow us to
identify the top-selling song for each singer.
Finally, we will extract the ’Name’, ’Title’, ’Sales’, and ’Highest_Position’ columns for the top-selling
song of each singer. This will give us the information needed to compare the sales and highest chart
positions of top-selling songs by singers who have over 300,000 sales.

Figure 14: Example 4 - exhibiting oversight in data retrieval for subsequent analysis: the agent’s strategy involves
selecting singers with over 300,000 sales by filtering for individual songs that have achieved 300,000 sales. This
approach overlooks singers who may have accumulated over 300,000 sales in total but not through a single song.

4578

Database:
Title: ’employee’
Header: [’Employee_ID’, ’Name’, ’Age’, ’City’]
Title: ’shop’
Header: [’Shop_ID’, ’Name’, ’Location’, ’District’, ’Number_products’, ’Manager_name’]
Title: ’hiring’
Header: [’Shop_ID’, ’Employee_ID’, ’Start_from’, ’Is_full_time’]
Title: ’evaluation’
Header: [’Employee_ID’, ’Year_awarded’, ’Bonus’]

Question:
Is there a correlation between employee age and their employment duration or full-time status?

GPT-4 tool employment:
SQL Statement 1:
SELECT e.Employee_ID, e.Age, h.Start_from, h.Is_full_time FROM employee e JOIN hiring h ON
e.Employee_ID = h.Employee_ID;
Execution Result 1:

[(1, 23, ’2009’, ’T’), (2, 29, ’2003’, ’T’), (3, 43, ’2011’, ’F’), (4, 30, ’2012’, ’T’), (5, 29, ’2013’, ’T’), (6,
28, ’2010’, ’F’), (7, 29, ’2008’, ’T’), (11, 25, ’2014’, ’T’), (12, 35, ’2011’, ’F’), (13, 45, ’2010’, ’T’), (14,
27, ’2015’, ’T’), (15, 37, ’2013’, ’F’), (16, 29, ’2016’, ’T’), (17, 28, ’2014’, ’T’), (18, 30, ’2012’, ’F’),
(19, 50, ’2005’, ’T’), (20, 40, ’2009’, ’F’)]

SQL Statement 2:
SELECT e.Employee_ID, e.Age, (2022 - h.Start_from) AS Employment_Duration, h.Is_full_time FROM
employee e JOIN hiring h ON e.Employee_ID = h.Employee_ID;

Execution Result 2:

[(1, 23, 13, ’T’), (2, 29, 19, ’T’), (3, 43, 11, ’F’), (4, 30, 10, ’T’), (5, 29, 9, ’T’), (6, 28, 12, ’F’), (7, 29, 14,
’T’), (11, 25, 8, ’T’), (12, 35, 11, ’F’), (13, 45, 12, ’T’), (14, 27, 7, ’T’), (15, 37, 9, ’F’), (16, 29, 6, ’T’),
(17, 28, 8, ’T’), (18, 30, 10, ’F’), (19, 50, 17, ’T’), (20, 40, 13, ’F’)]

Figure 15: Example 5 - failing to execute statistical analyses

4579

