@inproceedings{hoang-etal-2024-fly,
title = "On-the-Fly Fusion of Large Language Models and Machine Translation",
author = "Hoang, Hieu and
Khayrallah, Huda and
Junczys-Dowmunt, Marcin",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2024",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-naacl.35",
doi = "10.18653/v1/2024.findings-naacl.35",
pages = "520--532",
abstract = "We propose on-the-fly ensembling of a neural machine translation (NMT) model with a large language model (LLM), prompted on the same task and input. Through experiments on 4 language directions with varying data amounts, we find that a slightly weaker-at-translation LLM can improve translations of a NMT model, and such an ensemble can produce better translations than ensembling two stronger NMT models.We demonstrate that our ensemble method can be combined with various techniques from LLM prompting, such as in context learning and translation context.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hoang-etal-2024-fly">
<titleInfo>
<title>On-the-Fly Fusion of Large Language Models and Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hieu</namePart>
<namePart type="family">Hoang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huda</namePart>
<namePart type="family">Khayrallah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcin</namePart>
<namePart type="family">Junczys-Dowmunt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose on-the-fly ensembling of a neural machine translation (NMT) model with a large language model (LLM), prompted on the same task and input. Through experiments on 4 language directions with varying data amounts, we find that a slightly weaker-at-translation LLM can improve translations of a NMT model, and such an ensemble can produce better translations than ensembling two stronger NMT models.We demonstrate that our ensemble method can be combined with various techniques from LLM prompting, such as in context learning and translation context.</abstract>
<identifier type="citekey">hoang-etal-2024-fly</identifier>
<identifier type="doi">10.18653/v1/2024.findings-naacl.35</identifier>
<location>
<url>https://aclanthology.org/2024.findings-naacl.35</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>520</start>
<end>532</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On-the-Fly Fusion of Large Language Models and Machine Translation
%A Hoang, Hieu
%A Khayrallah, Huda
%A Junczys-Dowmunt, Marcin
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Findings of the Association for Computational Linguistics: NAACL 2024
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F hoang-etal-2024-fly
%X We propose on-the-fly ensembling of a neural machine translation (NMT) model with a large language model (LLM), prompted on the same task and input. Through experiments on 4 language directions with varying data amounts, we find that a slightly weaker-at-translation LLM can improve translations of a NMT model, and such an ensemble can produce better translations than ensembling two stronger NMT models.We demonstrate that our ensemble method can be combined with various techniques from LLM prompting, such as in context learning and translation context.
%R 10.18653/v1/2024.findings-naacl.35
%U https://aclanthology.org/2024.findings-naacl.35
%U https://doi.org/10.18653/v1/2024.findings-naacl.35
%P 520-532
Markdown (Informal)
[On-the-Fly Fusion of Large Language Models and Machine Translation](https://aclanthology.org/2024.findings-naacl.35) (Hoang et al., Findings 2024)
ACL