@inproceedings{priya-etal-2024-way,
title = "On the Way to Gentle {AI} Counselor: Politeness Cause Elicitation and Intensity Tagging in Code-mixed {H}inglish Conversations for Social Good",
author = "Priya, Priyanshu and
Singh, Gopendra and
Firdaus, Mauajama and
Agrawal, Jyotsna and
Ekbal, Asif",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2024",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-naacl.290",
doi = "10.18653/v1/2024.findings-naacl.290",
pages = "4678--4696",
abstract = "Politeness is a multifaceted concept influenced by individual perceptions of what is considered polite or impolite. With this objective, we introduce a novel task - Politeness Cause Elicitation and Intensity Tagging (PCEIT). This task focuses on conversations and aims to identify the underlying reasons behind the use of politeness and gauge the degree of politeness conveyed. To address this objective, we create HING-POEM, a new conversational dataset in Hinglish (a blend of Hindi and English) for mental health and legal counseling of crime victims. The rationale for the domain selection lies in the paramount importance of politeness in mental health and legal counseling of crime victims to ensure a compassionate and cordial atmosphere for them. We enrich the HING-POEM dataset by annotating it with politeness labels, politeness causal spans, and intensity values at the level of individual utterances. In the context of the introduced PCEIT task, we present PAANTH (Politeness CAuse ElicitAion and INtensity Tagging in Hinglish), a comprehensive framework based on Contextual Enhanced Attentive Convolution Transformer. We conduct extensive quantitative and qualitative evaluations to establish the effectiveness of our proposed approach using the newly constructed dataset. Our approach is compared against state-of-the-art baselines, and these analyses help demonstrate the superiority of our method.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="priya-etal-2024-way">
<titleInfo>
<title>On the Way to Gentle AI Counselor: Politeness Cause Elicitation and Intensity Tagging in Code-mixed Hinglish Conversations for Social Good</title>
</titleInfo>
<name type="personal">
<namePart type="given">Priyanshu</namePart>
<namePart type="family">Priya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gopendra</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mauajama</namePart>
<namePart type="family">Firdaus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jyotsna</namePart>
<namePart type="family">Agrawal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asif</namePart>
<namePart type="family">Ekbal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Politeness is a multifaceted concept influenced by individual perceptions of what is considered polite or impolite. With this objective, we introduce a novel task - Politeness Cause Elicitation and Intensity Tagging (PCEIT). This task focuses on conversations and aims to identify the underlying reasons behind the use of politeness and gauge the degree of politeness conveyed. To address this objective, we create HING-POEM, a new conversational dataset in Hinglish (a blend of Hindi and English) for mental health and legal counseling of crime victims. The rationale for the domain selection lies in the paramount importance of politeness in mental health and legal counseling of crime victims to ensure a compassionate and cordial atmosphere for them. We enrich the HING-POEM dataset by annotating it with politeness labels, politeness causal spans, and intensity values at the level of individual utterances. In the context of the introduced PCEIT task, we present PAANTH (Politeness CAuse ElicitAion and INtensity Tagging in Hinglish), a comprehensive framework based on Contextual Enhanced Attentive Convolution Transformer. We conduct extensive quantitative and qualitative evaluations to establish the effectiveness of our proposed approach using the newly constructed dataset. Our approach is compared against state-of-the-art baselines, and these analyses help demonstrate the superiority of our method.</abstract>
<identifier type="citekey">priya-etal-2024-way</identifier>
<identifier type="doi">10.18653/v1/2024.findings-naacl.290</identifier>
<location>
<url>https://aclanthology.org/2024.findings-naacl.290</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>4678</start>
<end>4696</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On the Way to Gentle AI Counselor: Politeness Cause Elicitation and Intensity Tagging in Code-mixed Hinglish Conversations for Social Good
%A Priya, Priyanshu
%A Singh, Gopendra
%A Firdaus, Mauajama
%A Agrawal, Jyotsna
%A Ekbal, Asif
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Findings of the Association for Computational Linguistics: NAACL 2024
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F priya-etal-2024-way
%X Politeness is a multifaceted concept influenced by individual perceptions of what is considered polite or impolite. With this objective, we introduce a novel task - Politeness Cause Elicitation and Intensity Tagging (PCEIT). This task focuses on conversations and aims to identify the underlying reasons behind the use of politeness and gauge the degree of politeness conveyed. To address this objective, we create HING-POEM, a new conversational dataset in Hinglish (a blend of Hindi and English) for mental health and legal counseling of crime victims. The rationale for the domain selection lies in the paramount importance of politeness in mental health and legal counseling of crime victims to ensure a compassionate and cordial atmosphere for them. We enrich the HING-POEM dataset by annotating it with politeness labels, politeness causal spans, and intensity values at the level of individual utterances. In the context of the introduced PCEIT task, we present PAANTH (Politeness CAuse ElicitAion and INtensity Tagging in Hinglish), a comprehensive framework based on Contextual Enhanced Attentive Convolution Transformer. We conduct extensive quantitative and qualitative evaluations to establish the effectiveness of our proposed approach using the newly constructed dataset. Our approach is compared against state-of-the-art baselines, and these analyses help demonstrate the superiority of our method.
%R 10.18653/v1/2024.findings-naacl.290
%U https://aclanthology.org/2024.findings-naacl.290
%U https://doi.org/10.18653/v1/2024.findings-naacl.290
%P 4678-4696
Markdown (Informal)
[On the Way to Gentle AI Counselor: Politeness Cause Elicitation and Intensity Tagging in Code-mixed Hinglish Conversations for Social Good](https://aclanthology.org/2024.findings-naacl.290) (Priya et al., Findings 2024)
ACL