@inproceedings{verhoeven-etal-2024-realistic,
title = "A (More) Realistic Evaluation Setup for Generalisation of Community Models on Malicious Content Detection",
author = "Verhoeven, Ivo and
Mishra, Pushkar and
Beloch, Rahel and
Yannakoudakis, Helen and
Shutova, Ekaterina",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2024",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-naacl.30",
doi = "10.18653/v1/2024.findings-naacl.30",
pages = "437--463",
abstract = "Community models for malicious content detection, which take into account the context from a social graph alongside the content itself, have shown remarkable performance on benchmark datasets. Yet, misinformation and hate speech continue to propagate on social media networks. This mismatch can be partially attributed to the limitations of current evaluation setups that neglect the rapid evolution of online content and the underlying social graph. In this paper, we propose a novel evaluation setup for model generalisation based on our few-shot subgraph sampling approach. This setup tests for generalisation through few labelled examples in local explorations of a larger graph, emulating more realistic application settings. We show this to be a challenging inductive setup, wherein strong performance on the training graph is not indicative of performance on unseen tasks, domains, or graph structures. Lastly, we show that graph meta-learners trained with our proposed few-shot subgraph sampling outperform standard community models in the inductive setup.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="verhoeven-etal-2024-realistic">
<titleInfo>
<title>A (More) Realistic Evaluation Setup for Generalisation of Community Models on Malicious Content Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ivo</namePart>
<namePart type="family">Verhoeven</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushkar</namePart>
<namePart type="family">Mishra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rahel</namePart>
<namePart type="family">Beloch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Community models for malicious content detection, which take into account the context from a social graph alongside the content itself, have shown remarkable performance on benchmark datasets. Yet, misinformation and hate speech continue to propagate on social media networks. This mismatch can be partially attributed to the limitations of current evaluation setups that neglect the rapid evolution of online content and the underlying social graph. In this paper, we propose a novel evaluation setup for model generalisation based on our few-shot subgraph sampling approach. This setup tests for generalisation through few labelled examples in local explorations of a larger graph, emulating more realistic application settings. We show this to be a challenging inductive setup, wherein strong performance on the training graph is not indicative of performance on unseen tasks, domains, or graph structures. Lastly, we show that graph meta-learners trained with our proposed few-shot subgraph sampling outperform standard community models in the inductive setup.</abstract>
<identifier type="citekey">verhoeven-etal-2024-realistic</identifier>
<identifier type="doi">10.18653/v1/2024.findings-naacl.30</identifier>
<location>
<url>https://aclanthology.org/2024.findings-naacl.30</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>437</start>
<end>463</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A (More) Realistic Evaluation Setup for Generalisation of Community Models on Malicious Content Detection
%A Verhoeven, Ivo
%A Mishra, Pushkar
%A Beloch, Rahel
%A Yannakoudakis, Helen
%A Shutova, Ekaterina
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Findings of the Association for Computational Linguistics: NAACL 2024
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F verhoeven-etal-2024-realistic
%X Community models for malicious content detection, which take into account the context from a social graph alongside the content itself, have shown remarkable performance on benchmark datasets. Yet, misinformation and hate speech continue to propagate on social media networks. This mismatch can be partially attributed to the limitations of current evaluation setups that neglect the rapid evolution of online content and the underlying social graph. In this paper, we propose a novel evaluation setup for model generalisation based on our few-shot subgraph sampling approach. This setup tests for generalisation through few labelled examples in local explorations of a larger graph, emulating more realistic application settings. We show this to be a challenging inductive setup, wherein strong performance on the training graph is not indicative of performance on unseen tasks, domains, or graph structures. Lastly, we show that graph meta-learners trained with our proposed few-shot subgraph sampling outperform standard community models in the inductive setup.
%R 10.18653/v1/2024.findings-naacl.30
%U https://aclanthology.org/2024.findings-naacl.30
%U https://doi.org/10.18653/v1/2024.findings-naacl.30
%P 437-463
Markdown (Informal)
[A (More) Realistic Evaluation Setup for Generalisation of Community Models on Malicious Content Detection](https://aclanthology.org/2024.findings-naacl.30) (Verhoeven et al., Findings 2024)
ACL