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Abstract

Large language models are rapidly replacing
help forums like StackOverflow, and are espe-
cially helpful to non-professional programmers
and end users. These users are often interested
in data-centric tasks, like spreadsheet manip-
ulation and data wrangling, which are hard to
solve if the intent is only communicated using
a natural-language description, without includ-
ing data. But how do we decide how much data
and which data to include in the prompt?

This paper makes two contributions towards
answering this question. First, we create a
dataset of real-world NL-to-code tasks manipu-
lating tabular data, mined from StackOverflow
posts. Second, we introduce a novel cluster-
then-select prompting technique, which adds
the most representative rows from the input
data to the LLM prompt. Our experiments show
that LLM performance is indeed sensitive to the
amount of data passed in the prompt, and that
for tasks with a lot of syntactic variation in the
input table, our cluster-then-select technique
outperforms a random selection baseline.

1 Introduction

Code-generating large language models (LLMs)
promise to empower end users interested in data-
centric tasks, ranging from string manipulations
in spreadsheets to data cleaning and analysis in
computational notebooks. For example, consider
the following task on tabular data: given a column
with full names, generate a new column with user
names, by combining the first initial and last name,
in lowercase. This task can be solved by a Pandas
program that: 1) splits the full name into a list of
strings, 2) extracts the first and last string from the
list, 3) converts both to lowercase and joins the first
letter of one string to the other as shown in Figure 1.
The challenge in generating this program is that
input data rows have varied formats, e.g. most rows
only have two names ("John Smith"), but some

have multiple middle names ("Jake L Woodhall",
"Jo Anna Emily Gray"). If an LLM prompt does
not include any data or only includes rows with
two names, the LLM is more likely to generate
a program that does not generalize (e.g. one that
extracts the last name as the second element of the
list instead of last).

In this paper, we focus on solving such tasks
that involve multi-step computations on the input
columns to generate additional columns. Towards
this goal, we mine StackOverflow to construct a
new dataset, dubbed SOFSET, of data-centric tasks,
equipped with a natural-language query and a small
input table. Using this dataset, we conduct experi-
ments on generating Pandas programs using GPT-4
and an open-source alternative CODELLAMA, with
the goal of analysizing LLMs’ sensitivity to the
amount of input data provided in the prompt.

Unlike input tables in StackOverflow posts, real-
world data tables are often large, hence sending
the entire table to the LLM is likely impractical,
expensive, or detrimental to performance. How
do we best convey the structure of a large input
table to the LLM? To address this question, we pro-
pose a cluster-then-select prompting technique that
clusters input rows based on their syntactic struc-
ture and then selects representative rows from each
cluster; e.g. in our Figure 1 example, the technique
would include a row for each format of middle
names. To evaluate this technique, we perform ex-
periments on SOFSET augmented with larger input
tables extracted from Kaggle.

In summary, this paper contributes:

• a real-world dataset of complex tasks for eval-
uating data-centric code generation;

• a cluster-then-select technique for selecting
rows to prompt with, from large input tables;

• an analysis that shows LLMs are sensitive to
the data quantity, choice and position of rows.
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# Python 3

import pandas as pd

df = pd.DataFrame()


df['Names'] =  ['John Smith', 'Jack Will Anders', 
'Ash Kelsey-Poe', 'Jo Anna Emily Gray']


# create a new column in lowercase where we 
concatenate the first initial and the last name.

Prompt

Selected Representative Rows

Input Table

Create a new column in lowercase 
where we concatenate the first 
initial and the last name.

Query

df['Username'] = df['Names'].apply(lambda x: 
x.split()[0][0].lower() + x.split()[-1].lower())

Generated Completion

Output Table    LLM

Figure 1: An overview of our cluster-then-select prompting technique. The input is a data table and natural language
query. The rows in the data table are first clustered based on their syntactic structure (in this case the name format).
We depict different clusters using distinct colors. The most representative rows are then selected from each cluster
to create a prompt to pass to the model. Finally, the generated completion is used to create an output column.

2 Related Work

Large language models for tabular data Code-
generating LLMs like CODEX (Chen et al., 2021),
INCODER (Fried et al., 2022) and PALM (Chowd-
hery et al., 2022) have been fine-tuned for code-
specific tasks and adapted for data-centric domains
like SQL (Trummer, 2022; Rajkumar et al., 2022).
(Li et al., 2020) explore the ability of models like
BERT to perform entity matching on tabular data.
(Narayan et al., 2022) use GPT-3 for data cleaning,
error detection and entity matching tasks. (Hegsel-
mann et al., 2023) focus on tabular classification
tasks and explore parameter-efficient LLM tuning.
Prompting for data-centric tasks Prompting
LLMs has been quite effective in practice across
domains (Reynolds and McDonell, 2021; Wang
et al., 2022; Liu et al., 2023b). In this paper, we
ask the question: how does data context impact
code generation for data-centric tasks? Previous
works have explored prompting with data: (Jain
et al., 2022) provide both input and expected out-
put tables (which might not be available in a realis-
tic setting). (Gemmell and Dalton, 2023) prompt
with transformed tables after filtering out rows that
are not relevant, for their question-answering tasks.
(Ye et al., 2023) decompose a huge table into a
smaller one, and convert a question into simpler

sub-questions for tabular question-answering tasks.
(Hegselmann et al., 2023) serialize data tables into
a textual representation for tabular classification
tasks. These works prompt LLMs for data analysis,
classification and wrangling tasks (in-place data
transformations) whereas we focus on multi-step
data manipulation. We propose a new cluster-then-
select prompting technique that clusters the input
data and adds representative rows to the prompt.
(Yin et al., 2022) focus on data-centric tasks in
computational notebooks.

3 The SOFSET Dataset

We collect a new dataset fashioned from real-world
data-centric tasks from StackOverflow (SOFSET).
We sample tasks deterministically from the high-
est rated posts with the tag "ExcelFormulas" in
StackOverflow (as of March 2022). These tasks are
representative of real problems spreadsheet users
face frequently since they correspond to the highest-
rated posts. We manually check that the posts are
genuine tasks and also remove post identifiers for
anonymization. This gives us a total of 201 tasks.

3.1 Dataset Annotation

Each datapoint in our dataset is annotated with
a concise textual query, a data input (column-
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major-flat table), an expected correct output (extra
columns), a pandas solution and metadata. We
manually write the textual queries, summarising
the original verbose StackOverflow question. Each
query is annotated and verified by at least three
internal annotators. For the data input, we use
the table from the original StackOverflow post (if
present), and manually add extra rows and corner
cases until we have at least 10 rows. Since the natu-
ral language query and tabular data are not verbatim
copies from StackOverflow and we have a different
target language for generation (Pandas instead of
Excel Formulas), the evaluation data should not be
present in the training data. We choose Pandas as
the target language since LLMs are especially good
at generating Python but our methods and dataset
are programming-language agnostic.

3.2 Dataset Properties

What makes our dataset different from existing
ones? First, our dataset consists of complex data-
centric tasks with multiple input columns. Python
datasets like APPS (Hendrycks et al., 2021) and
HUMANEVAL (Chen et al., 2021) are not data-
centric. Second, our dataset is larger than existing
data-centric datasets: JIGSAW (Jain et al., 2022)
and CERT (Zan et al., 2022). JIGSAW has 79 unique
tasks (median of 7 data rows) and CERT has 100
unique tasks (median of 3 rows). Our dataset has
201 unique tasks, with a median of 10 rows. The
SPIDER dataset (Yu et al., 2018) is a text-to-SQL
dataset which focuses on relational query tasks
whereas we focus on fine-grained data wrangling
and manipulation tasks. Finally, we propose a tax-
onomy of data-centric tasks, classifying them into
data-independent (IND), data-dependent (DEP), and
external-dependent (EXT), based on the data re-
quired to produce a solution.

Data-independent tasks These tasks can be solved
using the query alone without any data access. An
example is the query "create a new column that
includes only the first 5 characters from Filename".

Data-dependent tasks These tasks cannot be
solved using the query alone: the model needs
access to the input table. For example, the query
"create a new column with the number of days be-
tween the two date columns" requires data access to
identify the correct column names and date format,
both absent from the query.

External-dependent tasks These tasks can only be
solved with external world knowledge in addition

to data access. The query "create a new column
that counts how many US holidays are between
the dates in Start Date and End Date", requires the
model to know about US holidays.

Following this taxonomy, SOFSET consists of
126 IND tasks, 44 DEP tasks and 31 EXT tasks.
These tasks span diverse domains including string
manipulation, date and time, math, address, and
complex conditionals among others.

3.3 Cluster-then-select prompting technique

To solve tasks on large tables, we propose a cluster-
then-select technique which prompts the model
with a representative sample of the input data. In
order to capture the syntactic variation in the input
data, we rely on an existing tool (Padhi et al., 2018),
which takes as input a set of strings and synthesizes
a small set of regular expressions (regexes), such
that each input string matches one of the regexes.
In our example in Figure 1, it would synthesize
separate regexes for rows with zero, one and two
middle names and hyphenated last name. Names
like "John Smith" would belong to the zero mid-
dle name cluster and "Jack Will Andres" and "Jo
Anna Emily Gray" belong to the clusters with one
and two middle names resp. Also, the name "Ash
Kelsey-Poe" would belong to the cluster with hy-
phenated last names. These regexes are then used
to cluster the input strings, and we select some
number of rows from each cluster. In Figure 1, we
pick one row from each of the four distinct clusters
(depicted with different colors).

If the input table only has one column, select-
ing n representative rows based on the clustering
results is trivial: simply pick one row each from
the top-n most populous clusters. In cases where
the input contains more than one column, they may
be clustered differently. We then select n rows that
together cover as many strings as possible across
all the columns. We frame this as a weighted maxi-
mal coverage problem (max), which can be solved
approximately in a greedy manner. In each itera-
tion, the algorithm selects the row whose elements
maximize cluster coverage.

Kaggle-augmented dataset In order to evaluate
our cluster-then-select technique on larger datasets,
we expand the 44 data-dependent tasks by adding
more rows from open-source Kaggle datasets (kag),
bringing the total to 1000 rows. We first identify the
data domains in the original SOFSET rows (such as
names, numbers, address, date, time etc) and then
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Figure 2: pass@k with (a) no-data, (b) first-row, and
(c) ten-rows passed to the model. The leftmost group
of bars represent pass@k with all classes followed by
separate pass@k for IND, DEP and EXT tasks.

source comparable open-source Kaggle datasets
of the same domain. We further post-process the
Kaggle data to maintain the original rows format
and ensure that the augmented data is coherent.
This introduces greater variation in the original
data which increases the number of data clusters.
62% of our DEP tasks have at least two clusters
and we have tasks with up to ten clusters. Since
the Kaggle data is post-processed and is not tied to
the task query in any way, it is unlikely to bias the
LLM evaluation by being part of the training data.
This larger dataset allows for a thorough evaluation,
better mirroring real-world conditions.

4 Evaluation of data-centric tasks

We perform an analysis of the role of data on model
performance in data-centric tasks. We first use
the original SOFSET dataset to examine three data
regimes with increasing amounts of data: (a) no-
data (b) first-row and (c) ten-rows and also the
taxonomy of task classes of increasing difficulty
in terms of data required: IND, DEP and EXT. We
then use Kaggle-augmented DEP tasks to compare
our cluster-then-select technique (which selects
representative rows from the top-n most dense clus-
ters) against a random baseline (which selects ran-
dom rows from the input table). For each data
setting, we construct a prompt which contains the
task query and selected rows as a pandas dataframe
to generate code from GPT-4 as shown in Figure 1.
Correctness is reported based on whether the code
produces the expected output in terms of pass@k,
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Figure 3: pass@k for 39% (17/44) DEP tasks (with
more than two clusters) with no-data, random selection
(random-n), representative selection (represent-n) and
pass@1 with greedy sampling for full-data (1000 rows).

the probability that at least one of k samples of
generated code produces the correct output (Chen
et al., 2021). We report all results using GPT-4 with
a temperature of 0.5 and the generated completions
are evaluated on all rows in the input table. The
SOFSET dataset, all the evaluation results and our
prototype tool can be found online.1

Does model performance vary with the amount
of data passed for different task classes? Figure 2
shows the impact of the amount of data on LLM
performance, first for the entire dataset and then
split by task classes. We see a larger drop in per-
formance with reduced (and no) data on DEP (and
EXT) tasks compared to IND tasks. Specifically,
the performance gap (pass@5) between first-row
and no-data regimes is larger for the DEP and EXT

classes (33.8% and 83.5% resp) compared to only
7.1% for IND tasks. The fact that there is any per-
formance drop for IND tasks indicates that having
data helps the model even when the problem can
be solved independently of data. In the absence of
data, almost no EXT task is solved (pass@1) but
performance improves when a single row is passed.

Is our cluster-then-select technique effective on
larger input tables? We evaluate our cluster-then-
select technique on Kaggle-augmented DEP tasks
(with 1000 rows) since we expect to see the benefit
of our approach more clearly on tasks dependent on
data. In order to do so, we compare our represen-
tative selection strategy against random selection
where the rows are randomly selected from the in-

1https://github.com/microsoft/CodeXData
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Figure 4: pass@k for all DEP tasks with no-data, and
n=1, 5 and 10 rows passed to the model, using random
(random-n), representative selection (represent-n). The
completions are evaluated on 1000 rows.

put table. Among DEP tasks, we further focus on
17 (out of 44) that have input columns with at least
three clusters, since with two clusters or fewer we
do not expect to see much difference between the
representative and random samples. We also eval-
uate against two baselines: no-data (0 rows) and
full-data (1000 rows). We run the random selection
experiments five times.

Figure 3 shows that the model performs best
with 10 most representative rows added to the
prompt (pass@5 = 0.32 for represent-10). Rep-
resentative selection performs better than random
selection for the same number of rows. Specifically,
represent-1 and represent-10 outperform random-1
and random-10 by 8% and 6% resp. In addition,
random selection has high variance, especially for
a small number of rows (e.g. pass@1 for random-
1 varies from 0.20 to 0.31 across the five runs),
which is not surprising, since the random strategy
might select rows from different clusters or from
the same one. Thus, while random selection gives
comparable results on average, our cluster-then-
select technique offers a more consistent approach
to provide the model a representative sample of
the data. Further, the low pass@k for the no-data
baseline suggests that our dataset was not part of
the training data, as then the model would likely
perform well even without data input. We note
that while we evaluate on 1000 rows, the same
cluster-then-select technique could easily scale to
datasets with over 100K rows without much over-
head. We also present the evaluation results on all

the 44 DEP tasks in Figure 4. We see that represent-
5 has the highest pass@k for both k = 1 and 5.
Since these results include problems with fewer
than three clusters, selection of even 5 representa-
tive rows boosts performance. Notably, represent-5
also outperforms random-10.
Does the position of data rows in the prompt also
affect performance? For the full-data baseline,
we used a longer-context version of GPT-4 (32k)
with temperature 0 (greedy selection to eliminate
variance in generations) for the DEP tasks. The
right side of Figure 3 shows pass@1 for this setting
with ten runs: we permute the 1000 rows in the
dataframe ten times, in order to measure the sensi-
tivity of the model to row positioning. We observe
a high variance in pass@1 values, ranging from
0.20 to 0.32 with an average of 0.26. This shows
that the position of rows in the dataframe influences
completion quality, which aligns with previous find-
ings about positional biases in prompts (Liu et al.,
2023a). Surprisingly, the full-data setting (irrespec-
tive of row ordering) performs worse than selecting
one random row in some cases (pass@1 for one
random row ranges from 0.12 to 0.27 with an av-
erage of 0.20). Note that we only report pass@1
results for the full-data (1000 rows) setting.2

5 Conclusion and Future Work

Our work highlights the importance of data for
code generation on data-centric tasks and proposes
a new dataset for evaluation of data-centric tasks.
We show that providing even one data row to the
model boosts performance compared to a no-data
baseline. Since providing the entire input table is
often infeasible, we propose a cluster-then-select
prompting technique that selects representative
rows from the data to be added to the prompt.
While randomly selecting rows also performs well,
for data with a high degree of syntactic variation,
it is more beneficial to add representative rows to
the prompt. For future work, handling a broader
problem space (e.g., multi-table inputs, hierarchical
table inputs) raises interesting challenges.

6 Limitations

We discuss the limitations of our work in terms of
the SOFSET dataset, the cluster-then-select tech-
nique and the models used for evaluation. Although
starting from actual user-specified problems gives
our results greater alignment with real spreadsheet

2CODELLAMA results are Figure 6, Figure 7, Figure 8.
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user problems, the form that such queries take pose
some potential limitations to our analysis. Users
usually only show relevant columns of data in their
queries when in actuality there might be many more
unrelated columns in real spreadsheets. We have
seen promising results applying LLMs to data ta-
bles with columns that are extraneous to the query
but we do not perform a rigorous evaluation of the
same. Furthermore, since we have collected only
English queries from StackOverflow, our results
may not generalize to other languages.

Our cluster-then-select prompting technique is
based on the regular expression synthesis algorithm
from (Padhi et al., 2018). Given that the clusters for
the input data columns are defined by the specificity
of this regex synthesis, using a different clustering
algorithm could potentially result in a different set
of clusters. Finally, since we draw our conclusions
from the generations produced by GPT-4, future
models might invalidate our conclusions. Further-
more access to models such as GPT-4 cannot be
taken for granted and the costs of running our eval-
uation are considerable. Even open source models
like CODELLAMA require GPU resources for eval-
uation.

7 Broader Research Impact

To the best of our knowledge, research on prompt-
ing large language models to solve data-centric
tasks with tabular data is infrequent, despite the
considerable importance of such scenarios. Solv-
ing the problem of how to help LLM reason over
large amounts of data is essential to the future of
assisted decision making. Generating multi-step
programs that require reasoning is the beginning of
this journey and to make progress the community
needs challenging real-world datasets to evaluate
on. By releasing our new dataset, sharing the anal-
ysis results of our experiments and releasing our
prototype tool3, we offer valuable benchmarks and
a baseline to the wider research community which
promises to encourage further exploration.

8 Ethics Statement

There are broad ethical impacts resulting from the
creation of AI models that attempt to generate code
solutions from natural language descriptions and
these are discussed in detail in previous papers
including CODEX (Chen et al., 2021), ALPHA-
CODE (Li et al., 2022), and PALM (Chowdhery

3Details discussed in Appendix C and Appendix D.

et al., 2022). These impacts include over-reliance,
misalignment between what the user expressed and
what they intended, potential for bias and under-
/over representation in the model results, economic
impacts, the potential for privacy and security risks,
and even environmental considerations. All of
these considerations also apply to the work in this
paper. Our focus is to highlight how the presence
of data improves the performance of these models
but it is important to note that the quality of the
data used in the prompt will impact whether the
resulting generation exhibits bias, exposes private
data, etc. We explore the overall impact of provid-
ing data as part of the prompt but do not conduct a
more focused analysis of determining how bias in
the prompt data might influence the resulting code
generation, a task we leave for future work.

There is the question of the sources of data and
of consent to use the data in the manner exhibited
in this paper. We have reviewed each of the datasets
we have included in this paper to ensure that our
use is compatible with the intent of the authors and
publishers. Our datasets have also been reviewed
by our institution’s ethics board to review that this
is an ethical use.

This paper does not directly contribute to a tool
built on the assumed capabilities of language mod-
els to understand data, but nonetheless, it is moti-
vated by their potential applications in such tools.
These tools may be deployed in many data appli-
cations such as databases, spreadsheets, and busi-
ness intelligence applications. Depending on the
audience of the tool, various interaction design con-
cerns arise. Explainability of the model is a key
consideration, and the tool should offer decision
support to evaluate mispredictions and potential
next steps (Sarkar, 2022). Previous research of
non-experts using inference driven tools for data
manipulation has shown the importance of tool de-
sign in the critical appreciation of the model and
its limitations, and in the potential cost of errors
(Williams et al., 2020; Sarkar et al., 2015). As an
exploratory paper without a concrete application,
we do not encounter these issues, but the project
has nonetheless been reviewed by our institution’s
ethics board.

References
Kaggle datasets.

Maximum coverage problem.

631

https://www.kaggle.com/datasets
https://en.wikipedia.org/wiki/Maximum_coverage_problem


Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek B Rao,
Parker Barnes, Yi Tay, Noam M. Shazeer, Vinodku-
mar Prabhakaran, Emily Reif, Nan Du, Benton C.
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier García,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Oliveira
Moreira, Rewon Child, Oleksandr Polozov, Kather-
ine Lee, Zongwei Zhou, Xuezhi Wang, Brennan
Saeta, Mark Díaz, Orhan Firat, Michele Catasta, Ja-
son Wei, Kathleen S. Meier-Hellstern, Douglas Eck,
Jeff Dean, Slav Petrov, and Noah Fiedel. 2022. Palm:
Scaling language modeling with pathways. ArXiv,
abs/2204.02311.

Michael Droettboom, Roman Yurchak, Hood Chatham,
Dexter Chua, Gyeongjae Choi, Marc Abramowitz,
casatir, Jan Max Meyer, Jason Stafford, Madhur
Tandon, Michael Greminger, Grimmer Kang, Chris
Trevino, Wei Ouyang, Joe Marshall, Adam Seer-
ing, Nicolas Ollinger, Ondřej Staněk, Sergio, Teon L
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A Community Data License Agreement -
Permissive - Version 2.0

This is the Community Data License Agreement
- Permissive, Version 2.0 (the "agreement"). Data
Provider(s) and Data Recipient(s) agree as follows:

A.1 Provision of the Data
• A Data Recipient may use, modify, and share

the Data made available by Data Provider(s)
under this agreement if that Data Recipient
follows the terms of this agreement.

• This agreement does not impose any restric-
tion on a Data Recipient’s use, modification,
or sharing of any portions of the Data that
are in the public domain or that may be used,
modified, or shared under any other legal ex-
ception or limitation.

A.2 Conditions for Sharing Data
• A Data Recipient may share Data, with or

without modifications, so long as the Data Re-
cipient makes available the text of this agree-
ment with the shared Data.

A.3 No Restrictions on Results
• This agreement does not impose any restric-

tion or obligations with respect to the use,
modification, or sharing of Results.

A.4 No Warranty; Limitation of Liability
• All Data Recipients receive the Data subject

to the following terms:

THE DATA IS PROVIDED ON AN "AS IS"
BASIS, WITHOUT REPRESENTATIONS, WAR-
RANTIES OR CONDITIONS OF ANY KIND,
EITHER EXPRESS OR IMPLIED INCLUD-
ING, WITHOUT LIMITATION, ANY WAR-
RANTIES OR CONDITIONS OF TITLE, NON-
INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

NO DATA PROVIDER SHALL HAVE ANY
LIABILITY FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CON-
SEQUENTIAL DAMAGES (INCLUDING WITH-
OUT LIMITATION LOST PROFITS), HOW-
EVER CAUSED AND ON ANY THEORY OF LI-
ABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE DATA OR RESULTS, EVEN
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IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

A.5 Definitions

• "Data" means the material received by a Data
Recipient under this agreement.

• "Data Provider" means any person who is the
source of Data provided under this agreement
and in reliance on a Data Recipient’s agree-
ment to its terms.

• "Data Recipient" means any person who re-
ceives Data directly or indirectly from a Data
Provider and agrees to the terms of this agree-
ment.

• "Results" means any outcome obtained by
computational analysis of Data, including for
example machine learning models and mod-
els’ insights.

B Software License Agreement

MIT License
All rights reserved. Permission is hereby

granted, free of charge, to any person obtaining
a copy of this software and associated documenta-
tion files (the "Software"), to deal in the Software
without restriction, including without limitation the
rights to use, copy, modify, merge, publish, dis-
tribute, sublicense, and/or sell copies of the Soft-
ware, and to permit persons to whom the Software
is furnished to do so, subject to the following con-
ditions:

The above copyright notice and this permission
notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Algorithm 1 Inference Algorithm
Input: Explicit: query Q, input table T , cardinality k. Im-

plicit: completion limit kmax (with k ≤ kmax), number
n of rows to be selected.

Output: Pair of lists (C,O), with |C| = |O| ≤ k, of unique
completions and their corresponding outputs.

1: procedure INFER(Q,T, k)
2: M ← CLUSTER(T ) ▷ cluster input rows
3: R← SELECT(T, n,M) ▷ select n representative

rows
4: P ← PROMPT(Q,R) ▷ prompt creation
5: B,C,O ← kmax, [], [] ▷ initialize budget, caches
6: while B > 0 ∧ |C| < k do
7: c← LLM(P ) ▷ sample completion
8: B ← B − 1 ▷ decrement budget
9: o← EXEC(c, T ) ▷ execute against table T

10: if VALIDATE(o) ∧ (c /∈ C) then
11: C ← C + [c] ▷ append completion to C
12: O ← O + [o] ▷ append output to O

13: return (C,O)

C Our Prototype Tool

The high-level workflow of our tool is depicted
in Figure 5 and formalized in Algorithm 1. The
tool takes as input a query Q expressed in natural
language, an input table T as a Pandas dataframe,
and the target cardinality k of distinct completions
to generate. We set a limit kmax on the number
of calls to LLM (kmax = 8k). For our running
example, k is 1, Q is “create a new column in low-
ercase that concatenates the first initial and the last
name.”, and T is Data({"Names":["John Smith",
"Jack Will Anders", ...]}). At a high-level,
the algorithm first clusters the data in T based on
automatically synthesized regular expressions and
stores them in a map M (line 2). It then extracts
representative rows of the table using SELECT (line
3); combines the query Q and the rows R to cre-
ate a prompt P using PROMPT (line 4); and then
queries LLM repeatedly using this prompt until the
target completions are reached or we exceed the
budget of calls (lines 7-12). Each completion c is
executed on the input table (line 9) using an EXEC

procedure, and if the completion is new and its out-
put o satisfies a VALIDATE procedure, the two are
accumulated in C and O which are then returned.
We describe each of the procedures in detail below.

CLUSTER This procedure clusters the rows in the
input table T based on their syntactic structure.
To capture the syntactic variation among input
rows, we rely on an existing tool (Padhi et al.,
2018), which takes as input a set of strings and
synthesizes a set of regular expressions (regexes)
from a restricted class, such that each input string
matches one of the regexes. In our example, the
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Figure 5: Our tool transforms an input table and a query into a list of valid completions. The input data is used to
extract the selected rows R. The resulting rows and query are used to construct a prompt which is fed to a code
synthesis LLM, such as GPT-4 or CODELLAMA, generating multiple possible completions. The outputs of these
completions are then validated and the first k valid completions (along with the outputs) are returned.

Algorithm 2 Rows Coverage Algorithm SELECT

1: procedure SELECT(T , n, M )
2: while |R| < n do
3: for r ∈ Tr ∧ r /∈ R do
4: BEST ← argmax(

∑ { |ci| s.t. ci ∈M [r] })
▷ greedily increase coverage

5: R← R ∪ BEST
return R

tool synthesizes four regexes: [A-Z][a-z]+[\\s]
[A-Z][a-z]+, for rows with no middle name like
"John Smith", and similar regexes for rows with
dashed last names like "Ashley Kelsey-Poe", and
one or more middle names. These regexes are then
used to cluster input strings.
SELECT The SELECT procedure selects the top-n
most representative rows from the input table. We
frame the selection of most representative rows as
a weighted maximal coverage problem— a well-
known NP-complete problem (max) that can be
solved approximately using the greedy algorithm
in Algorithm 2. The algorithm takes as input the
table T , a map M from the rows of the table to
the set of clusters covered by the element in each
column of the row. It also takes as input the row
budget n. The algorithm iterates over all rows in
T not already in R (line 3) and in each iteration
selects the row whose elements maximize the size
of clusters covered (line 4), adding this row to R.
PROMPT The prompt creation procedure PROMPT

creates a textual prompt by concatenating the NL
query and the representative rows R which are in
form of a Pandas dataframe. An example prompt

is in Appendix D.3.

LLM The completion procedure LLM queries GPT-
4 (or another code-generating model), passing the
prompt P and also the predefined stop sequences.
We use stop sequences that we have found to allow
the LLM to generate at least one solution while
typically not using the entire token budget. Note
that the LLM needs to produce multiple comple-
tions, because it will filter out invalid completions.
A naive approach would be to request a single com-
pletion, validate it, and repeat the process until k
distinct valid completions are obtained; this, how-
ever, requires sending the prompt to the LLM every
time, which incurs a monetary cost. An alternative
approach is to batch the completions, i.e. request
some number b of completions in parallel; if the
batch size b is too large, however, this also incurs
unnecessary cost, since we are requesting more out-
put tokens than we need. Details in Appendix D.4.

EXEC The procedure EXEC turns each LLM com-
pletion into a stand-alone executable program and
runs it to obtain the final output o. There are two
main challenges to be addressed in this step. First,
LLM completions do not have a consistent way
of identifying the final output: for example, the
last line of the completion might be an expression
that computes the output, or an assignment to a
result variable, or a print statement. So our tool
uses a predefined set of rewrite rules, which we de-
veloped by analyzing the patterns in completions.
The second challenge is that executing arbitrary
LLM-generated code poses a security risk; for this
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reason, we execute completions in a sandbox. Fur-
ther details are available in Appendix D.5.
VALIDATE The procedure VALIDATE checks that
the output value o is a dataframe with the right
dimensions. The completions that executed without
runtime errors during EXEC and passed the output
validation are deemed valid. Further details are
available in Appendix D.6.

D Experimental Details

D.1 CODELLAMA Results
We do a performance comparison for no-data, first-
row and full-data regimes and the different selec-
tion strategies with CODELLAMA (Roziere et al.,
2023) as the LLM. The results with CODELLAMA

are presented in Figure 6, Figure 7 and Figure 8.

D.2 Evaluation Metrics
The probability that at least one of k inferred out-
puts is correct is called pass@k (Chen et al., 2021).
More formally, pass@k is the probability that with
a sample of k code completions, at least one is cor-
rect. To measure this probability empirically for
each datapoint, we compute up to m valid programs
by sampling from the LLM (GPT-4 or CODEL-
LAMA). We count the number s of correct comple-
tions, and hence compute an estimate of pass@k
as 1 −

(
m−s
k

)
/
(
m
k

)
(Chen et al., 2021). By com-

puting m > k completions the estimate has lower
variance than by simply computing k completions.
Each pass@k on a whole dataset is the average
of pass@k over all its datapoints. All evaluation
results are averaged over tasks, computing m valid
completions to estimate pass@k or pass@k(X%).
In practice, we set m = 20 ∗ k when we report
results for k = 1 or k = 5.

D.3 Prompt Template
For each task, we generate prompts according to the
data regimes and selection strategies as described
above. An example prompt for the query "Create a
new column with the difference in hours, minutes
and seconds between the two timestamps in the
format HH:MM:SS" with one row selected:

1 import pandas as pd
2 df = pd.DataFrame ()
3 df[‘Start ’] = [ ‘2/22/2015 1:06:20 PM’]
4 df[‘End’] = [ ‘2/23/2015 3:08:20 PM’]
5 #Create a new column with the difference

in hours , minutes , and seconds
between the two timestamps in the
format HH:MM:SS

Listing 1: Example of a prompt
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Figure 6: pass@k (for CODELLAMA) with (a) no-data,
(b) first-row, and (c) full-data (10 rows) passed to the
model. The leftmost group of bars represent pass@k
with all classes followed by separate pass@k for IND,
DEP and EXT tasks. Smaller models have a huge perfor-
mance drop. But the trend of performance improving
with the amount of data passed to the model is seen.

D.4 Generation of Completions

Parallelization. For efficiency, we request multi-
ple completions from GPT-4 per iteration. To try
to minimize both inference time and the load on
OpenAI’s servers, we adapt the batch size to an
estimate of the probability that the next completion
is valid. The batch size used in each iteration is
n = min (⌈r/p⌉, B, L), where r = k − |C| is the
number of valid completions still to obtain, B is
the remaining completion budget, and L is a par-
allelization limit enforced by the GPT-4 API. The
probability estimate p is updated after each itera-
tion by counting the number of valid and invalid
completions in that iteration’s batch. Since pass@k
is calculated only from valid completions, it is not
influenced by either parallelization or batch size
adaptation.

Stop sequences. The most effective stop sequence
we found that allows GPT-4 to generate at least one
solution while not usually using the entire token
budget is a blank line followed by a line comment;
i.e. \n#. Further, to keep GPT-4 from generat-
ing what appears to be the rest of a forum post
after a code snippet, we also use the stop sequence
</code>.

Completion cleanup. Since GPT-4’s training data
likely contains forum posts, some completions
would raise SyntaxError exceptions when exe-
cuted due to formatting artifacts, and therefore be
invalid. Instead, to make the most of the com-
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Figure 7: pass@k (for CODELLAMA) for all 44 DEP
tasks with no-data, and n=1 and 5 rows passed to the
model, using random (random-n) selection, representa-
tive selection (represent-n) and full-data (1000 rows).
Completions are evaluated on 1000 rows.

pletion budget, we replace formatting artifacts i.e.
we replace HTML escape sequences such as &lt;
and &quot; with Python operators and delimiters.
Cleanup also removes unnecessary whitespace,
blank lines, comments, and truncates completions
at \n# when it appears after executable code.

D.5 Execution of Completions

Rewriting. Completions returned by GPT-4 do not
clearly indicate which variables or expressions are
intended to be the answer to a query. This must
be inferred from the shape of the code. We found
that an effective way to identify and expose the
likely answer is to search backwards to find the last
unindented (i.e. top-level) statement that has one of
a few forms, and rewrite the completion so that its
last statement is an assignment to a fresh identifier
var_out. The statement forms and rewrites are

• var = expr: append the statement var_out
= var to the completion.

• var[expr_i] = expr: append the statement
var_out = var to the completion

• print(expr, ...): replace this statement
and the rest of the completion with var_out
= expr

• expr: replace this statement and the rest of
the completion with var_out = expr

Rewriting also inserts import statements for
common libraries (e.g. import numpy as np).
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Figure 8: pass@k (for CODELLAMA) for 17 out of 44
DEP tasks (more than two clusters) with no-data, ran-
dom selection (random-n) and representative selection
(represent-n). Completions are evaluated on 1000 rows.

The rewritten completion is appended to the code
that defines the input dataframe to create a com-
plete program. The program and output variable
var_out are sent to a sandbox for execution.

Sandboxing. Because of security risks inherent
in running the LLM-generated code, we run com-
pleted programs in a sandbox. Our sandbox is a
JavaScript web service that runs Python programs
in Pyodide (Droettboom et al., 2022), a Python
distribution for WebAssembly. While Python pro-
grams running in Pyodide have access to the host’s
network resources, they at least are isolated from
other host resources including its filesystem, of-
fering some level of protection from malicious or
accidentally harmful completions. After running
the code, the sandbox returns the value of var_out.

D.6 Validation of Completions

For a completion to be considered a correct solu-
tion in the calculation of pass@k, its actual output
must match the expected output. Matching can-
not be the same as equality and still conform to a
reasonable notion of correctness; for example, the
natural breakdown of a solution might generate in-
termediate columns in the actual output that are not
in the expected output. The actual output is allowed
to vary from the expected output in the following
ways and still match the expected output:

• Extra columns

• Different column order

• Different column headers
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• Number expected; actual is a number within
small relative error (default 0.01)

• Number expected; actual is a string that parses
as a number within small relative error

• Boolean expected; actual is number 0 or 1

• Boolean expected; actual is a string that repre-
sents a truth value

• String expected; actual is a string that differs
only in case

Allowed string truth value representations, allowed
relative error, and whether string matching is case-
sensitive are (optionally) overridden per data point
as appropriate.
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