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Abstract

Scientific document summarization has been
a challenging task due to the long structure of
the input text. The long input hinders the si-
multaneous effective modeling of both global
high-order relations between sentences and lo-
cal intra-sentence relations which is the most
critical step in extractive summarization. How-
ever, existing methods mostly focus on one
type of relation, neglecting the simultaneous
effective modeling of both relations, which can
lead to insufficient learning of semantic repre-
sentations. In this paper, we propose HAESum,
a novel approach utilizing graph neural net-
works to locally and globally model documents
based on their hierarchical discourse structure.
First, intra-sentence relations are learned using
a local heterogeneous graph. Subsequently, a
novel hypergraph self-attention layer is intro-
duced to further enhance the characterization
of high-order inter-sentence relations. We vali-
date our approach on two benchmark datasets,
and the experimental results demonstrate the ef-
fectiveness of HAESum and the importance of
considering hierarchical structures in modeling
long scientific documents1.

1 Introduction

Extractive summarization aims to select a set of
sentences from the input document that best repre-
sents the information of the whole document. With
the advancement of pre-trained models and neural
networks over the years, researchers have achieved
promising results in news summarization (Liu and
Lapata, 2019; Zhong et al., 2020). However, when
applying these methods to long scientific docu-
ments, they encounter challenges due to the rel-
atively lengthy inputs. The considerable length
of the text hinders sequential models from captur-
ing both long-range dependencies across sentences
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MoLICHENXI/HAESum

Sentence 

Word

Inter-relation

Intra-relation
Sen1: obesity and diabetes are the 

major health challenges.

Sen2:  the connection between  

obesity and diabetes is evident.

Sen3: diabetes is one of the top 

ten leading causes of death.

Figure 1: An illustration of modeling an input document
from local and global perspectives. Triangles and circles
represent words and sentences in the original document
respectively.

and intra-sentence relations simultaneously (Wang
et al., 2020).Moreover, the extended context ex-
ceeds the input limits of the Transformer-based
model (Vaswani et al., 2017) due to the quadratic
computational complexity of self-attention.

Recently, the application of large language mod-
els (LLM) such as ChatGPT to text summarization
tasks has gained significant interest and attracted
widespread attention. A recent study by (Zhang
et al., 2023b) evaluated the performance of Chat-
GPT on extractive summarization and further en-
hanced its performance through in-context learn-
ing and chain-of-thought. Another study (Ravaut
et al., 2023) conducted experiments on abstractive
summarization using various LLMs on a variety of
datasets that included long inputs. While the use
of LLMs in text summarization tasks has demon-
strated exciting potential, there are still several lim-
itations that have not been addressed. The most
important of these is the phenomenon of lost-in-the-
middle (Liu et al., 2023; Ravaut et al., 2023), where
LLMs ignore information in the middle and pay
more attention to the context at the beginning and
end. This bias raises concerns especially in sum-
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marization tasks where important text may be scat-
tered throughout the document (Wu et al., 2023).
Additionally, as the input length increases, even on
explicitly long-context models, the model’s perfor-
mance gradually declines (Liu et al., 2023).

As a result, researchers have turned to graph neu-
ral networks to model long-distance relations. They
represent a document as a graph and update node
representations in the graph using message passing.
These works use different methods to construct a
graph from documents, such as using sentence sim-
ilarity as edge weights to model cross-sentence re-
lations (Zheng and Lapata, 2019). Another popular
approach is to construct a word-document heteroge-
neous graph (Wang et al., 2020), using words as in-
termediate connecting sentences. Phan et al. (2022)
further added passage nodes to the heterogeneous
graph to enhance the semantic information. Zhang
et al. (2022) proposed a hypergraph transformer to
capture high-order cross-sentence relations.

Despite the impressive success of these ap-
proaches, we observe that the current work still
lacks a comprehensive consideration on relational
modeling. More specifically, two limitations are
mentioned: (1) Most of the existing approaches
focus on modeling intra-sentence relations but of-
ten overlook cross-sentence high-order relations.
Inter-sentence connections may not only be pair-
wise but could also involve triplets or higher-order
relations (Ding et al., 2020). In the hierarchical
discourse structure of scientific documents, sen-
tences within the same section often express the
same main idea. It is difficult to fully understand
the content of a document by merely considering
intra-sentence and cross-sentence relations in pair-
wise. (2) These approaches rely on updating rela-
tions at different levels simultaneously but ignore
the hierarchical structure of scientific documents.
Sentences are composed of words and, in turn, con-
tribute to forming sections. By understanding the
meaning of individual tokens, we get the meaning
of the sentence and thus the content of the section.
Therefore, bottom-to-top structured modeling is
crucial to understand the content of the document.

To address the above challenges, we pro-
pose HAESum (Hierarchical Attention Graph for
Extractive Document Summarization), a method
that leverages a graph neural network model to fully
explore hierarchical structural information in scien-
tific documents. HAESum first constructs a local
heterogeneous graph of word-sentence and updates
sentence representations at the intra-sentence level.

The local sentence representations are then fed into
a novel hypergraph self-attention layer to further
update and learn the cross-sentence sentence rep-
resentations through a self-attention mechanism
that fully captures the relations between nodes and
edges. Figure 1 is an illustration showing the mod-
eling of local and global context information from
a hierarchical point of view, and the resulting rep-
resentations contain both local and global hierar-
chical information. We validate HAESum with
extensive experiments on two benchmark datasets
and the experimental results demonstrate the effec-
tiveness of our proposed method. In particular, we
highlight our main contributions as follows:

(i) We introduce a novel graph-based model uti-
lizing the hierarchical structure of scientific doc-
uments for modeling. In contrast to simultane-
ously updating nodes in the graph, we learn intra-
sentence and inter-sentence relations separately
from both local and global perspectives. To the
best of our knowledge, we are the first approach
to hierarchical modeling using different graphs on
this task.

(ii) We propose a novel hypergraph self-attention
layer that utilizes the self-attention mechanism to
further aggregate high-order sentence representa-
tions. Moreover, our approach does not rely on
pre-trained models as encoders, making it easily
applicable to other low-resource languages.

(iii) We validate our model on two benchmark
datasets, and the experimental results demonstrate
the effectiveness of our approach against strong
baselines.

2 Related Work

2.1 Scientific Paper Summarization

Scientific document summarization has been a hot
topic due to the challenges of modeling long texts
(Frermann and Klementiev, 2019). Cohan et al.
(2018) introduced two benchmark datasets for long
documents, Arxiv and PubMed, and employed a
hierarchical encoder and discourse-aware decoder
for the document summarization task. Cui and
Hu (2021) proposed a sliding selector network ac-
companied by dynamic memory to alleviate infor-
mation loss between context segments. Gu et al.
(2021) presented a reinforcement learning-based
method that achieved impressive performance by
considering the extraction history at each time step.
Recently, Ruan et al. (2022) proposed a method to
inject explicit hierarchical structural information
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Figure 2: Overview of the proposed HAESum framework. We first build a local-level heterogeneous graph (HEGAT)
for the input document and apply message passing to iteratively update the representation in two stages: sentence-
to-word and word-to-sentence. The obtained sentence representations are then fed into the hypergraph self-attention
layer (HGSAT) to obtain the global representations and used for the final sentence selection.

such as section titles and sentence positions into
a pre-trained model to further improve the perfor-
mance and interpretability.

2.2 Graph based Summarization

Graph neural networks have been widely used for
extractive summarization due to their flexibility
and scalability. Dong et al. (2020) proposed an un-
supervised graph-based model that combines both
sentence similarity and hierarchical discourse struc-
ture to rank sentences. Cui et al. (2020) injected
latent topic information into graph neural networks
to further improve performance. Wang et al. (2020)
constructed a word-document heterogeneous graph
using word nodes as intermediate to connect sen-
tences. Zhang et al. (2022) proposed a hypergraph
transformer to model long-distance dependency
while emphasizing the importance of high-order
inter-sentence relations in extraction summariza-
tion. Our paper follows this line of work, but
the main difference is that our approach combines
both intra-sentence relations and high-order cross-
sentence relations and efficiently leverages the hier-
archical discourse structure of scientific documents
to learn sentence representations that incorporate
both local and global information.

3 Method

Given an arbitrary document D = {s1, s2, ..., sn}
consisting of n sentences, each sentence consists

of m words si = {wi1, wi2, ..., wim}. The goal of
extractive summarization is to predict labels yi ∈
{0, 1} for all sentences, where yi = 1 indicates
that the current sentence should be included in the
summary. The overall structure of HAESum is
shown in Figure 2.

3.1 Local-level Heterogeneous Graph

As the lowest level of the hierarchical structure, in
this section, we will first introduce how to capture
local intra-sentence relations between sentences
and their corresponding words using a heteroge-
neous graph. We will start by explaining how to
construct the heterogeneous graph and initialize it,
followed by detailing how to use a heterogeneous
self-attention layer to update node representations.
Finally, we will feed the updated sentence node
representations into the next module.

3.1.1 Graph Construction

Given an input document D, we first construct a
heterogeneous graph G = {V,E}, where V rep-
resents a set of nodes and E represents edges be-
tween nodes. In order to utilize the natural hierar-
chy between words and sentences of a document,
the nodes can be defined as V = Vw ∪ Vs, where
Vw = {w1, w2..., wn} denotes n different words in
the document, and Vs = {s1, s2, ..., sm} denotes
the m sentences in the document. The edges are
defined as E = {e11, e12, ..., emn}, where eij is
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a real-valued edge weight that denotes the cross-
connection between a sentence node i and a word
node j contained by it.

3.1.2 Graph Initializers
Let Xw ∈ R|Vw|×dw , Xs ∈ R|Vs|×ds denote the
feature matrices of the input word and sentence
respectively. dw and ds correspond to the feature
dimensions of words and sentences, respectively.
We first use Glove (Pennington et al., 2014) to
initialize word representations. Instead of using
pre-trained model as a sentence encoder, we first
use CNN (LeCun et al., 1998) with different ker-
nel sizes to get the n-gram feature SC of the sen-
tence followed by using BiLSTM (Hochreiter and
Schmidhuber, 1997) to obtain the sentence-level
feature SB .The features obtained from CNN and
BiLSTM are concatenated as initialized sentence
representations XS = Cat(SC , SB).

3.1.3 Heterogeneous Attention Modules
Following the previous work (Wang et al., 2020),
we employ the heterogeneous graph attention layer
for node representations updating. Specifically,
when a node vi aggregates information from its
neighbours, the attention coefficient αij for node
vj is computed as follows:

zij = LeakyReLU(Wa[Wshi∥Wkhj ]; eij) (1)

αij =
exp(zij)∑
l∈N exp(zil)

(2)

where Wa, Ws, Wk are trainable weights. ∥ de-
notes concatenation. We also inject the edge fea-
tures eij into the attention mechanism for compu-
tation.

We also add multi-head attention and Feed-
Forward layer (FFN) (Vaswani et al., 2017) to fur-
ther improve the performance. The final represen-
tation u

′
i of node vi is then obtained as follows:

ui = ∥Kk=1σ(
∑

j∈N
αk
ijW

khi) (3)

u
′
l = FFN(ui) + hi (4)

We begin by aggregating the sentence nodes around
the word to update word representations. Subse-
quently, we utilize the updated word representa-
tions to further update the sentence representations.

In this section, we use the local heterogeneous
graph to learn the intra-sentence relations at the
lowest level of the document hierarchy.

3.2 Global-level Hypergraph
In this section, we first introduce how to construct
a hypergraph. Subsequently, we present a novel
hypergraph self-attention layer designed to fully
capture high-order global inter-sentence relations.
Finally, the resulting sentence representations are
used to decide whether to include them in the sum-
mary.

3.2.1 Hypergraph Construction
A hypergraph is defined as G = {V,E}, where
V = {v1, v2, ..., vn} represents a set of nodes and
E = {e1, e2..., en} represents hyperedges in the
graph. Unlike edges in regular graphs, hyperedges
can connect two or more nodes and thus represent
multivariate relations. A hypergraph is typically
represented by its incidence matrix H ∈ Rn×m :

Hij =

{
1, if vi ∈ ej
0, if vi /∈ ej

(5)

where vi ∈ V , ej ∈ E and if the hyperedge ej
connects node vi there is vi ∈ ej .

We denote a sentence si in a document D =
{s1, s2, ..., sn} as a node vi in the hypergraph. In
order to capture global higher-order inter-sentence
relations, we consider creating section hyperedges
for each part (Suppe, 1998). A hyperedge ej will
be created if a set of child nodes Vj ∈ V belongs
to the same section in the document. The node
representations in the hypergraph are initialized to
the output of the previous module.

The initialized node features Hsen =
{h1, h2, ..., hn} ∈ Rn×d and incidence matrix
H will be fed into the hypergraph self-attention
network to learn effective sentence representations.

3.2.2 Hypergraph Self-Attention Modules
Hypergraph attention networks (HGAT) are de-
signed to learn node representations using a mu-
tual attention mechanism. This mutual attention
mechanism divides the computational process into
two steps, i.e., node aggregation and hyperedge ag-
gregation. First the hyperedge representations are
updated with node information. Subsequently, the
hyperedge information is fused back to the nodes
from hyperedges.

The HGAT has mainly been implemented based
on graph attention mechanism (Veličković et al.,
2017), such as HyperGAT (Ding et al., 2020). How-
ever, this attention mechanism employs the same
weight matrix for different types of nodes and hy-
peredges information and could not fully exploit
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the relations between nodes and hyperedges, which
prevents the model from capturing higher-order
cross-sentence relations (Fan et al., 2021).

To address the limitations of HGAT, we propose
the hypergraph self-attention layer. Inspired by
the success of Transformer (Vaswani et al., 2017)
in textual representation and graph learning (Ying
et al., 2021), we use the self-attention mechanism
to fully explore the relations between nodes and
hyperedges. The entire structure we propose is
described below.
Node-level Attention To solve the problem of
initializing the hyperedge features, we first en-
code hyperedge representations from node aggrega-
tion information using node-level attention. Given
node features H l−1

sen = {hl−1
1 , hl−1

2 , ..., hl−1
n }

and incidence matrix, hyperedge representations
{f l

1, f
l
2..., f

l
m} can be computed as follows:

f l
j = LeakyReLU(

∑

sk∈ej
αjkWnh

l−1
k ) (6)

αjk =
exp(W T

h uk)∑
sl∈ej exp(W T

h ul)
(7)

uk = LeakyReLU(Wph
l−1
k ) (8)

where the superscript l denotes the model layer.
Wn, Wh, Wp are trainable parameters. αjk is the
attention coefficient of node sk in the hyperedge ej .
Through the node-level attention mechanism, we
initialize the hyperedge representation.
Edge-level Attention As an inverse procedure,
the self-attention mechanism is applied to compute
the importance scores to highlight the hyperedges
that are more critical for the next layer of node
representation vi. Given the node feature matrix
H l−1

sen and the hyperedge feature matrix F l
edge, sim-

ilar to the self-attention mechanism we compute
the output matrix as follows:

Ql−1
sen = WqH

l−1
sen

K l
edge = WkF

l
edge

V l
edge = WvF

l
edge

(9)

Att(H,F ) = softmax(
Ql−1

senK
l
edge

T

√
dk

)V l
edge (10)

where Wq,Wk,Wv are trainable parameters. dk is
the feature dimension of the hidden layer. Att()
represents the self-attention mechanism.

After obtaining the enhanced node represen-
tations H l

sen using the hypergraph self-attention

Datasets Document Avg.
Doc.

Avg.
Token.Train Val Test

Arxiv 202703 6436 6439 4938 220
PubMed 116669 6630 6657 3016 203

Table 1: Statistics of Arxiv and PubMed datasets.

layer, we applied a feature fusion layer to gener-
ate the final representations H

′l
sen, which can be

represented by the formula:

H
′l
sen = LeakyReLU(W1H

l−1
sen ∥W2H

l
sen) (11)

∥ denotes concatenation. Fusing hyperedge infor-
mation and node information, we obtain a semantic
representation of sentence nodes.

3.3 Opimization

After passing L hypergraph self-attention layers,
we obtain the representations of sentences Hsen =
{h1, h2, ..., hn} ∈ Rn×d. We then add a multi-
layer perceptron (MLP) followed by a LayerNorm
layer and obtain a score ŷi, indicating whether it
will be selected as a summary. Formally, the pre-
diction score for a sentence node si is computed as
follows:

ŷi = Wo(LayerNorm(Wphi)) (12)

where Wo,Wp are trainable parameters.
Finally, the output sentence scores ŷi are op-

timized with the true labels yi by binary cross-
entropy loss:

L =
1

N

N∑

i=1

yilogŷi + (1− yi)log(1− ŷi) (13)

where N denotes the number of sentences in the
document.

4 Experiment

4.1 Experiment setup

We validate our proposed model on two scientific
document datasets and compare it to the strong
baselines. In the following, we start with the details
of the datasets.
Datasets We perform extensive experiments on
two benchmark datasets: Arxiv and PubMed (Co-
han et al., 2018). Arxiv is a long document dataset
containing different scientific domains. PubMed
contains articles in the biomedical domain. We use
the original train, validation, and testing splits as in
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Models
PubMed Arxiv

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L
Oracle 55.05 27.48 49.11 53.88 23.05 46.54

PacSum 39.79 14.00 36.09 38.57 10.93 34.33
HIPORANK 43.58 17.00 39.31 39.34 12.56 34.89

FAR 41.98 15.66 37.58 40.92 13.75 35.56
ExtSum-LG 44.85 19.70 31.43 43.62 17.36 29.14

Topic-GraphSum 45.95 20.81 33.97 44.03 18.52 32.41
SSN-DM 46.73 21.00 34.10 45.03 19.03 32.58
HEGEL 47.13 21.00 42.18 46.41 18.17 39.89
MTGNN 48.42 22.26 43.66 46.39 18.58 40.50
HiStruct+ 46.59 20.39 42.11 45.22 17.67 40.16

CHANGES 46.43 21.17 41.58 45.61 18.02 40.06
TLM-I+E 42.13 16.27 39.21 41.62 14.69 38.03
PEGASUS 45.49 19.90 42.42 44.70 17.27 25.80

BigBird 46.32 20.65 42.33 46.63 19.02 41.77
Dancer 46.34 19.97 42.42 45.01 17.60 40.56

ChatGLM3-6B-32k 40.95 15.79 37.09 39.81 14.14 35.36
HAESum (ours) 48.77 22.44 43.83 47.24 19.44 41.34

Table 2: Experimental Results on PubMed and Arxiv datasets. We report ROUGE scores from the original papers if
available, or scores from (Xiao and Carenini, 2019) otherwise.

(Cohan et al., 2018). Detailed statistics for the two
benchmark datasets are shown in Table 1.
Compared Baselines We make a systematic com-
parison with recent approaches in this area. We
categorize these methods into the following four
types:

• Unsupervised methods: graph-based models
PacSum (Zheng and Lapata, 2019), HIPO-
RANK (Dong et al., 2020), FAR (Liang et al.,
2021).

• Neural extractive model: Seq2Seq-based mod-
els HiStruct+ (Ruan et al., 2022); local and
global context model ExtSum-LG (Xiao and
Carenini, 2019); graph-based models Topic-
GraphSum (Cui et al., 2020), SSN-DM (Cui
and Hu, 2021), HEGEL (Zhang et al., 2022),
MTGNN (Doan et al., 2022), CHANGES
(Zhang et al., 2023a).

• Neural abstractive model: encoder-decoder
based Model TLM-I+E (Pilault et al., 2020),
PEGASUS (Zhang et al., 2020) , BigBird
(Zaheer et al., 2020), divide-and-conquer
approach Dancer (Gidiotis and Tsoumakas,
2020).

• Large language model: ChatGLM3-6k-32k
(Zeng et al., 2022). More details on the eval-
uation of the large language model can be
found in Appendix A.1.

4.2 Implementation Details

Regarding the encoding of word nodes, the vocabu-
lary size is 50000 and the word embedding is initial-
ized with a dimension of 300 using the Glove pre-
trained model(Pennington et al., 2014). The feature
dimensions of sentence nodes and edges in the het-
erogeneous graph are set to 64 and 50, respectively.
The hyperedge feature dimension is 64. We set the
maximum sentence length of each document to 200
and the maximum number of words per sentence to
100. In our experiments, we stacked two layers of
heterogeneous graph attention modules (HEGAT)
and hypergraph self-attention modules (HSAGT).
The multi-head of the HEGAT layer is set to 8 and
6, respectively.

The model is optimized using the Adam opti-
mizer (Loshchilov and Hutter, 2017) with a learn-
ing rate of 0.0001 and a dropout rate of 0.1. We
train the model on an RTX A6000 GPU with 48GB
of memory for 12 epochs. The training process
stops if the validation set loss does not decrease
three times. The training time for one epoch on
the PubMed dataset is 3 hours, while on the Arxiv
dataset, it is 6 hours.

We use a greedy search algorithm similar to (Nal-
lapati et al., 2017) to select sentences from docu-
ments as the gold extractive summaries (Oracle).
Following previous work, we use ROUGE (Lin and
Hovy, 2003) to evaluate the quality of summaries.
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Model ROUGE-1 ROUGE-2 ROUGE-L
PubMed

HAESum 48.77 22.44 43.83
w/o Heterogeneous 47.45 21.12 42.56
w/o HyperAttention 47.60 21.43 42.78

Arxiv
HAESum 47.24 19.44 41.34

w/o Heterogeneous 46.91 19.22 41.03
w/o HyperAttention 46.75 19.01 40.91

Table 3: Ablation study results on PubMed and Arxiv
datasets.

We use ROUGE-1/2 to measure summary informa-
tiveness and ROUGE-L to measure the fluency of
the summary.

4.3 Experiment Results

Table 2 shows the comparison between our model
HAESum and the baseline model on PubMed and
Arxiv datasets. The first block covers the ground
truth ORACLE and unsupervised methods for ex-
tractive summarization. The second block cov-
ers state-of-the-art supervised extractive baselines.
The third block reports abstractive methods.

Based on the results, we find that HIPORANK
(Dong et al., 2020) achieves strong performance
on graph-based unsupervised modeling. Compared
to other unsupervised methods, HIPORANK adds
section information, which demonstrates the ef-
fectiveness and importance of taking the natural
hierarchical structure of scientific documents into
account when modeling cross-sentence relations.

In the extractive baseline, MTGNN (Doan
et al., 2022) achieves state-of-art performance, MT-
GNN considers more intra-sentence level model-
ing, which shows the necessity of modeling from
low-level structure. HEGEL (Zhang et al., 2022) is
the most similar approach to ours. HEGEL injects
external information such as keywords and top-
ics into the model and models higher-order cross-
sentence relations through a hypergraph trans-
former to achieve a competitive performance. How-
ever, compared to MTGNN, HEGEL does not
consider low-level intra-sentence relations, which
proves the necessity of considering and modeling
hierarchical structure. Interestingly, CHANGES
(Zhang et al., 2023a) achieves equally impressive
results in hierarchical modeling by considering
high-level intra-section and inter-section relations,
further confirming the importance of hierarchical
modeling. Among the extractive methods, the
transformer-based HiStruct+ (Ruan et al., 2022)

Method ROUGE-1 ROUGE-2 ROUGE-L
Hierarchical(Ours) 48.77 22.44 43.83

Parallelization 48.36 22.03 43.36

Table 4: Different ways of updating sentence represen-
tations on PubMed dataset.

shows a competitive performance, which demon-
strates the effectiveness of the self-attention mech-
anism. HiStruct+ also incorporates the inherent
hierarchical structure into the pre-trained language
models to achieve strong performance. In addi-
tion, the extractive approaches largely outperform
the abstractive approaches, which may be due to
the fact that long input is more challenging for the
decoding process of the abstractive models.

Through the table, the results of using the large
language model are not satisfactory compared to
our proposed method. By analyzing the output of
the large language model, the model sometimes
incorrectly outputs content from other languages
and also occasionally outputs duplicate content. In
addition, the model sometimes misinterprets extrac-
tive summarization as abstractive summarization.

According to the experimental results, our model
HAESum outperforms all extractive and abstractive
strong baselines. In particular, our model neither
requires injection of external knowledge (e.g., top-
ics and keywords (Zhang et al., 2022)) to enhance
global information nor pre-trained model’s (e.g.,
BERT (Devlin et al., 2018)) knowledge (Doan et al.,
2022). The outstanding performance of HAESum
demonstrates the importance of hierarchical mod-
eling of local intra-sentence relations and global
inter-sentence relations.

5 Analysis

5.1 Ablation Study
We first analyze the effect of different components
of HAESum in Table 3. The second row shows that
removing the heterogeneous graph part represents
not learning intra-sentence relations. The third row
removes the hypergraph component, representing
the absence of learning higher-order cross-sentence
relations. As shown in table 3, removing either
part hurts the model performance, which indicates
that learning both local intra-sentence relations and
global higher-order cross-sentence relations is nec-
essary for scientific document summarization.

Interestingly, these two components are almost
equally important for modeling long documents.
This indicates the importance of simultaneously
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Figure 3: ROUGE-1,2 performance of HAESum with different number of graph nodes on PubMed dataset.

Model ROUGE-1 ROUGE-2 ROUGE-L
PubMed

with HSGAT (ours) 48.77 22.44 43.83
with HGAT 48.64 22.25 43.64

Arxiv
with HSGAT (ours) 47.24 19.44 41.34

with HGAT 47.08 19.26 41.18

Table 5: Different attention mechanism results on
PubMed and Arxiv datasets.

modeling semantic aspects from diverse perspec-
tives and hierarchical discourse structures in scien-
tific documents.

5.2 Performance Analysis

Hierarchical discourse We also analyze different
update approaches for obtaining the final sentence
representations in HAESum. As shown in Table
4, the second row represents our hierarchical up-
dating. The third row represents parallel updating,
where intra-sentence and inter-sentence relations
are updated simultaneously, and the final sentence
representations are concatenated. The superior per-
formance of hierarchical updating over parallel up-
dating once again emphasizes the critical impor-
tance of the bottom-to-top modeling sequence we
propose for understanding the content of long doc-
uments.
Attention mechanism We then analyze the per-
formance of our proposed novel hypergraph self-
attention layer and hypergraph attention network
(HGAT). As shown in Table 5, our hypergraph
self-attention layer outperforms HGAT (Ding et al.,
2020). We speculate that the main reason is the
utilization of the self-attention mechanism and dif-
ferent weight matrices, which fully exploit relations
between nodes and edges, thereby enhancing the
learning of high-order relations.
Hyperparameter sensitivity In our experiments,

we set the maximum input length for each sentence
to be 100, and the maximum sentence length for
each input document to be 200. We conduct an
analysis of these two hyperparameters. In addition,
more information about the distribution of the sen-
tence lengths and the number of sentences in the
document is presented in the Appendix A.3. As
shown in Figure 3, when the maximum number
of tokens in each sentence is reduced from 100 to
60, the performance does not significantly decrease.
This indicates that under this range of hyperparam-
eter settings, the model has already processed most
of the tokens in each sentence. However, as the
length continues to decrease, the model’s perfor-
mance starts to decline, as the input length limits
the capture of local intra-sentence relations.

Simultaneously, when the maximum number of
sentences in a document is increased from 50 to
200, the model’s performance continues to improve.
This improvement is attributed to the consideration
of more sentences, capturing more complex higher-
order cross-sentence relations. However, persis-
tently increasing this hyperparameter leads to sig-
nificant computational consumption. Specifically,
in future work, we intend to increase the maximum
input sentences per document while minimizing
computational consumption as much as possible.

5.3 Case Study

Here we provide an example of a summary output
by HAESum, as shown in Table 6. The selected sen-
tences are mainly from the same section and cover
the entire document. This illustrates that HAESum
can effectively learn both local intra-sentence and
high-order inter-sentence relations, facilitating the
selection of the most relevant sentences.
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(Introduction) It includes hidradenitis suppurativa acne congl-
obata dissecting cellulitis of the scalp and pilonidal sinus.
(Introduction) Though each of these conditions are commonly
encountered on their own as a symptom complex follicular occ-
lusion tetrad has rarely been reported in the literature here.
(Introduction) We present a case of hidradenitis suppurativa in
a 36-year-old male patient who also had the above mention-
ed associations.
(Case Report) A 36-year-old male patient presented to us with
a history of recurrent boils since 18 years.
(Discussion) Follicular occlusion tetrad is a condition that incl-
udes hidradenitis suppurativa (hs) acne conglobata dissecting
cellulitis of the scalp and pilonidal sinus.

Table 6: An example output summary of our proposed
model.

6 Conclusion

This paper presents HAESum for scientific docu-
ment summarization. HAESum employs a graph-
based model to comprehensively learn local intra-
sentence and high-order inter-sentence relations,
utilizing the hierarchical discourse structure of sci-
entific documents for modeling. The impressive
performance of HAESum demonstrates the impor-
tance of simultaneously considering multiple per-
spectives of semantics and hierarchical structural
information in modeling scientific documents.

Limitations

Despite the outstanding performance of our HAE-
Sum, several limitations are acknowledged. Firstly,
HAESum solely leverages intra-sentence and inter-
sentence relations in scientific documents. We
believe that incorporating other hierarchical dis-
course structures at different granularities, such as
sentence-section information (Zhang et al., 2023a)
or dependency parsing trees, could further enhance
model performance. Secondly, although the con-
text window sizes of large language models satisfy
the input length of scientific documents, their per-
formance on text summarization tasks, especially
on long input texts, remains to be improved due
to the loss-in-the-middle (Liu et al., 2023; Ravaut
et al., 2023) problem. We consider this issue as a
future work. Additionally, we focused on single
document summarization. We believe that incor-
porating domain knowledge through citation net-
works and similar methods could further improve
performance.
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A Appendix

In this section, we give more details about the ex-
periment.

A.1 Evaluation on LLMs

We tested different prompts and chose the best
prompt. The prompt we used is: You are given a
long scientific literature. Please read and choose no
more than five sentences from the original scientific
literature as a summary. Scientific literature:[Text
Document]. Now, select no more than five sen-
tences from the original given scientific literature
as a summary. Summary:[Output].

The experimental results are shown in Table 7,
where we considered a variety of possible large
language models. However, in order to fulfill
the requirement of inputting long texts, we chose
ChatGLM3-6B-32K (Zeng et al., 2022) to evaluate
the performance results on two datasets.

Through the table, the results of using the large
language model are not satisfactory compared to
our proposed method. By analyzing the output of
the large language model, the model sometimes
incorrectly outputs content from other languages
and also occasionally outputs duplicate content. In
addition, the model sometimes misinterprets ex-
tractive summarization as abstractive summariza-
tion. The most serious problem is that the model
still pays too much attention to the context at the
beginning and end. Our approach takes into ac-
count both intra-sentence and inter-sentence rela-
tionships, and effectively extracts key sentences
distributed throughout the context and uses them
as summaries. In addition, our model satisfies the
input length constraints and saves computational
resources.

A.2 Human Evaluation

We conduct human evaluation following the previ-
ous work (Luo et al., 2019). We randomly sample
50 documents from the test sets of PubMed and
Arxiv and ask three volunteers to evaluate the sum-
maries extracted by HAESum, MTGNN, and LLM.
For each document-summary pair, they are asked
to rank them on three aspects: overall quality, cov-
erage and non-redundancy. Notably the best one
will be marked rank 1 and so on, and if both mod-
els extracted the same summaries they will both
be ranked the same. We report the average results
over the two datasets in Table 8

As seen through the table, our method achieves

better results compared to other baselines. The
human evaluation also further validates the effec-
tiveness of our proposed method.

A.3 Distribution of Sentence Length and
Number of Tokens in the Dataset

In order to better demonstrate the validity of our
choice of hyperparameters, we counted the distri-
bution of sentence lengths in PubMed dataset as
well as the distribution of the number of sentences.
The experimental results are shown in Table 9

The obtained table shows that the hyperparame-
ters we chose cover almost all the range of the dis-
tribution. This is further evidence that the choice of
hyperparameters in the Hyperparameter sensitivity
section is adequate and effective.
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Models
Satisfy The
Input Length

PubMed Arxiv
ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

ChatGPT ✘ - - - - - -
LLaMa-7B ✘ - - - - - -

ChatGLM3-6B ✘ - - - - - -
ChatGLM3-6B-32k ✔ 40.95 15.79 37.09 39.81 14.14 35.36

HAESum(ours) ✔ 48.77 22.44 43.83 47.24 19.44 41.34

Table 7: Experimental results on large language models on two datasets

Model
PubMed Arxiv

Overall Coverage Non-Redundancy Overall Coverage Non-Redundancy
ChatGLM3-6B-32K 2.52 2.51 2.41 2.48 2.45 2.29

MTGNN 1.73 1.74 1.67 1.85 1.91 1.83
HAESum(Ours) 1.68 1.64 1.71 1.61 1.57 1.68

Table 8: Average rank of human evaluation in terms of overall performance, coverage, and non-redundancy. Lower
score is better.

The distribution of the sentence lengths
(0, 20] (20, 40] (40, 60] (60, 80] (80, 100] Over 100
29.63% 51.08% 12.82% 3.78% 1.38% 1.31%

The distribution of the number of sentences
(0, 50] (50, 100] (100, 150] (150, 200] (200, 250] Over 250
28.09% 40.83% 19.36% 7.59% 2.57% 1.56%

Table 9: The distribution of the sentence lengths and the number of sentences in PubMed dataset
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