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Abstract

With the rapid development and widespread ap-
plication of Large Language Models (LLMs),
the use of Machine-Generated Text (MGT) has
become increasingly common, bringing with
it potential risks, especially in terms of quality
and integrity in fields like news, education, and
science. Current research mainly focuses on
purely MGT detection without adequately ad-
dressing mixed scenarios, including AI-revised
Human-Written Text (HWT) or human-revised
MGT. To tackle this challenge, we define mix-
text, a form of mixed text involving both AI
and human-generated content. Then, we in-
troduce MIXSET, the first dataset dedicated to
studying these mixtext scenarios. Leveraging
MIXSET, we executed comprehensive experi-
ments to assess the efficacy of prevalent MGT
detectors in handling mixtext situations, evaluat-
ing their performance in terms of effectiveness,
robustness, and generalization. Our findings
reveal that existing detectors struggle to iden-
tify mixtext, particularly in dealing with subtle
modifications and style adaptability. This re-
search underscores the urgent need for more
fine-grain detectors tailored for mixtext, offer-
ing valuable insights for future research. Code
and Models are available at https://github.
com/Dongping-Chen/MixSet.

1 Introduction

The remarkable advancement of Large Language
Models (LLM) has sparked global discussions on
the effective utilization of AI assistants (OpenAI,
2022, 2023b). Given that LLMs can correctly fol-
low human instructions and produce useful texts ef-
ficiently, more and more people prefer to integrate
these powerful tools into their workflow by revising
Machine Generated Text (MGT) or using LLMs to
polish their Human Written Text (HWT), such as
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Figure 1: Three kinds of text: Machine Generative Text
(MGT), Human Written Text (HWT), and mixtext. The
text come from users is classified by detectors .
The text in red is the HWT polished by LLMs.

fact-checking revising in journalism (Guerra, 2023)
and enhancing storytelling in the game industry 1.

Despite its various usages, The application of
LLMs also causes the potential risk of MGT us-
age, raising public concerns on various misuse, as
seen in the undermining of journalistic integrity and
quality (Christian, 2023), reproducing and amplify-
ing biases (Sison et al., 2023), plagiarism among
students (Heavenarchive, 2023), and leading dis-
ruptions in trust towards scientific knowledge (Else,
2023). The misuse of machine-generated text has
been a serious concern that is also raised by experts
in different fields of work 2.

1https://aicontentfy.com/en/blog/chatgpt-in-gaming-
industry-enhancing-storytelling-and-interaction

2https://www.atlantanewsfirst.com/2023/01/24/experts-
warn-about-possible-misuse-new-ai-tool-chatgpt/
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Figure 2: Accuracy of different dectors on MIXSET.
(Above) Model-based methods; (Below) Metric-based
methods. P.T. and P.S. signify token and sentence-level
polish, respectively; C. for complete, R. for rewrite;
Adapt T. and Adapt S. for token and sentence-level
adapt. See 3 for details on revising operations.

Previous studies proposed many methods to de-
tect MGT, including metric-based and model-based
methods, where they have only tried to enhance the
detection ability on binary classification, i.e., pure
MGT or HWT. However, they did not pay much
attention to revised texts (i.e., mixtext), but con-
sidered these cases as an attack on the detection
system (Krishna et al., 2023) or complex cases for
detection (Mitchell et al., 2023; Guo and Yu, 2023).
However, the mixture of MGT and HWT is an es-
sential scenario in our daily lives when using LLM
assistants. For instance, thousands of non-native
English speakers utilize LLMs to polish their drafts
to avoid grammar problems. Moreover, LLMs can
follow human instructions to produce new stories
and interactive dialogue in game design 3. Authors
can also use LLMs to complete stories, providing
them with new ideas and inspiration with LLM as-
sistants like Metaphoria (Gero and Chilton, 2019)
and Sparks, thereby generating metaphorical and

3https://aicontentfy.com/en/blog/chatgpt-in-gaming-
industry-enhancing-storytelling-and-interaction

science writing suggestions and supporting creative
writing tasks (Gero et al., 2022).

Hence, there is a pressing demand to compre-
hensively analyze mixture cases and give a formal
definition of them. Given that mixtext is a very
common case in daily life and its amount continu-
ously increases in NLP areas, it holds significant
importance, especially in education. To end this,
we propose a new dataset MIXSET, which is the
first dataset that aims at the mixture of HWT and
MGT, including both AI-revised HWT and human-
revised MGT scenarios as illustrated in Figure 1,
which addresses gaps in previous research. Further
details of the dataset and definitions can be seen in
Section 3. We also examine our dataset on main-
stream detectors in binary and three-class settings
to further analyze and raise concerns about these
common but hard-to-detect cases.
To summarize, our work provides three main con-
tributions:
• We defined mixtext, a form of mixed text involv-

ing both AI and human-generated content, pro-
viding a new perspective for further exploration
in related fields.

• We proposed a new dataset MIXSET, which
specifically addresses the mixture of MGT and
HWT, encompassing a diverse range of oper-
ations within real-world scenarios, addressing
gaps in previous research.

• Based on MIXSET, we conducted extensive ex-
periments involving mainstream detectors and
obtained numerous insightful findings, which
provide a strong impetus for future research.

2 Related works

2.1 Machine Generated Text Detection

Current MGT detection methods can be broadly
categorized into metric-based and model-based
methods according to the previous study (He et al.,
2023). Please refer to Appendix A for comprehen-
sive related works.
Metric-based Methods. Building upon the ob-
servation that MGTs occupy regions with sharp
negative log probability curvature, Mitchell et al.
(2023) introduced a zero-shot whitebox detection
method called DetectGPT, setting a trend in metric-
based detection (Su et al., 2023; Mireshghallah
et al., 2023; Bao et al., 2023). Recently, Yang
et al. (2023a) also introduced a powerful detection
method known as DNA-GPT, which leverages N-
gram (Shannon, 1948) in a black-box setting.
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Figure 3: The process of MixSet generation. We perform distinct operations in HWT and MGT. In HWT, three
operations—polish, rewrite, and complete—are employed. In MGT, we utilize LLama2 and GPT-4 to aid in
humanization and conduct the adaptation operation manually.

Model-based Methods. In the era of Large Lan-
guage Models (LLMs), Guo et al. (2023) devel-
oped the ChatGPT Detector based on a fine-tuned
Roberta model. As for decoder-based detectors,
GPT-sentinel (Chen et al., 2023) leverage the t5-
small model (Muennighoff et al., 2022) and show
convincing results when detecting MGT even in
revised cases.

2.2 Previous study to mix of HWT and MGT

Prior studies have viewed the mixture of HWT and
MGT in different settings. DNA-GPT (Yang et al.,
2023a) and DetectGPT (Mitchell et al., 2023) no-
tably utilized the T5 model (Raffel et al., 2020)
to simulate scenarios where humans make limited,
random modifications to MGT, creating complex
test cases. Conversely, DIPPER (Krishna et al.,
2023) and OUTFOX (Koike et al., 2023b) opted
for a paraphrasing technique, using this method to
craft adversarial attacks aimed at eluding the detec-
tion mechanisms of classifiers, thereby presenting
a nuanced way to alter MGT while maintaining
undetectability.

2.3 Datasets for MGT Detection

Previous studies have proposed many datasets of
MGT, accompanied by their newly proposed detec-
tors (Verma et al., 2023; Chen et al., 2023). Guo
et al. (2023) leverages multiple previous Question-
Answer (QA) datasets (Jin et al., 2019; Lin et al.,
2021), allowing ChatGPT to generate correspond-
ing answers without explicit prompts. This results
in creating a comprehensive dataset comprising a
large set of pairs of MGT and HWT. Following
the QA pattern, many researchers (Mitchell et al.,

2023; Su et al., 2023; Hu et al., 2023; He et al.,
2023) propose datasets with the MGT from variant
mainstream LLMs (OpenAI, 2022, 2023b).

However, these datasets typically consist of two
distinct classes of texts, namely pure MGT or
HWT, without accounting for the potential mixture
cases. Furthermore, issues arise due to variations
in prompts (Koike et al., 2023a), sampling meth-
ods, and the inherent differences in length, style,
and quality among texts (He et al., 2023), posing
variations challenges on the generalization ability
of proposed detectors (Xu et al., 2023). In some
instances, MGT included in datasets may not be
thoroughly checked, with many noisy sentences
not filtered well. For example, some sentences like
Let me know if you have any other questions exist
in the dataset, which will impact the effectiveness
of the detectors (Guo et al., 2023).

3 MIXSET Dataset

In this section, we present MixSet (Mixcase
Dataset), the first dataset featuring a blend of HWT
and MGT. Distinguished from earlier datasets
exclusively composed of pure HWT and MGT,
MIXSET comprises a total of 3.6k mixtext in-
stances, and the pipeline of its construction is
shown in Figure 3. These operations are grounded
in real-world application scenarios, each altered
by a single LLM or through manual intervention,
contributing 300 instances in our MIXSET.

For our base data, we meticulously select pure
HWT and MGT datasets. In the case of HWT,
we gather datasets proposed before the widespread
use of LLMs to mitigate potential contamination
by MGT, as detailed in Table 1. For MGT, we
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choose samples from previous datasets (Rajpurkar
et al., 2016a; Lin et al., 2022; Nishida et al., 2019),
generated in a QA pattern by different LLMs, in-
cluding the GPT family (OpenAI, 2022, 2023b),
ChatGLM (Du et al., 2022), BloomZ (Muennighoff
et al., 2022), Dolly 4, and StableLM (StabilityAI,
2023), all distinct from our MIXSET instances.

Table 1: The original resources of Human Written Texts
in constructing our MIXSET.

Text Type Original Resources

Email Content Enron Email Dataset (CMU, 2015)
News Content BBC News (Greene, 2006)
Game Review Steam Reviews (Najzeko, 2021)
Paper Abstract ArXiv-10 (Farhangi et al., 2022)
Speech Content TED Talk (TheDataBeast, 2021)

Blog content Blog (Schler et al., 2006)

3.1 Definition of Mixtext
Generally, mixtext is the mixed text involving both
AI and human-generated content. To formulate it,
we define a text sequence as x ∈ X , where X rep-
resents the set of all text sequences. The sequences
in X can originate from either human-written text
Xhuman or machine-generated text Xmachine. We
denote the set of operations used to revise texts
as OP = {OP1, OP2, . . . , OPn}, categorized into
two groups: OPhuman, OPmachine. Here, OPhuman
refers to operations involving human revision on
machine-generated text (MGT), while OPmachine
refers to AI-driven operations on human-written
text (HWT). In addition to Xhuman and Xmachine,
we define Xmixtext as the union of all texts derived
from Xhuman through OPmachine and all texts de-
rived from Xmachine through OPhuman:

Xmixtext ={OPmachine(x) |x ∈ Xhuman}
∪{OPhuman(x) |x ∈ Xmachine}

3.2 Dataset Construction
Combined with previous studies (Goyal et al., 2023;
Wang et al., 2021) and real scenarios, we use
five operations to generate mixtexts. They are di-
vided into two operations shown in Table 2: 1) AI-
revised: it contains three operations including ‘pol-
ish’, ‘complete’, and ‘rewrite’. 2) Human-revised:
it includes ‘adapt’ and ‘humanize’.

4https://www.databricks.com/blog/2023/04/12/dolly-first-
open-commercially-viable-instruction-tuned-llm

Table 2: Different operations with their operation levels.
✔ demonstrate that MIXSET contains a subset operates
at that level.

Operation Token Sentence Paragraph

AI-Polish ✔ ✔ ✘

AI-Complete ✘ ✘ ✔

AI-Rewrite ✘ ✘ ✔

Human-Adapt ✔ ✔ ✘

Humanize ✔ ✔ ✔

• Polish (Chen, 2023): Polish operation contains
token-level and sentence-level polishing. Token-
level makes alterations at the individual word
level, including changes such as adjusting words
for precision or correcting spelling errors. On
the other hand, sentence-level aims to enhance
the overall coherence and clarity of the text by
revising and restructuring the complete sentence.

• Complete (Zhuohan Xie, 2023): Complete op-
eration involves taking 1/3 of every text and em-
ploying LLMs to generate the rest of the text.

• Rewrite (Shu et al., 2023): Rewrite operation re-
quires LLMs to initially comprehend and extract
key information from the given HWT and then
rewrite them.

• Humanize (Bhudghar, 2023): Humanize opera-
tion typically refers to the modification of MGT
to more closely mimic the natural noise for LLM
(Wang et al., 2021) that human writing always
brings. We employed LLMs to introduce various
perturbations to the pure MGT, including typo,
grammatical mistakes, links, and tags.

• Adapt (Gero et al., 2022): Adapt operation refers
to modifying MGT to ensure its alignment to flu-
ency and naturalness to human linguistic habits
without introducing any error expression. The
adapt operation is also divided into token-level
and sentence-level adaptation. We accordingly
performed manual annotations on the pure MGT
dataset at both the token and sentence levels.
The detailed distribution of each category in

MIXSET is shown in Table 3. All data generated
from GPT-4 (300 items) and Llama2 (300 items)
have undergone rigorous manual review and modifi-
cation in the ‘humanize’ operation. For AI-revised
mixtext generation, Llama2-70b and GPT-4 were
used, both set to default parameters, including a
temperature of 1. These models are chosen for their
ability to produce high-quality, grammatically cor-
rect texts (Hugging Face, 2023). In human-revised
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operation, we leverage two LLMs to assist with
‘humanize’ operation. For the adapt operation, we
invite eight human experts with excellent English
skills to revise MGT carefully to align it with hu-
man expression better. The details of human anno-
tation guidelines and prompt template are shown
in Appendix B.1 and D. After collecting all revised
texts, we conducted a manual evaluation involv-
ing data filtering and cleaning to ensure MIXSET

is high quality, such as removing conversational
phrases like ‘Sure! Here’s a possible completion’.

Table 3: Detailed distribution of different operations in
MIXSET.

Operation GPT-4 Llama2 Human

A
I

R
ev

is
ed

Polish Tok. 300 300 —
Polish Sen. 300 300 —
Complete 300 300 —
Rewrite 300 300 —

H
um

an
R

ev
is

ed Humanize — — (300+300)
Adapt Tok. — — 300
Adapt Sen. — — 300

3.3 Dataset Analysis
Our comprehensive analysis of the MIXSET dataset
covers length distribution, self-BLEU (Zhu et al.,
2018), Levenshtein distance (Levenshtein, 1966),
and cosine similarity. We only show analysis of
length distribution and cosine similarity analysis
here; for self-BLEU and POS distribution, refer to
Appendix B.2.
• Length distribution: Given that detectors gen-

erally perform better with medium to long texts
than with short texts (He et al., 2023), and to en-
sure that the text lengths in the MIXSET reflect
real-world usage patterns, we have systematically
selected data with a word count that falls within
the range of 50 to 250 words. This range was
chosen to ensure that the data were sufficiently
detailed to provide meaningful insights while be-
ing concise enough to allow for effective analysis
and comparison. As shown in Figure 4, the text
lengths of both the MIXSET, as well as the HWT
and MGT, follow a normal distribution.

• Cosine Similarity: Figure 5 illustrates that the
texts processed with token-level polish opera-
tions exhibit the highest similarity to the original
texts, followed by sentence-level polish, rewrite,
and complete. Texts modified through the ‘hu-
manize’ operation demonstrate lower similarity

than those altered by adaptation.
• Levenshtein Distance: The Levenshtein dis-

tance (Levenshtein, 1966) is a metric for mea-
suring the difference between two strings. We
can observe in Figure 6 that in terms of the ex-
tent of modification, the rewrite operation results
in the most significant alterations to the original
texts, followed by complete and sentence-level
polish. We also observe that manual annotations
at both the token-level and sentence-level adapta-
tion exhibit a high degree of differentiation.

50 100 150 200 250 300 350
Length

0.00

0.01

0.02

0.03
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MixSet

Figure 4: Length distribution of the HWT, MGT, and
MixSet.

4 Experiments

4.1 Goals
We conduct experiments to understand better multi-
ple facets of current detectors encountering our
dataset MIXSET, including zero-shot and fine-
tuning settings. We will figure out four questions:
• Question 1. How do current detectors perform

in MIXSET dataset? Is there any classification
preference in these detectors?

• Question 2. What is the performance of detec-
tors retrained on our MIXSET? What about three-
classed classification as we consider mixtext as a
new class distinct from HWT and MGT?

• Question 3. What is the generalization ability of
current detectors on our MIXSET?

• Question 4. Will the size of the training set
impact the detection ability on mixtext?

4.2 Experiment Setup
Among our four experiments, We evaluate five
metric-based and seven model-based detectors on
three metrics in total, as shown in Tabel 4 and Ta-
ble 5. We also outline the detailed training set
construction in Table 6. Please refer to Appendix
B.2 for a comprehensive introduction to detectors
and metrics.
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Figure 5: Cosine similarity of the MixSet
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Figure 6: Levenshtein distance of the MixSet

Class Number. In real-world scenarios, people
often aim to detect the presence of MGT in the text
(e.g., spreading fake news or propaganda (Chris-
tian, 2023), reinforcing and intensifying prejudices
(Sison et al., 2023)), and sometimes mixtext is also
treated as MGT (e.g., student modified some words
in MGT (i.e., mixtext) to generate homework, to
avoid detection). Therefore, our experiments es-
tablished two categorization systems: binary and
three-class. In the binary classification, mixtext is
categorized as MGT, while in the three-class classi-
fication, mixtext is treated as a separate class. The
label setting is shown in Table 5.
Question 1. Based on MIXSET, we evaluate cur-
rent detectors to determine the classification pref-
erences on mixtext, i.e., Does the detector tend to
classify mixtext as MGT or HWT? We calculate
the percentage of mixtext samples categorized to
MGT in the experiment. For the DistilBERT de-
tector and other metric-based detectors utilizing
logistic regression models, we employ a training
set comprising 10,000 pre-processed samples of
both pure HWT and MGT. For other detectors, we
use existing checkpoints 5 6 or API 7 and evaluate
them in a zero-shot setting.
Question 2(a). Following Question 1, our inquiry
is whether the detector can accurately classify mix-
text as MGT after training on MIXSET. We fine-

5https://huggingface.co/TrustSafeAI/
RADAR-Vicuna-7B

6https://github.com/haok1402/
GPT-Sentinel-public

7https://gptzero.me/

Table 4: Detectors used in different experiments.

Detector Q 1 Q 2 Q 3 Q 4

M
et

ri
c-

B
as

ed

Log-likelihood
✔ ✔ ✘ ✔(Solaiman et al., 2019)

Entropy
✔ ✔ ✘ ✘(Gehrmann et al., 2019)

GLTR
✔ ✔ ✘ ✔(Gehrmann et al., 2019)

Log-rank
✔ ✔ ✘ ✘(Mitchell et al., 2023)

DetectGPT
✔ ✔ ✔ ✔(Mitchell et al., 2023)

M
od

el
-B

as
ed

Radar
✔ ✔ ✘ ✔(Hu et al., 2023)

ChatGPT Detector
✔ ✔ ✔ ✔(Guo et al., 2023)

DistillBert
✔ ✔ ✔ ✘(Ippolito et al., 2019)

GPT-sentinel
✔ ✔ ✘ ✔(Chen et al., 2023)

OpenAI Classifier
✔ ✘ ✘ ✘(OpenAI, 2023a)

Ghostbuster
✔ ✘ ✘ ✘(Verma et al., 2023)

GPTzero
✔ ✘ ✘ ✘(Tian, 2023)

tune detectors on pure HWT and MGT data and a
train split set of our MIXSET labeled as MGT.
Question 2(b). On the other hand, assuming that
mixtext lies outside the distribution of HWT and
MGT, we conduct a three-class classification task,
treating mixtext as a new label. In this scenario, we
adopt multi-label training for these detectors while
keeping all other settings consistent.
Question 3. As highlighted in prior research (Xu
et al., 2023; He et al., 2023) that transfer ability
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Table 5: The details of class number, metrics, and
whether the detectors are retrained in our experiments.
Except for Question 2(b), we implement binary classifi-
cations i.e., HWT and MGT. Per. stands for Percentage.

Setting Q 1 Q 2 Q 3 Q 4
(a) (b)

Class Num. 2-Class 2-Class 3-Class 2-Class 2-Class

Metric MGT Per. F1, AUC F1 AUC F1, AUC

Retrained? ✘ ✔ ✔ ✔ ✔

Table 6: An outline of detailed training set construction
for each experiment. ‘Ope.’ denotes ‘operation transfer’
in Experiment 3, while ‘LLM’ refers to ‘LLM transfer’.

Experiment HWT/MGT MIXSET

Q 1 10k 0

Q 2(a) 10k 3k

Q 2(b) 10k 3k

Q 3(Ope.) 1k 0.5k

Q 3(LLM) 5k 1.5k

Q 4 1k/4k/7k/10k 0/1.5k/3k

is crucial for detectors, our objective is to inves-
tigate the effectiveness of transferring across dif-
ferent subsets of MIXSET and LLMs. We estab-
lish two transfer experiments to assess whether
the transferability of current detection methods is
closely linked to the training dataset, referred to as
operation-generalization and LLM-generalization:

• Operation-generalization: We initially train our
detectors on one MIXSET subset operated by one
of these operations, along with pure HWT and
MGT datasets, and then proceed to transfer it to
the subsets processed by other operations.

• LLM-generalization: In this experiment, we
train detectors on GPT-generated texts and HWT,
following which we evaluate the detectors on
mixtext generated by GPT family (OpenAI,
2023b) and Llama2 (Touvron et al., 2023), re-
spectively, to see whether there is a generaliza-
tion gap between different LLMs.

Question 4. Empirically, incorporating more train-
ing data has been shown to enhance detection ca-
pabilities and robustness for generalization (Ying,
2019). To determine the relation between detectors’
performance and the size of the training set, we fol-
low Question 2 and use varying sizes of training
sets to retrain detectors, as illustrated in Table 6.

5 Empirical Findings

There is no obvious classification preference in
current detectors on mixtext. In other words, the
detectors do not exhibit a strong tendency to clas-
sify mixtext as either HWT or MGT. As we can ob-
serve from Figure 2 and Table 10, it is evident that
the MGT percentage8 of mixtexts is between MGT
and HWT, indicating that the current detectors do
not have a strong preference towards mixtext classi-
fication. This proves the success and effectiveness
of our constructed MIXSET in presenting mixed
features of HWT and MGT, demonstrating the limi-
tations of existing detectors in recognizing mixtext.

When dealing with mixtext, the detectors treat it
as an intermediate state between HWT and MGT.
Most detectors exhibit inconsistent classification
within a single subset, fluctuating between accura-
cies of 0.3 and 0.7, akin to random choice. In AI-
revised scenarios, subsets, such as polished tokens
or sentences, pose extreme detection challenges.
Mainstream detectors generally perform poorly in
these cases due to the subtle differences between
mixtext and original text, highlighted in previous
studies (Krishna et al., 2023). Furthermore, texts
generated by Llama2-70b are easier to detect than
those by GPT-4, possibly due to GPT-4’s closer
generative distribution to human writing.
Supervised binary classification yields profound
results; however, three-classes classification en-
counters significant challenges when applied to
mixtext scenarios except Radar. As indicated
in Table 7, retrained model-based detectors out-
perform metric-based methods in both binary and
three-class classification tasks. Notably, Radar
ranks first in our results, achieving a significant
lead over other detectors. We suppose that this su-
perior performance can be attributed to its encoder-
decoder architecture, which boasts 7 billion train-
able parameters, substantially more than its coun-
terparts. We also examined the impact of retraining
on MixSet on MGT detection performance. As in-
dicated in Table 8, there was a slight decrease in the
F1 score, while the AUC metric remained largely
unaffected. Notably, post-retraining, the detector
acquired the capability to identify mixtext—an ad-
vancement deemed highly valuable. This ability
to detect mixtext, despite a minor trade-off in F1
score for MGT detection, represents a significant
step forward, suggesting a promising direction for

8MGT percentage means the percentage of identifying
samples as MGT of different sets in Experiment 1.
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Table 7: F1 score of experiment 2 (a) and (b). Tok. stands for token level and Sen. stands for sentence level.
We underscore the best-performing detector and bold the score greater than 0.8, which we consider as a baseline
threshold for detection.

Detection Method
Av

er
ag

e

AI-Revised Human-Revised

Complete Rewrite Polish-Tok. Polish-Sen. Humanize

A
da

pt
-S

en
.

A
da

pt
-T

ok
.

L
la

m
a2

G
PT

-4

L
la

m
a2

G
PT

-4

L
la

m
a2

G
PT

-4

L
la

m
a2

G
PT

-4

L
la

m
a2

G
PT

-4

Experiment 2 (a): Binary Classification

log-rank 0.615 0.695 0.686 0.637 0.479 0.617 0.606 0.647 0.595 0.617 0.454 0.676 0.667
log likelihood 0.624 0.695 0.695 0.637 0.492 0.657 0.627 0.657 0.657 0.637 0.386 0.676 0.667
GLTR 0.588 0.686 0.647 0.606 0.441 0.574 0.585 0.637 0.540 0.617 0.400 0.657 0.667
DetectGPT 0.635 0.715 0.651 0.656 0.560 0.632 0.587 0.657 0.632 0.692 0.587 0.641 0.609
Entropy 0.648 0.690 0.671 0.681 0.613 0.681 0.671 0.681 0.671 0.623 0.430 0.681 0.681
Openai Classifier 0.209 0.171 0.359 0.031 0.197 0.145 0.270 0.247 0.439 0.247 0.316 0.000 0.090
ChatGPT Detector 0.660 0.705 0.696 0.676 0.583 0.676 0.647 0.647 0.594 0.667 0.615 0.705 0.705
Radar 0.876 0.867 0.877 0.877 0.877 0.877 0.877 0.877 0.877 0.877 0.877 0.877 0.877
GPT-sentinel 0.713 0.714 0.714 0.714 0.714 0.714 0.714 0.714 0.714 0.696 0.714 0.714 0.714
Distillbert 0.664 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.639 0.667 0.667 0.667

Experiment 2 (b): Three-class Classification

DetectGPT 0.255 0.276 0.210 0.295 0.278 0.283 0.234 0.271 0.237 0.280 0.222 0.233 0.235
ChatGPT Detector 0.304 0.288 0.346 0.283 0.288 0.395 0.341 0.265 0.328 0.267 0.317 0.253 0.273
Radar 0.775 0.804 0.842 0.797 0.837 0.831 0.820 0.815 0.837 0.884 0.889 0.510 0.429
Distillbert 0.261 0.267 0.333 0.319 0.329 0.294 0.309 0.294 0.329 0.309 0.342 0.000 0.010

Table 8: The detection capabilities on pure HWT and
MGT, comparing performances with (w.) and without
(w.o.) MixSet labeling MGT during the training process,
with the better one underscored.

Detector F1 AUC
w.o. w. w.o. w.

log-rank 0.830 0.821 0.922 0.922
log likelihood 0.845 0.834 0.931 0.931
GLTR 0.831 0.818 0.920 0.920
DetectGPT 0.746 0.725 0.820 0.820
Entropy 0.770 0.770 0.859 0.859

ChatGPT Det. 0.881 0.896 0.954 0.979
Radar 0.997 0.997 1.000 1.000
GPT-sentinel 0.988 0.982 1.000 0.999
Distillbert 0.996 0.984 1.000 1.000

enhancing detector versatility and applicability in
varied contexts.

In the three-class classification task, detectors
based on LLMs, particularly the Radar detector, sig-
nificantly outperformed those utilizing the BERT
model. The BERT-based detectors’ performance
was markedly poor, akin to random guessing, with
some models even underperforming a random base-
line. This stark contrast underscores the efficacy of
LLMs in capturing nuanced distinctions, as demon-

Table 9: Result of LLM-transfer experiments. Although
we retrain our detector on texts generated by GPT-4, it
shows convincing generalization ability to Llama2.

Method
w.o MixSet w. MixSet

Llama2 GPT-4 Llama2 GPT-4

GPT-sentinel 0.813 0.739 0.972 0.971
Radar 0.834 0.729 0.997 1.000
ChatGPT Det. 0.664 0.445 0.681 0.480
Distillbert 0.687 0.638 0.673 0.698

strated in tasks like Mixtext. The superior perfor-
mance of LLM-based Radar detectors lays a solid
foundation for future explorations and applications
in fine-grained classification tasks.
Current detectors struggle to generalize across
different revised operation subsets of MIXSET
and generative models. As shown in Figure 8
and Figure 13, significant variability is observed in
the transfer capabilities of three different detectors.
Additionally, training on texts generated by differ-
ent revised operations results in different transfer
abilities for these detectors. Overall, Radar ex-
hibits the most robust transfer capability among the
four model-based detectors, achieving an overall
classification accuracy exceeding 0.9, followed by
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Figure 7: Analysis of the F1-score performance of various detectors across differing quantities of mixtext instances
from MIXSET, as well as pure MGT and HWT.
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Figure 8: The AUC Heatmap of GPT-sentinel.

GPT-sentinel, DistillBert, and finally, the ChatGPT
Detector. Among various operations, ‘Humanize’
exhibits the poorest transfer performance in almost
all scenarios. Additionally, other operations also
experience significant declines when dealing with
‘Humanize’ mixtexts. This suggests that ‘Human-
ize’ falls outside the current detectors’ distribution
of MGT, a gap that could be addressed by retrain-
ing on these specific cases. As shown in 9 It is also
noteworthy that texts generated by Llama2-70b
demonstrate stronger transfer abilities than those

generated by GPT4.
Increasing the number of mixtext samples in the
training set effectively enhances the success rate
of mixtext detection. However, adding pure text
samples does not yield significant improvements
and may even have a negative impact on detector
performance, especially for metric-based methods.
This may be attributed to subtle distribution shifts
between mixtext and pure text. The current detector
still faces significant challenges in capturing these
subtle shifts. For mixtext scenarios, a more power-
ful and fine-grained detection method is needed.

6 Conclusion

In this paper, we defined mixtext, the mixed text
of human and LLM-generated content. Then, we
proposed a dataset MIXSET to address the re-
search gap in studying the mixed scenarios of
machine-generated text (MGT) and human-written
text (HWT). A thorough evaluation of the dataset
is conducted, performing binary, three-class, and
transfer experiments on mainstream detectors. The
results underscore the complexities inherent in
identifying mixtext, indicating the challenge of dis-
tinguishing the subtle differences in mixtext. As
a result, there is a need for more robust and fine-
grained detection methods.
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7 Limitation

Bias Introduced by Human Participation. Al-
though our study involved multiple human partic-
ipants to modify the text, increasing the diversity
and authenticity of the data, the text processing
methods of different participants could vary due
to their language habits and styles. This might af-
fect the representativeness of the dataset and the
generalization ability of the detection models.
Limitation in the Scale of the MixSet Dataset.
As the MixSet dataset is the first to be proposed for
studying mixed texts (mixtext), its overall scale is
relatively small despite its comprehensive coverage
in types. This could limit the comprehensiveness
of model training and evaluation.

8 Ethics Statement

Opposition to Misuse of Mixed Text Scenarios.
Our study highlights that the mixtext of HWT and
MGT could significantly diminish the discerning
abilities of detectors. However, we strongly oppose
the misuse of mixtext to evade detection in spe-
cific scenarios, such as during examinations and
homework assignments. We believe such misuse
could severely harm the fairness of education and
the integrity of academic practices.
Purpose for Scientific Research. This study aims
purely for scientific exploration and understanding
of the behavior and impact of mixtext in natural
language processing. Our goal is to enhance under-
standing of mixed text processing and to advance
the technological development in this area, not to
encourage or support applications that may violate
ethical standards.
Compliance with Licensing and Distribution
Regulations. We affirm that all open-source re-
sources utilized in our study, including detectors,
language models, and datasets, have been em-
ployed in strict accordance with their respective
licenses and distribution terms. This adherence
extends to ensuring that any modifications, redis-
tributions, or applications of these resources in our
research comply with their original licensing agree-
ments. Our commitment to these principles up-
holds the integrity of our research and contributes
to a responsible and ethical academic environment.
Use of Publicly Available Data and Consider-
ation for Privacy. The datasets used in our re-
search are exclusively sourced from publicly avail-
able, open-source collections. While these datasets
are publicly accessible and generally considered

devoid of sensitive personal information, we ac-
knowledge the potential for inadvertent inclusion
of personal identifiers in datasets. We emphasize
that our use of these datasets is aligned with their
intended purpose and distribution terms. We also
recognize the importance of respecting privacy and
are committed to ongoing vigilance in this regard.

We reiterate that this research adheres to strict
scientific and ethical standards, aiming to con-
tribute to the field of natural language processing
while ensuring that the results are not used for im-
proper purposes. We also encourage our peers to
consider these ethical factors when utilizing our
research findings, ensuring their applications do
not adversely affect society and individuals.
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A Full Related Works

A.1 Detecting Machine Generated Text

Current MGT detection methods can be broadly
categorized into metric-based and model-based
methods according to previous study (He et al.,
2023). Moreover, other detection methods such as
watermark, retrieval-based methods, and in-context
learning leveraging LLMs also lead to promising
detection methods.
Metric-based Methods. Metric-based methods
leverage the LLM backbone directly to extract its
distinguishing features between HWT and MGT,
operating within a white-box setting that requires
access to the model. Former methods like Log-
Likelihood (Solaiman et al., 2019), Entropy, Rank
(Gehrmann et al., 2019), and Log-Rank (Mitchell
et al., 2023) employ statistical analysis to mea-
sure information beyond the token level. GLTR
(Gehrmann et al., 2019) utilizes a suite of metric-
based methods to aid in human identification. How-
ever, with the advent of LLMs, the progressively
increasing similarity between the distributions of
HWT and MGT has weakened its detection accu-
racy (Ghosal et al., 2023).

Building upon the observation that MGTs oc-
cupy regions with sharp negative log probability
curvature, Mitchell et al. (2023) introduced a zero-
shot whitebox detection method called DetectGPT,
setting a trend in metric-based detection (Su et al.,
2023; Mireshghallah et al., 2023; Bao et al., 2023).
Yang et al. (2023a) also introduced a powerful de-
tection method known as DNA-GPT, which lever-
ages N-gram in a black-box setting by analyzing
the differences between truncated original text and
regenerated text. Recently, they even extended the
detection method to MGT code in a zero-shot set-
ting, which is proven to achieve promising results
(Yang et al., 2023b).
Model-based Methods. In the Large Language
Models (LLMs) era, Guo et al. (2023) devel-
oped the ChatGPT Detector based on a fine-tuned
Roberta model. As for decoder-based or encoder-
decoder detectors, GPT-sentinel (Chen et al., 2023)
and RADAR (Hu et al., 2023), utilizing T5-small
(Raffel et al., 2020) and Vicuna-7B (Chiang et al.,
2023) respectively, show convincing results when
detecting MGT even in revised cases. Moreover,
Verma et al. (2023) proposes a novel detection
framework called Ghostbuster, which employs
passing documents through a series of weaker lan-
guage models. Using a small amount of training

data, Guo and Yu (2023) leverages a black-box
LLM to denoise input text with artificially added
noise and then semantically compares the denoised
text with the original to determine if the content
is machine-generated, leading a new method for
MGT detection.

However, it’s important to note that some re-
searchers have raised concerns about fine-tuning
models for MGT detection. Bakhtin et al. (2019)
and Uchendu et al. (2020) have argued that fine-
tuning models can lead to overfitting and a loss
of generalization, particularly when dealing with
text generated by the latest LLMs. They highlight
the challenge posed by out-of-distribution editing
texts, which can undermine the effectiveness of
pre-trained detectors, as demonstrated by research
on paraphrasing.
Other detection methods. Watermarking imprints
specific patterns of the LLM output text that can be
detected by an algorithm while being imperceptible
to humans. Kirchenbauer et al. (2023) developed
watermarks for language modeling by adding a
green list of tokens during sampling. Currently,
Gu et al. (2023) introduces a learnable watermark
by distilling LLM and watermark technology into
one student model, finding that models can learn to
generate watermarked text with high detectability.

In retrieval-based methods, Krishna et al. (2023)
introduce a method to retrieve semantically similar
generations and search a database of sequences pre-
viously generated by specific Large Language Mod-
els (LLMs), looking for sequences that match the
candidate text within a certain threshold. Delving
deeper, Wu et al. (2023) proposes a model-specific
detection tool called LLMDet, which can detect
source text from specific LLMs by constructing a
text collection dictionary for each LLM.

In the in-context learning setting, Yu et al. (2023)
introduced a straightforward method that analyzes
the similarity between re-answering a question by
generating a corresponding question in the context
of the given answer. Moreover, Koike et al. (2023b)
employed a pure in-context learning approach for
detection and found that LLMs can distinguish be-
tween human and machine styles.

A.2 Previous study to mix of HWT and MGT
Prior studies have viewed the mixture of HWT and
MGT in different settings. DNA-GPT (Yang et al.,
2023a) and DetectGPT (Mitchell et al., 2023) no-
tably utilized the T5 model (Raffel et al., 2020)
to simulate scenarios where humans make limited,
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POS: Possessive ending
JJ: Adjective
JJS: Adjective, superlative
VBZ: Verb, 3rd person singular present
RBS: Adverb, superlative
NNS: Nouns, plural

TO: to
VBD: Verb, past tense
MD: Modal
VBP: Verb, non-3rd person singular present
FW: Foreign word
DT: Determiner

VBN: Verb, past participle
UH: Interjection
RB: Adverb
NNP: Proper noun, singular
PDT: Predeterminer
EX: Existential there

WP: Wh-pronoun
RBR: Adverb, comparative
PRP: Personal pronoun
VB: Verb, base form
JJR: Adjective, comparative
WRB: Wh-adverb

SYM: Symbol
NN: Noun, singular or mass
RP: Particle
VBG: Verb, gerund or present participle
CC: Coordinating conjunction
CD: Cardinal number

Figure 9: POS distribution of the MIXSET by NLTK (Bird et al., 2009).
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Figure 10: Self-BLEU score of the HWT, MGT, and MixSet.

random modifications to MGT, creating complex
test cases. Conversely, DIPPER (Krishna et al.,
2023) and OUTFOX (Koike et al., 2023b) opted
for a paraphrasing technique, using this method to
craft adversarial attacks aimed at eluding the detec-
tion mechanisms of classifiers, thereby presenting
a nuanced way to alter MGT while maintaining un-
detectability. Recent research efforts have started
to explore real-world applications of human-AI
mixtext. Liang et al. (2024) explores the impact
of AI, such as ChatGPT, on modifying content in
academic peer reviews, aligning with our focus on
the detection of mixtext.

A.3 Datasets for MGT Detection

Previous studies have proposed many datasets
of MGT, often accompanied by their newly pro-
posed detectors (Verma et al., 2023; Chen et al.,
2023). Guo et al. (2023) leverages multiple pre-
vious Question-Answer (QA) datasets (Rajpurkar
et al., 2016b; Kočiskỳ et al., 2018; Jin et al., 2019;
Lin et al., 2021), allowing ChatGPT to generate
corresponding answers without explicit prompts.
This approach results in creating a comprehensive
dataset comprising a large set of pairs of MGT and
HWT. Following the QA pattern, many researchers
(Mitchell et al., 2023; Su et al., 2023; Hu et al.,
2023; He et al., 2023) propose datasets with the
MGT from variant mainstream LLMs (Du et al.,

2022; Black et al., 2022; Anand et al., 2023; Ope-
nAI, 2022, 2023b) 9. Yu et al. (2023) only utilizes
the answer section within the QA dataset (Ham-
borg et al., 2017; Möller et al., 2020) and employs
ChatGPT to generate corresponding questions and
re-answers.

However, these datasets typically consist of two
distinct classes of texts, namely pure MGT or HWT,
without accounting for the potential mixtext. Fur-
thermore, issues arise due to variations in prompts
(Koike et al., 2023a), sampling methods, and the
inherent differences in length, style, and quality
among texts in some datasets (He et al., 2023).
These variations challenge the generalization of
proposed detectors (Xu et al., 2023) and lie a vast
diversity in distribution between the original and re-
vised text (Ghosal et al., 2023). In some instances,
the MGT included in datasets may not undergo
thorough and careful evaluation. Many noisy sen-
tences are not filtered well in the datasets. For
example, some sentences like Let me know if you
have any other questions exist in the dataset, which
will impact the effectiveness of the detectors (Guo
et al., 2023).

9https://www.databricks.com/blog/2023/04/12/dolly-first-
open-commercially-viable-instruction-tuned-llm
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B Dataset Details

B.1 Construction Details

Eight Human revised the MGT to mixtext. The
MGT is revised by eight human experts with pro-
fessional English proficiency and costs them a total
of 280 hours to complete this part. The guidelines
for human revision are shown in Figure 22. And
the labeling screenshot is shown in Figure 37.

B.2 Other Metrics in Evaluating MIXSET

• Self-BLEU Score: Self-BLEU is a metric used
to assess the diversity of generated text. Gener-
ally, a lower Self-BLEU score indicates higher
textual diversity. These results are shown in Fig-
ure 10. Overall, the HWT shows greater diver-
sity than MGT, and the Rewrite category has
the highest textual diversity in the MixSet. The
self-BLEU score of HWT, WGT, and mixtext is
shown in Figure 11 and 10.

• POS distribution: POS distribution refers to the
frequency and pattern of Part-of-Speech tags in a
text, categorizing words into grammatical classes
like nouns, verbs, and adjectives. This analy-
sis is key for understanding the text’s syntactic
structure and linguistic characteristics, which is
important in NLP research fields.

Seven Model-Based detectors. We implement
seven Machine Generative Text (MGT) detec-
tors, encompassing both supervised and zero-shot
settings. Firstly, we consider a robust closed-
source online detector baseline: GPTZero (Tian,
2023). Secondly, we implement three open-source
encoder-based detectors: OpenAI’s classifier (Ope-
nAI, 2023a), Roberta-based classifier (Guo et al.,
2023). We also implement GPT-sentinel (Chen
et al., 2023), RADAR (Hu et al., 2023), and Ghost-
writer (Verma et al., 2023) as strong baselines. We
also finetune a pre-trained language model built by
Sanh et al. (2019) with an extra classification layer
on top.
Three Evaluation Metrics Previous studies (Sada-
sivan et al., 2023; Mitchell et al., 2023) have proven
the feasibility of using the Area Under The ROC
Curve (AUROC) score for evaluating detection al-
gorithm effectiveness. Given that most detectors
can only give a predictive probability, we build a
logistic regression model to provide concrete pre-
dictions, i.e., MGT or HWT, converting probability
to accuracy and f1-score as the two other metrics
for our detection evaluation.
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Figure 11: Self-BLEU score of HWT and MGT.
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Figure 12: Length distribution of the training datasets
and the MixSet.

Training set construction. We respectively select
pure HWT and MGT for the train set from different
datasets as illustrated in 1 and MGTBench (He
et al., 2023), which is also the original dataset of
our MIXSET. Since all datasets are specific, this
selection strategy ensures only a small difference in
data distribution. Firstly, we do data deduplication
and pre-process it to erase the Unicode or other
special tokens like \n\n. Then, we select pieces of
sentences with a similar length distribution in our
MIXSET, as illustrated in Figure 12. As we use
accuracy as our evaluation metric, we restrict the
amount of HWT and MGT to be the same in our
dataset, as illustrated in Tabel 6.

Training details. We employ the standard binary-
classification loss function and the AdamW opti-
mizer (Loshchilov and Hutter, 2019), with an em-
pirically determined learning rate. Specifically, for
the Hello-Ai/Roberta-based model and the Distil-
BERT model, the learning rate is set to 5× 10−7.
In contrast, for Radar and GPT-sentinel, the learn-
ing rates are 5× 10−6 and 5× 10−5, respectively.
Each supervised model undergoes training for three
epochs on a dual-4090 server.
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C Detailed Experiment Results

As for experiment 1, we put the detailed accuracy
for different detectors in Table 10. In experiment
2, we also evaluate detectors with AUC metric, as
shown in Table 11. We also post other detectors
undergo our experiment 3 illustrated in Figure 13.
As for experiment 4, we evaluate detectors with ac-
curacy, precision, and recall metrics, as illustrated
in Figure 14, 15, and 16.

D Prompt Template

We show the prompt template of LLM’s opera-
tion, including complete, polish (token-level and
sentence-level), rewrite, and humanize in Figure
17, Figure 18, Figure 19, Figure 20 and Figure 21.

E Case study in MIXSET

We selected two cases to show the comparison be-
tween the revised mixtext and the original text,
where the highlighted content represents the modi-
fied content. The HWT original text can be found
in figure 23, the AI revised text are shown in Figure
24, 25, 26, 27, 28, 29, 30, and 31. The MGT origi-
nal text can be found in Figure 32, and the Human
revised text can be found in Figure 33, 34, 35, and
36.
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Table 10: Percentage of identifying samples as MGT of different sets in Experiment 1. For example, the Log-Rank
detector categorizes 57.30% of samples in the Llama2-revised set as MGT. We underscore the best-performing
detector and bold the score greater than 0.8, which we consider as a baseline threshold for detection. (Tok. stands
for token level, and Sen. stands for sentence level)

Detection Method
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Metric-based Detector

Log-rank 0.213 0.847 0.573 0.240 0.810 0.520 0.573 0.383 0.427 0.350 0.703 0.093 0.783 0.770
Log-likelihood 0.223 0.867 0.600 0.287 0.823 0.560 0.643 0.450 0.513 0.410 0.703 0.083 0.790 0.777
GLTR 0.207 0.840 0.480 0.180 0.813 0.393 0.517 0.283 0.390 0.313 0.630 0.053 0.783 0.760
DetectGPT 0.350 0.823 0.643 0.343 0.743 0.557 0.650 0.480 0.563 0.437 0.807 0.533 0.623 0.597
Entropy 0.353 0.840 0.733 0.580 0.793 0.623 0.793 0.730 0.713 0.640 0.737 0.223 0.793 0.770

Model-based Detector

Openai Classifier 0.060 0.607 0.150 0.047 0.407 0.037 0.123 0.037 0.103 0.053 0.023 0.007 0.490 0.453
ChatGPT Detector 0.040 0.757 0.380 0.157 0.523 0.287 0.380 0.130 0.243 0.117 0.457 0.097 0.750 0.770
Radar 0.307 0.857 0.730 0.477 0.893 0.783 0.607 0.447 0.560 0.387 0.347 0.037 0.850 0.890
GPT-Sentinel 0.133 0.887 0.833 0.877 0.540 0.573 0.883 0.807 0.710 0.460 0.033 0.000 0.910 0.910
Distillbert 0.483 0.993 0.593 0.660 0.530 0.573 0.607 0.580 0.547 0.527 0.170 0.003 1.000 1.000
Ghostbuster 0.103 0.610 0.870 0.780 0.750 0.087 0.353 0.493 0.473 0.663 0.567 0.637 0.700 0.443
GPTZero 0.017 0.730 0.493 0.167 0.810 0.177 0.497 0.260 0.777 0.763 0.717 0.187 0.720 0.497

Table 11: AUC of Experiment 2 (a). We underscore the best-performing detector and bold the score greater than 0.8,
which we consider as a baseline threshold for detection. (Tok. stands for token level and Sen. stands for sentence
level)

Detection Method
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Metric-based Detector

log-rank 0.921 0.629 0.632 0.318 0.569 0.531 0.662 0.462 0.641 0.245 0.778 0.778
log likelihood 0.933 0.650 0.672 0.352 0.610 0.569 0.709 0.508 0.652 0.206 0.782 0.786
GLTR 0.870 0.504 0.546 0.268 0.511 0.466 0.602 0.345 0.595 0.208 0.764 0.768
DetectGPT 0.852 0.644 0.669 0.352 0.612 0.466 0.664 0.482 0.677 0.461 0.548 0.557
Entropy 0.814 0.581 0.662 0.463 0.656 0.636 0.686 0.596 0.580 0.185 0.733 0.730

Model-based Detector

Openai Classifier 0.294 0.601 0.126 0.360 0.433 0.492 0.383 0.590 0.321 0.517 0.182 0.187
ChatGPT Detector 0.706 0.399 0.874 0.640 0.567 0.508 0.617 0.410 0.679 0.483 0.818 0.813
Radar 0.992 0.994 0.997 0.999 0.998 0.986 0.998 1.000 0.984 0.984 0.999 0.999
GPT-sentinel 0.994 0.992 0.987 0.993 0.995 0.964 0.992 0.996 0.915 0.953 0.958 0.986
Distillbert 0.756 0.856 0.746 0.859 0.790 0.730 0.791 0.856 0.416 0.330 0.837 0.861
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Figure 14: Analysis of the accuracy of various detectors across differing quantities of mixtext instances from
MIXSET, as well as pure MGT and HWT.
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Figure 15: Analysis of the recall rate of various detectors across differing quantities of mixtext instances from
MIXSET, as well as pure MGT and HWT.
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Figure 16: Analysis of the precision rate of various detectors across differing quantities of mixtext instances from
MIXSET, as well as pure MGT and HWT.

Figure 17: Prompt(①)-LLM complete the HWT

I have an incomplete text and need it to be completed. Please expand this into
a complete text where the total word count, including the original text I have
provided, does not exceed 180 words. The original text must remain exactly as
is, with its format (such as capitalization and punctuation) intact. Please do
not modify any part of the original text. Here’s the text: {HWT}

Figure 18: Prompt(②)-LLM polish HWT in token level

Please carefully examine the following paragraph solely for spelling and
grammatical errors, and replace any words that are repetitive, inaccurate,
or poorly chosen. It is crucial to avoid any changes to the sentence order or
structure. The focus should be strictly on the choice and usage of individual
words to improve the clarity and appropriateness of the text without altering
the original sentence construction: {HWT}

Figure 19: Prompt(③)-LLM polish HWT in sentence level

Please optimize the sentences in the following paragraph to enhance fluency and
clarity. Do not alter the overall content or structure of the paragraph. Focus
on the construction and expression of the sentences, ensuring that the text is
coherent and the information is accurate: {HWT}
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Figure 20: Prompt(④)-LLM rewrite HWT

Please extract the core ideas and keywords from the following English text and
then rewrite a passage based on this information. The new text should maintain
the essence of the original, with the word count varying by no more than 10%
from the original. There’s no need to list the core ideas and keywords. Here
is the text that needs to be processed: {HWT}

Figure 21: Prompt(④)-LLM humanize MGT

I need to modify a machine-generated text to make it appear more like it was
written by a human. The objective is to introduce elements commonly found in
human-written texts. Here are some optional modifications you can choose to
apply:
1. Introduce spelling errors or typos(optional)
2. Create grammatical errors, such as randomly adding or deleting words
(optional).
3. Include relevant but internet links, like blog posts or image links pertaining
to the topic, you don’t have to use the real links, so you can freely write one
(optional).
4. Add relevant hashtags, for instance, #TopicKeyword #Location #Activity
(optional).
5. Use internet slang and abbreviations, e.g., ‘OMG’, ‘How r u’, ‘LOL’,
(optional).
Please select any combination of these modifications to enhance the text’s
human-like quality. The aim is to simulate the imperfections and stylistic
choices typical in casual human writing.
The word count of the new text should not exceed 1.1 times that of the original
text.
You should just give me the revised version without any other words.
Emojis are strictly prohibitive, so please ensure that it contains no emojis.
Here is the machine-generated text:{HWT}
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Figure 22: Guidelines for Human Revision

The content under this document is generated by a large language model, such
as ChatGPT. You are required to revise it to make it closer to the style of
human-written text. You are responsible for the text under the IDs xx-xx, and
you need to make the following three types of modifications to the content,
generating two different sentences for each ID (each ID corresponds to 3
sentences):
The document is in JSON format. You can choose to use code editors like Visual
Studio Code or text editors like Notepad for reading and writing.
1. Adapt Token: You need to modify any words or phrases in this passage that you
think are too rigid, mechanical, obscure, or unusual into vocabulary typical
of human texts. Be careful not to alter the sentence order or structure; only
modify ‘words’ or ‘phrases.’
2. Adapt Sentence: You need to revise any sentence structures that you find too
mechanical or rigid to make them more in line with how humans typically write
texts. This involves changes at the sentence level, which may include altering
sentence order and structure.
Note:
1. After writing, please ensure to check that there are no ‘grammatical errors’
or ‘spelling mistakes’ in the text paragraphs.
2. Do not use ChatGPT or other large language models for data annotation, as
it will severely degrade the data quality.
3. You may use translation platforms like Youdao (you) or Google a; or use
Grammarly b to check for grammatical errors.
Below are some examples you can refer to:
[Example 1]
[Example 2]
[Example 3]

ahttps://translate.google.com/
bhttps://www.grammarly.com/

Figure 23: Case Study of revision on HWT: Original HWT

[Original HWT] We present a new mixed variable symplectic (mvs) integrator for
planetary systems, that fully resolve close encounters. The method is based
on a time regularisation that allows keeping the stability properties of the
symplectic integrators, while also reducing the effective step size whenever
two planets encounter. We use a high order mvs scheme such that it is possible
to integrate with large time steps far away from close encounters. We show
that this algorithm is able to resolve almost exact collisions (i.e. with
a mutual separation of a fraction of the physical radius) while using the
same time-step as in weakly perturbed problems such as the solar system. We
demonstrate the long-term behavior on systems of six super-earths experiencing
strong scattering for 50 kyr. We compare our algorithm to hybrid methods such
as mercury and show that for an equivalent cost, we obtain much better energy
conservation.
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Figure 24: Case Study of revision on HWT: GPT-4 Polish (Token)

[GPT-4 Polish (Token)] We present a new mixed-variable symplectic (MVS)

integrator for planetary systems that fully resolves close encounters.
The method is grounded in a temporal regularization that maintains
the stability properties of symplectic integrators while also
diminishing the effective step size whenever two planets

draw near each other. We employ a high-order MVS scheme, enabling integration

with extended time steps when distant from close encounters. We demonstrate
that this algorithm capably resolves nearly exact collisions (i.e.,
with a mutual separation of a small fraction of the physical radius)
using a consistent time-step as in weakly perturbed problems such as the

solar system. We exhibit the long-term dynamics on systems of six super-Earths

undergoing intense scattering over 50 kyr. We contrast our algorithm with

hybrid methods such as Mercury, revealing that, for a comparable cost, we

achieve much improved energy conservation.

Figure 25: Case Study of revision on HWT: GPT-4 Polish (Sentence)

[GPT-4 Polish (Sentence)] We introduce a novel mixed variable

symplectic (MVS) integrator specifically designed for planetary

systems that efficiently manages close encounters. This method

utilizes time regularization to maintain the stability characteristics

inherent to symplectic integrators, while dynamically adjusting the effective

step size during planetary encounters. Our high-order MVS approach enables

integration at large time steps when planets are distantly separated, thereby

optimizing computational efficiency. The algorithm proves capable of resolving

near-exact collisions—with mutual separations as minute as a fraction of the

planets’ physical radii—without altering the time step used for more stable

configurations, such as within the solar system. We examine the

algorithm’s long-term stability in simulations of six super-Earths undergoing

significant scattering over 50,000 years. Furthermore, we benchmark our

algorithm against hybrid methods like Mercury, demonstrating superior energy
conservation at a comparable computational cost.
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Figure 26: Case Study of revision on HWT: GPT-4 Complete

[GPT-4 Complete] We present a new mixed variable symplectic (mvs)
integrator for planetary systems, that fully resolve close encounters.
The method is based on a time regularisation that allows keeping the
stability properties of the symplectic integrators, while also reducing
the effective step size whenever two planets encounter. We use a
modified leapfrog scheme to address the issues of traditional integrators
when handling near-collision scenarios. The key improvement lies in an
adaptive algorithm that dynamically adjusts the step size according to the
proximity of the planetary bodies. As a result, our integrator ensures high
accuracy and energy conservation even during complex dynamical interactions.
Tests demonstrate that the mvs integrator significantly outperforms standard
fixed-step symplectic methods in long-term stability and computational
efficiency. This advancement opens up new possibilities for accurately
simulating the evolution of planetary systems over extended timescales,
providing valuable insights into the dynamical behavior of multi-body systems

and enhancing our understanding of celestial mechanics.

Figure 27: Case Study of revision on HWT: GPT-4 Rewrite

[GPT-4 Rewrite] We introduce an advanced mixed variable symplectic (mvs)
tailored for planetary systems, adept at handling close encounters precisely.
This technique employs time regularization to maintain the stability
characteristic of symplectic integrators and intelligently reduces the effective
step size during planetary encounters. Employing a sophisticated mvs algorithm,

it facilitates integration over large time steps when planets are not closely
interacting . Our findings illustrate that the algorithm effectively manages

near-collision events , simulating scenarios with planet separations

just fractions of their physical sizes, using consistent time
steps applicable to less disturbed systems like the solar system.

The integrator’s performance excels in extended simulations, such as tracking
six super-earths in a dense scattering scenario for 50,000 years, showcasing
superior energy conservation when contrasted with hybrid algorithms like the
mercury method, and doing so computational cost.
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Figure 28: Case Study of revision on HWT: Llama2 Polish (Token)

[Llama2 Polish (Token)] We introduce a novel mixed variable symplectic (MVS)
integrator for planetary systems that accurately resolves close encounters.

Our method is built upon a time regularization that preserves the

stability attributes of symplectic integrators while adaptively decreasing

the effective step size during planetary interactions . By employing a
high-order MVS scheme, we can integrate with large time steps in regions
where close encounters are not occurring . This algorithm enables the precise

resolution of nearly exact collisions (with a mutual separation of a small
fraction of the physical radius) using the same time step as in weakly perturbed
problems, such as the solar system. We demonstrate the long-term behavior of
our algorithm on systems consisting of six super-Earths undergoing intense
scattering. Our approach shows superior energy conservation compared to hybrid
methods like Mercury, while maintaining comparable computational efficiency .

Figure 29: Case Study of revision on HWT: Llama2 Polish (Sentence)

[Llama2 Polish (Sentence)] We introduce a novel mixed variable symplectic
( MVS ) integrator for planetary systems that accurately resolves close

encounters. Our method is founded on a time regularization technique

that preserves the stability attributes of symplectic integrators while
adaptively decreasing the effective step size during planetary encounters.

By employing a high-order MVS scheme, we can integrate with substantial

time steps in regions unaffected by close encounters . Our algorithm

efficiently handles near-collisions (with a mutual separation of

a few percent of the physical radius) utilizing the same time-step

as in weakly perturbed scenarios , such as the solar system.
In a comprehensive analysis, we demonstrate the long-term behavior

of our method on systems consisting of six super-Earths undergoing intense

scattering over 50 kyr. Our findings indicate that, compared to

hybrid approaches like Mercury, our algorithm achieves superior energy.

conservation at an equal computational cost
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Figure 30: Case Study of revision on HWT: Llama2 Complete

[Llama2 Complete] We present a new mixed variable symplectic (MVS)
integrator for planetary systems, that fully resolves close encounters.
The method is based on a time regularization that allows keeping the
stability properties of the symplectic integrators, while also reducing
the effective step size whenever two planets encounter. We use a
simple and efficient algorithm to detect close encounters, and switch to a
smaller step size during these events to ensure accurate trajectory propagation.
This approach enables us to maintain the long-term accuracy of the simulation
while significantly improving computational efficiency. Our MVS integrator
can handle both collisional and non-collisional close encounters, and we
demonstrate its performance through several test cases involving Earth-Moon
and Jupiter-Io system simulations.

Figure 31: Case Study of revision on HWT: Llama2 Rewrite

[Llama2 Rewrite] We introduce a novel mixed variable symplectic ( MVS )
integrator for solving planetary systems that undergo close encounters.

Our approach combines the benefits of symplectic integrators - stability and
accuracy - with the ability to adaptively adjust the time step size during close
encounters. This enables us to capture near-collisions with high precision
while still utilizing large time steps in stable regions. We validate our
algorithm’s performance by simulating systems of six super-Earths over 50,000
years, demonstrating its superiority compared to hybrid methods like Mercury
in terms of energy conservation, while maintaining comparable computational

efficiency.

Figure 32: Case Study of revision on MGT: Original MGT

[Original MGT] The first coffee was brewed by the ancient egyptians over 4,000
years ago. As of 2023, coffee consumption increased 70-fold in the past 100
years. Today, 98% of americans drink coffee. Studies have shown that drinking
two cups of coffee per day is beneficial for adults. However, more and more
studies also show that drinking one or less coffee is also equally beneficial.
Drinking coffee has also been linked to higher memory, alertness, and focus.
Overall, coffee is good for your health.
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Figure 33: Case Study of revision on MGT: GPT-4 Humanize

[GPT-4 Humanize] OMG did you kno that, like, the first cuppa joe was whipped

up by ancient Egyptions like more than 4,000 yrs ago? Fast fwd to 2023, and
whoa, coffee drinking’s shot up a whoppin’ 70 times in the last century!
Nowadays, it’s like 98% of Americans are sippin’ on coffee. Some smarty-pants
studies point out that knockin’ back two cups a day’s pretty good for grown-ups.
But hold up, more research is spillin’ the beans that maybe just one cup or
even less can do the trick too. Crazy, right? Srsly tho, chuggin’ coffee’s
got a rep for boostin’ your memory and makin’ ya more alert and focused. All
in all, java’s a thumbs up for your health.

#CoffeeLovers #HealthBenefits #StayAlert

BTW, if ya wanna dive deeper into the whole coffee vibe, there’s this killer

blog post over at "www.totallyrealcoffeeblog.com/history" that’s got the
low-down on coffee’s past. And, like, for the visual folks out there, check
out these pics on "www.picturesofcoffeeandstuff.com" – they’ve got some epic
shots of coffee that’ll make you wanna brew a pot, like, right now. LOL

Figure 34: Case Study of revision on MGT: Llama2 Humanize

[Llama2 Humanize] Did you know that the ancient Egyptians were the first to

brew coffee over 4,000 years ago? Crazy, right? And get this - coffee

consumption has increased a whopping 70-fold in just the past 100 years!

98% of Americans can’t start their day without their daily cup (or two) of joe.
But here’s the thing: while most people assume that downing multiple cups a
day is the way to go, studies actually suggest that even just one cup can do
the trick. Yep, you heard that right - one measly cup can boost your memory,
alertness, and focus. Talk about a productivity hack! Of course, there’s
always the risk of overdoing it, but hey, everything in moderation, right?
Bottom line: coffee = good stuff.

Figure 35: Case Study of revision on MGT: Adapt Token

[Adapt Token] The first coffee was brewed by the ancient Egyptians over 4,000

years ago. By 2023, coffee consumption has increased 70-fold in the past

100 years. Nowadays , 98% of Americans drink coffee. Studies have shown that

drinking two cups of coffee every day is beneficial for adults. Additionally ,
more and more studies also show that drinking one or less coffee is also equally
beneficial. Drinking coffee is also linked to better memory, alertness, and
concentration . Overall, coffee is good for your health.
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Figure 36: Case Study of revision on MGT: Adapt Sentence

[Adapt Sentence] The first coffee was brewed by the ancient Egyptians over

4,000 years ago. Coffee consumption has increased 70-fold in the past 100

years, along with 98% of Americans drinking coffee, according to the data up

to 2023. Studies have shown that drinking two cups of coffee every day

is beneficial for adults, while other studies indicate that drinking one or

fewer cups of coffee is also equally beneficial. Drinking coffee is also

linked to better memory, alertness, and concentration . Overall, coffee is
good for your health.

Figure 37: screenshot of human revising on MGT
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