LLM-Rec: Personalized Recommendation via Prompting Large Language Models

Hanjia Lyu, Song Jiang, Hanqing Zeng, Yinglong Xia, Qifan Wang, Si Zhang, Ren Chen, Chris Leung, Jiajie Tang, Jiebo Luo


Abstract
Text-based recommendation holds a wide range of practical applications due to its versatility, as textual descriptions can represent nearly any type of item. However, directly employing the original item descriptions may not yield optimal recommendation performance due to the lack of comprehensive information to align with user preferences. Recent advances in large language models (LLMs) have showcased their remarkable ability to harness commonsense knowledge and reasoning. In this study, we introduce a novel approach, coined LLM-Rec, which incorporates four distinct prompting strategies of text enrichment for improving personalized text-based recommendations. Our empirical experiments reveal that using LLM-augmented text significantly enhances recommendation quality. Even basic MLP (Multi-Layer Perceptron) models achieve comparable or even better results than complex content-based methods. Notably, the success of LLM-Rec lies in its prompting strategies, which effectively tap into the language model’s comprehension of both general and specific item characteristics. This highlights the importance of employing diverse prompts and input augmentation techniques to boost the recommendation effectiveness of LLMs.
Anthology ID:
2024.findings-naacl.39
Volume:
Findings of the Association for Computational Linguistics: NAACL 2024
Month:
June
Year:
2024
Address:
Mexico City, Mexico
Editors:
Kevin Duh, Helena Gomez, Steven Bethard
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
583–612
Language:
URL:
https://aclanthology.org/2024.findings-naacl.39
DOI:
10.18653/v1/2024.findings-naacl.39
Bibkey:
Cite (ACL):
Hanjia Lyu, Song Jiang, Hanqing Zeng, Yinglong Xia, Qifan Wang, Si Zhang, Ren Chen, Chris Leung, Jiajie Tang, and Jiebo Luo. 2024. LLM-Rec: Personalized Recommendation via Prompting Large Language Models. In Findings of the Association for Computational Linguistics: NAACL 2024, pages 583–612, Mexico City, Mexico. Association for Computational Linguistics.
Cite (Informal):
LLM-Rec: Personalized Recommendation via Prompting Large Language Models (Lyu et al., Findings 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.findings-naacl.39.pdf