
Findings of the Association for Computational Linguistics: NAACL 2024, pages 474–489
June 16-21, 2024 ©2024 Association for Computational Linguistics

Graph-Induced Syntactic-Semantic Spaces in Transformer-Based
Variational AutoEncoders

Yingji Zhang1†, Marco Valentino2, Danilo S. Carvalho1,3,
Ian Pratt-Hartmann1, André Freitas1,2,3

1 Department of Computer Science, University of Manchester, United Kingdom
2 Idiap Research Institute, Switzerland

3 Cancer Biomarker Centre, CRUK Manchester Institute, United Kingdom
1{firstname.lastname}@[postgrad.]†manchester.ac.uk

2{firstname.lastname}@idiap.ch

Abstract

The injection of syntactic information in Vari-
ational AutoEncoders (VAEs) can result in an
overall improvement of performances and gen-
eralisation. An effective strategy to achieve
such a goal is to separate the encoding of
distributional semantic features and syntactic
structures into heterogeneous latent spaces via
multi-task learning or dual encoder architec-
tures. However, existing works employing such
techniques are limited to LSTM-based VAEs.
This work investigates latent space separation
methods for structural syntactic injection in
Transformer-based VAE architectures (i.e., Op-
timus) through the integration of graph-based
models. Our empirical evaluation reveals that
the proposed end-to-end VAE architecture can
improve theoverall organisation of the latent
space, alleviating the information loss occur-
ring in standard VAE setups, and resulting in
enhanced performances on language modelling
and downstream generation tasks.

1 Introduction

Injecting explicit syntactic information in Varia-
tional AutoEncoders (VAEs) (Kingma and Welling,
2013) has led to improved performance on several
language generation tasks, such as paraphrasing
and translation (Dai et al., 2018; Chen et al., 2017;
Felhi et al., 2022; Yang et al., 2021). Among exist-
ing techniques, a line of research explores syntactic
injection via sentence-level semantics-syntax dis-
entanglement, which consists in the explicit sepa-
ration of distributional semantic and structural syn-
tactic features through the optimisation of heteroge-
neous latent spaces (Bao et al., 2019a; Chen et al.,
2019; Zhang et al., 2019). Such methods, imple-
mented under multi-task learning or dual encoder
architectures, have been demonstrated to improve:
(i) generation controllability and interpretability
(Bao et al., 2019a; Zhang et al., 2022), (ii) robust-
ness and generalisation, (iii) fine-grained represen-
tation and latent space organisation (Chen et al.,

2019), and more importantly (iv) injecting syntac-
tic features into VAEs can allow for optimization
in low-dimensional and regularized latent Gaus-
sian space, rather than complex discrete sequence
spaces as investigated in previous work (Pouran
Ben Veyseh et al., 2020; Zanzotto et al., 2020;
Li et al., 2023; Mohammadshahi and Henderson,
2023), which represents an efficient to improve text
generation (Qin et al., 2020; Kumar et al., 2021).
However, most of these methods focus on LSTM-
based VAEs, and their effectiveness for larger archi-
tectures based on Transformers, such as Optimus
(Li et al., 2020), is still under-explored.

To combine the benefits of larger pre-trained
VAEs and latent separation methods, this paper
focuses on the injection of structural syntactic in-
formation in Transformer-based VAEs (i.e., Op-
timus (Li et al., 2020)). Specifically, we investi-
gate a first overarching research question: “RQ1:
How can we best capture explicit syntactic infor-
mation in the latent space of Transformer-based
VAEs?” we address this question by directly in-
tervening on the Optimus architecture to induce a
latent space separation via graph-based (Kipf and
Welling, 2016a) and sequential neural encoders
(Devlin et al., 2018). Specifically, our hypothesis
is that Graph Neural Networks (GNNs) (Kipf and
Welling, 2016a; Hamilton et al., 2017; Yun et al.,
2020) can induce specialised and complementary
latent representations that can better capture struc-
tural syntactic relations and alleviate the informa-
tion bottleneck in VAEs’ semantic encoder (Alemi
et al., 2016; Tenney et al., 2019) (i.e. trade-off
between semantics and syntax).

Subsequently, we focus on the problem of lever-
aging multiple, specialised latent spaces derived
from the dual encoder architecture for decoding.
This leads to several challenges (Figure 1) since
(i) the syntactic representations may not possess a
one-to-one mapping with the semantic representa-
tions (i.e., one syntactic structure can correspond

474

to multiple sentence representations), (ii) the opti-
misation of heterogeneous latent spaces can result
in different latent distributions, a feature that can
affect decoding and language generation perfor-
mance, and (iii) compared with an LSTM decoder,
Transformer-based decoders (e.g., GPT2) are typi-
cally larger and contain information acquired dur-
ing pre-training, being more difficult to control.

Those challenges lead to our second research
question: “RQ2. How can multiple, specialised
latent spaces be effectively injected into the VAE
decoder?” To answer it, we investigate injection
mechanisms for Transformer-based VAEs via the
following methods: (i) we separately inject syn-
tax and semantic representations into the attention
weights of the decoder (i.e., Query and Key-Value),
and (ii) consider low-rank injections, including ad-
dition, memory (Li et al., 2020), and tensor fusion
(Liu et al., 2018), which directly operate over the at-
tention matrices and potentially reduce information
redundancy (Hu et al., 2022).

We perform extensive experiments to evaluate
the resulting VAE architectures on both mathemati-
cal expressions (Valentino et al., 2023; Meadows
et al., 2023) and natural language explanatory sen-
tences (Jansen et al., 2018). Overall, our contribu-
tions can be summarised as follows: 1. We propose
a dual encoder architecture for Transformer-based
VAEs integrating graph-based and sequential mod-
els to better capture and disentangle semantic and
structural syntactic features in multiple, specialised
latent spaces. 2.We explore the injection of such
representations into the decoder of Transformer-
based VAEs via low-rank vector operations to bet-
ter guide the generation process. 3. We perform
extensive experiments showing that the adoption of
a graph-based encoder coupled with a transformer
encoder can reduce the loss of information in the
sentence bottleneck, resulting in improved recon-
struction and language modelling. Overall, we
found that the proposed VAE architecture can sig-
nificantly improve performance and generalisation
when compared to sentence-level VAE baselines.
Our complete experimental code is available online
to encourage future work in the field1.

2 Preliminaries

Latent Space Injection. In Optimus, the trans-
formation between latent (i.e., Gaussian) and ob-
served (i.e., generated sentences) spaces can be

1https://github.com/SnowYJ/sem_syn_separation

Zsemantic

Zsyntax

Xobservation

: animal requires food for survival
: (S (NP (NN)) (VP (VBZ) (NP (NP (NN)) (PP (IN) (NP (NN))))))

: animal requires food and water
: (S (NP (NN)) (VP (VBZ) (NP (NN) (CC) (NN))))

: flower needs sun and oxygen
: (S (NP (NN)) (VP (VBZ) (NP (NN) (CC) (NN))))

Figure 1: Decoding under heterogeneous syntactic-
semantic spaces can result in two main challenges: (i)
The syntactic representations may not possess a one-to-
one mapping with the semantic representations (i.e., one
syntactic structure can correspond to multiple sentence
representations), (ii) the optimisation of heterogeneous
latent spaces can result in different latent distributions,
making generation hard to control.

done by intervening on the Key-Value attention
weights of the decoder (i.e., GPT2) via memory in-
jection (Li et al., 2020). Specifically, the latent rep-
resentation z produced by the encoder (i.e., BERT)
is concatenated into the original Key-Value weights
of GPT2 as follows:

Attention(Q,K, V) = softmax(
Q[z;K]T√

d
)[z;V]

Where Q has dimension R64×seq, and [z;K], [z;V]
have dimension R64×(seq+1) (where 64 is the di-
mension of GPT2 attention, seq is sequence length).
In order words, the decoder model is explicitly
guided in the generation process by conditioning
KV on z. In this work, however, we focus on
heterogeneous representations encoding distribu-
tional semantic and structural syntactic features in
separate latent spaces (see Figure 1). Such a sepa-
ration requires going beyond the memory injection
setup and developing different methods to effec-
tively condition the decoding process in GPT2.

Semantic-Syntax Relation. Following the prin-
ciple of compositionality, the semantics of a sen-
tence can be seen as a composition of word-level
semantics, induced by the meaning of individual
words and their relations (Dowty et al., 2012; Yao
et al., 2023). Instead of considering sentence-level
semantics only as a composition of word content
as done in previous work (Bao et al., 2019a), this
work uses the notion of sentence semantics as word
content plus positional elements (i.e. word order

475

https://github.com/SnowYJ/sem_syn_separation

typology (Sankaravelayuthan, 2020)), which has
been well captured by Transformer-based encoders.
Under this constraint, mutual information naturally
exists between semantics and syntax. Therefore,
although separating semantic and syntactic features
in heterogeneous latent spaces can lead to repre-
sentations that are not geometrically aligned in the
Gaussian space (Figure 1), such mutual informa-
tion can be captured through low-rank injection
(Zhang et al., 2019), which directly work on QKV
instead of token embeddings or the last hidden rep-
resentation (Hu et al., 2022).

3 Methodology

Our methodology consists of two main phases.
First, we investigate different encoding strategies
to explicitly capture syntactic and structural infor-
mation in a separate latent space. Subsequently, we
explore techniques to fuse syntactic and semantic
features and inject them into the decoder model.
Regarding the encoding phase, we explore four ar-
chitectures based on two different configurations
(i.e., multi-task learning and dual encoder) inte-
grating both sequential and graph-based models
under Optimus (BERT-GPT2) memory setup (see
Figure 6). Regarding the decoding phase, we con-
sider the best encoding configuration in terms of
syntactic representation and propose different in-
jection mechanisms via low-rank operations over
attention-weight matrices of GPT2.

The following sections describe each phase in
detail (Sections 3.1 and 3.2), including how the
encoding and decoding stages are integrated into
an end-to-end VAE architecture (Section 3.3).

3.1 Encoding Syntactic-Semantic Spaces

Multi-Task Learning. Bao et al. (2019a) pro-
posed a multi-task learning strategy to achieve such
a goal in LSTM-based VAEs via learning and fus-
ing two distinct latent representations. They adopt
a separate space for encoding explicit syntactic
dependencies through the adoption of an LSTM
decoder used to reconstruct flattened constituency
parse trees. Here, we build upon this setup to en-
rich the latent representation in Optimus (Li et al.,
2020). Specifically, given a separate latent syntax
representation, zsyn, encoded via BERT (Devlin
et al., 2018), we explore the following mechanisms
(see Figure 6): 1. Similarly to (Bao et al., 2019b),
we adopt an LSTM (Hochreiter and Schmidhuber,
1997) decoder to generate linearised syntactic trees,

where zsyn is fed into the first hidden state of the
LSTM. We refer to this configuration as Optimus
(LSTM). 2. We jointly train a Variational Graph
AutoEncoder (VGAE, Kipf and Welling (2016b))
on syntactic trees, where the latent node embed-
dings are mean-pooled into a sentence-level syntax
representation zgcnsyn. We refer to this configuration
as Optimus (VGAE). Here, the syntactic represen-
tations zgcnsyn and zsyn can be optimized via MSE
in a multi-task setting. Specifically, the general
objective function can be formalised as:

LVAE = Eqϕ(zsem,zsyn|x)
[
log pθ(x|zsem, zsyn)

]

− KL(ϕ(zsem|x)||p(z))− KL(ϕ(zsyn|x)||p(z))
+ Lsyn(zsyn)

Where qϕ, pθ represent the encoder and de-
coder. The objective functions for optimis-
ing the syntactic spaces Lsyn(zsyn) can be
specialised according to the model: LSTM:
Llstm

syn (zsyn) =
∑n

i=1 log p(si|s1, . . . , si−1, zsyn)

and VGAE: Lvgae
syn (zsyn) =

∑dim
j=1(z

j
gcn− zjsyn)2+

Lvgae(A,N) Where si represents the token of a
flattened syntax tree, while A and N are the Ad-
jacent matrix and Node embeddings of the syntax
tree. Additional details for the VGAE model and
the optimisation of Lvgae can be found in the origi-
nal paper (Kipf and Welling, 2016b).

Dual Encoder. In addition to the multi-task learn-
ing setup, we build upon Zhang et al. (2019);
Huang and Chang (2021) which propose two dis-
tinct language encoders to induce syntactic disen-
tanglement. Specifically, we experiment with:

1. Two distinct BERT encoders via a Siamese
neural network. We refer to this configuration
as Optimus (Siam). 2. A Graph encoder, such
as GCN (Kipf and Welling, 2016a), GraphSAGE
(Hamilton et al., 2017), and Graph Transformer
(TransCONV, Yun et al. (2020)), coupled with a
BERT encoder. We refer to this configuration as
Optimus (GraphEncoder). Here, the general objec-
tive function can be formalised as:

Eqsemϕ (zsem|x),qsynϕ (zsyn|xsyn)

[
log pθ(x|zsem, zsyn)

]

− KL(ϕ(zsem|x)||p(z))− KL(ϕ(zsyn|x)||p(z))

Where qsemϕ , qsynϕ represent semantic and syntax
encoders respectively, while xsyn represents the
input for the syntax encoder. For graph encoders,
we represent xsyn using an adjacency matrix and
node embedding pairs. For the language syntax

476

11

Key

Semantic

Syntax

Language
Encoderx - y

Graph
Encoder

layer 5

layer 11

...

...

x - y

+

? *

-1 ?

frac
cos

sin

...

...

W

W

x - y

layer 6

layer 0 + ... +

Query Key Value

1. addition + Key... 2. memory

+ ... +3. fusion

E.g., semantic injection into Key

syn inject: 1. addition, 3. fusion

sem inject: 1. addition, 2. memory, 3. fusion

1. addition Q + memory KV
2. addition QKV
3. fusion Q + memory KV
4. fusion QKV

Combination: Key

Wk
1 Wk

rWq
1 Wq

r

Figure 2: Architectural overview. Semantic and syntactic features are encoded into heterogeneous latent spaces via
graph-based and sequential encoders. The resulting latent spaces are injected into the GPT2 decoder via low-rank
operations.

encoder, on the other side, we represent xsyn as a
flattened syntactic tree without word content.

As our experiments revealed that the dual graph-
sequential encoder configuration (i.e., Optimus
(GraphEncoder)) can achieve the best results in
terms of syntactic representation (see Table 1), we
consider this setup for integration into an end-to-
end VAE architecture (see Section 3.3).

3.2 Decoding Heterogeneous Representations
To preserve the separation of the latent spaces and,
at the same time, leverage heterogeneous repre-
sentations during decoding, we explore methods
to inject semantic (i.e., zsem) and syntactic space
(i.e., zsyn) directly into the attention mechanism of
GPT2 (via QKV). Specifically, we inject different
latent representations to different attention weights:

softmax(
(Q⊗ zsyn)(K ⊗ zsem)T√

d
)(V ⊗ zsem)

Where ⊗ represents the latent injection operation.
As for syntactic injection (zsyn), we consider two
kinds of low-rank operations ⊗, addition, and fu-
sion (Liu et al., 2018), which directly work on atten-
tion weights. As for addition, we inject zsyn into
each low-rank token representation in Q, which
can be formalised as follows: Q̃ =

∑seq
i=1Q[i, :

] + zsyn Where Q̃ represents the new Q values ob-
tained after syntax injection. As for fusion, we
adapt the tensor fuse operation (Liu et al., 2018;
Hu et al., 2022). In more detail, given a hyper-
parameter, rank r = 4, the Q̃ can be described as:
Q̃ = (

∑r
i=1W

i
q [Q;1]) ◦ (

∑r
i=1W

i,syn
z [zsyn;1])

Where 1 is the matrix of ones, W i,syn
z and Wq are

the trainable linear transformations.
As for semantic injection (zsem), we consider

three operations: addition, memory, and fusion,
where addition and fusion operations are the same

as before but works on KV. Memory is the same as
Optimus memory injection (Li et al., 2020) as we
described in section 2. We refer (Liu et al., 2018)
for an in-depth description of tensor fusion.

3.3 VAE Architecture

Encoder. At the encoding stage, we consider
the dual graph-sequential encoding mechanism
adopting BERT as a sequential encoder and experi-
menting with two different graph-based encoders,
including GraphSAGE (Hamilton et al., 2017),
and Graph Transformer (TransCONV, Yun et al.
(2020)). The dual graph-sequential encoding can al-
leviate the information bottleneck derived from the
encoding stage (as illustrated in 3.3). To derive the
syntactic space, zsyn, we use a mean pooling oper-
ation to obtain a sentence-level representation from
the node embeddings N and the adjacency matrix
A: Embedsyn = MeanPool(GraphEnc(A,N))

For the semantic space, zsem, we consider
the special token [CLS] in BERT as the in-
put of a linear transformation (W) to obtain
a sentence-level representation: Embedsem =
W (LanguageEnc(x)[CLS]) Where x is the input
sentence. Both spaces are constrained to follow
a Gaussian distribution by learning the parame-
ters µ and σ through multilayer perceptrons W sem

µ ,
W sem

σ , W syn
µ , and W syn

σ . The final latent rep-
resentations can be obtained via: zsem(syn) =

W
sem(syn)
µ × Embedsem(syn) +W

sem(syn)
σ

Decoder. Since the architecture constraint, zsem
and zsyn have the potential to capture diverse fea-
tures with a high level of disentanglement. To this
end, we experiment with different decoding injec-
tion setups and low-rank operations (Section 3.2)
: (1) addition for QKV (i.e., addition QKV), (2)
fusion for QKV (fusion QKV), (3) addition for Q

477

and memory for KV (addition Q), and (4) fusion
for Q and memory for KV (fusion Q).

Optimisation. Our model can be trained via
Evidence Lower Bound (ELBO) x (Kingma and
Welling, 2013). To avoid the KL vanishing issue,
which refers to the Kullback-Leibler (KL) diver-
gence term in the ELBO becomes very small or
approaches zero, we select the cyclical schedule
to increase weights of KL β from 0 to 1 (Fu et al.,
2019) and a KL thresholding scheme (Li et al.,
2019) that chooses the maximum between KL and
threshold λ. The final objective function can be
described as follows:

LVAE = Eqsemϕ (zsem|x),qsynϕ (zsyn|A,N)

[
log pθ(x|zsem

, zsyn)
]
− βmax

[
λ,KLqsemϕ (zsem|x)||p(z)

]

− βmax
[
λ,KLqsynϕ (zsyn|x)||p(z)

]

Information Bottleneck The dual graph-
sequential encoding setup has the potential to
alleviate information bottlenecks for sentence
representations. In detail, Li et al. (2020) revealed
that LVAE is the upper bound of the information
bottleneck (IB) (information bottleneck principle,
Tishby et al. (2000)).

LVAE ≥ (1− β)Iq(s, z) = LBERT
IB

where s and z represent sentence and its corre-
sponding latent representation z, Iq is the mutual
information, q is encoder, LIB is the Lagrange relax-
ation form (Tishby et al., 2000). As we mentioned
in section 2, s is composed of two kinds of infor-
mation {xsem} and {xsyn}. In vanilla Optimus,
I(s, z) can be expanded into:

Iq(s, z) = Iq(xsem + xsyn; z) = Iq(xsem, z)

+ Iq(xsyn, z)− Iq(xsem, xsyn|z)

Similarly, under the dual graph-sequential encoder
setup, the mutual information can be described as:

LBERT−graph
IB = I ′q(s, z) = Iq(xsem, z)+Iq(xsyn, z)

As we claimed before, {xsem} ∩ {xsyn} ≠ ∅.
Therefore, LBERT

IB − LBERT−graph
IB = Iq(s, z)−

I ′q(s, z) = −Iq(xsem, xsyn|z) < 0, indicating that
the separated encoders can alleviate the informa-
tion bottleneck.

4 Empirical Evaluation

Following the stages in our methodology, we first
evaluate different encoding setups for injecting syn-
tactic information into VAEs (Section 3.1). Subse-
quently, we consider the best encoding configura-
tion to examine which decoding strategy (Section
3.3) can lead to better language modelling perfor-
mances. Finally, we evaluate the best architectural
setup for downstream tasks. To experiment, we fo-
cus on both explanatory sentences and mathemati-
cal expressions. The rationale behind this choice is
that (1) explanatory sentences (Jansen et al., 2018;
Valentino et al., 2022; Thayaparan et al., 2021;
Zhang et al., 2023b) provide a semantically chal-
lenging yet sufficiently well-scoped scenario to
evaluate the syntactic and semantic organisation of
the space; (2) mathematical expressions (Valentino
et al., 2023; Meadows et al., 2023) follow a well-
defined syntactic structure and set of symbolic rules
that are notoriously difficult for neural models. All
experimental details are provided in Appendix A.

4.1 Encoding: Latent Representations

Evaluation. Firstly, we evaluate different encod-
ing setups to the effect of semantic-syntax distri-
bution in latent space from three perspectives: (i)
latent space geometry: whether the latent space
can capture the corresponding features – i.e., sen-
tences with the same/different features are clus-
tered/separated accordingly in the latent space. In
this case, we can evaluate the organisation of the
latent space via MSE of k-mean (Zhang et al.,
2022, 2023a; Michlo et al., 2023); (ii) syntactic
features: following the probing method (Conneau
et al., 2018), we train a linear classifier to pre-
dict tree depth. Here, better classification perfor-
mances indicate a higher separability of syntac-
tic features in the latent space; and (iii) seman-
tic and syntax space alignment: we adopt statis-
tical metrics to compare latent distributions such
as Mutual Information (MI), Kullback–Leibler di-
vergence (KL), and Wasserstein distance (Wass).
As illustrated in Table 1, we can observe that (1)
the Optimus(GraphEncoder) can better capture the
syntactic structures and induce a better latent space
separation, (2) It can lead to a better organisation
of the semantic space MSE(sem). We will further
explore this phenomenon in subsequent sections.

Visualisation. Next, we visualize the cluster sep-
aration of latent space via t-SNE (van der Maaten

478

Corpus Mathematical expression Explanatory sentences
Proxy metrics MSE(sem)↓ MSE(syn)↓ Accdep(syn)↑ Accdep(sem)↓ MSE(sem)↓ MSE(syn)↓ Accdep(syn)↑ Accdep(sem)↓ F1dep(sem)↓
LSTM 079.02 070.48 000.74 000.74 176.39 158.03 000.40 000.40 000.41
VGAE 125.68 434.52 000.81 000.82 169.42 110.30 000.40 000.38 000.45
Siam 191.97 053.90 000.85 000.52 074.86 031.95 000.43 000.35 000.42
GraphEncoder – – – – – – – – –
+ GCN 004.31 065.79 000.72 000.27 069.77 091.94 000.49 000.12 000.30
+ GraphSAGE 208.21 053.20 000.98 000.52 058.12 004.10 000.50 000.39 000.46
+ TransConv 249.00 038.30 000.98 000.57 058.10 003.35 000.51 000.38 000.47

F1∗
dep(sem)↓ F1dep(syn)↑ MI(sem,syn)↓ KL(sem||syn)↑ Wass(sem,syn)↑ F1dep(syn)↑ MI(sem,syn)↓ KL(sem||syn)↑ Wass(sem,syn)↑

000.71 000.70 004.88 005.74 000.53 000.43 004.87 001.01 000.78
000.84 000.84 004.85 026.12 000.32 000.44 004.66 007.04 000.90
000.41 000.87 004.85 011.95 000.69 000.44 004.96 008.72 000.80

– – – – – – – – –
000.24 000.79 004.82 024.05 000.72 000.54 004.78 011.77 000.30
000.42 000.98 005.04 005.12 000.69 000.44 004.45 043.45 001.92
000.52 000.98 004.80 031.63 001.19 000.48 003.54 012.78 000.75

Table 1: Proxy metrics for evaluating the organisation of the latent syntactic and semantic space for different encoding
configurations of Optimus. The best results indicate that the graph-language encoding setup can effectively capture
syntactic information and maintain separation.

Corpus Mathematical expression Explanatory sentences
Metrics EVAL VAR-SWAP EASY EQ-CONV LEN BLEU BLEURT Cosine Loss↓ PPL↓

sentence VAE baselines
01. AAE(768) 0.10 0.75 0.00 0.25 0.02 0.53 0.00 0.54 0.00 0.51 0.35 -0.95 0.80 3.35 28.50
02. LAAE(768) 0.00 0.43 0.00 0.25 0.00 0.27 0.00 0.29 0.00 0.44 0.26 -1.07 0.78 3.71 40.85
03. DAAE(768) 0.00 0.24 0.00 0.21 0.00 0.21 0.00 0.22 0.00 0.42 0.22 -1.26 0.76 4.00 54.59
04. β-VAE(768) 0.00 0.14 0.00 0.15 0.00 0.13 0.00 0.14 0.00 0.35 0.06 -1.14 0.77 3.69 40.04
05. Optimus(768) 0.99 0.99 0.00 0.38 0.81 0.93 0.00 0.81 0.14 0.76 0.35 -0.59 0.83 0.98 2.66

different encoding setups with memory injection
06. LSTM 1.00 1.00 0.00 0.35 0.73 0.94 0.00 0.77 0.06 0.74 0.41 -0.41 0.85 1.04 2.82
07. VGAE 0.98 0.99 0.00 0.34 0.72 0.93 0.00 0.74 0.04 0.71 0.26 -0.91 0.78 1.14 2.55
08. Siam 1.00 1.00 0.00 0.30 0.22 0.80 0.00 0.78 0.03 0.75 0.49 -0.15 0.88 0.94 2.55
GraphEncoder
09. + GCN 0.00 0.40 0.00 0.22 0.00 0.27 0.00 0.37 0.00 0.43 0.15 -1.19 0.75 1.24 3.45
10. + GraphSAGE 0.88 0.96 0.00 0.28 0.06 0.46 0.00 0.69 0.00 0.60 0.45 -0.28 0.87 1.00 2.71
11. + TransCONV 0.89 0.95 0.00 0.28 0.14 0.53 0.00 0.67 0.00 0.61 0.17 -1.16 0.75 1.21 3.35

Graph-language encoders: injecting syntax into Q, semantic into KV
BERT-GraphSAGE
12. + addition Q 0.99 0.99 0.00 0.27 0.23 0.63 0.00 0.71 0.02 0.66 0.60 0.22 0.92 0.74 2.09
13. + addition QKV 1.00 1.00 0.00 0.35 0.65 0.90 0.00 0.80 0.06 0.75 0.63 0.31 0.93 0.65 1.91
14. + fusion Q 0.94 0.97 0.00 0.29 0.08 0.63 0.00 0.71 0.00 0.62 0.55 0.03 0.91 0.90 2.45
15. + fusion QKV 1.00 1.00 0.00 0.38 0.37 0.84 0.00 0.80 0.02 0.73 0.46 -0.23 0.88 1.10 3.00
BERT-TransCONV
16. + addition Q 0.98 0.99 0.00 0.26 0.31 0.69 0.00 0.67 0.01 0.63 0.59 0.18 0.92 0.76 2.13
17. + addition QKV 1.00 1.00 0.00 0.38 0.90 0.98 0.00 0.82 0.10 0.78 0.65 0.35 0.94 0.62 1.85
18. + fusion Q 0.96 0.98 0.00 0.29 0.18 0.60 0.00 0.74 0.00 0.64 0.53 -0.02 0.90 0.98 2.66
19. + fusion QKV 0.99 0.99 0.00 0.35 0.45 0.82 0.00 0.80 0.01 0.74 0.46 -0.16 0.88 1.13 3.09

Table 2: Results on language modelling. Regarding mathematical expressions, we adopt exact match (left) and bleu
(right) as evaluation metrics for each test set. The best results are highlighted in blue.

and Hinton, 2008) (see Figure 3). From the visuali-
sation, we can observe that the Optimus injection
with a separated GraphEncoder can induce a better
separation between different syntactic clusters. We
also provide a qualitative evaluation by decoding
the latent representation of each cluster (Table 5, 6,
and 7) and visualisation for explanatory sentences
(Figure 7, 8, and 9) in Appendix B. These results
reveal that the integration of graph-based and se-
quential models in a dual-encoder setup can better
capture structural syntactic information while main-
taining a separation between latent spaces.

4.2 Decoding: Language Modelling

Baselines. We assess performances on language
modelling using a different set of baselines2.
Specifically, we evaluate the performance of vanilla
Optimus (Li et al., 2020) and four LSTM-based
autoencoders (AEs), including β-VAE (Higgins
et al., 2016), adversarial AE (Makhzani et al.

2We choose the standard transformer-based VAE (Opti-
mus) with single latent space (i.e., with the prior being a
standard Gaussian distribution) for a fair comparison. Some
variants, such as Della (Hu et al., 2022), DPrior (Fang et al.,
2022), (Li et al., 2022), etc., were not selected.

479

Figure 3: Visualizing the syntactic clusters for math-
ematical expressions reveals that graph encoders can
better represent syntactic information in latent space
(top: LSTM, VGAE, Siam, bottom: graph encoders
with GraphSAGE, GCN, TransformerCONV).

(2016), AAE), label adversarial AE (Rubenstein
et al. (2018), LAAE), and denoising adversarial
autoencoder (Shen et al. (2020), DAAE). All base-
lines have a latent size of 768. For semantic-syntax
separated VAE setups, we evenly split the latent
space for both. Moreover, we compare the pro-
posed injection mechanism via low-rank operations
with a standard memory injection (Li et al., 2020).

Metrics. As for mathematical latex expressions,
we use Exact Match and Bleu to evaluate the ro-
bustness of models on five different test sets, where
four of them include out-of-distribution examples,
(1) EVAL: mathematical expressions following
the training set’s distribution (like U + cos(n)),
(2) VAR: mathematical expressions composed of
a different set of variables (like U + cos(beta)),
(3) EASY: mathematical expressions with a lower
number of variables (like cos(n)), (4) EQ: math-
ematical derivations with equality insertions (like
E = U + cos(n)), (5) LEN: mathematical deriva-
tions with a higher number of variables (like
U + cos(n))+A+B). For explanatory sentences,
we use five metrics, including BLEU (Papineni
et al., 2002), BLEURT (Sellam et al., 2020), cosine
similarity from pre-trained sentence T5 (Ni et al.,
2021), cross-entropy (Loss), and perplexity (PPL).

Results. Firstly, we evaluate the performance of
baselines with different syntactic injection setups.
In the middle of Table 2, most configurations lead
to lower performance, especially when using graph
encoders, compared to vanilla Optimus, indicat-
ing that a standard memory injection mechanism

for leveraging heterogeneous latent space is not
effective. Conversely, by comparing line 05 to
lines 12,14,16,18, injecting only syntactic infor-
mation in Q can improve reconstruction perfor-
mances on explanatory sentences. Moreover, we
evaluate whether injecting heterogeneous latent rep-
resentations into different attention components
(Q,K,V) can further improve the results. In the
bottom of Table 2, injecting semantic and syntax
spaces into different attention components can ad-
ditionally improve model performance (lines 9-11
vs 12,14,16,18), demonstrating that semantic and
syntax space possess complementary features. Fi-
nally, we evaluate which injection strategies can
achieve the best results. We found that addition
injection with BERT-TransCONV (line 17) can
achieve the best overall results on both corpora.
Next, we further analyse why syntax injection can
improve model performance in natural language
sentences.

Analysis. Under the VAE setup, we conjecture
that the syntax and semantics separation allows the
BERT encoder to capture and represent more fine-
grained lexical information, alleviating the infor-
mation loss in the sentence bottleneck. We provide
a set of qualitative examples in Table 8. Given an
input: a bee is a kind of living thing, we found the
reconstruction of vanilla Optimus to be a frog is
a kind of amphibian. This shows that Optimus is
distracted by syntactic features, (x is a kind of y)
that are highly frequent in the training set and strug-
gles in the reconstruction of specific lexical content
(i.e., frog and amphibian). In contrast, the proposed
architecture allows the semantic space to specialise
in lexical content since the graph encoder already
captures the syntax. To additionally support our
claim, we visualize the attention weights of GPT2.
In figure 4, the first column of each heatmap repre-
sents the lexical information carried by the latent
representation. We can observe that the proposed
architecture with BERT-TransCONV + addition Q
setup (right) pays more attention to specific lexical
elements (i.e., bee) compared to vanilla Optimus
(left). This also explains how the integration of a
graph-based encoder can indirectly improve organ-
isation for the semantic space (MSE in Table 1).
We provide additional heatmaps in Appendix B.

4.3 Downstream Evaluation

Guided Generation. One advantage of the VAE
architecture is that it allows controlling sentence

480

Figure 4: Visualizing attention weighs (left: vanilla
Optimus, right: BERT-TransCONV with addition Q
setup) where bee: 0.58 < 0.94, living thing: (0.27, 0.15)
< (0.80, 0.80).

generation by manipulating latent representations
via traversal and interpolation. In this experiment,
we quantitatively assess the controllability of the
decoding via latent traversal. Specifically, given
an initial point in Gaussian space, we perform an
Ornstein-Uhlenbeck random walk (Pinsky and Kar-
lin, 2010) 3 for semantic space and fix syntax space.
In detail:

1. We set the traversal radius (r) - a predefined
hyper-parameter, and sample an initial point/vector
(sampled from Gaussian space).

2. We traverse the semantic latent space using
Ornstein-Uhlenbeck random walk and calculating
the Euclidean distance between the traversed vec-
tors and the initial point.

3. We keep only the samples whose distance is >
rt−1 and < rt when t = 1, rt−1 = 0.

4. We generate the sentences from the latent
spaces using the model and then compute the syn-
tax tree edit distance (i.e., the distance between the
syntactic trees) of the samples retrieved in step 3
and calculate the average distance.

5. Repeat 2 - 5.
If the model can learn semantic-syntactic sepa-

ration, the generated sentence can be syntactically
controlled. To experiment, we quantitatively eval-
uate the similarity of syntactic structures between
initial and traversed sentences via syntax tree edit
distance. We gradually increase the radius of the
random walk to perform a comparison between
vanilla Optimus and BERT-TransCONV(addition
QKV). In Figure 5, we can conclude that the pro-
posed architecture can better hold the syntax struc-
ture, indicating better separation. We provide qual-
itative examples of such behaviour in Appendix B.

3z̃t+1 = −γz̃t+σWt where t is the index, Wt ∈ N(0, 1),
γ and σ are scalar hyper-parameters.

0 1 2 3 4 5 6 7 8
traversal radius

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0

av
er

ag
ed

 s
yn

ta
x

tre
e

ed
it

di
st

an
ce

vanilla Optimus
Bert-TransCONV + additionQKV

Figure 5: Traversing semantic space with increasing
traversal radius while keeping syntax space fixed. We
can observe improved syntax control in decoding by
separating syntax and semantics.

Mathematical Derivations. Finally, we explore
the representation quality for mathematical expres-
sions on downstream equational inference tasks
(Meadows et al., 2023). Specifically, we focus on
expression derivation, where, given a premise x
and a mathematical operation t (i.e., differentiation,
integration) the goal is to predict whether a target
mathematical expression y can be derived from x
via t. Here, we adopt the dataset from (Valentino
et al., 2023) and examine whether a linear probing
classifier (Ferreira et al., 2021) trained on latent
expression representations encoded from frozen
pre-trained models can predict the correct opera-
tion t in a multi-label classification problem (i.e.,
given premise x and target result y) and whether
the classifier can predict a valid conclusion y (i.e.
Conclusion Classification) given a premise x in a
binary classification setting (using random nega-
tive examples). Experimental results reveal that
separately injecting latent semantic and syntactic
representations can provide complementary infor-
mation and improve performance on both tasks.

5 Related work

Language VAE. Most previous language VAE
works are based on LSTM instantiated on differ-
ent generation tasks, including dialogue generation
(Zhao et al., 2017), text style transfer (John et al.,
2019; Shen et al., 2020), text paraphrasing (Bao
et al., 2019a), etc. The development of Optimus (Li
et al., 2020) led to more research focusing on how
to control the generation of Transformer-based ar-
chitectures by latent space geometry (Zhang et al.,
2022, 2023a) or pre-defined priors (Fang et al.,
2022; Li et al., 2022; Hu and Li, 2021). Compara-

481

Inference Type Operation Class. Conclusion Class.
Metrics Acc F1 Acc F1

Optimus(768) 0.89 0.89 0.68 0.68

LSTM 0.89 0.89 0.59 0.62
VGAE 0.79 0.80 0.56 0.62
Siam 0.92 0.92 0.59 0.59
GraphEncoder
+ GCN 0.73 0.74 0.57 0.55
+ GraphSAGE 0.87 0.87 0.64 0.63
+ TransCONV 0.88 0.89 0.63 0.62

Bert-GraphSAGE
+ addition QKV 0.88 0.88 0.69 0.69
+ fusion QKV 0.90 0.90 0.71 0.71
Bert-TransCONV
+ addition QKV 0.92 0.92 0.68 0.68
+ fusion QKV 0.91 0.91 0.59 0.59

Table 3: Results for the mathematical derivations prob-
ing task reveal that separately injecting latent semantic
and syntactic representations can provide complemen-
tary information, resulting in enhanced performance.

tively, we focused on the semantic-syntax separa-
tion with the help of a graph-based encoder. To our
knowledge, the combination of graph encoders and
VAEs for text generation is underexplored.

Learning Syntactic Representations. From the
perspective of model architecture, three kinds of en-
coders can learn syntactic representations, includ-
ing graph-based encoders (Wu et al., 2023), sequen-
tial encoders (i.e., LSTM (Hochreiter and Schmid-
huber, 1997) and Transformers (Vaswani et al.,
2017)), and tree-based encoders (Harer et al., 2019)
(i.e., using Recursive Neural Networks (Harer et al.,
2019; Mrini et al., 2021)), with the latter two com-
monly used in the natural language generation do-
main (Raffel et al., 2020). Nevertheless, whether
these models truly capture structural information
or just the lexical combination of tokens is not
fully clarified (Shi et al., 2016). This work uses
graph-based encoders (Kipf and Welling, 2016a)
to better capture topological relations in syntactic
trees. Graph Neural Networks (Zhou et al., 2020)
have been effective for encoding syntactic and re-
lational structures in various NLP tasks (Wu et al.,
2023; Sachan et al., 2021; Veyseh et al., 2020).

6 Conclusion and Future Work

This work focused on the semantic-syntax separa-
tion through language VAEs, especially Optimus
(Bert-GPT2), architecture. We first implement sev-
eral encoding baselines and reveal that language-
graph encoding setups can better capture syntax
information and maintain semantic-syntax separa-
tion. However, the language-graph encoding setup
leads to low reconstruction performance. To solve

this problem, we explored the integration of het-
erogeneous latent spaces via injection mechanisms.
Experimental results showed that our setup can
greatly improve language modelling performance,
and revealed that the semantic-syntax separation
can assist the language modelling task since the lan-
guage encoder pays more attention to fine-grained
lexical semantics, avoiding the distraction of syn-
tax information captured by the separated syntax
encoder, which can alleviate the information bottle-
neck of the language encoder. In the future, we will
investigate graph-to-text generation through VAEs
for bridging structural and distributional semantics
via latent Gaussian space. By learning the struc-
tural semantics distribution as approximated poste-
rior, this type of representation can shorten the gap
between deep latent semantics and formal linguistic
representations (Banarescu et al., 2013; Mitchell,
2023), integrating the flexibility of distributional-
neural models with the properties of linguistically
grounded representations, facilitating both inter-
pretability and generative control.

7 Limitations

Although the semantic-syntax separated latent
space can provide better latent space geometry, it is
still challenging to efficiently control the decoding
stage through latent geometry itself, due to the dis-
crete nature of the latent sentence space. Besides,
robustness towards out-of-distribution generaliza-
tion for individual latent spaces has not been inves-
tigated and has been left for future work. Finally,
while our work revealed that structural syntactic in-
formation can be well captured and represented in
separated latent spaces, whether such a mechanism
can contribute to the representation of explicit struc-
tural semantic information as well (i.e., semantic
role labels) is not explored in this work.

Acknowledgements

We appreciate the reviewers for their insightful
comments and suggestions. This work was par-
tially funded by the EPSRC grant EP/T026995/1
entitled “EnnCore: End-to-End Conceptual Guard-
ing of Neural Architectures” under Security for
all in an AI enabled society, by the Swiss Na-
tional Science Foundation (SNSF) project Neu-
Math (200021_204617), by the CRUK National
Biomarker Centre, and supported by the Manch-
ester Experimental Cancer Medicine Centre and the
NIHR Manchester Biomedical Research Centre.

482

https://data.snf.ch/grants/grant/204617

References
Alexander A Alemi, Ian Fischer, Joshua V Dillon, and

Kevin Murphy. 2016. Deep variational information
bottleneck. arXiv preprint arXiv:1612.00410.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th linguis-
tic annotation workshop and interoperability with
discourse, pages 178–186.

Yu Bao, Hao Zhou, Shujian Huang, Lei Li, Lili Mou,
Olga Vechtomova, Xin-yu Dai, and Jiajun Chen.
2019a. Generating sentences from disentangled syn-
tactic and semantic spaces. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 6008–6019, Florence, Italy.
Association for Computational Linguistics.

Yu Bao, Hao Zhou, Shujian Huang, Lei Li, Lili Mou,
Olga Vechtomova, Xinyu Dai, and Jiajun Chen.
2019b. Generating sentences from disentangled syn-
tactic and semantic spaces. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6008–6019.

Huadong Chen, Shujian Huang, David Chiang, and Ji-
ajun Chen. 2017. Improved neural machine transla-
tion with a syntax-aware encoder and decoder. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1936–1945, Vancouver, Canada.
Association for Computational Linguistics.

Mingda Chen, Qingming Tang, Sam Wiseman, and
Kevin Gimpel. 2019. A multi-task approach for dis-
entangling syntax and semantics in sentence repre-
sentations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2453–2464, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena,
and Le Song. 2018. Syntax-directed variational
autoencoder for structured data. arXiv preprint
arXiv:1802.08786.

Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zhengnan
Xie, Hannah Smith, Leighanna Pipatanangkura, and
Peter Clark. 2021. Explaining answers with entail-
ment trees.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

David R Dowty, Robert Wall, and Stanley Peters. 2012.
Introduction to Montague semantics, volume 11.
Springer Science & Business Media.

Xianghong Fang, Jian Li, Lifeng Shang, Xin Jiang, Qun
Liu, and Dit-Yan Yeung. 2022. Controlled text gen-
eration using dictionary prior in variational autoen-
coders. In Findings of the Association for Computa-
tional Linguistics: ACL 2022, pages 97–111, Dublin,
Ireland. Association for Computational Linguistics.

Ghazi Felhi, Joseph Le Roux, and Djamé Seddah. 2022.
Exploiting inductive bias in transformers for unsu-
pervised disentanglement of syntax and semantics
with VAEs. In Proceedings of the 2022 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5763–5776, Seattle, United States.
Association for Computational Linguistics.

Deborah Ferreira, Julia Rozanova, Mokanarangan
Thayaparan, Marco Valentino, and André Freitas.
2021. Does my representation capture x? probe-ably.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing: System Demonstrations, pages 194–201.

Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao,
Asli Celikyilmaz, and Lawrence Carin. 2019. Cycli-
cal annealing schedule: A simple approach to mit-
igating KL vanishing. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 240–250, Minneapolis, Minnesota.
Association for Computational Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
Allennlp: A deep semantic natural language process-
ing platform. arXiv preprint arXiv:1803.07640.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs. Ad-
vances in neural information processing systems, 30.

Jacob Harer, Chris Reale, and Peter Chin. 2019. Tree-
transformer: A transformer-based method for cor-
rection of tree-structured data. arXiv preprint
arXiv:1908.00449.

Irina Higgins, Loïc Matthey, Arka Pal, Christopher P.
Burgess, Xavier Glorot, Matthew M. Botvinick,
Shakir Mohamed, and Alexander Lerchner. 2016.
beta-vae: Learning basic visual concepts with a con-
strained variational framework. In International Con-
ference on Learning Representations.

483

https://doi.org/10.18653/v1/P19-1602
https://doi.org/10.18653/v1/P19-1602
https://doi.org/10.18653/v1/P17-1177
https://doi.org/10.18653/v1/P17-1177
https://doi.org/10.18653/v1/N19-1254
https://doi.org/10.18653/v1/N19-1254
https://doi.org/10.18653/v1/N19-1254
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.48550/ARXIV.2104.08661
https://doi.org/10.48550/ARXIV.2104.08661
https://doi.org/10.18653/v1/2022.findings-acl.10
https://doi.org/10.18653/v1/2022.findings-acl.10
https://doi.org/10.18653/v1/2022.findings-acl.10
https://doi.org/10.18653/v1/2022.naacl-main.423
https://doi.org/10.18653/v1/2022.naacl-main.423
https://doi.org/10.18653/v1/2022.naacl-main.423
https://doi.org/10.18653/v1/N19-1021
https://doi.org/10.18653/v1/N19-1021
https://doi.org/10.18653/v1/N19-1021

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Jinyi Hu, Xiaoyuan Yi, Wenhao Li, Maosong Sun, and
Xing Xie. 2022. Fuse it more deeply! a variational
transformer with layer-wise latent variable inference
for text generation. In Proceedings of the 2022 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 697–716, Seattle, United
States. Association for Computational Linguistics.

Zhiting Hu and Li Erran Li. 2021. A causal lens for
controllable text generation. Advances in Neural
Information Processing Systems, 34:24941–24955.

Kuan-Hao Huang and Kai-Wei Chang. 2021. Gener-
ating syntactically controlled paraphrases without
using annotated parallel pairs. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 1022–1033, Online. Association for Computa-
tional Linguistics.

Peter A Jansen, Elizabeth Wainwright, Steven Mar-
morstein, and Clayton T Morrison. 2018. Worldtree:
A corpus of explanation graphs for elementary sci-
ence questions supporting multi-hop inference. arXiv
preprint arXiv:1802.03052.

Vineet John, Lili Mou, Hareesh Bahuleyan, and Olga
Vechtomova. 2019. Disentangled representation
learning for non-parallel text style transfer. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 424–434,
Florence, Italy. Association for Computational Lin-
guistics.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Thomas N Kipf and Max Welling. 2016a. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Thomas N Kipf and Max Welling. 2016b. Vari-
ational graph auto-encoders. arXiv preprint
arXiv:1611.07308.

Sachin Kumar, Eric Malmi, Aliaksei Severyn, and Yulia
Tsvetkov. 2021. Controlled text generation as con-
tinuous optimization with multiple constraints. In
Advances in Neural Information Processing Systems.

Bohan Li, Junxian He, Graham Neubig, Taylor Berg-
Kirkpatrick, and Yiming Yang. 2019. A surprisingly
effective fix for deep latent variable modeling of text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3603–
3614, Hong Kong, China. Association for Computa-
tional Linguistics.

Chunyuan Li, Xiang Gao, Yuan Li, Baolin Peng, Xiujun
Li, Yizhe Zhang, and Jianfeng Gao. 2020. Optimus:
Organizing sentences via pre-trained modeling of a
latent space. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4678–4699.

Yafu Li, Leyang Cui, Jianhao Yan, Yongjing Yin, Wei
Bi, Shuming Shi, and Yue Zhang. 2023. Explicit
syntactic guidance for neural text generation. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 14095–14112, Toronto, Canada. As-
sociation for Computational Linguistics.

Zhuang Li, Lizhen Qu, Qiongkai Xu, Tongtong Wu,
Tianyang Zhan, and Gholamreza Haffari. 2022. Vari-
ational autoencoder with disentanglement priors for
low-resource task-specific natural language gener-
ation. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 10335–10356, Abu Dhabi, United Arab Emi-
rates. Association for Computational Linguistics.

Zhun Liu, Ying Shen, Varun Bharadhwaj Lakshmi-
narasimhan, Paul Pu Liang, AmirAli Bagher Zadeh,
and Louis-Philippe Morency. 2018. Efficient low-
rank multimodal fusion with modality-specific fac-
tors. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2247–2256, Melbourne,
Australia. Association for Computational Linguistics.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian
Goodfellow, and Brendan Frey. 2016. Adversarial
autoencoders.

Jordan Meadows, Marco Valentino, Damien Teney, and
Andre Freitas. 2023. A symbolic framework for sys-
tematic evaluation of mathematical reasoning with
transformers. arXiv preprint arXiv:2305.12563.

Nathan Michlo, Richard Klein, and Steven James. 2023.
Overlooked implications of the reconstruction loss
for vae disentanglement.

Melanie Mitchell. 2023. How do we know how smart
ai systems are?

Alireza Mohammadshahi and James Henderson. 2023.
Syntax-aware graph-to-graph transformer for seman-
tic role labelling. In Proceedings of the 8th Workshop
on Representation Learning for NLP (RepL4NLP
2023), pages 174–186, Toronto, Canada. Association
for Computational Linguistics.

Khalil Mrini, Emilia Farcas, and Ndapa Nakashole.
2021. Recursive tree-structured self-attention for an-
swer sentence selection. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 4651–4661, Online. Association
for Computational Linguistics.

484

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/2022.naacl-main.51
https://doi.org/10.18653/v1/2022.naacl-main.51
https://doi.org/10.18653/v1/2022.naacl-main.51
https://doi.org/10.18653/v1/2021.eacl-main.88
https://doi.org/10.18653/v1/2021.eacl-main.88
https://doi.org/10.18653/v1/2021.eacl-main.88
https://doi.org/10.18653/v1/P19-1041
https://doi.org/10.18653/v1/P19-1041
https://openreview.net/forum?id=kTy7bbm-4I4
https://openreview.net/forum?id=kTy7bbm-4I4
https://doi.org/10.18653/v1/D19-1370
https://doi.org/10.18653/v1/D19-1370
https://doi.org/10.18653/v1/2023.acl-long.788
https://doi.org/10.18653/v1/2023.acl-long.788
https://doi.org/10.18653/v1/2022.emnlp-main.706
https://doi.org/10.18653/v1/2022.emnlp-main.706
https://doi.org/10.18653/v1/2022.emnlp-main.706
https://doi.org/10.18653/v1/2022.emnlp-main.706
https://doi.org/10.18653/v1/P18-1209
https://doi.org/10.18653/v1/P18-1209
https://doi.org/10.18653/v1/P18-1209
http://arxiv.org/abs/1511.05644
http://arxiv.org/abs/1511.05644
http://arxiv.org/abs/2202.13341
http://arxiv.org/abs/2202.13341
https://doi.org/10.18653/v1/2023.repl4nlp-1.15
https://doi.org/10.18653/v1/2023.repl4nlp-1.15
https://doi.org/10.18653/v1/2021.acl-long.358
https://doi.org/10.18653/v1/2021.acl-long.358

Jianmo Ni, Gustavo Hernández Ábrego, Noah Constant,
Ji Ma, Keith B. Hall, Daniel Cer, and Yinfei Yang.
2021. Sentence-t5: Scalable sentence encoders from
pre-trained text-to-text models.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Mark Pinsky and Samuel Karlin. 2010. An introduction
to stochastic modeling. Academic press.

Amir Pouran Ben Veyseh, Tuan Ngo Nguyen, and
Thien Huu Nguyen. 2020. Graph transformer net-
works with syntactic and semantic structures for
event argument extraction. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2020,
pages 3651–3661, Online. Association for Computa-
tional Linguistics.

Lianhui Qin, Vered Shwartz, Peter West, Chandra Bha-
gavatula, Jena D. Hwang, Ronan Le Bras, Antoine
Bosselut, and Yejin Choi. 2020. Back to the future:
Unsupervised backprop-based decoding for counter-
factual and abductive commonsense reasoning. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 794–805, Online. Association for Computa-
tional Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Paul K. Rubenstein, Bernhard Schoelkopf, and Ilya Tol-
stikhin. 2018. On the latent space of wasserstein
auto-encoders.

Devendra Sachan, Yuhao Zhang, Peng Qi, and
William L. Hamilton. 2021. Do syntax trees help
pre-trained transformers extract information? In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 2647–2661, Online.
Association for Computational Linguistics.

Rajendran Sankaravelayuthan. 2020. Word order typol-
ogy and language universals.

Thibault Sellam, Dipanjan Das, and Ankur P. Parikh.
2020. Bleurt: Learning robust metrics for text gener-
ation.

Tianxiao Shen, Jonas Mueller, Regina Barzilay, and
Tommi Jaakkola. 2020. Educating text autoencoders:
Latent representation guidance via denoising. In In-
ternational Conference on Machine Learning, pages
8719–8729. PMLR.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does
string-based neural mt learn source syntax? In
Proceedings of the 2016 conference on empirical
methods in natural language processing, pages 1526–
1534.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam
Poliak, R Thomas McCoy, Najoung Kim, Benjamin
Van Durme, Samuel R Bowman, Dipanjan Das, et al.
2019. What do you learn from context? probing for
sentence structure in contextualized word representa-
tions. arXiv preprint arXiv:1905.06316.

Mokanarangan Thayaparan, Marco Valentino, and
André Freitas. 2021. Explainable inference over
grounding-abstract chains for science questions. In
Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 1–12, Online.
Association for Computational Linguistics.

Naftali Tishby, Fernando C Pereira, and William Bialek.
2000. The information bottleneck method. arXiv
preprint physics/0004057.

Marco Valentino, Jordan Meadows, Lan Zhang, and
André Freitas. 2023. Multi-operational mathematical
derivations in latent space.

Marco Valentino, Mokanarangan Thayaparan, Deborah
Ferreira, and André Freitas. 2022. Hybrid autore-
gressive inference for scalable multi-hop explanation
regeneration. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 11403–
11411.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Amir Pouran Ben Veyseh, Tuan Ngo Nguyen, and
Thien Huu Nguyen. 2020. Graph transformer net-
works with syntactic and semantic structures for
event argument extraction. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2020, pages 3651–3661.

Lingfei Wu, Yu Chen, Kai Shen, Xiaojie Guo, Hanning
Gao, Shucheng Li, Jian Pei, Bo Long, et al. 2023.
Graph neural networks for natural language process-
ing: A survey. Foundations and Trends® in Machine
Learning, 16(2):119–328.

Erguang Yang, Mingtong Liu, Deyi Xiong, Yujie Zhang,
Yao Meng, Changjian Hu, Jinan Xu, and Yufeng
Chen. 2021. Syntactically-informed unsupervised
paraphrasing with non-parallel data. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2594–2604, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

485

https://doi.org/10.48550/ARXIV.2108.08877
https://doi.org/10.48550/ARXIV.2108.08877
https://doi.org/10.18653/v1/2020.findings-emnlp.326
https://doi.org/10.18653/v1/2020.findings-emnlp.326
https://doi.org/10.18653/v1/2020.findings-emnlp.326
https://doi.org/10.18653/v1/2020.emnlp-main.58
https://doi.org/10.18653/v1/2020.emnlp-main.58
https://doi.org/10.18653/v1/2020.emnlp-main.58
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/1802.03761
http://arxiv.org/abs/1802.03761
https://doi.org/10.18653/v1/2021.eacl-main.228
https://doi.org/10.18653/v1/2021.eacl-main.228
https://doi.org/10.13140/RG.2.2.19122.22728
https://doi.org/10.13140/RG.2.2.19122.22728
https://doi.org/10.48550/ARXIV.2004.04696
https://doi.org/10.48550/ARXIV.2004.04696
https://doi.org/10.18653/v1/2021.findings-acl.1
https://doi.org/10.18653/v1/2021.findings-acl.1
http://arxiv.org/abs/2311.01230
http://arxiv.org/abs/2311.01230
http://jmlr.org/papers/v9/vandermaaten08a.html
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/2021.emnlp-main.203
https://doi.org/10.18653/v1/2021.emnlp-main.203

Wenlin Yao, Lifeng Jin, Hongming Zhang, Xiaoman
Pan, Kaiqiang Song, Dian Yu, Dong Yu, and Jianshu
Chen. 2023. How do words contribute to sentence
semantics? revisiting sentence embeddings with a
perturbation method. In Proceedings of the 17th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pages 3001–
3010, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo
Kang, and Hyunwoo J. Kim. 2020. Graph trans-
former networks.

Fabio Massimo Zanzotto, Andrea Santilli, Leonardo
Ranaldi, Dario Onorati, Pierfrancesco Tommasino,
and Francesca Fallucchi. 2020. KERMIT: Comple-
menting transformer architectures with encoders of
explicit syntactic interpretations. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 256–267,
Online. Association for Computational Linguistics.

Xinyuan Zhang, Yi Yang, Siyang Yuan, Dinghan Shen,
and Lawrence Carin. 2019. Syntax-infused varia-
tional autoencoder for text generation. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 2069–2078, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Yingji Zhang, Danilo S Carvalho, Ian Pratt-Hartmann,
and André Freitas. 2022. Quasi-symbolic explana-
tory nli via disentanglement: A geometrical examina-
tion. arXiv preprint arXiv:2210.06230.

Yingji Zhang, Danilo S Carvalho, Ian Pratt-Hartmann,
and André Freitas. 2023a. Learning disentangled
semantic spaces of explanations via invertible neural
networks. arXiv preprint arXiv:2305.01713.

Yingji Zhang, Danilo S Carvalho, Ian Pratt-Hartmann,
and Andre Freitas. 2023b. Towards controllable natu-
ral language inference through lexical inference types.
arXiv preprint arXiv:2308.03581.

Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi. 2017.
Learning discourse-level diversity for neural dialog
models using conditional variational autoencoders.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 654–664, Vancouver, Canada.
Association for Computational Linguistics.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan
Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. 2020. Graph
neural networks: A review of methods and applica-
tions. AI open, 1:57–81.

A Training setups

Encoding architecture Figure 6 illustrates the
four architectures of encoding baseline for learning
syntax representation.

Datasets Table 4 displays the statistical informa-
tion of the datasets used in the experiment. As for
the AutoEncoder setup, we use the non-repetitive
explanations selected from both WorldTree (Jansen
et al., 2018) and EntailmentBank (Dalvi et al.,
2021) corpus as the experimental data. The math-
ematical expressions are derived from (Meadows
et al., 2023).

Corpus Num data. Avg. length
WorldTree 11430 8.65

EntailmentBank 5134 10.35
Math Symbol 32000 6.84

Table 4: Statistics from datasets.

Tokenization As for mathematical expres-
sion, we add specific math tokens, including
frac, sin, cos, log, e, into the dictionary of both
Bert and GPT2 and consider the remaining tokens
as char-level. As for explanatory sentences, we use
the default tokenization in Bert and GPT2.

Syntax parsing As for mathematical expression,
we use Expression Trees 4, As for explanatory sen-
tences, we use consistency parser5 from AllenNLP
library (Gardner et al., 2018) to get the flattened
syntax tree, and remove all word content from the
tree as the input of graph encoder.

Model implementation As for graph encoders,
we use PyTorch Geometric library 6. We de-
ployed two hidden layers for GCN, GraphSAGE,
and TransformerCONV. For mathematical expres-
sion, we replace the content of variables with ran-
dom noises following uniform distribution with the
range between -1 and 1 during the node embedding
stage. The implementation of Optimus is based
on their original code 7. The implementation of
LSTM-based VAEs is based on the code supplied
from Shen et al. (2020) 8.

Hyperparameters In the experiment, all base-
lines and our architecture hold the same size of
latent representation (768). The training epoch is
100, the learning rate is 5e-5, the batch size is 64.

4https://docs.sympy.org/latest/tutorials/
intro-tutorial/manipulation.html

5https://demo.allennlp.org/
constituency-parsing

6https://pytorch-geometric.readthedocs.io/en/
latest/

7https://github.com/ChunyuanLI/Optimus
8https://github.com/shentianxiao/

text-autoencoders

486

https://doi.org/10.18653/v1/2023.eacl-main.218
https://doi.org/10.18653/v1/2023.eacl-main.218
https://doi.org/10.18653/v1/2023.eacl-main.218
http://arxiv.org/abs/1911.06455
http://arxiv.org/abs/1911.06455
https://doi.org/10.18653/v1/2020.emnlp-main.18
https://doi.org/10.18653/v1/2020.emnlp-main.18
https://doi.org/10.18653/v1/2020.emnlp-main.18
https://doi.org/10.18653/v1/P19-1199
https://doi.org/10.18653/v1/P19-1199
https://doi.org/10.18653/v1/P17-1061
https://doi.org/10.18653/v1/P17-1061
https://docs.sympy.org/latest/tutorials/intro-tutorial/manipulation.html
https://docs.sympy.org/latest/tutorials/intro-tutorial/manipulation.html
https://demo.allennlp.org/constituency-parsing
https://demo.allennlp.org/constituency-parsing
https://pytorch-geometric.readthedocs.io/en/latest/
https://pytorch-geometric.readthedocs.io/en/latest/
https://github.com/ChunyuanLI/Optimus
https://github.com/shentianxiao/text-autoencoders
https://github.com/shentianxiao/text-autoencoders

BERT GPT2x - y x - y

LSTM

Add(Symbol, Mul(Integer, Symbol))

BERT

GPT2

Wsyn

Wsemx - y

x - y

KL divergence

Add(Symbol,
Mul(Integer,

Symbol))

BERT

shared Weights

KL divergence

z AGCN z^T z

BERT GPT2
Wsyn

Wsem
x - y x - y

KL divergence

pooling
KL divergence

 reconstruct

BERT

GPT2

Wsyn

Wsemx - y

x - y

KL divergence

Graph
Encoder

KL divergence

KL divergence

KL divergence

Wsyn

Wsem

Optimus(LSTM) Optimus(VGAE) Optimus(Siam) Optimus(GraphEncoder)

+
? *

-1 ?

+
? *

-1 ?

Single Encoder with multi-task learning Dual Encoders with architecture constraint

Figure 6: Overview of different methods to explicitly represent and disentangle syntactic information in the latent
space of Transformer-based VAEs.

B More Experimental results

Math Semantic visualization Figure 7 visualize
the latent space geometry of semantic space.

Figure 7: Visualizing semantic space separation (top:
LSTM, VGAE, Siam, bottom: graph encoders with
GCN, GraphSAGE, TransformerCONV).

Explanations Syntax visualization Figure 8 vi-
sualize the latent space geometry of syntax space
of explanatory sentences.

Explanations Semantic visualization Figure 9
visualize the latent space geometry of semantic
space of explanatory sentences.

Qualitative evaluation Moreover, we randomly
sample the points in each k-mean cluster and output
the corresponding sentences or syntax parse tree in
Table 5, 6, and 7.

Besides, in Table 8, we provide the comparison
of reconstructed sentences between normal Opti-
mus and Bert-TransCONV(addition QKV).

Attention heatmap We provide more attention
heatmap of different sentences in Figure 10 and 11.
Similar observation as before, the latent represen-
tation can better capture word content information
under the graph-language encoding setup.

Figure 8: Visualizing syntax space separation (top:
LSTM, VGAE, Siam, bottom: graph encoders with
GCN, GraphSAGE, TransformerCONV).

Figure 9: Visualizing semantic space separation (top:
LSTM, VGAE, Siam, bottom: graph encoders with
GCN, GraphSAGE, TransformerCONV).

Traversal We provide the traversed sentences of
semantic space and syntax space in table 9 and
10, respectively. From it, we can observe that
the geometrical neighbour sentences traversed via
Ornstein-Uhlenbeck random walk can hold similar
lexical information (“sea/river/ocean”).

More specifically, regarding the traversal of the

487

Math symbol: Syntax Cluster Traversal

C0: Pow(cos(Symbol(E)), Symbol(b))
C0: Pow(exp(Symbol(b)), Symbol(A))
C0: Mul(Symbol(F), sin(Symbol(g)))

C4: exp(Mul(Pow(Symbol(V), Integer(-1)), Sym-
bol(q)))
C4: cos(Mul(Pow(Symbol(b), Integer(-1)), Sym-
bol(g)))
C4: exp(Mul(Pow(Symbol(T), Integer(-1)), Sym-
bol(a)))

C8: sin(Mul(Symbol(A), Symbol(k)))
C8: cos(Mul(Symbol(U), Symbol(w)))
C8: exp(Mul(Symbol(J), Symbol(l)))

Table 5: Qualitative evaluation of syntax cluster of Bert-
TransCONV encoding.

Explanations: Semantic Cluster Traversal

C0: if a pot is exposed to a stove then the pot will
become hot
C0: if something is used for something else then that
something else is the job of that something
C0: if there is a crack in a rock then water can get
into the crack

C8: decaying plant is a source of nutrients in soil
C8: producers are a source of food energy for living
things
C8: organic matter is a source of nutrients in soil

C5: a magnet is a kind of object
C5: a board is a kind of object
C5: a wagon is a kind of object

Table 6: Qualitative evaluation of semantic cluster of
Bert-GCN encoding.

Figure 10: a rose is a kind of plant.

syntactic space (Table 10), we can find that the se-
mantics of the generated sentences exhibit higher
variability (compared to the variability in syntactic
structures when we traverse the semantic space).
We conjecture this is mainly because a change in
syntactic structure is intrinsically connected with
a change in semantics (that is, a perfect separa-
tion between the two spaces is extremely hard to

Figure 11: the chemical symbol for helium is he.

achieve). For example, the traversal of the syn-
tactic structure such as the one in Table 10 (e.g.,
from (S (NP) (VP (ADJP (PP (NP))))) —> (S (NP)
(VP (NP (NP) (PP (NP (NP) (PP (NP (ADJP(PP
(NP))))))))))) will intrinsically require changes in
the semantics of the generated sentences. However,
while the intrinsic semantics is expected to change,
an alleviation of the information bottleneck is ex-
pected to reduce at least the lexical variability of
the sentences (that is including entities and rela-
tions that are more closely related) derived from
our semantic-syntactic separation. In this case, we
can observe better results when we compare our
approach with Optimus.

488

Explanations: Syntax Cluster Traversal

C5: (S (NP (JJ) (NN)) (VP (VBZ) (NP (JJ) (NN))))
C5: (S (NP (DT) (NN)) (VP (VBZ) (NP (DT) (NN))))
C5: (S (NP (JJ) (JJ) (NN)) (VP (VBZ) (NP (JJ) (NN))))

C6: (S (NP (NN)) (VP (VBZ) (PP (IN) (NP (NP (DT) (NN)) (SBAR (WHNP (WDT)) (S (VP (VBZ) (VP (VBN)
(PP (IN) (NP (NN)))))))))))
C6: (S (NP (NN)) (VP (VBZ) (NP (NP (DT) (NN)) (PP (IN) (SBAR (WHADVP (WRB)) (S (NP (DT) (NN)) (VP
(VBZ) (VP (VBN)))))))))
C6: (S (NP (NN)) (VP (VBZ) (NP (NP (DT) (NN)) (SBAR (WHNP (WDT)) (S (VP (VBZ) (ADJP (JJ) (JJS) (PP
(IN) (NP (DT) (NNP))))))))))

C9: (S (NP (NNS)) (VP (VBP) (NP (NN)) (PP (IN) (NP (NNS)))))
C9: (S (NP (NNS)) (VP (VBP) (PP (IN) (NP (NN)))))
C9: (S (NP (NNS)) (VP (MD) (VP (VB) (NP (NN) (NN)) (PP (IN) (NP (DT) (NN))))))

Table 7: Qualitative evaluation of semantic cluster of Bert-GCN encoding.

Gold explanations BERT-GPT2 Bert/TransCONV-GPT2
lenses are a kind of object frog is a kind of object lenses are a kind of object
the chemical symbol for helium is he a substance has a physical shape the chemical symbol for helium is He
a rose is a kind of plant a window pane is a kind of surface a rose is a kind of flower
a body of water contains water a flood has a large amount of rainfall a body of water contains water
growing is a kind of process population is a kind of process growing is a kind of process
air is a kind of gas farming is a kind of human air is a kind of gas
action means activity feed means use activity means action
soda water is a kind of carbonated bev-
erage

condensing is a kind of change in tem-
perature

soda water is a kind of carbonated bev-
erage

plasma is a kind of state of matter black probability is a kind of event plasma is a kind of state of matter
earth is a kind of celestial object sun is a kind of light earth is a kind of celestial object
a bee is a kind of living thing a frog is a kind of amphibian a bee is a kind of living thing
green is a kind of color deforestation is a kind of process green is a kind of color
a wooded area is a kind of forest a coal mine is a kind of natural resource a wooded area is a kind of forest

Table 8: Explanation reconstruction (left: original explanations from WorldTree corpus, middle: explanations from
Optimus, right: explanations from Bert-TransCONV (addition Q)).

Semantic Space Traversal

Optimus:
0: a desert is a land found in desert environments
1: a forest is a large structure that contains lots of
trees
2: a river is a nonliving thing
3: a canyon is a very deep valley
4: a mountain is a large land mass

Bert-TransCONV:
0: a sea is a source of water for humans
1: a sea is a source of freshwater
2: a river is a source of water
3: an ocean is a source of water for residents

Table 9: Qualitative evaluation of traversed examples
of Optimus (top) and Bert-TransCONV (addition QKV)
(bottom).

Syntax Space Traversal

Bert-TransCONV:
0: a river is synonymous with a coastline
1: a hurricane is composed of water vapor and dust
2: a hurricane is the source of most of water vapor in
the atmosphere
3: hurricane is mainly made of water vapor
4: a hurricane is measuring the amount of water in an
area

Table 10: Qualitative evaluation of traversed examples
of Bert-TransCONV (addition QKV).

489

