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Abstract

Recent advancements in language modeling
have led to the emergence of Large Language
Models (LLMs) capable of various natural lan-
guage processing tasks. Despite their success in
text-based tasks, applying LLMs to the speech
domain remains limited and challenging. This
paper presents BLOOMZMMS, a novel model
that integrates a multilingual LLM with a mul-
tilingual speech encoder, aiming to harness the
capabilities of LLMs for speech recognition
and beyond. Utilizing a multi-instructional
training approach, we demonstrate the trans-
ferability of linguistic knowledge from the text
to the speech modality. Our experiments, con-
ducted on 1900 hours of transcribed data from
139 languages, establish that a multilingual
speech representation can be effectively learned
and aligned with a multilingual LLM. While
this learned representation initially shows limi-
tations in task generalization, we address this
issue by generating synthetic targets in a multi-
instructional style. Our zero-shot evaluation
results confirm the robustness of our approach
across multiple tasks, including speech trans-
lation and multilingual spoken language un-
derstanding, thereby opening new avenues for
applying LLMs in the speech domain.

1 Introduction

Language modeling task involves predicting subse-
quent text tokens based on a context of preceding
ones (Jurafsky and Martin, 2009). Training a lan-
guage model (LM) requires only raw text samples,
as portions of these samples function as their la-
bels, facilitating a self-supervised learning (SSL)
approach. The widespread availability of machine-
readable text online, coupled with advancements
in computational power, has led to the rise of large
LMs (LLMs) in recent years. These LLMs not
only generate highly fluent natural text but also
encode higher-level knowledge within their param-
eters. This enables them to tackle natural language

processing tasks like reading comprehension and
machine translation based only on task specific in-
structions, without needing labeled data (Radford
et al., 2019).

SSL has recently made significant strides in the
speech domain (Baevski et al., 2020). Most ap-
plications of SSL in speech employ an encoder
that transforms raw speech signals into high-level
representations, serving either as a fixed feature
extractor (Yang et al., 2021) or a tunable pretrained
model for various downstream tasks (Babu et al.,
2021). Incorporating of SSL pretrained encoders
into Encoder-Decoder speech recognition models
has dramatically reduced the amount of labeled
data required for effective training (Chang et al.,
2021). However, using SSL pretrained decoders in
such models is relatively rare. In certain instances,
SSL is part of a joint training process that seeks
to learn a shared speech and text representation
(Chen et al., 2022). However, this approach often
demands a large dataset and considerable computa-
tional resources.

Recent work has begun to harness the powerful
text generation capabilities of decoder-only LLMs
by incorporating them as the decoder component of
Encoder-Decoder speech processing models. Wu
et al. (2023) adopt the LLaMA-7B LLM for speech
translation to English by training a speech encoder
from scratch using filter bank acoustic features,
14,000 hours of internal speech data in 14 lan-
guages, and outputs of internal translation system
as synthetic targets. Outputs of speech encoder are
aligned with the text token embedding space using
CTC pretraining and downsampled by averaging
of consequative frames with the same CTC output
label. Ling et al. (2023) adopt the GPT2 XL LLM
for fully-formatted English speech recognition by
training a speech encoder from scratch using filter
bank acoustic features, and 75,000 hours of inter-
nal transcribed English speech data. CTC loss is
applied to speech encoder outputs as a part of the
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main training process and speech representations
are downsampled by removal of frames classified
as CTC blank labels with a predefined threshold. Li
et al. (2023) adopt the LLaMA-7B LLM for long-
form English speech recognition by incorporating
the HuBERT-Large SSL pretrained speech encoder
and finetuining it on the LibriSpeech dataset con-
taining 960 hours of transcribed English speech.
Outputs of the speech encoder are downsampled
by a convolutional module trained as a part of the
main training process. Fathullah et al. (2023) adopt
the LLaMA-7B LLM for speech recognition in
8 languages by training a speech encoder from
scratch using filter bank acoustic features and the
Multilingual LibriSpeech dataset containing 50,000
hours of transcribed speech in the same 8 languages.
Speech encoder is pretrained with CTC loss and its
outputs are downsampled by simple discarding of
every n frames. Nachmani et al. (2023) combine an
internal pretrained LLM with an internal pretrained
speech encoder and finetune it on the automatically
transcribed LibriLight dataset containing 60,000
hours of English speech. The training is performed
with a combination of the speech transcription and
speech continuation tasks. The resulting model is
utilized for the spoken language answering task.
Most of these studies rely on conventional filter
bank features for speech encoding and do not in-
corporate an SSL pretrained speech encoder, neces-
sitating a large amount of training data. Moreover,
scant attention has been given to leveraging the
linguistic knowledge stored in LLMs for tasks be-
yond mere transcription and for languages other
than English.

To address these challenges, we propose
BLOOMZMMS, a model that fuses a multilingual
LLM (BLOOMZ (Muennighoff et al., 2023)) with
a multilingual speech encoder (MMS (Pratap et al.,
2023)). We argue that multi-instructional train-
ing is crucial for transferring linguistic knowledge
from the text to speech modality. Our experiments
demonstrate that training on 1900 hours of tran-
scribed data from 139 languages yields a multilin-
gual speech representation compatible with a mul-
tilingual LLM in the context of Automatic Speech
Recognition (ASR) task. Although this represen-
tation does not generalize well to other tasks, we
show that the issue can be mitigated by generating
additional synthetic targets. Our zero-shot evalua-
tions confirm this approach’s effectiveness across
various tasks, including Spoken Language Trans-
lation (SLT) and multilingual spoken Natural Lan-

guage Inference (NLI). Our training recipes and
models are released under the Apache-2.0 license1.

2 Method

The proposed method is outlined in Figure 1.
Our model comprises the pretrained speech en-
coder, LLM and an intermediate Adaptor mod-
ule that maps the output of the speech encoder
to the latent space of the text token embed-
dings of the LLM. We train the Adaptor mod-
ule using pairs of speech recordings and their
corresponding text transcriptions, denoted as x
and yTranscription respectively, and keep the pa-
rameters of the speech encoder and the LLM
frozen. The objective of the Adaptor training is
to make its output HAdaptor obtained from the
input speech x as close as possible to the text em-
bedding sequence of the ground truth transcription
HTranscription = LMEmbedding(yTranscription),
where LMEmbedding is the token embedding layer
of the LLM.

Similarly to previous works on the LLM adapta-
tion to the speech modality (Wu et al., 2023; Fathul-
lah et al., 2023), our training process comprises of
the two stages: an alignment of the speech encoder
output with the LLM token embedding space, and
an integrated optimization of the complete model
with the LLM. An attempt to omit either of the
two stages in our process leads to the lack of train-
ing convergence. We hypothesize that the different
training stages help the Adaptor to learn different
subtasks like segmentation, ordering and the actual
token embedding prediction.

At the first stage of the training, HAdaptor is
projected to the LLM tokens’ logits using the
frozen output linear layer of the LLM (which is
often a transposed token embedding layer), and
the Connectionist Temporal Classification (CTC)
loss (Graves et al., 2006) is minimized between the
LLM token probabilities obtained from the token
logits and the transcription:

HSpeech = SpeechEncoder(x)

HAdaptor = Adaptor(HSpeech)

pCTC(y|x) = Softmax(HAdaptorW )

LCTC = −
∑

π∈B−1(yTranscription)

log pCTC(π|x),

where the mapping B removes repeated and blank
tokens according to the CTC definition, W ∈

1https://github.com/DigitalPhonetics/bloomzmms
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Figure 1: Overview of the Adaptor training. At the stage one, the Adaptor parameters are optimized using the CTC
loss to directly predict the transcription (a). At the stage two, the Adaptor parameters are optimized using the CE
loss applied to the outputs of the LLM while the Adaptor output is enclosed in the prompt’s prefix and postfix text
and is fed to the LLM input. A prompt can instruct the model to generate a transcription (b) or perform some other
task on the speech input (c). In the case of transcription, a ground truth transcription is used as a training target. In
the case of other instructions, a training target is obtained by running the LLM inference with the same prompt and
ground truth transcription as the input.

Rd×v is the transposed weight matrix of the to-
ken embedding layer, d is the dimensionality of the
embedding, and v is the number of tokens in the
LLM’s vocabulary.

At the second stage, HAdaptor is concatenated
with the token embeddings of the prefix and postfix
parts of a text prompt. This joint sequence is then
passed through the self-attention layers of the LLM
and projected with the transposed token embedding
weight matrix W (also serving as the output layer
of the LLM) to obtain the LLM prediction. The
Cross-Entropy (CE) loss is minimized between the
prediction of the LLM for this sequence and the
expected LLM output. In case of the speech recog-
nition task, we set the prompt prefix and postfix to
"Repeat the sentence: " and ". " respectively:

HPrefix = LMEmbedding("Repeat the sentence: ")

HPostfix = LMEmbedding(". ")

HLM = LM((HPrefix,HAdaptor,HPostfix))

pCE(y|x) = Softmax(HLMW )

LCE−ASR = − log pCE(y
Transcription|x),

where LM() denotes the self-attention layers of
the LLM. In case of the multi-instructional train-
ing, prompts are sampled from a predefined hand
crafted collection, while the expected output is set
to the output of the LLM for the same prompt using
the token embeddings of the ground truth transcrip-
tion instead of the Adaptor output HAdaptor:

HPrefix = LMEmbedding(pi
Prefix)

HPostfix = LMEmbedding(pi
Postfix)

HLM = LM((HPrefix,HAdaptor,HPostfix))

HLM−Text = LM((HPrefix,HTranscription,HPostfix))

yLM = BeamSearch(Softmax(HLM−TextW ))

pCE(y|x) = Softmax(HLMW )

LCE−MI = − log pCE(y
LM|x),

where pi
Prefix and pi

Postfix are the prefix and postfix
texts of the i-th prompt in the prompts collection,
i ∼ U([1, . . . , NPr]) is a random number drawn
from an uniform distribution over all natural num-
bers between 1 and NPr, and NPr is the number of
prompts in the collection.

3 Experiments

3.1 Training and Validation Data

The Adaptor training is performed on the entire
training FLEURS dataset (Conneau et al., 2023)
and a subset of the Common Voice Corpus 12.0
(Ardila et al., 2020) training dataset with the to-
tal amount of 993,660 utterances or 1905 hours
of recordings. The Common Voice subset is con-
structed by selection of up to 25 hours of recordings
for each language. Our validation set is the vali-
dation set of FLEURS with the total amount of
34,044 utterances or 115 hours of recordings. All
transcriptions are taken in an unnormalized format
with the true casing and punctuation.
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Multi-instructional training labels are synthe-
sized with prompts from the P3 collection (Sanh
et al., 2022). The P3 collection is selected because
it was employed in the finetuning process of tran-
sitioning BLOOM into BLOOMZ. Our objective
is to ensure consistent output for both speech and
text inputs. To achieve this, we generate text out-
puts utilizing prompts from the P3 collection, with
which the BLOOMZ model is already acquainted.
We apply six distinct randomly drawn prompts to a
transcription of each original utterance and assign
two generated outputs to each of the three speed-
perturbed versions of that utterance. The outputs
are generated with a greedy search and maximum
length of 128 tokens.

3.2 Evaluation Data and Metrics
We evaluate our model on the following estab-
lished benchmarks: FLEURS (Conneau et al.,
2023), MLS (Pratap et al., 2020) and VoxPop-
uli (Wang et al., 2021a) for the ASR, CoVoST 2
(Wang et al., 2021b) for the SLT, SpeechGLUE
(Ashihara et al., 2023) for the spoken General Lan-
guage Understanding (GLUE) and SpeechXNLI
for the multilingual NLI2. The results are evaluated
using the corresponding metrics: Word Error Rate
(WER) and Character Error Rate (CER) for the
ASR, BLEU3 (Papineni et al., 2002) for the SLT,
Matthews Correlation Coefficient (MCC) for the
CoLA task within SpeechGLUE, and accuracy for
the other SpeechGLUE tasks and the SpeechXNLI.
Whisper normalization is applied for both reference
and hypothesis before evaluating CER/WER in the
ASR experiments.

3.3 Experimental Setup
Our model is implemented using ESPnet2 (Watan-
abe et al., 2021) version 202304 and Hugging
Face Transformers (Wolf et al., 2020) version
4.31.0. We use weighted-sum of hidden states
(Yang et al., 2021; Chang et al., 2021) of the MMS
1B-ASR-All4 pretrained model (Pratap et al., 2023)
as speech features. We discard all language spe-
cific adapters and heads of the MMS 1B-ASR-All
model to simplify the implementation while pre-
serving the multilingual properties of our system.
The Adaptor module is a VGG/E-Branchformer

2Following SpeechGLUE, we synthesize a speech version
of the XNLI (Conneau et al., 2018) validation subset using the
IMS Toucan (Lux et al., 2022) text-to-speech toolkit: https:
//zenodo.org/records/10900287.

3Using the SacreBLEU tool (Post, 2018).
4https://huggingface.co/facebook/mms-1b-all

based encoder (Kim et al., 2023) combined with
a convolutional Length Adaptor (Li et al., 2021).
The E-Branchformer encoder is configured with
17 layers, each with 2048 hidden units, 8 atten-
tion heads, and output dimension of 1024. The
Convolutions to Gated MultiLayer Perceptron mod-
ule has 8192 units and the convolution kernel size
is 31. The Length Adaptor module contains a 1-
dimensional convolutional layer with stride 2 and
reduces the length of input sequence by factor of 2.
Self-conditioning on language identity (Chen et al.,
2023) is applied during the CTC training. The
LLM in our experiments is BLOOMZ 7.1B5 model
(Muennighoff et al., 2023), which itself is BLOOM
7.1B LLM (Scao et al., 2022) finetuned on the
xP3 dataset introduced with BLOOMZ. The total
number of parameters in our model is 8.6 billions,
the number of trainable parameters is 536 mil-
lions. We apply 8-bit quantization (Dettmers et al.,
2022) to the LLM using the functions from the
bitsandbytes package version 0.41.1. The train-
ing is done with the Adam optimizer (Kingma and
Ba, 2015) with β1 = 0.9, β2 = 0.999, ϵ = 10−8,
the warmup learning rate scheduler with the maxi-
mum learning rate of 10−4 and a weight decay of
10−6. 3-way speed perturbation (Ko et al., 2015)
data augmentation method is applied to the training
data.

The training stage one, CTC loss training, is
performed on two NVIDIA RTX A6000 GPUs with
the global batch size of 7.29 minutes. The number
of warmup steps for the learning rate scheduler is
set to 25,000. A checkpoint is saved every 23,364
steps and evaluated on the validation dataset. The
training is stopped after four consecutive evalua-
tions showing no improvement, it takes 233,640
update steps or 120 hours of training time to reach
this condition. A checkpoint with the lowest vali-
dation CER from the stage one is used to initialize
the model for the stage two.

The training stage two, CE loss training, is per-
formed on four NVIDIA RTX A6000 GPUs with
the batch size of 37.50 seconds and a gradient accu-
mulation over two batches. The number of warmup
steps for the learning rate scheduler is set to 10,000.
A checkpoint is saved every 54,381 steps and eval-
uated on the validation dataset. The training is
stopped after four consecutive evaluations showing
no improvement. To reach this condition, it takes
652,572 update steps or 132 hours of training on

5https://huggingface.co/bigscience/bloomz-7b1
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the transcription targets, 2,664,669 update steps or
686 hours on the multi-instructional targets, and
2,501,526 update steps or 644 hours on the com-
bined set of targets. A checkpoint with the highest
validation token prediction accuracy from the sec-
ond step is used for the zero-shot evaluations.

We decode with the beam search of size 5 and
set the maximum output sequence to 192 tokens
to obtain the model predictions for the ASR and
SLT evaluations. The GLUE and NLI evaluations
restrict the output to the possible answer options
corresponding to a task and limits the beam size
and maximum output sequence respectively. For
example, for a yes/no question the possible outputs
are yes or no, the beam size is 2 and the maximum
output sequence is 1. All evaluations are executed
on one NVIDIA RTX A6000 GPU.

4 Results

4.1 Multitasking

Task Dataset Metrics Training targets

T MI TMI

ASR FLEURS CER↓ 12.0 88.5 12.4
SLT CoVoST 2 X→En BLEU↑ 3.0 14.1 15.6
GLUE SpeechGLUE Acc./MCC ↑ 41.7 54.4 55.9
NLI SpeechXNLI Acc. ↑ 35.8 41.6 41.4

Table 1: Comparative performance metrics across var-
ious speech processing tasks using different training
targets: transcription (T), synthetic multi-instructional
(MI) and their combination (TMI).

Table 1 presents evaluation results of our model
across various speech processing tasks, includ-
ing multilingual ASR, SLT, spoken GLUE, and
multilingual NLI. These evaluations test three ver-
sions of the model, which are trained using differ-
ent training targets: transcription only (T), Multi-
Instruction (MI), and a combination of both (TMI).
When the model is trained solely on the transcrip-
tion task, it achieves good performance for the
ASR task itself, with a CER of 12.0. However,
this specialized training does not generalize well to
more sophisticated tasks like SLT, GLUE, or NLI,
as evidenced by the notably lower performance
metrics. On the other hand, training the model
on MI synthetic targets shows significant improve-
ment in performing other tasks such as SLT, GLUE,
and NLI. The BLEU score for SLT, for example,
increases to 14.1 and the average accuracy/MCC
score for GLUE rises to 54.4. Despite these gains,
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Figure 2: Comparative evaluation of speech recognition
performance between the BLOOMZMMS TMI model
and previous works, multi-domain MMS (1B) (Pratap
et al., 2023) and Whisper large-v2 (Radford et al., 2023),
on the FLEURS-54 evaluation dataset. All numbers
are WER except for Thai, Lao, Burmese, and Khmer
languages.

the MI-only training leads to a significant drop in
performance for the ASR task, registering a CER
of 88.5. Combining both transcription and MI tar-
gets enables the model to perform well across all
tested tasks. In addition to maintaining strong per-
formance in ASR (CER of 12.4), this training con-
figuration also leads to improvements in two out of
the three non-ASR tasks. These results underscore
the benefits of integrating ASR and MI targets.

4.2 Speech Recognition

Dataset Languages Training targets

T MI TMI

FLEURS
(CER)

BLOOM (34) 12.9 70.0 12.8
Non-BLOOM (68) 11.6 86.4 12.2
All (102) 12.0 80.9 12.4

MLS
BLOOM (4) 27.0 25.0 20.6
Non-BLOOM (4) 11.5 72.4 12.2
All (8) 19.3 48.7 16.4

VoxPopuli
BLOOM (3) 21.3 22.0 17.3
Non-BLOOM (11) 22.2 104.6 22.0
All (14) 22.0 86.9 21.0

Table 2: Comparative evaluation of speech recognition
performance depending on the training targets. Results
are stratified by language exposure during BLOOM
training and evaluated using WER, except for the
FLEURS dataset that uses CER for compatibility with
previous works.

Table 2 presents a comparative analysis of ASR
performance for the BLOOMZMMS model with
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the T, MI and TMI training targets. Results are
further divided based on whether the languages
were seen during the training of the BLOOM
model or not. For languages that were part of the
BLOOM model training, the TMI model generally
performs better than the T model. The opposite is
true for the non-BLOOM languages. This is ex-
pected as training on the MI targets puts stronger
stress on the distillation of the LLM knowledge
and its encoding to the Adaptor parameters. This
effect is more pronounced on the MLS and Vox-
Populi datasets, which represent recording condi-
tions and linguistic content slightly different from
our training data. Nevertheless, both T and TMI
BLOOMZMMS models perform comparably on
the in-domain FLEURS dataset independently from
the language, suggesting that the Adaptor can ef-
fectively leverage the outputs of the MMS speech
encoder in order to compensate for the lack of lan-
guage familiarity by the LLM.

Following the MMS paper, we separate a subset
of FLEURS testing dataset for the 54 languages
that are supported by the Whisper model, and
compare the results of the BLOOMZMMS TMI
model to the results of the multi-domain MMS
(1B) and Whisper large-v2 models. The MMS
model is essentially the same speech encoder as
used by BLOOMZMMS, but with a number of
language-specific components, namely adapter pa-
rameters, output vocabulary, and n-gram model
utilized during decoding. Despite removal of
the language-specific components and addition of
the other speech processing tasks, such as SLT,
BLOOMZMMS manages to keep the ASR per-
formance on a comparable level to the original
MMS model. While also being a multitask model,
BLOOMZMMS outperforms the other strong mul-
titask alternative, Whisper large-v2, by a large mar-
gin on this massively multilingual low-resource
ASR benchmark, albeit potentially due to being
trained on in-domain data, in contrast to Whisper.

4.3 Speech Translation
Table 3 presents the zero-shot evaluation results for
SLT using the CoVoST 2 dataset. The BLOOMZ
LM exhibits a nascent ability to translate languages
that it has not been trained on, and when this knowl-
edge is transferred to the speech modality, there’s
only a minor loss in accuracy. Interestingly, the per-
formance gap between the BLOOMZMMS model

6sacreBLEU signature: nrefs:1 | case:mixed | eff:no |
tok:13a | smooth:exp | version:2.3.1.

Dataset Languages Training targets Gold
T MI TMI

X→En
BLOOM (8) 7.0 25.9 26.8 35.5
Non-BLOOM (13) 0.6 8.4 8.7 11.3
All (21) 3.0 15.1 15.6 20.5

En→X
BLOOM (5) 1.1 10.9 11.0 17.5
Non-BLOOM (10) 0.3 0.9 1.0 1.7
All (15) 0.5 4.2 4.3 7.0

Table 3: Comparative evaluation of zero-shot speech
translation performance depending on the training tar-
gets using the CoVoST 2 dataset. Results are stratified
by language exposure during BLOOM training and eval-
uated using BLEU metrics6. Results on text inputs
(Gold) are given for comparison.
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Figure 3: Comparative evaluation of speech translation
performance between the BLOOMZMMS TMI model
and previous works, XLS-R/mBART (Babu et al., 2021)
and Whisper large-v2 (Radford et al., 2023), on the
CoVoST 2 X→En evaluation set.

and gold transcriptions is more pronounced for the
BLOOM languages. This indicates that the qual-
ity of knowledge transfer from text to speech de-
pends on the initial linguistic knowledge in the text-
based LLM. Consequently, weaknesses present
in the LLM tend to amplify when transferred to
the speech modality, suggesting that the proposed
method might benefit from some form of regular-
ization to mitigate this effect.

Figure 3 shows the comparison of the
BLOOMZMMS TMI model with the previous
works, XLS-R/mBART and Whisper large-v2, for
the X→En translation direction. XLS-R/mBART
is a strong baseline, which is finetuned on complete
CoVoST 2 training data. Whisper large-v2 has not
seen any CoVoST 2 data during training, but has
been supervised by a large amount of other speech
translation data. BLOOMZMMS TMI has not been
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exposed to any gold labeled speech translation sam-
ples during training. Remarkably, the zero-shot
BLOOMZMMS model outperforms the supervised
task-specific XLS-R/mBART model for the lan-
guages previously seen during BLOOM training.
This impressive result is primarily due to the strong
performance of the BLOOMZ LLM, which is suc-
cessfully transferred to the speech modality via the
multi-instructional training. However, there is a
notable gap with the multitask Whisper large-v2
model, primarily attributed to the poor performance
on unseen languages of the LLM we utilize.

Dataset Languages Training targets Gold
T MI TMI

X→En
BLOOM (33) 1.2 30.6 30.8 44.4
Non-BLOOM (67) 0.5 8.6 8.3 12.5
All (100) 0.7 15.9 15.7 23.1

En→X
BLOOM (33) 18.1 24.7 24.8 30.0
Non-BLOOM (67) 1.1 1.2 1.2 1.9
All (100) 6.7 8.9 9.0 11.2

Table 4: Comparative evaluation of zero-shot speech
translation performance depending on the training tar-
gets using the FLEURS dataset. Results are stratified by
language exposure during BLOOM training and evalu-
ated using BLEU metrics. Results on text inputs (Gold)
are given for comparison.

In order to expand language coverage, we eval-
uate our model for the SLT performance on the
FLEURS dataset as well, and present the results in
Table 4. As suggested by Radford et al. (2023), we
use target language transcriptions for the sentences
with the same ID as reference translations. Our
evaluation does not include Afrikaans, because the
version of the dataset we use7 does not include any
sentence IDs shared between Afrikaans and En-
glish. The multilingual properties of the BLOOMZ
model, which serves as a decoder of our model, en-
able us to report the SLT results with non-English
target languages as well, for the first time on the
FLEURS dataset to the best of our knowledge. The
results confirm the good transferability of transla-
tion capabilities from text to speech modality with
the MI and TMI training targets for a wider range
of languages seen in the BLOOM training data.
The fair translation performance from unseen lan-
guages to English, as observed in the CoVoST 2
dataset, can also be seen across a wider range of
languages in the FLEURS dataset.

7https://huggingface.co/datasets/google/fleurs

Task Training targets Gold
T MI TMI

CoLA -0.4 4.0 10.3 14.3
SST-2 50.3 77.8 76.9 94.0
MRPC 32.8 57.4 64.0 86.3
QQP 64.3 77.3 76.4 91.2
MNLI-m 41.0 52.3 52.9 62.4
MNLI-mm 40.8 54.2 54.8 62.6
QNLI 50.1 61.0 59.9 64.3
RTE 50.9 59.2 57.0 70.0
WNLI 45.1 46.5 50.7 56.3
Avg. w/o WNLI 41.7 54.4 55.9 66.8

Table 5: Zero-shot evaluation of spoken GLUE tasks
using the SpeechGLUE dataset. All results are accuracy
scores, except for CoLA that uses MCC. The STS-B
task is excluded because the LLM failed to provide
interpretable results.

Languages Training targets Gold
T MI TMI

BLOOM (9) 36.3 42.8 42.8 54.2
Non-BLOOM (6) 35.1 39.7 39.4 43.9
All (15) 35.8 41.6 41.4 50.1

Table 6: Zero-shot evaluation of multilingual spoken
NLI using the SpeechXNLI dataset. All results are
accuracy scores.

4.4 Spoken Language Understanding

Tables 5 and 6 provide the results of zero-shot
evaluation of BLOOMZMMS models on spoken
GLUE tasks in English using the SpeechGLUE
dataset and on spoken NLI tasks in multiple lan-
guages using the SpeechXNLI dataset. It is worth
noting that the combined TMI training targets result
in better performance on the English GLUE tasks,
but have a mixed impact on the NLI tasks based
on the languages trained in BLOOM and those
that were not. For the BLOOM languages, the
TMI model equals the MI-only model in accuracy,
whereas it performs worse on the non-BLOOM
languages. Together with the SLT results, this ob-
servation again hints at the effect of the LLM’s
weaknesses amplification during the transfer from
the text to speech modality.

4.5 Visual Analysis

Following the example of (Fathullah et al., 2023),
we display the cosine similarity between the text
and speech embeddings for the three variants of
BLOOMZMMS for a French and a Finnish utter-
ance from the FLEURS evaluation dataset (Figure
4). Consistent with the objective metrics from our

820

https://huggingface.co/datasets/google/fleurs


speech tokens

te
xt

 to
ke

ns

speech tokens

te
xt

 to
ke

ns

speech tokens

te
xt

 to
ke

ns

speech tokens

te
xt

 to
ke

ns

speech tokens

te
xt

 to
ke

ns

speech tokens

te
xt

 to
ke

ns

Figure 4: Cosine similarity between the text and speech embeddings for two FLEURS evaluation utterances. Rows
correspond to French and Finnish languages (seen and unseen by BLOOM). Columns represent the T, MI and TMI
models.

experiments, the model trained on the transcription
targets shows the noisiest alignments for the both
languages, while the MI training targets offer bet-
ter alignment for a language unseen by BLOOM
and the combined training targets work better for a
language seen by BLOOM.

5 Conclusion

In this paper we present BLOOMZMMS, a mul-
tilingual multitask speech processing model that
combines a multilingual LLM and a pretrained mul-
tilingual speech encoder. Our investigation into two
training strategies revealed their combined efficacy
in a broad spectrum of spoken language processing
tasks, a conclusion bolstered by zero-shot evalua-
tions on multiple benchmarks.

Limitations

Our setup is based on pretrained models and, given
that our experiments solely rely on ASR data for su-
pervision and the pretrained models remain frozen,
the performance in tasks beyond ASR is limited by
the capabilities of the utilized pretrained models.
For example, the SLT results cannot be better than
the translation results of the BLOOMZ model on
text input.

While we demonstrate the benefits of multi-
instructional training in terms of task generalization
in transferring LLM abilities from text to speech
modality, our evaluation is limited to a fixed col-
lection of instructions. It does not investigate the
impact of varying combinations of instructions
more broadly and whether the performance on a
certain task depends on its presence in the multi-
instructional training data. Furthermore, we do not
compare synthetic label generation with the use of

ground truth labels, a comparison that holds par-
ticular significance for the SLT task. A substantial
amount of ground truth labeled data is available
for the SLT task. Utilizing this data could likely
enhance the model’s performance for this task, and
potentially others as well. Finally, the slight per-
formance degradation observed in the in-domain
ASR dataset with TMI training could potentially be
mitigated by more effectively balancing between
transcription and multi-instructional data.

Our study is based on a small set of speech pro-
cessing tasks, and does not consider such tasks as
spoken question answering, spoken document sum-
marization and other generative tasks. In addition
to that, our evaluation is restricted to the properties
of the used evaluation data. For the ASR and SLT
tasks, it is read speech recorded on a close distance
microphone. For the speech understanding tasks,
we rely on a single speaker speech synthesis. It
should not be assumed that the proposed model
would work equally well or poorly for unseen tasks
or new recording conditions, such as far field noisy
conversational speech with possibly overlapping
speakers. Assuming the model’s performance with-
out empirical testing in various scenarios could lead
to risks, particularly depending on its application.
This risk should be mitigated through preliminary
testing specific to each use case. Additionally, it is
advisable to cross-check the model’s outputs with
independent information sources.

References
Rosana Ardila, Megan Branson, Kelly Davis, Michael

Kohler, Josh Meyer, Michael Henretty, Reuben
Morais, Lindsay Saunders, Francis Tyers, and Gre-
gor Weber. 2020. Common voice: A massively-
multilingual speech corpus. In Proceedings of the

821

https://aclanthology.org/2020.lrec-1.520
https://aclanthology.org/2020.lrec-1.520


Twelfth Language Resources and Evaluation Confer-
ence, pages 4218–4222, Marseille, France. European
Language Resources Association.

Takanori Ashihara, Takafumi Moriya, Kohei Matsuura,
Tomohiro Tanaka, Yusuke Ijima, Taichi Asami, Marc
Delcroix, and Yukinori Honma. 2023. SpeechGLUE:
How Well Can Self-Supervised Speech Models Cap-
ture Linguistic Knowledge? Proc. Interspeech 2023.

Arun Babu, Changhan Wang, Andros Tjandra, Kushal
Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh,
Patrick von Platen, Yatharth Saraf, Juan Pino, et al.
2021. XLS-R: Self-supervised Cross-lingual Speech
Representation Learning at Scale. arXiv preprint
arXiv:2111.09296.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
In Advances in Neural Information Processing Sys-
tems, volume 33, pages 12449–12460.

Xuankai Chang, Takashi Maekaku, Pengcheng Guo,
Jing Shi, Yen-Ju Lu, Aswin Shanmugam Subrama-
nian, Tianzi Wang, Shu-wen Yang, Yu Tsao, Hung-yi
Lee, et al. 2021. An Exploration of Self-Supervised
Pretrained Representations for End-to-End Speech
Recognition. In 2021 IEEE Automatic Speech Recog-
nition and Understanding Workshop (ASRU), pages
228–235. IEEE.

William Chen, Brian Yan, Jiatong Shi, Yifan Peng,
Soumi Maiti, and Shinji Watanabe. 2023. Improving
massively multilingual ASR with auxiliary CTC ob-
jectives. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 1–5. IEEE.

Zhehuai Chen, Yu Zhang, Andrew Rosenberg, Bhuvana
Ramabhadran, Pedro Moreno, Ankur Bapna, and
Heiga Zen. 2022. MAESTRO: Matched Speech Text
Representations through Modality Matching. Proc.
Interspeech 2022.

Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang,
Vera Axelrod, Siddharth Dalmia, Jason Riesa, Clara
Rivera, and Ankur Bapna. 2023. FLEURS: Few-shot
Learning Evaluation of Universal Representations of
Speech. In 2022 IEEE Spoken Language Technology
Workshop (SLT), pages 798–805. IEEE.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina
Williams, Samuel Bowman, Holger Schwenk, and
Veselin Stoyanov. 2018. XNLI: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2475–2485, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. LLM.int8(): 8-bit Matrix Multi-
plication for Transformers at Scale. In Advances in
Neural Information Processing Systems, volume 35,
pages 30318–30332.

Yassir Fathullah, Chunyang Wu, Egor Lakomkin, Jun-
teng Jia, Yuan Shangguan, Ke Li, Jinxi Guo, Wenhan
Xiong, Jay Mahadeokar, Ozlem Kalinli, Christian
Fuegen, and Mike Seltzer. 2023. Prompting Large
Language Models with Speech Recognition Abilities.
arXiv preprint arXiv:2307.11795.

Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. 2006. Connectionist temporal
classification: labelling unsegmented sequence data
with recurrent neural networks. In Proc. of ICML.

Daniel Jurafsky and James H. Martin. 2009. Speech
and language processing.

Kwangyoun Kim, Felix Wu, Yifan Peng, Jing Pan,
Prashant Sridhar, Kyu J Han, and Shinji Watanabe.
2023. E-branchformer: Branchformer with enhanced
merging for speech recognition. In 2022 IEEE Spo-
ken Language Technology Workshop (SLT), pages
84–91. IEEE.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

T. Ko, V. Peddinti, D. Povey, and S. Khudanpur. 2015.
Audio augmentation for speech recognition. In Six-
teenth annual conference of the international speech
communication association.

Xian Li, Changhan Wang, Yun Tang, Chau Tran, Yuqing
Tang, Juan Pino, Alexei Baevski, Alexis Conneau,
and Michael Auli. 2021. Multilingual speech trans-
lation from efficient finetuning of pretrained models.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 827–838,
Online. Association for Computational Linguistics.

Yuang Li, Yu Wu, Jinyu Li, and Shujie Liu. 2023.
Prompting Large Language Models for Zero-Shot
Domain Adaptation in Speech Recognition. arXiv
preprint arXiv:2306.16007.

Shaoshi Ling, Yuxuan Hu, Shuangbei Qian, Guoli Ye,
Yao Qian, Yifan Gong, Ed Lin, and Michael Zeng.
2023. Adapting Large Language Model with Speech
for Fully Formatted End-to-End Speech Recognition.
arXiv preprint arXiv:2307.08234.

Florian Lux, Julia Koch, and Ngoc Thang Vu. 2022.
Low-resource multilingual and zero-shot multi-
speaker TTS. In Proceedings of the 2nd Conference
of the Asia-Pacific Chapter of the Association for
Computational Linguistics and the 12th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 741–751, Online
only. Association for Computational Linguistics.

Niklas Muennighoff, Thomas Wang, Lintang Sutawika,
Adam Roberts, Stella Biderman, Teven Le Scao,

822

https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/2021.acl-long.68
https://doi.org/10.18653/v1/2021.acl-long.68
https://aclanthology.org/2022.aacl-main.56
https://aclanthology.org/2022.aacl-main.56


M Saiful Bari, Sheng Shen, Zheng Xin Yong, Hai-
ley Schoelkopf, Xiangru Tang, Dragomir Radev,
Alham Fikri Aji, Khalid Almubarak, Samuel Al-
banie, Zaid Alyafeai, Albert Webson, Edward Raff,
and Colin Raffel. 2023. Crosslingual generaliza-
tion through multitask finetuning. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 15991–16111, Toronto, Canada. Association
for Computational Linguistics.

Eliya Nachmani, Alon Levkovitch, Roy Hirsch, Ju-
lian Salazar, Chulayuth Asawaroengchai, Soroosh
Mariooryad, Ehud Rivlin, RJ Skerry-Ryan, and
Michelle Tadmor Ramanovich. 2023. Spoken
question answering and speech continuation using
spectrogram-powered llm. In The Twelfth Interna-
tional Conference on Learning Representations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Vineel Pratap, Andros Tjandra, Bowen Shi, Paden
Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky,
Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi,
Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning
Hsu, Alexis Conneau, and Michael Auli. 2023. Scal-
ing Speech Technology to 1,000+ Languages. arXiv
preprint arXiv:2305.13516.

Vineel Pratap, Qiantong Xu, Anuroop Sriram, Gabriel
Synnaeve, and Ronan Collobert. 2020. MLS: A
Large-Scale Multilingual Dataset for Speech Re-
search. Proc. Interspeech 2020.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust Speech Recognition via Large-Scale Weak
Supervision. In International Conference on Ma-
chine Learning, pages 28492–28518. PMLR.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla,
Taewoon Kim, Gunjan Chhablani, Nihal Nayak, De-
bajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang,
Han Wang, Matteo Manica, Sheng Shen, Zheng Xin
Yong, Harshit Pandey, Rachel Bawden, Thomas

Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma,
Andrea Santilli, Thibault Fevry, Jason Alan Fries,
Ryan Teehan, Tali Bers, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M. Rush. 2022. Mul-
titask Prompted Training Enables Zero-Shot Task
Generalization. In ICLR 2022-Tenth International
Conference on Learning Representations.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Ro-
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A Evaluation Scores

A.1 Speech Recognition

Language WER, % CER, %

T MI TMI T MI TMI

Afrikaans 24.55 73.55 25.11 11.48 49.00 11.60
Amharic 33.27 252.00 35.29 13.00 239.76 13.94
Arabic 28.21 72.32 26.87 12.50 55.77 11.46
Armenian 23.49 221.59 25.98 8.35 171.45 9.13
Assamese 20.67 111.94 22.43 16.12 97.06 17.59
Asturian 22.00 62.90 24.30 8.24 31.56 10.45
Azerbaijani 26.11 153.81 27.31 7.05 116.91 7.66
Belarusian 16.80 163.77 17.52 7.04 114.60 7.00
Bengali 5.36 58.87 6.02 4.12 54.77 4.82
Bosnian 15.62 68.29 15.97 5.57 44.96 5.73
Bulgarian 16.17 119.36 16.00 5.74 99.81 5.79
Burmese 46.24 92.22 47.42 39.87 76.31 40.82
Cantonese Chinese 42.94 142.09 37.88 19.18 92.69 17.77
Catalan 5.27 17.66 6.38 3.39 11.70 4.29
Cebuano 14.94 73.46 15.23 6.34 53.49 6.22
Croatian 22.09 81.07 21.93 11.64 53.73 11.66
Czech 14.08 85.25 14.46 5.19 55.41 5.22
Danish 25.80 85.27 25.48 10.53 53.11 9.78
Dutch 12.94 78.68 13.77 5.20 51.60 5.66
English 6.11 12.01 5.85 4.29 8.29 4.24
Estonian 15.03 87.18 16.26 4.13 53.03 7.21
Filipino 13.05 63.70 13.64 5.13 45.66 5.25
Finnish 16.65 90.32 17.75 4.58 54.73 5.00
French 5.20 13.61 5.04 3.29 9.25 3.36
Fula 51.09 106.50 50.40 20.47 77.03 18.87
Galician 15.30 62.75 15.18 6.88 29.57 6.08
Ganda 41.03 127.78 41.32 10.67 85.24 10.78
Georgian 30.98 260.91 31.80 10.44 160.02 10.76
German 11.66 81.32 11.45 4.93 52.19 4.76
Greek 20.99 145.51 22.68 8.55 123.39 9.50
Gujarati 14.01 94.25 11.62 10.55 88.46 8.97
Hausa 25.50 92.04 25.54 9.14 65.99 8.87
Hebrew 53.53 196.05 53.93 24.07 152.62 25.17
Hindi 10.74 42.76 9.11 8.46 39.51 7.17
Hungarian 21.07 106.88 21.51 6.82 66.61 6.96
Icelandic 35.32 115.87 36.01 10.52 67.09 11.18
Igbo 41.68 134.93 42.42 22.65 112.95 23.82
Indonesian 5.84 30.87 5.37 3.84 22.66 3.77
Irish 58.24 122.34 60.19 28.42 82.76 29.45
Italian 7.16 56.15 7.25 3.77 34.05 3.78
Japanese 94.35 321.61 101.43 23.82 155.45 28.23
Javanese 19.71 132.97 21.40 7.25 99.08 8.57
Kabuverdianu 20.70 79.69 19.64 8.01 52.42 7.16
Kamba 45.84 147.72 47.05 17.85 107.02 20.67
Kannada 24.16 100.43 15.65 18.69 96.71 12.84
Kazakh 17.26 155.52 17.55 5.78 117.24 5.84
Khmer 50.99 107.49 59.89 29.21 97.01 35.90
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Language WER, % CER, %

T MI TMI T MI TMI

Korean 42.39 164.91 48.85 16.70 183.41 20.96
Kyrgyz 18.16 164.98 18.33 5.25 124.54 5.08
Lao 69.97 120.78 74.54 50.98 105.17 54.48
Latvian 15.73 93.54 16.50 4.94 55.89 5.27
Lingala 14.15 116.21 15.66 6.88 91.66 8.86
Lithuanian 20.96 102.37 21.59 6.64 63.12 6.63
Luo 26.80 81.87 26.44 6.77 56.46 7.27
Luxembourgish 34.45 140.89 36.66 11.87 90.38 13.19
Macedonian 11.29 124.75 11.04 4.17 101.96 4.07
Malay 16.48 77.65 17.55 8.86 57.36 8.94
Malayalam 17.47 95.27 14.61 14.11 89.51 11.89
Maltese 16.37 104.21 16.38 6.33 75.53 5.77
Mandarin Chinese 36.12 103.75 32.73 15.63 58.45 14.24
Maori 22.50 94.78 22.79 9.90 69.21 9.65
Marathi 11.13 83.43 9.66 8.76 72.61 7.55
Mongolian 33.30 159.58 34.57 10.37 135.18 11.24
Nepali 13.32 77.91 9.77 10.28 68.06 7.48
Northern-Sotho 27.13 99.29 27.03 14.08 74.31 13.88
Norwegian 19.26 67.88 20.11 6.95 42.36 7.05
Nyanja 35.21 116.14 34.56 13.08 82.44 12.56
Occitan 31.98 89.00 33.23 13.11 53.19 13.24
Oriya 26.79 113.60 24.98 19.84 100.74 18.93
Oromo 64.94 105.36 68.18 17.51 59.86 18.12
Pashto 48.14 190.56 52.98 21.68 138.96 24.79
Persian 18.07 128.77 18.63 6.92 94.73 6.99
Polish 13.82 104.07 15.22 5.56 71.10 5.90
Portuguese 4.45 17.50 4.71 3.09 12.42 3.31
Punjabi 21.03 111.35 20.46 15.41 97.24 15.56
Romanian 14.51 88.13 15.67 6.08 54.48 6.40
Russian 19.32 123.15 19.16 6.52 96.07 6.10
Serbian 57.70 131.08 55.88 47.03 109.11 45.26
Shona 22.28 141.53 24.29 7.35 91.81 9.15
Sindhi 28.99 181.61 31.50 12.44 145.41 14.03
Slovak 12.17 85.16 12.52 4.87 53.21 4.99
Slovenian 18.38 86.15 18.37 6.91 59.06 6.61
Somali 45.93 122.01 45.82 16.41 76.23 17.14
Sorani-Kurdish 39.09 139.68 40.47 11.56 107.75 12.02
Spanish 3.65 10.52 3.66 2.53 7.74 2.62
Swahili 10.81 85.55 12.31 5.84 65.39 7.02
Swedish 21.50 78.59 21.92 7.44 49.06 7.52
Tajik 17.81 166.92 18.54 6.87 125.87 7.16
Tamil 14.14 77.87 9.80 11.92 73.81 7.78
Telugu 22.68 99.79 19.13 17.32 94.83 15.12
Thai 36.60 161.15 38.97 15.76 100.18 17.44
Turkish 18.39 129.47 19.59 5.30 97.46 5.82
Ukrainian 17.86 134.65 18.04 5.12 105.12 4.86
Umbundu 46.97 155.61 47.71 16.44 104.41 17.33
Urdu 96.48 129.51 86.06 49.48 86.81 44.44
Uzbek 26.77 99.35 26.61 8.58 65.17 8.34
Vietnamese 25.37 65.35 23.84 20.20 55.97 19.19
Welsh 28.34 75.28 29.78 10.49 44.37 10.80
Wolof 35.70 104.97 37.68 14.97 78.91 17.38
Xhosa 34.67 162.98 38.63 10.90 99.80 14.64
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Language WER, % CER, %

T MI TMI T MI TMI

Yoruba 55.10 129.76 65.13 29.54 109.40 39.49
Zulu 31.56 148.55 33.56 10.46 93.27 13.11

Median 21.75 104.14 21.93 9.00 76.27 9.05
Average 26.70 110.47 27.20 12.03 80.94 12.41

Table 9: Speech recognition results on the FLEURS evaluation dataset, broken down by language and training
targets.

Language WER, % CER, %

T MI TMI T MI TMI

Dutch 13.03 71.04 14.10 4.15 51.80 4.99
English 36.14 23.79 26.08 26.51 17.76 18.77
French 21.92 23.41 17.28 15.71 17.61 12.35
German 10.62 76.19 11.29 4.28 52.03 4.64
Italian 13.34 48.41 14.18 3.72 29.77 4.26
Polish 8.89 93.88 9.25 2.41 63.78 2.29
Portuguese 33.68 28.03 25.53 23.07 20.32 17.10
Spanish 16.47 24.67 13.57 10.64 19.15 9.10

Median 14.91 38.22 14.14 7.46 25.04 7.04
Average 19.26 48.68 16.41 11.31 34.03 9.18

Table 12: Speech recognition results on the Multilingual LibriSpeech evaluation dataset, broken down by language
and training targets.

Language WER, % CER, %

T MI TMI T MI TMI

Croatian 25.24 92.13 23.74 10.55 65.04 10.94
Czech 14.25 108.21 16.18 7.70 70.56 9.40
Dutch 24.72 98.76 21.62 16.34 70.28 13.77
English 21.00 18.31 16.14 15.53 13.79 11.62
Estonian 17.73 133.44 17.73 7.75 89.95 6.71
Finnish 21.25 115.89 20.80 10.35 71.74 9.22
French 23.12 25.54 18.91 16.60 19.93 13.79
German 25.78 101.91 24.96 17.28 68.95 16.74
Hungarian 18.86 119.21 19.02 8.70 77.14 8.27
Italian 26.17 78.50 28.29 19.64 55.93 20.43
Latvian 25.61 145.96 31.86 13.73 102.17 22.62
Polish 17.66 123.45 17.00 11.32 86.39 11.34
Romanian 18.61 99.78 20.88 8.59 62.19 9.72
Slovak 17.79 110.26 18.21 9.80 69.64 9.51
Slovenian 33.59 102.96 31.15 25.08 80.19 24.66
Spanish 19.79 22.07 16.76 14.43 16.40 11.82

Median 21.12 102.43 19.91 12.52 69.96 11.48
Average 21.95 93.52 21.45 13.34 63.77 13.16

Table 15: Speech recognition results on the VoxPopuli evaluation dataset, broken down by language and training
targets.
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A.2 Speech Translation

Language BLEU chrF

T MI TMI T MI TMI

Arabic 0.93 9.33 8.69 3.88 34.00 33.56
Catalan 2.27 20.63 20.97 21.42 46.17 46.35
Estonian 0.47 0.25 0.31 15.78 13.78 14.37
German 1.23 4.85 4.85 18.04 26.86 26.67
Indonesian 1.93 21.66 22.53 17.26 49.34 49.67
Japanese 0.02 0.00 0.03 0.93 4.52 3.60
Latvian 0.00 0.08 0.14 0.00 9.60 11.11
Mandarin Chinese 0.14 0.00 0.31 4.90 16.43 17.92
Mongolian 0.00 0.05 0.08 0.00 0.77 0.80
Persian 0.12 0.00 0.04 1.08 8.72 8.20
Slovenian 0.00 0.15 0.19 1.67 10.55 11.63
Swedish 0.00 2.85 3.22 1.00 19.54 20.62
Tamil 0.00 2.68 2.66 2.51 31.71 31.33
Turkish 0.00 0.23 0.23 1.60 10.26 11.76
Welsh 0.90 0.34 0.44 15.33 11.86 12.54

Median 0.12 0.25 0.31 2.51 13.78 14.37
Average 0.53 4.21 4.31 7.03 19.61 20.01

Table 18: Speech translation results on the CoVoST-2 English → X evaluation dataset, broken down by target
language and training targets.

Language BLEU chrF

T MI TMI T MI TMI

High

French 4.29 30.11 31.13 29.08 54.46 55.45
German 1.99 18.92 19.27 21.70 41.70 41.84
Spanish 4.66 33.64 34.78 28.68 58.59 59.39
Catalan 2.17 27.66 28.12 23.41 52.06 52.43

Mid

Persian 0.06 1.46 1.34 0.38 15.65 15.76
Italian 1.92 26.91 27.30 26.27 52.28 52.35
Russian 0.92 24.55 23.22 3.82 49.13 47.80
Portugese 15.68 41.74 42.58 32.76 62.82 63.33
Mandarin Chinese 0.00 10.21 10.87 0.03 30.12 30.74

Low

Turkish 0.00 1.25 1.30 11.23 14.36 14.65
Arabic 21.16 29.11 29.67 34.86 50.41 50.69
Estonian 0.12 0.41 0.52 16.56 15.20 16.31
Mongolian 0.00 0.17 0.00 0.68 13.12 13.10
Dutch 1.03 15.35 15.29 20.37 34.78 34.40
Swedish 0.56 8.75 10.32 13.36 24.29 25.09
Latvian 0.00 0.83 0.79 9.30 11.77 11.08
Slovenian 0.00 2.91 3.47 11.14 14.70 14.94
Tamil 0.00 2.38 2.63 0.43 17.14 17.15
Japanese 0.00 7.65 9.45 0.37 22.40 25.70
Indonesian 8.31 32.53 34.36 20.85 49.26 51.67
Welsh 0.57 0.49 0.87 13.46 12.41 13.66

Median 0.57 10.21 10.87 13.46 30.12 30.74
Average 3.02 15.10 15.58 15.18 33.17 33.69

Table 21: Speech translation results on the CoVoST-2 X → English evaluation dataset, broken down by source
language and training targets.
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Language BLEU chrF

T MI TMI T MI TMI

Amharic 0.25 0.00 0.00 0.64 0.47 0.52
Arabic 6.27 13.09 13.72 27.62 42.08 42.79
Armenian 0.26 0.00 0.00 0.48 0.45 0.43
Assamese 9.46 16.45 16.73 14.95 44.10 41.78
Asturian 2.07 9.81 10.16 25.38 44.77 44.63
Azerbaijani 0.46 0.00 0.19 14.31 12.64 13.88
Belarusian 0.29 0.00 0.21 0.70 1.20 1.12
Bengali 37.46 48.13 51.21 45.43 69.01 71.23
Bosnian 1.13 0.67 0.65 19.49 17.84 18.37
Bulgarian 0.54 0.33 0.33 0.79 1.54 1.49
Burmese 0.00 0.00 0.00 0.55 0.48 0.49
Cantonese Chinese 0.43 4.45 5.22 14.51 38.15 38.02
Catalan 35.35 49.12 50.26 53.42 70.47 71.09
Cebuano 2.61 1.63 2.07 19.66 16.63 18.27
Croatian 1.01 0.41 0.47 19.30 15.23 16.57
Czech 1.26 0.60 0.67 18.27 14.39 14.96
Danish 2.03 1.58 1.82 24.57 21.05 23.28
Dutch 1.85 1.59 1.54 23.85 22.04 22.49
Estonian 1.00 0.70 0.61 19.36 17.82 18.23
Filipino 2.62 1.45 1.56 18.29 16.97 17.39
Finnish 0.51 0.16 0.27 17.34 13.67 15.35
French 48.16 47.03 46.79 64.13 68.64 68.29
Fula 1.66 0.82 1.10 19.18 16.60 17.85
Galician 3.67 7.35 7.70 28.64 42.04 41.92
Ganda 2.22 1.29 1.39 17.06 15.40 16.04
Georgian 0.45 0.17 0.19 0.81 0.68 0.75
German 1.78 5.21 4.74 21.93 29.53 29.10
Greek 0.61 0.35 0.42 1.02 6.36 4.97
Gujarati 37.03 44.08 46.30 42.58 63.97 65.91
Hausa 1.55 0.80 0.77 16.56 14.06 14.79
Hebrew 0.57 0.23 0.36 1.09 1.41 1.26
Hindi 44.51 41.86 42.28 49.76 62.36 62.57
Hungarian 0.79 0.40 0.44 16.58 14.26 15.08
Icelandic 0.67 0.39 0.46 16.05 14.39 15.17
Igbo 2.06 2.66 2.88 17.11 18.26 18.39
Indonesian 39.06 50.40 50.81 54.08 71.86 71.92
Irish 1.65 1.06 1.12 17.19 15.00 15.54
Italian 2.07 8.61 8.02 25.28 36.03 35.54
Japanese 0.00 0.00 0.00 0.98 4.60 3.71
Javanese 2.05 2.87 2.74 20.80 28.13 28.13
Kabuverdianu 1.60 1.15 1.15 21.76 21.05 20.78
Kamba 2.47 1.24 1.34 18.30 12.48 14.10
Kannada 13.18 34.07 33.41 21.44 58.91 58.71
Kazakh 0.31 0.00 0.19 0.79 0.73 0.77
Khmer 0.78 0.49 0.56 2.59 2.22 2.29
Korean 0.51 0.17 0.33 2.61 1.75 2.39
Kyrgyz 0.21 0.00 0.00 0.78 0.70 0.72
Lao 1.37 0.93 1.03 3.65 3.04 3.21
Latvian 0.51 0.29 0.30 16.61 14.39 15.32
Lingala 1.93 4.20 3.70 17.99 23.79 22.38
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Language BLEU chrF

T MI TMI T MI TMI

Lithuanian 0.73 0.46 0.50 17.79 14.21 14.94
Luo 1.85 1.16 1.04 19.11 17.04 17.75
Luxembourgish 1.37 0.76 0.85 22.00 21.29 21.39
Macedonian 0.44 0.29 0.28 0.79 0.69 0.84
Malay 2.78 8.70 8.39 21.47 33.24 32.56
Malayalam 17.57 37.10 35.49 28.47 63.61 62.40
Maltese 1.68 1.23 1.15 20.40 18.72 19.21
Mandarin Chinese 2.82 3.27 5.90 38.25 32.76 36.63
Maori 1.85 1.31 1.52 17.99 17.35 17.56
Marathi 32.62 35.88 34.27 40.74 59.79 59.00
Mongolian 0.36 0.24 0.00 0.63 0.55 0.56
Nepali 19.35 40.99 42.16 26.63 64.08 63.41
Northern-Sotho 2.55 3.66 3.11 18.83 19.75 18.79
Norwegian 1.37 1.46 1.54 23.22 22.77 23.29
Nyanja 2.85 2.07 2.02 19.25 20.81 20.07
Occitan 1.67 3.73 3.51 25.67 34.52 33.53
Oriya 0.47 0.13 0.28 0.57 0.43 0.51
Oromo 0.00 0.00 0.00 14.18 13.03 13.84
Pashto 0.00 0.00 0.00 1.14 1.49 1.54
Persian 0.00 0.00 0.27 2.65 11.47 11.90
Polish 0.90 0.47 0.57 17.06 14.28 15.81
Portuguese 54.85 50.25 51.00 69.09 70.93 71.39
Punjabi 20.37 42.40 42.00 22.38 59.49 59.60
Romanian 1.40 1.30 1.40 23.50 21.84 22.65
Russian 0.51 0.97 0.99 0.72 6.75 8.30
Serbian 0.41 0.25 0.24 0.77 0.61 0.67
Shona 2.01 1.22 1.40 18.18 17.39 17.94
Sindhi 0.40 0.24 0.19 0.71 1.62 2.87
Slovak 1.08 0.54 0.75 18.24 14.86 15.72
Slovenian 1.05 0.44 0.50 18.90 14.85 16.05
Somali 1.82 1.17 1.34 15.50 14.17 14.73
Sorani-Kurdish 0.20 0.00 0.00 0.42 0.37 0.40
Spanish 30.80 29.44 28.79 51.37 56.27 55.64
Swahili 14.55 25.42 24.09 31.47 53.62 51.67
Swedish 1.65 1.68 1.67 24.06 22.28 23.66
Tajik 0.24 0.19 0.24 0.82 0.73 0.76
Tamil 26.38 52.30 49.51 34.49 73.57 72.05
Telugu 22.59 43.72 42.08 30.87 65.49 65.33
Thai 0.25 0.17 0.20 1.22 1.04 1.08
Turkish 0.78 0.47 0.54 17.27 15.20 16.30
Ukrainian 0.40 0.19 0.20 0.68 0.75 0.94
Umbundu 0.92 0.37 0.51 15.53 10.79 12.96
Urdu 26.11 35.76 37.54 31.93 55.39 55.79
Uzbek 0.33 0.25 0.32 16.21 15.02 16.05
Vietnamese 36.77 46.80 48.49 45.92 61.95 63.22
Welsh 1.50 0.94 1.14 18.45 16.36 17.32
Wolof 1.25 1.08 1.15 18.73 17.96 18.39
Xhosa 1.62 1.13 1.12 18.85 17.90 18.39
Yoruba 1.83 3.62 3.52 14.02 18.54 18.18
Zulu 1.13 0.98 0.77 17.29 17.21 17.22

Median 1.53 1.11 1.13 18.25 17.00 17.66
Average 6.67 8.95 9.03 18.71 23.69 24.01

Table 24: Speech translation results on the FLEURS English → X evaluation dataset, broken down by target
language and training targets.
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Language BLEU chrF

T MI TMI T MI TMI

Amharic 0.00 0.10 0.13 0.23 9.70 10.59
Arabic 0.00 40.03 38.68 0.44 60.02 60.08
Armenian 0.00 0.22 0.16 0.30 12.22 12.14
Assamese 0.14 32.00 34.53 0.36 53.57 54.93
Asturian 1.29 36.49 35.08 24.29 60.08 58.55
Azerbaijani 0.23 1.71 2.15 14.78 18.81 18.49
Belarusian 0.00 3.06 2.75 0.62 22.39 22.69
Bengali 0.34 36.65 37.60 0.42 59.06 59.43
Bosnian 0.67 8.08 7.14 18.97 29.14 27.16
Bulgarian 0.36 17.15 15.83 1.19 42.10 39.51
Burmese 0.00 0.32 0.13 0.14 8.90 2.68
Cantonese Chinese 0.00 20.51 24.36 1.35 40.93 46.39
Catalan 3.60 49.63 49.47 27.98 71.20 71.10
Cebuano 1.61 3.88 3.85 20.21 22.63 22.79
Croatian 0.62 8.68 8.59 17.30 29.55 28.44
Czech 0.61 9.00 10.04 17.38 30.42 29.01
Danish 1.14 15.90 15.41 23.89 40.56 39.21
Dutch 1.45 18.48 17.04 24.92 45.34 42.89
Estonian 0.31 2.10 1.72 18.91 19.14 19.46
Filipino 1.29 3.40 4.01 19.66 22.15 22.58
Finnish 0.32 2.49 2.62 18.16 18.66 19.17
French 7.94 45.35 44.67 32.60 67.77 67.68
Fula 0.72 1.05 1.48 16.62 13.47 14.55
Galician 1.22 41.94 40.65 25.49 65.93 65.26
Ganda 1.18 18.44 17.60 16.68 36.82 36.11
Georgian 0.07 0.20 0.21 0.43 13.49 13.23
German 1.20 36.00 33.68 23.82 59.34 57.43
Greek 0.17 6.37 6.21 0.99 26.82 27.17
Gujarati 0.22 36.33 36.29 0.67 58.34 58.08
Hausa 0.43 1.05 1.26 15.21 12.84 15.20
Hebrew 0.13 1.29 1.37 1.72 16.41 17.12
Hindi 0.63 39.83 41.96 0.83 61.32 62.88
Hungarian 0.37 1.99 2.34 17.05 18.48 19.19
Icelandic 0.00 2.08 2.40 15.36 15.55 16.57
Igbo 1.11 15.93 16.52 15.25 34.57 35.07
Indonesian 1.82 45.64 45.57 21.43 66.67 66.50
Irish 0.31 0.57 0.74 16.96 14.26 15.72
Italian 0.78 31.57 31.09 25.77 59.67 58.60
Japanese 0.00 14.12 15.19 0.26 34.84 36.55
Javanese 0.61 8.37 8.62 19.03 29.17 29.15
Kabuverdianu 0.91 21.50 18.24 20.98 43.23 38.59
Kamba 1.34 4.32 3.55 16.28 19.15 18.70
Kannada 0.32 32.33 32.37 0.71 53.96 54.26
Kazakh 0.00 1.51 1.46 0.59 18.03 17.72
Khmer 0.01 1.02 0.62 0.96 13.27 13.12
Korean 0.00 3.88 3.16 0.46 21.65 20.84
Kyrgyz 0.13 1.10 1.03 0.55 16.63 16.69
Lao 0.10 1.26 0.66 1.36 11.41 6.71
Latvian 0.00 2.08 2.28 16.62 19.47 19.11
Lingala 0.94 21.06 20.01 16.97 41.34 39.68
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Language BLEU chrF

T MI TMI T MI TMI

Lithuanian 0.26 2.88 2.76 17.68 21.19 20.15
Luo 0.88 1.62 1.72 18.16 15.90 17.31
Luxembourgish 0.73 4.93 6.32 22.68 27.13 28.97
Macedonian 0.18 16.05 15.28 0.85 39.64 38.03
Malay 1.17 39.34 36.23 20.05 61.61 59.43
Malayalam 0.17 33.81 33.97 0.53 55.61 55.82
Maltese 0.86 3.79 4.31 21.14 22.09 24.00
Mandarin Chinese 0.00 25.39 28.15 1.67 47.25 50.67
Maori 1.16 1.02 1.47 17.30 12.23 15.04
Marathi 0.36 34.57 34.83 0.59 56.50 56.79
Mongolian 0.07 1.14 1.09 0.37 15.69 15.58
Nepali 0.53 38.47 39.51 0.84 59.55 60.40
Northern-Sotho 1.89 21.53 19.67 19.21 40.28 37.66
Norwegian 0.89 16.80 15.61 22.98 39.70 38.24
Nyanja 1.74 20.25 18.51 19.15 39.93 37.72
Occitan 0.74 37.59 36.38 25.82 61.36 59.98
Oriya 0.40 34.31 34.39 0.55 56.03 56.29
Oromo 0.00 0.00 0.00 14.63 11.12 15.17
Pashto 0.00 1.43 1.24 0.39 12.65 14.64
Persian 0.00 8.29 9.31 0.36 29.72 31.61
Polish 0.36 8.77 8.67 17.62 32.04 31.12
Portuguese 4.19 51.43 50.88 27.19 72.55 71.97
Punjabi 0.20 35.54 35.94 0.47 56.70 57.49
Romanian 0.90 23.08 19.88 24.80 48.30 44.61
Russian 0.65 26.62 24.75 2.26 51.51 49.17
Serbian 0.31 13.38 11.59 9.99 35.41 33.44
Shona 1.24 18.03 15.79 18.82 38.37 35.68
Sindhi 0.23 1.51 1.76 0.66 14.88 16.77
Slovak 0.45 6.69 6.71 17.76 27.78 26.39
Slovenian 0.31 3.39 3.31 17.98 22.74 22.55
Somali 0.43 0.80 0.89 15.08 12.28 14.65
Sorani-Kurdish 0.00 0.80 0.83 0.26 11.47 11.27
Spanish 1.30 38.84 38.14 25.48 63.95 63.67
Swahili 1.26 39.96 40.52 16.04 60.48 60.71
Swedish 0.86 18.38 18.09 23.47 41.82 40.74
Tajik 0.00 1.15 1.05 0.47 16.00 15.90
Tamil 1.43 31.29 32.42 1.52 52.13 54.22
Telugu 1.00 29.02 32.01 1.58 51.14 53.91
Thai 0.00 1.12 0.93 0.96 16.46 16.51
Turkish 0.34 3.84 3.94 17.18 21.28 21.73
Ukrainian 0.13 15.77 15.46 1.03 40.79 38.48
Umbundu 0.21 2.18 1.46 14.67 13.28 13.82
Urdu 1.68 32.62 31.91 2.20 53.99 53.91
Uzbek 0.11 0.75 0.79 17.11 14.21 17.17
Vietnamese 0.74 20.35 24.98 11.63 42.00 45.84
Welsh 0.95 1.41 1.60 17.99 16.89 18.12
Wolof 1.10 10.34 8.68 16.40 28.06 26.26
Xhosa 0.72 21.52 19.08 18.71 41.34 38.80
Yoruba 1.03 13.93 16.23 11.84 32.25 34.95
Zulu 0.50 23.34 20.13 17.82 42.55 40.54

Median 0.43 11.86 10.81 15.70 32.15 32.52
Average 0.71 15.87 15.72 11.87 34.78 34.69

Table 27: Speech translation results on FLEURS X → English evaluation dataset, broken down by source language
and training targets.
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B Training Dataset

Language Utterances Hours

FLEURS CV Total FLEURS CV Total

Abkhaz - 16,412 16,412 - 25.00 25.00
Afrikaans 1,025 - 1,025 3.58 - 3.58
Amharic 3,155 - 3,155 11.04 - 11.04
Arabic 2,098 21,948 24,046 6.02 25.00 31.02
Armenian 3,048 617 3,665 10.33 1.07 11.40
Assamese 2,776 831 3,607 10.35 1.34 11.69
Asturian 2,507 118 2,625 7.51 0.14 7.65
Azerbaijani 2,660 39 2,699 9.28 0.05 9.32
Basaa - 763 763 - 0.93 0.93
Bashkir - 20,836 20,836 - 25.00 25.00
Basque - 10,904 10,904 - 15.92 15.92
Belarusian 2,410 18,347 20,757 9.31 25.00 34.31
Bengali 2,992 15,598 18,590 10.61 25.00 35.61
Bosnian 3,086 - 3,086 9.96 - 9.96
Breton - 2,644 2,644 - 2.12 2.12
Bulgarian 2,966 3,212 6,178 9.45 4.65 14.10
Burmese 3,041 - 3,041 12.00 - 12.00
Cantonese Chinese 1,908 2,959 4,867 6.98 3.38 10.36
Catalan 2,294 16,188 18,482 7.39 25.00 32.39
Cebuano 3,242 - 3,242 12.00 - 12.00
Chuvash - 1,538 1,538 - 2.06 2.06
Croatian 3,449 - 3,449 11.68 - 11.68
Czech 2,806 14,815 17,621 8.41 19.57 27.97
Danish 2,461 2,734 5,195 7.48 3.29 10.77
Dhivehi - 2,682 2,682 - 3.81 3.81
Dutch 2,915 20,257 23,172 7.65 25.00 32.65
English 2,594 15,835 18,429 7.43 25.00 32.43
Erzya - 1,241 1,241 - 1.97 1.97
Esperanto - 14,503 14,503 - 25.00 25.00
Estonian 2,495 3,137 5,632 7.26 5.82 13.07
Filipino 1,868 - 1,868 7.57 - 7.57
Finnish 2,699 2,121 4,820 8.77 2.73 11.50
French 3,190 17,412 20,602 10.31 25.00 35.31
Frisian - 3,799 3,799 - 5.21 5.21
Fula 3,136 - 3,136 12.89 - 12.89
Galician 2,172 5,021 7,193 6.67 6.36 13.03
Ganda 2,302 - 2,302 10.95 - 10.95
Georgian 1,478 3,944 5,422 4.96 6.27 11.22
German 2,984 15,766 18,750 8.99 25.00 33.99
Greek 3,210 1,919 5,129 10.01 2.08 12.09
Guarani - 1,393 1,393 - 1.53 1.53
Gujarati 3,141 - 3,141 8.95 - 8.95
Hakha Chin - 817 817 - 0.65 0.65
Hausa 3,171 1,930 5,101 12.77 2.28 15.05
Hebrew 3,235 - 3,235 9.42 - 9.42
Hill Mari - 7,173 7,173 - 8.40 8.40
Hindi 2,114 4,437 6,551 6.61 5.23 11.84
Hungarian 3,091 7,744 10,835 9.27 10.86 20.13
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Language Utterances Hours

FLEURS CV Total FLEURS CV Total

Icelandic 924 - 924 2.83 - 2.83
Igbo 2,632 8 2,640 11.72 0.01 11.73
Indonesian 2,568 5,040 7,608 9.01 7.78 16.79
Interlingua - 5,030 5,030 - 5.22 5.22
Irish 2,800 537 3,337 11.71 0.58 12.29
Italian 3,026 17,032 20,058 8.98 25.00 33.98
Japanese 2,291 7,211 9,502 7.42 9.94 17.36
Javanese 3,042 - 3,042 11.12 - 11.12
Kabuverdianu 2,694 - 2,694 10.33 - 10.33
Kabyle - 26,356 26,356 - 25.00 25.00
Kamba 3,268 - 3,268 14.06 - 14.06
Kannada 2,270 - 2,270 8.16 - 8.16
Kazakh 3,186 453 3,639 11.68 0.63 12.31
Khmer 1,661 - 1,661 6.98 - 6.98
Kinyarwanda - 17,733 17,733 - 25.00 25.00
Korean 2,304 94 2,398 7.92 0.16 8.08
Kurmanji Kurdish - 4,426 4,426 - 4.88 4.88
Kyrgyz 2,816 1,787 4,603 9.31 2.32 11.63
Lao 1,793 - 1,793 7.20 - 7.20
Latvian 2,105 2,734 4,839 6.49 2.38 8.87
Lingala 2,991 - 2,991 14.60 - 14.60
Lithuanian 2,929 5,196 8,125 9.68 7.12 16.80
Luganda - 15,037 15,037 - 25.00 25.00
Luo 2,294 - 2,294 9.14 - 9.14
Luxembourgish 2,486 - 2,486 8.33 - 8.33
Macedonian 2,333 115 2,448 6.77 0.16 6.93
Malay 2,658 - 2,658 9.48 - 9.48
Malayalam 3,031 459 3,490 9.95 0.54 10.50
Maltese 2,891 1,944 4,835 9.89 2.42 12.30
Mandarin Chinese 3,239 6,655 9,894 9.68 6.00 15.68
Maori 2,940 - 2,940 15.10 - 15.10
Marathi 3,250 2,238 5,488 11.78 3.71 15.49
Meadow Mari - 19,365 19,365 - 25.00 25.00
Moksha - 173 173 - 0.26 0.26
Mongolian 2,971 2,149 5,120 10.50 3.07 13.57
Nepali 3,322 167 3,489 11.18 0.18 11.36
Northern-Sotho 1,570 - 1,570 8.69 - 8.69
Norwegian 3,156 314 3,470 10.82 0.38 11.20
Nyanja 2,649 - 2,649 10.40 - 10.40
Occitan 3,295 41 3,336 13.45 0.06 13.52
Odia - 482 482 - 0.68 0.68
Oriya 1,079 - 1,079 3.42 - 3.42
Oromo 1,688 - 1,688 6.51 - 6.51
Pashto 2,494 - 2,494 8.72 - 8.72
Persian 3,077 23,479 26,556 11.86 25.00 36.86
Polish 2,839 16,916 19,755 9.17 24.80 33.97
Portuguese 2,782 19,282 22,064 10.09 21.94 32.04
Punjabi 1,917 695 2,612 6.32 1.02 7.34
Quechua Chanka - 1 1 - 0.00 0.00
Romanian 2,887 5,113 8,000 10.10 5.65 15.75
Romansh Sursilvan - 1,552 1,552 - 2.43 2.43
Romansh Vallader - 671 671 - 1.18 1.18
Russian 2,559 17,444 20,003 8.03 25.00 33.04
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Language Utterances Hours

FLEURS CV Total FLEURS CV Total

Sakha - 1,594 1,594 - 2.63 2.63
Santali (Ol Chiki) - 279 279 - 0.37 0.37
Saraiki - 1,256 1,256 - 1.22 1.22
Sardinian - 458 458 - 0.53 0.53
Serbian 2,919 1,380 4,299 10.44 1.05 11.49
Shona 2,442 - 2,442 9.78 - 9.78
Sindhi 3,420 - 3,420 12.11 - 12.11
Slovak 1,955 2,967 4,922 5.86 3.11 8.97
Slovenian 2,504 1,461 3,965 7.69 1.43 9.13
Somali 3,051 - 3,051 12.31 - 12.31
Sorani-Kurdish 3,028 7,010 10,038 10.34 8.03 18.37
Sorbian, Upper - 808 808 - 1.48 1.48
Spanish 2,795 17,155 19,950 8.80 25.00 33.80
Swahili 2,993 16,481 19,474 12.71 25.00 37.71
Swedish 2,372 7,421 9,793 8.25 8.20 16.44
Taiwanese (Minnan) - 1,646 1,646 - 1.20 1.20
Tajik 2,289 - 2,289 8.53 - 8.53
Tamil 2,351 13,775 16,126 8.53 25.00 33.53
Tatar - 9,565 9,565 - 10.11 10.11
Telugu 2,296 - 2,296 7.87 - 7.87
Thai 2,596 21,797 24,393 8.44 25.00 33.44
Tigre - 10 10 - 0.01 0.01
Tigrinya - 10 10 - 0.02 0.02
Toki Pona - 2,450 2,450 - 2.34 2.34
Turkish 2,521 26,036 28,557 8.27 25.00 33.27
Twi - 12 12 - 0.01 0.01
Ukrainian 2,805 15,749 18,554 9.00 18.64 27.64
Umbundu 1,149 - 1,149 6.44 - 6.44
Urdu 2,101 4,130 6,231 6.96 4.98 11.94
Uyghur - 4,421 4,421 - 7.43 7.43
Uzbek 2,939 22,042 24,981 10.05 25.00 35.05
Vietnamese 2,988 2,475 5,463 9.03 3.12 12.15
Votic - 96 96 - 0.11 0.11
Welsh 3,354 7,769 11,123 11.56 11.06 22.62
Wolof 2,263 - 2,263 8.58 - 8.58
Xhosa 3,430 - 3,430 13.01 - 13.01
Yoruba 2,293 39 2,332 9.60 0.07 9.67
Zulu 2,720 - 2,720 13.54 - 13.54

Median 2,748 2,963 3,470 9.27 3.76 11.36
Total 268,000 725,660 993,660 950.09 954.98 1905.07

Table 30: Training data breakdown by language and source dataset (CV stands for Common Voice).
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