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Abstract

End-to-end speech summarization on long
recordings is challenging because of the high
computational cost. Block-wise Adaptation for
Speech Summarization (BASS) summarizes ar-
bitrarily long sequences by sequentially pro-
cessing abutting chunks of audio. Despite the
benefits of BASS, it has higher compute time
due to sequential processing of all blocks, re-
gardless of whether they are relevant to the final
summary. In this paper, we propose R-BASS,
a new relevance-aware block-wise adaptation
method. First, we introduce two approaches to
automatically estimate block relevance based
on lexical and semantic similarity between the
block-level transcript and the summary. Ex-
periments on the How2 dataset show that us-
ing ground truth relevance during inference im-
proves efficiency by 63.9 % by dropping irrele-
vant blocks. Finally, we incorporate relevance
scores into training using a novel relevance loss
and relevance predictor, and the proposed R-
BASS model makes it possible to drop 86.3
% of the blocks while retaining comparable
performance, resulting in a 2.2x speedup over
BASS.

1 Introduction

Generative models (Lakhotia et al., 2021; Brown
et al., 2020) have revolutionized the field of arti-
ficial intelligence. Speech summarization (Hori
et al., 2002; Rezazadegan et al., 2020; Murray et al.,
2010; Palaskar et al., 2019; Li et al., 2019; Shang
et al., 2018) is the task of taking in long input
recordings, identifying parts of the speech with
essential information, and generating a short tex-
tual summary that concisely conveys the impor-
tant information. End-to-end speech summariza-
tion (Sharma et al., 2022; Matsuura et al., 2023;
Jung et al., 2024) has been shown to improve
performance over cascade models that first tran-
scribe long recordings, and then summarize tran-
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scripts (Palaskar et al., 2019, 2021). However, such
models are difficult to train on very large inputs
owing to compute restrictions (Kano et al., 2023).

To address the challenge of long inputs,
Block-wise adaptation for Speech Summarization
(BASS) (Sharma et al., 2023) chunks the long in-
put speech into blocks. These blocks are then pro-
cessed independently, with the semantic context
being passed across blocks to facilitate remember-
ing information from past blocks. Though BASS
has better performance and lower computational
cost over training directly on long sequences and
can process arbitrarily long sequences by updat-
ing summaries based on new acoustic information,
processing of all relevant and irrelevant blocks is
computationally inefficient. In this paper, we intro-
duce R-BASS, a relevance-aware block-wise model
that first predicts whether the new block of acoustic
information is relevant to the summary before inte-
grating new information only from relevant blocks
into the semantic context.

To decide whether a given block is relevant or
not, we analyze the acoustics of the block and the
generated summary thus far. If the acoustic infor-
mation within a new block possesses higher seman-
tic similarity with the previously produced sum-
mary, we deem such blocks to be relevant. Then,
we examine automatic methods to label the rel-
evance of blocks based on lexical and semantic
similarity with the block transcript. Lexical simi-
larity involves looking at the number of words in
the transcript of a given block that are present in
the final summary. Semantic similarity is assessed
by calculating the similarity between BERT (Ken-
ton and Toutanova, 2019) embeddings of the given
block’s transcript and the summary. Finally, we
devise a relevance loss that can be used to guide
model predictions of relevance to be similar to the
ones obtained by automatic annotations. From ex-
periments on How2, R-BASS improves efficiency
while retaining comparable performance.
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2 Block-wise Adaptation for Speech
Summarization (BASS)

BASS is implemented as an attention-based
encoder-decoder model and comprises three main
blocks : (1) Encoder, (2) Updater, and (3) De-
coder. The input sequence X is represented as
a sequence of T abutting blocks of length B, i.e.,
X = [X1, X2, X3 · · ·XT ]. Given the i-th block of
input Xi, the encoder computes a high-level latent
representation H i of the input. A semantic embed-
ding Si is used to represent semantic context from
all blocks until the i-th block. An updater considers
the previous semantic embedding Si−1 and the new
acoustic information represented by H i and pro-
duces the updated semantic embedding Si for the
current block. The decoder finally uses the updated
semantic embedding Si to obtain a hypothesis for
the summary Ŷ i.

From a probabilistic perspective, at each block,
the BASS model estimates the probability of the
summary at the i-th block Y i given all prior speech
features X1:i P(Y i|X1:i, Y 1:i−1), which can be de-
composed as shown in Equation 1. The terms in the
decomposition P (Si|Xi) and P (Y i|Si) are mod-
eled by the encoder and decoder respectively.

P(Y i|X1:i) = P(Y i|Si)P(Si|S1:i−1, Xi) (1)

To make training tractable over arbitrarily large
inputs, backpropagation is performed block-wise
rather than utterance-wise. In the former, only ten-
sors that pertain to the current block of acoustic
input remain in the computational graph and GPU
memory while the latter is infeasible for long inputs
because all the tensors corresponding to all blocks
in the recording would have to be stored in the com-
putational graph and GPU memory. To perform
block-level optimization, block-level targets are
required to compute a loss. The i-th block Xi pro-
duces a block-level output Y i which is compared
to the reference summary for the entire recording
Y to obtain the loss, and backpropagation follows.

To combine information from the prior block and
the current encoded output, we first use Concate-
nation, which is a simple approach. In this the pre-
vious semantic embedding is concatenated along
the sequence (time) dimension with the current
acoustic embedding to produce the current seman-
tic embedding. This mechanism preserves more
information but can be less efficient than using a
fixed size of semantic embedding for all blocks.

Figure 1: Proposed Relevance-Aware Block-wise Adap-
tation for Speech Summarization

BASS not only allows one to use standard self-
attentions and avoid approximation errors, but it
can also be efficient for streaming speech summa-
rization, where summaries are expected to be up-
dated given new acoustic information. However,
it can result in longer training and inference times
than methods that use efficient self-attention for of-
fline training and inference. This can be mitigated
by using the fact that all blocks are not equally use-
ful to the summary. Since processing all blocks to
generate the final output summary at the last block
is computationally expensive, we propose R-BASS,
a method to predict and use block-level relevance.

3 Proposed R-BASS

3.1 Overview

The fundamental idea behind R-BASS is to develop
a mechanism to help the model learn when new
acoustic information is relevant. When the acous-
tic information in a new block is relevant, we can
update the semantic context to incorporate this in-
formation, and otherwise retain the same semantic
context. This approach (1) saves time and mem-
ory and (2) ensures that the context we use across
blocks is comprised solely of relevant information.

Since we aggregate context in the semantic space
for BASS, decisions on relevance need to be made
before updation. Figure 1 shows the model archi-
tecture for R-BASS where we insert a new relevance
estimator in the semantic space. The goal of the rel-
evance estimator is to predict whether the acoustic
information present in the current block is relevant
to the summary. During training, when we have ac-
cess to the ground-truth summary, all we need to do
is estimate the similarity between the ground-truth
summary and the encoded speech representations.
However, during inference, we do not have access
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to the reference summary to make decisions about
relevance. Therefore, we approximate relevance
during both training and inference by using the
similarity between the summary from the previous
output block Ŷ i−1 and the output of the encoder for
the current block, i.e., Enc(Xi). Equation 2 shows
how we compute relevance Ri of the i-th block us-
ing new speech information Xi, where Sim. stands
for a similarity function.

Ri = Sim.(Y,Xi) ≈ Sim.(Ŷ i−1, Enc(Xi)) (2)

Similarity, in general, can be computed using a
myriad of mechanisms including cosine distance,
however, since the previous summary Ŷ i−1 and
the current acoustic encoding Enc(Xi) belong to
different distributions, additional parameters are
required to transform the vectors into a common
space before computing similarity. We utilize a
cross-attention mechanism between the previous
summary and the current acoustics and obtain an
attention-based context vector. Since relevance
is modeled at the block level, we first obtain the
temporal mean of this attended context. The mean
attended context vector is then projected down to a
single value that represents the probability that the
current block is relevant.

Since backpropagation is performed at the block
level for BASS, the previous semantic embedding
is detached from the computational graph while
processing the current block. That is, gradients do
not flow through the past summary while comput-
ing relevance. To ensure that the encoder represen-
tations do not degrade when computing relevance,
we detach the encoder representation Enc(Xi)
from the computational graph as well. In this way,
the trainable attention and linear projection param-
eters used for computing relevance are the only
parameters updated.

To ensure that model predictions of relevance are
reasonable, we develop methods to automatically
tag blocks as relevant and irrelevant. Then, we use
these labels along with a relevance loss to fine-tune
BASS so that it learns to accurately predict the
relevance of blocks.

3.2 Labeling Relevance and R-BASS-Inf

To automatically label the relevance of blocks, we
compare the reference summary with the ground-
truth block-level transcript, rather than the input
speech. Since both representations will be in the
textual space, we can leverage textual similarity

metrics to assess relevance. Humans generally an-
notate relevance by looking for: (a) common key-
words between the transcript and summary, and (b)
related sentences based on semantics. If the block-
level transcript under consideration has words that
are present in the summary, then the block may be
considered relevant - we refer to this idea as lexical
similarity. If the block-level transcript is related in
intent or meaning to the summary, then the simi-
larity between semantic embeddings of the block-
level transcript and the summary is high, and the
block is relevant – this is semantic similarity. We
remove stop words using NLTK (Bird and Loper,
2004) before computing similarity metrics to avoid
basing similarity on stop words.
Lexical Similarity: One of the ways to capture rel-
evance is to assess word overlap. We calculate the
ratio of the number of words in the current block’s
transcript that occur in the reference summary to
the number of words in the reference summary.
This ratio reflects the degree of lexical similarity.
If the i-th block’s transcript is denoted as T i, and
the reference summary is represented as Y , then
the lexical similarity LS(T i, Y ) can be written as
shown in Equation 3.

LS(T i, Y ) =
#(y ∈ T i|y ∈ Y )

#(y ∈ Y )
. (3)

The ratio LS(T i, Y ) represents the degree of
relevance. However, in R-BASS, we focus only on
whether or not a given block is relevant. Therefore,
we apply a threshold τ = 0 to convert LS(T i, Y )
to a binary value.
Semantic Similarity: This metric captures similar-
ity in the semantic space between the block-level
transcript T i and the reference summary Y . We ex-
tract BERT (Kenton and Toutanova, 2019) embed-
dings from the transcript and reference summary.
The cosine similarity between the two embeddings
is our measure of semantic similarity SS(T i, Y ).
This computation is described in Equation 4, where
B() represents the BERT embeddings of the given
text. We use τ = 0.4 based on the data distribution
to get binary values

SS(T i, Y ) = cos-sim(B(T i),B(Y )) (4)

To evaluate the quality of obtained pseudo-labels,
we can use these relevance pseudo-labels directly
during inference (R-BASS-Inf ) to produce sum-
maries using only relevant blocks. We compare
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this to a baseline that randomly selects a fraction
of blocks without relying on any relevance metric,
and another baseline that does not use relevance to
validate whether the lexical and semantic similarity
approaches accurately capture relevance.

Apart from using labels during inference, we can
also train R-BASS models to predict relevance on
a given block, and then use this predicted relevance
to produce summaries during inference. Such a
model is optimized using a relevance loss described
in the next section.

3.3 Introducing Relevance Loss for Gated
Attention

Now that we devised mechanisms to model rele-
vance within the R-BASS model architecture and
methods to obtain automatic annotations for rele-
vance, we describe the Relevance loss used to train
R-BASS. To estimate the true relevance Ri, for
the i-th block, we obtain the Binary Cross-Entropy
(BCE) loss between the predicted relevance R̂i and
the reference annotation R. In doing so, we explic-
itly train the model to learn the weights that capture
the relevance between the block transcript and the
reference summary.

4 Experiments and Results

4.1 Setup

Dataset Experiments are performed using the
How2 dataset (Sanabria et al., 2018), which con-
tains 2000h of instructional videos. More details
can be found in Appendix A.1.
Model Hyperparameters Our conformer encoder
(Gulati et al., 2020) - transformer (Vaswani et al.,
2017) decoder models use ESPNet2 (Watanabe
et al., 2018), and computational cost and hyperpa-
rameters are discussed in Appendix A.2.
Evaluation Metrics: ROUGE (Lin, 2004),
METEOR (Banerjee and Lavie, 2005), and
BERTScore (Zhang et al., 2020) are the most com-
mon automatic metrics for summarization.

4.2 Labeling relevance and evaluating labels
using R-BASS-Inf

First, we compute relevance based on lexical and
semantic similarity and examine whether they are
correlated. To do this, we utilize blocks that are
10 seconds long, not too short to not have enough
useful information, but not too long so that rele-
vance measures can be fine-grained. We calculate

the lexical and semantic relevance per block, creat-
ing a vector of binary relevance measures for each
recording. Taking the dot product of the two vec-
tors and averaging over all examples in the training
data yields an averaged dot product of 0.7, demon-
strating that semantic and lexical relevance capture
similar information in the data.

Figure 2 shows the binary relevance using aver-
aged lexical and semantic similarity scores of the
training data as a function of block index. The first
block is the most relevant on average, and relevance
decreases as the block index increases. The plot
also demonstrates that both semantic and lexical
similarity have similar trends across the blocks.

Next, we utilize the obtained relevance labels
for the test set to perform block-wise inference
while considering only the relevant blocks. Table 1
compares two baseline models trained using FNet
self-attentions and BASS with R-BASS models
that use the ground-truth labels during inference.
Lex R-BASS-Inf. (GT) and Sem R-BASS-Inf(GT)
use relevance labels based on lexical and semantic
similarity computed using the reference block tran-
script and reference summary. Experiments show
that though both these approaches obtain the same
performance as the BASS baseline, using semantic
similarity-based labels leads to greater efficiency
improvements, and enables one to drop 63.9% of
the blocks on average. When we the more effi-
cient Sem R-BASS-Inf(GT) to a corresponding ran-
dom baseline Random R-BASS-Inf. that randomly
drops 63.9% of the blocks, we note that the seman-
tic label-based approach outperforms the random
baseline in performance, showing the utility of the
proposed labeling strategies.

Since these approaches use the relevance pseudo-
labels during inference, any blocks that are known
to be irrelevant are skipped over at the input, and in-
cur no computational cost. Therefore, this leads to
a corresponding speed-up by a factor of 2.77 in in-
ference time on average using semantic similarity-
based relevance labels.

4.3 R-BASS with Relevance Loss
Computing the relevance labels using semantic and
lexical similarity assumes access to the reference
summary and block-level transcripts, which are
hard to obtain apriori. Therefore, in this section,
we evaluate the R-BASS models trained using the
relevance loss to predict block relevance.

R-BASS models can be trained using labels
based on semantic similarity (Sem R-BASS w/ Loss)
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Figure 2: Binary relevance scores averaged over all
training samples as a function of block index in audio
recordings

Table 1: Performance of R-BASS-Inf and R-BASS w/
Loss using Lexical and Semantic Similarity. ROUGE-L
(R-L), METEOR (MTR) and BERTScore(B.Sc.) are
reported with the % of dropped blocks (efficiency gain

Updater R-L↑ MTR↑ B.Sc.↑ % Dropped↑
Baseline-FNet 57.27 29.77 91.62 -
Baseline- BASS 57.98 31.67 91.48 -

Random R-BASS-Inf. 55.76 30.47 90.91 63.90
Lex R-BASS Inf.(GT) 57.96 31.67 91.48 42.25
Sem R-BASS Inf.(GT) 57.96 31.67 91.48 63.90

Lex. R-BASS w/ Loss 57.05 30.91 91.30 69.20
Sem. R-BASS w/ Loss 57.82 31.15 91.42 86.31

or lexical similarity (Lex R-BASS w/ Loss). The
final two rows of Table 1 report the summariza-
tion performance and number of blocks dropped
based on predicted relevance labels. When using
R-BASS with the relevance loss, we find that the
number of dropped blocks can be further increased
with a small drop in performance. Training with
lexical relevance enables the dropping of 69.2 %
of blocks and training with semantic relevance en-
ables the dropping of up to 86.3 % of blocks, which
is a considerable improvement in efficiency over
the baseline BASS approach.

Next, we consider the implications of dropping
86.3 % of blocks on speed-up at inference time.
We observe that R-BASS with semantic relevance
takes on average 7.28 seconds compared to BASS
which takes 16.02 seconds, a 2.2x speed-up over
BASS in inference time. By dropping 86.3 % of
blocks, the expected speed-up may be computed
as 7.29 (100/(100-86.3)), which is lower than the
observed speed-up. This is because in R-BASS the
decision about whether or not to drop an irrelevant
block occurs not at the input, but after the relevance
prediction by the relevance estimator. Therefore,

the expected speed-up is smaller due to additional
computation for the dropped blocks including ob-
taining the encoder output, computing the atten-
tion between the encoder output and the previous
decoder states, and the projection to produce the
single-dimensional relevance prediction.
Qualitative Analysis: We perform qualitative anal-
ysis by human inspection to evaluate the impact
of R-BASS on summary quality, and find that the
R-BASS does not degrade the quality of summaries
significantly( see Table 3 in Appendix B). We also
compute UniEval (Zhong et al., 2022) scores for
coherence, consistency, fluency, and relevance, and
find that R-BASS does not significantly degrade
quality along these dimensions (see Table 4 in Ap-
pendix C).

5 Conclusion

In this paper, we address the challenge of efficiency
within blockwise models for speech summarization.
First, we introduce a novel model R-BASS that
only processes relevant blocks rather than all blocks
to produce a summary more efficiently. To realize
R-BASS, a relevance estimator is used to predict
whether an acoustic block is relevant based on its
similarity with the previous block summary.

To obtain labels to train the relevance estima-
tor, we propose to obtain binary relevance labels
using lexical and semantic similarity between the
block transcript and reference summary. Experi-
ments demonstrate that there exist multiple irrel-
evant blocks, which can be ignored to improve
efficiency while retaining performance.

Finally, we introduce a relevance loss to teach
BASS models to predict and use relevance dur-
ing inference time. Experiments show that train-
ing with the proposed semantic similarity loss en-
ables faster processing by dropping around 86%
of blocks as irrelevant, resulting in a 2.2x faster in-
ference than BASS while obtaining relatively small
performance degradations.
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Societal Impact

We believe that our work will enable the
widespread use of technologies that can summa-
rize long recordings into condensed textual descrip-
tions. By making existing streaming models more
efficient, our work reduces the carbon footprint
of such technologies and enables their use in a
more diverse and inclusive set of environments.
From serving people with disabilities who find it
challenging to process long-form audio content, to
improving industrial efficiency in information con-
sumption and decision-making, we believe that our
work can positively influence society.

Limitations

In our work, we assume that the first block is
always relevant - this assumption is true for the
dataset we use, How2, but may not be a general
conclusion across all data settings. BASS and
consequently R-BASS are approaches that pro-
cess blocks in sequence, and R-BASS improves
time and compute efficiency during training and
inference over BASS, however such approaches
are likely slower for offline (non-streaming) appli-
cations than end-to-end models that use limited
context.

Risks

All the work in this paper was done in such a man-
ner so as to minimize the risk of misuse and bias.
However, BERT was used to extract semantic em-
beddings for semantic relevance, and it is possible
that such computations carry impacts of the bias in
BERT models.

Our models were built using instructional How2
videos mined from YouTube, and our work can
enable online speech summarization to help obtain
succinct summaries. On the other hand, there may
be biases within the data that favor more accurate
recognition and understanding of certain kinds of
speech. We recommend using our models only
for video summarization subject to the license con-
straints of the How2 dataset.
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A Appendix

A.1 How2 Dataset
The dataset has audio, corresponding transcripts,
and a user description that is treated as the refer-
ence abstractive summary. The standard split of
How2 from (Sharma et al., 2022) is used for all
our summarization experiments.

Table 2: Statistics of the How-2 2000h Dataset used for
model training and evaluation. The mean and maximum
statistics of N- the input length in frames, and L- the
output length (in tokens) is shown.

Set N. Recordings Max N Mean N Mean L Max L
Train 72,981 145,082 9,806.58 60.54 173
Test 2,127 39,537 9,866.55 60.29 152

A.2 Model Hyperparameters and
Computational Cost

Our end-to-end speech summarization models are
first pre-trained on the ASR task and then fine-
tuned for summarization. The encoder consists of
convolutional subsampling by factor 4, followed
by 12 conformer (Gulati et al., 2020) blocks with 8
attention heads and hidden size 2048. The decoder
has 6 transformer (Vaswani et al., 2017) blocks,
with 4 attention heads and hidden size 2048. Mod-
els have 103M parameters. Both the encoder and
decoder use a dropout rate of 0.2. We use a 43-
dimensional filter bank and pitch features as input
to the encoder. Summarization models are first pre-
trained on ASR using joint CTC-attention (Watan-
abe et al., 2017) and then fine-tuned for summariza-
tion (Sharma et al., 2022).

Our experiments were performed using 4xA40
48GB GPUs - ASR pretraining took 2 days, while
BASS and R-BASS fine-tuning took 1.5 days and
0.8 days respectively.

B Qualitative Analysis of Summaries

C UniEval Evaluation of Summaries
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Table 3: Qualitative Analysis of R-BASS results

Ground-truth BASS R-BASS R-BASS-Inf
LOOKING FOR
NEW LIP COLOR
IDEAS ? GET
TIPS FOR APPLY-
ING LIP COLOR
TO DRAMATIC
MAKEUP IN THIS
FREE VIDEO
CLIP FROM A
PROFESSIONAL
COSMETOLO-
GIST .

DRAMATIC
EYE MAKEUP .
GET TIPS FOR
APPLYING LIP
GLOSS IN THIS
FREE VIDEO
CLIP FROM A
PROFESSIONAL
COSMETOLO-
GIST .

ADDING PINKY
LIP COLOR CAN
BE TRICKY . GET
TIPS FOR US-
ING PINKY LIP
COLOR IN THIS
FREE VIDEO
CLIP FROM A
PROFESSIONAL
COSMETOLO-
GIST .

DRAMATIC
EYE MAKEUP .
GET TIPS FOR
APPLYING LIP
GLOSS IN THIS
FREE VIDEO
CLIP FROM A
PROFESSIONAL
COSMETOLO-
GIST .

COMBINE OYS-
TER SAUCE
, SHERRY ,
SESAME OIL
AND WATER FOR
A SAUCE TO
COOK THE
CHICKEN
IN . MAKE
SAUCE FOR
CANTONESE
CHICKEN
WITH GINGER-
SCALLION
FRIED RICE
WITH TIPS
FROM A PROFES-
SIONAL CHEF
IN THIS FREE
VIDEO ON CULI-
NARY ARTS .

ADD THE CORN-
STARCH TO THE
CHICKEN MARI-
NADE FOR THE
CHICKEN MARI-
NADE . ADD
CORNSTARCH
FOR GENERAL
TSO ’S CHICKEN
WITH FRIED
MUSHROOM
RICE WITH
TIPS FROM A
PROFESSIONAL
CHEF IN THIS
FREE VIDEO ON
CULINARY ARTS
.

THE CHICKEN
MARINADE IS A
MARINADE FOR
THE CHICKEN
. MAKE THE
CHICKEN STOCK
FOR GENERAL
TSO ’S CHICKEN
WITH FRIED
MUSHROOM
RICE WITH
TIPS FROM A
PROFESSIONAL
CHEF IN THIS
FREE VIDEO ON
CULINARY ARTS
.

ADD THE CORN-
STARCH TO THE
CHICKEN MARI-
NADE FOR THE
CHICKEN MARI-
NADE . ADD
CORNSTARCH
FOR GENERAL
TSO ’S CHICKEN
WITH FRIED
MUSHROOM
RICE WITH
TIPS FROM A
PROFESSIONAL
CHEF IN THIS
FREE VIDEO ON
CULINARY ARTS
.

INTERESTED
IN MAKING
STAINED GLASS
PROJECTS ?
LEARN HOW
TO LAY OUT
GLASS PIECES
ON PATTERNS
IN THIS FREE
VIDEO ABOUT
PREPARING
ART GLASS FOR
STAINED GLASS
CRAFTS .

GLASS CUTTERS
NEED TO BE CUT
AND THE GLASS
. SEE HOW TO
CUT GLASS
FOR A GLASS
CUTTER IN THIS
FREE VIDEO .

MAKING
STAINED GLASS
PATTERNS
IS EASY WITH
THESE TIPS . GET
EXPERT ADVICE
ON ARTS AND
CRAFTS FOR
YOUR GLASS
IN THIS FREE
VIDEO .

GLASS CUTTERS
NEED TO BE CUT
AND THE GLASS
. SEE HOW TO
CUT GLASS
FOR A GLASS
CUTTER IN THIS
FREE VIDEO .
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Table 4: UniEval scores of the best performing R-BASS-Inf, BASS and R-BASS w/ Loss models

Unieval dimension R-BASS Inf. BASS R-BASS w/ Loss

Coherence 0.69 0.69 0.67
Consistency 0.70 0.70 0.69
Fluency 0.85 0.85 0.83
Relevance 0.79 0.79 0.77
overall 0.76 0.76 0.74
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