
Findings of the Association for Computational Linguistics: NAACL 2024, pages 858–875
June 16-21, 2024 ©2024 Association for Computational Linguistics

OVM, Outcome-supervised Value Models for Planning
in Mathematical Reasoning

Fei Yu1,2, Anningzhe Gao2, Benyou Wang1,2

The Chinese Unviersity of Hong Kong, Shenzhen, China
Shenzhen Research Institute of Big Data

222043013@link.cuhk.edu.cn, gaoanningzhe@sribd.cn, wangbenyou@cuhk.edu.cn
https://github.com/FreedomIntelligence/OVM

Abstract

Large language models (LLMs) often struggle
with maintaining accuracy throughout multiple
multiple reasoning steps, especially in math-
ematical reasoning where an error in earlier
steps can propagate to subsequent ones and it
ultimately leading to an incorrect answer. To
reduce error propagation, guided decoding is
employed to direct the LM decoding on a step-
by-step basis. We argue that in guided decod-
ing, assessing the potential of an incomplete
reasoning path can be more advantageous than
simply ensuring per-step correctness, as the
former approach leads towards a correct final
answer. This transforms the task into a value
estimation problem in planning.

Inspired by the findings that outcome supervi-
sion for guided decoding essentially acts as a
value model, we propose Outcome-supervised
Value Model (OVM) that employs outcome su-
pervision for training a value model, which pri-
oritizes steps that lead to accurate conclusions.
Furthermore, the OVM eliminates the need for
labor-intensive annotations of step-level cor-
rectness, thereby significantly enhancing its
scalability. Our experiments on two multi-step
mathematical reasoning datasets, GSM8K and
Game of 24, demonstrate the superior perfor-
mance of the OVM model. Notably, in GSM8K,
our OVM-7B model achieves state-of-the-art
results among LLMs up to 13B parameters;
especially it does not utilize GPT-4 or code exe-
cution. These findings offer a novel perspective
on the role of outcome supervision in training
value models for multi-step reasoning tasks and
provide theoretical justification for its advan-
tage in value estimation for guided decoding.

1 Introduction

Multi-step reasoning problems are challenging for
even large language models (LLMs) (Creswell
et al., 2023; Press et al., 2022; Wei et al., 2022).
Chain of Thought (CoT) outputs a series of inter-
mediate reasoning steps before the final answer,

which significantly improves the performance (Wei
et al., 2022; Suzgun et al., 2023).

Verifying complete solutions Recent studies
(Cobbe et al., 2021, Uesato et al., 2022, Lightman
et al., 2023) have focused on training a verifier,
also referred to as a ‘reward model’, to verify the
correctness of a complete solution among various
candidates (Cobbe et al., 2021). This training gener-
ally involves two types of supervision for training:
outcome supervision and process supervision. Re-
cent research has demonstrated a clear advantage
of process supervision over outcome supervision
for training reward models in terms of verifying
complete reasoning paths (Lightman et al., 2023).

Guided decoding during intermediate steps
However, errors often happen during the decoding
of intermediate steps, leading to subsequent inac-
curacies due to error propagation. For instance,
GPT-4 often struggles with the initial step in the
Game of 24, yet it can solve the task with multi-
ple attempts (Yao et al., 2023). To this end, guid-
ing language decoding with step-level evaluation
has been proposed (Xie et al., 2023; Khalifa et al.,
2023; Yao et al., 2023). Paralleling the concepts
of rewards and values in reinforcement learning,
the criteria for step-level evaluation could be either
future-agnostic (Xie et al., 2023) or future-oriented
(Yao et al., 2023); the latter (i.e., value models)
seems better as it has a longer-horizon perspective.

Value-based guided decoding. In line with
value-based guided decoding that considers the po-
tential of the possible future-generated solutions,
the challenge lies in value estimation. Previous
research primarily achieved this through extensive
lookahead sampling or simulation to estimate the
long-term returns (Hao et al., 2023; Zhu et al.,
2023; Yao et al., 2023); this introduces an addi-
tional decoding cost during the inference of an
LLM. An alternative method is to train a value
model that enables value estimation during infer-
ence without the need for simulation. Inspired by

858

https://github.com/FreedomIntelligence/OVM

the findings that outcome supervision for guided de-
coding essentially acts as a value model, as found
in this paper, we propose the use of outcome super-
vision to train a value model for value estimation
without simulation during inference, called OVM.

Experiments are conducted on two popu-
lar multi-step mathematical reasoning datasets –
GSM8K (Cobbe et al., 2021) and Game of 24 (Yao
et al., 2023). In GSM8K, our OVM-7B model ob-
tains state-of-the-art performance among models
with up to 13B parameters, attaining a 84.7% accu-
racy without resorting to supplementary datasets,
GPT-4, or executing programs. In Game of 24,
OVM-7B reaches 78.7% success rate with merely
20 nodes visited per step, in stark contrast to its
11% greedy success rate and 11.7% with majority
voting over 100 reasoning paths. Furthermore, we
demonstrate that our method attains competitive,
and often superior, performance using fewer sam-
pled reasoning paths compared to complete path
verification, on both GSM8K and Game of 24. This
indicates the effectiveness of OVM in value estima-
tion as a future-oriented evaluation.

In summary, our contributions are three-fold. (1)
An in-depth analysis on guided decoding: we
extend the previous discussion on outcome supervi-
sion and process supervision to the realm of guided
decoding. We theoretically prove that outcome su-
pervision for guided decoding is secretly a value
model. (2) A novel approach of OVM: we pro-
pose Outcome Value Models for guided decoding
that emphasize the potential correctness of the final
answer rather than focusing solely on the current
(partial) path’s correctness. Importantly, OVM with
outcome supervision does not need costly step-level
annotations typically required by process supervi-
sion, making it more scalable. Moreover, it merely
leverages the existing model and datasets without
introducing external elements. (3) Significance of
OVM: OVM (7B) achieves state-of-the-art results
in GSM8K among LLMs up to 13B parameters,
even outperforming those using additional data,
GPT-4, or code execution.

2 Background

We give the problem definition of mathematical
reasoning and guided decoding, as well as its dual
paradigms (i.e., reward-based and value-based).
The notations we used are summarized in Table 6.

2.1 Problem Defintion
We first introduce the mathematical reasoning prob-
lem definition and then introduce our adopted
paradigm.
Definition. A mathematical reasoning question
q requires a sequence of steps to be addressed,
whose solution path is S = [s1, . . . , sm, a], where
si represents the i-th step, m is the number of steps,
and a is the final answer.

To alleviate the issue of potential error propaga-
tion from previous steps in a single solution chain,
one approach is sampling multiple steps from the
generator and filtering. This is called guided decod-
ing, which incorporates a new evaluation criterion
to select steps during model generation (Yao et al.,
2023; Xie et al., 2023; Khalifa et al., 2023; Feng
et al., 2023).

Guided decoding Guided decoding intervenes
in the generation process with a new evaluation
criterion, in contrast to vanilla sampling which is
solely based on the Language Model (LM) proba-
bilities. Specifically, for each step t, suppose the
sampling size is K, the generator Φ produces a set
of candidate paths S(1:t) =

{
S
(1:t)
k

}K

k=1
based on

LM probabilities, where S
(1:t)
k = [s1k, . . . , s

t
k] is

the k-th partial path up to step t. Then, given an
evaluation criterion f(·) that can score an incom-
plete path S(1:t), we select the top-scored paths
with the beam size b (b < K for pruning), from
which the generation continues

{
S
(1:t)
k |k ∈ argtopb

k=1,··· ,K
f(S

(1:t)
k ; q)

}

This approach is primarily characterized by two
categories of guiding criteria: reward and value,
which are two concepts in reinforcement learn-
ing (Sutton and Barto, 2018), see details in Sec-
tion 2.2.

2.2 Reward-based and Value-based Guided
Decoding

In this subsection, we introduce ‘reward’-based
approaches and ‘value’-based approaches for math-
ematical reasoning in Sec. 2.2.1 and 2.2.2

2.2.1 Reward-based Guided Decoding
Reward-based approaches (Xie et al., 2023; Khal-
ifa et al., 2023; Hao et al., 2023), focusing on
the generated steps, assess the correctness of
the current steps in mathematical reasoning, i.e.
p(S(1:t) is correct|q).

859

(a) Reward and value (b) Outcome supervision and process supervision on training
models to evaluate complete paths

Figure 1: (a): When evaluating partial paths (here for the first two steps), reward focuses on the current states, while
value focuses on the unseen future outcomes. (b): Given a question q and a solution path [s1, · · · , sm, a], models
are trained to predict path correctness (circled output scalar on the last token). Outcome supervision replicates the
final answer’s correctness label across all steps (indicated by shaded labels), causing the model to implicitly learn to
foresee the future, predicting values for partial paths. By contrast, process supervision details per-step correctness
labels, causing the model to learn to predict step-level correctness, i.e. reward. Correct steps and answers are
colored in yellow and incorrect ones in grey.

Outcome supervision vs. process supervision
In mathematical reasoning, reward models are
well known in evaluating complete solution paths
p(S is correct|q), also called “verifiers” (Cobbe
et al., 2021; Uesato et al., 2022; Lightman et al.,
2023; Li et al., 2022; Khalifa et al., 2023). There
are two supervision strategies to train a verifier,
distinguished by the granularity of the supervision
signals, we refer to Appendix A for training details.

Outcome Supervision simply focuses on the
correctness of the final answer, at a coarser granu-
larity. The trained model is called Outcome Reward
Model (ORM) (Cobbe et al., 2021; Uesato et al.,
2022; Lightman et al., 2023).

Process Supervision offers more fine-grained,
step-wise labels of the solution path, providing
per-step correctness. The trained model is called
Process Reward Model (PRM) (Uesato et al., 2022;
Lightman et al., 2023; Li et al., 2023b).

Current research indicates that process supervi-
sion generally outperforms outcome supervision
since the former adapts finer-grained supervision
in verifying complete paths (Lightman et al., 2023).
However, in guided decoding that verifies incom-
plete paths, typical reward models might overlook
the current (incomplete) path’s future implications,
which will be further discussed in Section 2.2.2.

2.2.2 Value-based Guided Decoding
Value-based approaches (Yao et al., 2023; Hao
et al., 2023; Feng et al., 2023) estimate the expected

future rewards when starting from a given state (i.e.
the current incomplete reasoning path), which is
future-oriented. This is contrast to the definition
of rewards that is determined only by the seen in-
complete path and agnostic to the future path. As
shown in Figure 1(a), reward models assess paths
in a backward direction (e.g., the correctness of
seen steps) while value models assess paths in a
forward direction (e.g., the potential correctness the
final path with additional future unseen steps and
the answer â 1). Interestingly, we could term the
value-based guided decoding as “planning” based
on its nature of future orientation.

3 Outcome Supervised Value Models for
Guided Decoding

3.1 Motivation

Challenge of training value models Unlike la-
bels of reward models can be annotated manually
on a given (incomplete) reasoning path, it is chal-
lenging to obtain ground truth of value models for
each incomplete path during guided decoding. The
reason is that it is computationally-heavy to calcu-

1In reinforcement learning, value is defined as the expected
cumulative reward it receives in the long run with a discount
factor:

∑m−t
j=1 γj−1Rt+j . In our scenario, the discount factor

is 1, all intermediate rewards Rt+1Rt+2 · · ·Rm−1 are 0, and
the final reward Rm is 1 if the answer is correct otherwise
0. So the cumulative reward is either 1 or 0 dependent on
the answer correctness. Therefore, the expected cumulative
reward is exactly the probability of correct answers.

860

late the expected rewards among all possible future
paths starting from the seen (incomplete) path, es-
pecially the number of resulted sequences grows
exponentially w.r.t the length of reasoning paths.

Rationale behind outcome supervised guided
decoding as a value model Therefore, the chal-
lenge in training value models lies in estimating
or labeling the value of observed reasoning paths.
Recalling the types of supervision – either outcome
or process – it’s evident that process supervision
is confined to paths already seen. However, out-
come supervision appears to have the potential to
assess the probable correctness of resulting final
paths, starting from the current incomplete one.
See this intuition in Figure 1(b). Intriguingly, upon
theoretical examination, we discover that outcome
supervision for guided decoding essentially acts
as a value model, as detailed in Sec. 3.2. This
revelation has inspired the adoption of outcome-
supervised value models specifically tailored for
guided decoding. 2

3.2 Outcome Supervision Leads to a Value
Model for Guided Decoding

We show theoretically that, given binary labels of
individual samples, outcome supervision implic-
itly estimates the global labels, or value, of the
intermediate steps during the optimization process.

Claim. For an outcome-supervised model fθ(·) pa-
rameterized by the optimal parameter θ, its score
of S(1:t) is the approximated probability of it reach-
ing a correct answer, i.e.,

fθ(S
(1:t); q) = p(â is correct|S(1:t), q) (1)

Proof. Suppose for each question q, we have the
generator producing n solution paths {Si}ni=1 with
the corresponding answers {ai}ni=1. The label yi
is 1 if ai is correct otherwise 0. The mean squared
error loss of outcome supervision is

l(S
(1:t)
i , yi; q) =

(
fθ(S

(1:t)
i ; q)− yi

)2

(2)

Given the training question set Q, the overall
objective is

L =
1

|Q|
∑

q∈Q

1

n

n∑

i=1

mi∑

t=1

(
fθ(S

(1:t)
i ; q)− yi

)2

(3)

2Feng et al. (2023) is a concurrent work with us for value
model.

Denote vqx = fθ(x; q), the partial derivation of
vqx is

∇v
q
x
L =

1

|Q|
1

n

n∑

i=1

mi∑

t=1

2Γ(S
(1:t)
i = x)(vq

x − yi) (4)

Set ∇vqx
L = 0, we can see

vq
x =

∑n
i=1

∑mi
t=1 Γ(S

(1:t)
i = x)yi∑n

i=1

∑mi
t=1 Γ(S

(1:t)
i = x)

(5)

which is p(â is correct|x, q), whose estimation’s
precision depends on the sampling. Choose the
model satisfying

fθ(x; q) =

∑n
i=1

∑mi
t=1 Γ(S

(1:t)
i = x)yi∑n

i=1

∑mi
t=1 Γ(S

(1:t)
i = x)

(6)

for all x ∈ {S(1:t)
i } is the optimal solution minimiz-

ing the loss function. Hence the optimal solution
satisfies

fθ(S
(1:t); q) = p(â is correct|S(1:t), q) (7)

Therefore,

fθ(S; q) = p(a is correct|S; q)

=

reward when [

S
︷ ︸︸ ︷
s
1
, . . . , s

t
, . . . , s

m
, a] i.e. a is seen

value when [

S
︷ ︸︸ ︷
s
1
, . . . , s

t
, . . . , sm, a] i.e. a is unseen

Intuitive Explanation This indirect method of
probability estimation in outcome supervision sim-
plifies the value model training process, which
avoids the need for explicit step-level continual
sampling and estimation for training labels. In-
stead, it leverages the binary correctness of individ-
ual samples as training labels, forcing the optimal
solution to be the probability of being correct under
mean square error, which is similar to the Monte
Carlo method to estimate the expectation.

3.3 Rethinking Supervision for Guided
Decoding: Outcome v.s. Process

With the above discussion, outcome supervision
and process supervision can be different in the con-
text of guided decoding. We claim that outcome
supervision supersedes process supervision in this
scenario for two reasons.

861

Outcome supervision is preferred due to its in-
herent future-guided orientation For guided
decoding, intuitively we should adopt a forward-
looking approach that prioritizes the final answer’s
correctness over mere the current path’s. This
favors value models over typical reward models.
Thus, outcome supervision, leading to value mod-
els, is preferred to process supervision that results
in reward models, for partial path evaluation.

Outcome supervision is labor-friendly without
fine-grained annotations In terms of future ori-
entation, rewards can be modified to introduce such
aspects, e.g. “whether steps are correct and help-
ful to the correct answer”. We acknowledge that
such reward adjustments are useful for planning.
However, annotating rewards at the step level is
labor-intensive. Furthermore, assessing steps’ con-
tribution to final answers, beyond mere correctness,
increases the labor demands of reward labeling.
In contrast, outcome supervision only requires the
final answer’s correctness.

4 Method

Building a training set for OVM Given a set of
questions Q comprising N training questions, we
initially query the generator to produce n solution
paths S = {S1, · · · , Sn} for each question q ∈
Q. This process yields N × n question-solution
pairs. Subsequently, we determine the binary label
for each question-solution pair by assessing the
correctness of the final answer.

Training a value model with outcome supervi-
sion The value model is implemented by adding
a linear layer with a single bias parameter after
the generator’s final unembedding layer, separate
from the generator Cobbe et al., 2021. The training
objective is to minimize the mean squared error
between the predicted value, based on the question
and solution, and the binary label.

For comparative purposes, we implemented re-
ward models trained through process supervision. 3

Detailed information can be found in Appendix A.

Inference - beam search with guided decoding
During inference, we employ a beam search strat-
egy guided by the OVM. Unlike the conventional
beam search, which relies on token-level probabil-
ity, our method is steered by the estimated values at
each step. The algorithm is detailed in Algorithm 1.

3Process supervision is only used in comparison, not in
OVM training.

Algorithm 1 Value-Guided Beam Search
1: Input: Question q, Beam size b, Sampled steps per state

K, Maximum step count T
2: Output: Best solution sequence for q
3: Model: Generator Φ and OVM f
4: procedure VALUEGUIDEDBEAMSEARCH(q, b,K)
5: Initialize step sequences S← {}
6: Sample initial steps {s11, . . . , s1K}
7: Evaluate values {v11 , · · · , v1K} for each step
8: Select top b valued steps and add to S
9: t← 1

10: while sequences in S are not complete and t < T do
11: Snew ← {}
12: V ← {}
13: for each sequence S(1:t) in S do
14: for i = 1 to K/b do
15: S

(1:t+1)
i = Φ(S(1:t); q)

16: v
(1:t+1)
i = f(S

(1:t+1)
i ; q)

17: Snew ← Snew + S
(1:t+1)
i

18: V ← V + v
(1:t+1)
i

19: end for
20: end for
21: Snew ← top b valued sequences from (Snew,V)
22: S← Snew
23: t← t+ 1
24: end while
25: return sequence with highest final value in S
26: end procedure

5 Experiment Results

5.1 Experimental settings

Benchmarks We conduct experiments on two
mathematical reasoning datasets, GSM8K (Cobbe
et al., 2021) and Game of 24 (Yao et al., 2023).

Baselines We benchmark our method against
leading models in GSM8K and the notable Tree-
of-Thought in Game of 24 (Yao et al., 2023), as
well as other guided decoding approaches. Addi-
tionally, we evaluate the efficacy of OVM planning
against the vanilla sampling methods of our imple-
mented generators, such as greedy search and post-
processing of multiple solutions generated without
guided decoding.

We conduct each inference experiment three
times and present the average results along with
their standard deviation. Given the variety of avail-
able beam sizes b for each sampling size K, we
simplify the reporting by only showcasing the best
results from all possible beam sizes. 4 Detailed
results for different beam sizes can be found in
Appendix D.

See the implementation details, including train-
ing and inference hyperparameters, in Appendix B.

4For instance, the result for K = 20 is the best one among
b ∈ (1, 2, 4, 5, 10).

862

Table 1: Accuracy on GSM8K. In the third column, we mark models that use GPT for inference or are trained with
GPT-generated data. Notably, we don’t rely on GPT, data augmentation, and code execution (execute the complete
code block outputting the final answer). SC denotes ‘Self-Consistency’ and RM denotes ‘Reward Model’.

Model Size GPT-3.5/4 Data Augmentation Accuracy

Open-Source Models without Code Execution
MuggleMATH (Li et al., 2023a) 7B ✓ ✓ 68.4%
Arithmo-Mistral 7B ✓ ✓ 74.7%
MetaMath-Mistral (Yu et al., 2023) 7B ✓ ✓ 77.7%
MetaMath (Yu et al., 2023) 13B ✓ ✓ 71.0%
MuggleMATH (Li et al., 2023a) 13B ✓ ✓ 74.0%
RFT (Yuan et al., 2023) 70B 64.8%
WizardMath (Luo et al., 2023) 70B ✓ 81.6%
MuggleMATH (Li et al., 2023a) 70B ✓ ✓ 82.3%
MetaMath (Yu et al., 2023) 70B ✓ ✓ 84.3%
Ours – OVM (Llama2-7B, K=100) 7B 73.7% ± 0.4%
Ours – OVM (Mistral-7B, K=100) 7B 84.7% ± 0.3%

Open-Source Models with Code Execution
ToRA-Code (Gou et al., 2023) 7B ✓ ✓ 72.6%
ToRA-Code (Gou et al., 2023) 13B ✓ ✓ 75.8%
ToRA-Code (SC, K=50) (Gou et al., 2023) 34B ✓ ✓ 85.1%
ToRA (Gou et al., 2023) 70B ✓ ✓ 84.3%
ToRA (SC, K=50) (Gou et al., 2023) 70B ✓ ✓ 88.3%

Closed-Source Models
PaLM (SC, K=32) (Huang et al., 2022) 540B 82.1%
DeepMind’s+RM Verification (K=96) (Uesato et al., 2022) 70B 87.3%
GPT-4 (Bubeck et al., 2023) - ✓ 87.1%
GPT-4 Code+Self-Verification (K=5) (Zhou et al., 2023) - ✓ 97.0%

5.2 Overall Performance
Benchmarking against current state-of-the-art
approaches The OVM performance in GSM8K
and Game of 24 is detailed in Table 1 and Table 2,
respectively. Notably, our Mistral-based 7B model
surpasses all models under 70B in GSM8K. In the
7B category, excluding Mistral-based models, our
Llama2-based 7B model achieves the highest per-
formance. In the Game of 24, OVM planning sig-
nificantly improves Llama2-7B’s accuracy, increas-
ing its accuracy from 11% to a remarkable 78.7%
with 20 sampled solution paths.

Table 2: Accuracy on Game of 24. GPT-4’s accuracy is
from Yao et al. (2023), and K of ToT is estimated from
Figure 3 in their paper.

Accuracy

GPT-4 CoT 4.0%
GPT-4 SC (K=100) 9.0%
GPT-4 ToT (K=60) 74.0%

Fine-tuned Llama2-7B 11.0%
Fine-tuned Llama2-7B SC (K=100) 11.7% ± 1.3%
Ours – OVM (Llama2-7B, K=20) 78.7% ± 1.7%
Ours – OVM (Llama2-7B, K=100) 98.3% ± 1.2%

Benchmarking against guided decoding ap-
proaches Table 3 shows that OVM excels over
most guided decoding approaches, with the ex-

ception of the GPT-based method. Remarkably,
OVM achieves comparable results to the GPT-
based method despite its smaller size (7B compared
to 175B) and fewer sampled paths (K = 10 versus
K = 80). Significantly, OVM improves the previ-
ous value-based SOTA by 18 absolute percentage
points (from 63.2% of CoRe to 81.2%), eliciting
the power of value-based methods.

Benchmarking against vanilla sampling base-
lines Table 4 shows OVM planning generally
outperforms ORM post-selection with the same
number of sampled paths. An exception occurs
with Mistral-7B at K=100 in GSM8K, where the
gap between OVM and ORM approaches appears
to reach saturation. As shown in Figure 3, in both
GSM8K and Game of 24, the accuracy improves
with larger sampling sizes. The gap between ORM
and OVM decreases as more paths are sampled.

Notably, training an OVM merely reuses existing
models and datasets, generating training solutions
and labels internally. This approach outperforms
those needing extra resources like code execution
or data augmentation. Moreover, its compatibility
with these techniques suggests the potential for
further improved performance when used together.

863

Table 3: Accuracy on GSM8K comparing with guided decoding approaches. ‘RM’ denotes ‘Reward Model’, and
‘VM’ denotes ‘Value Model’. ‘finetuned’ means the generator is tuned on the training dataset.

Model Backbone Setting K Type Accuracy

Reward-based
GRACE (Khalifa et al., 2023) Llama-7B finetuned 20 RM 30.9%
GRACE (Khalifa et al., 2023) T5-770M finetuned 20 RM 36.3%
SelfEval (Xie et al., 2023) GPT3.5-Codex-175B prompting 80 Prompting 85.5%

Value-based
RAP (Hao et al., 2023) Llama-33B prompting 10 Simulation 51.6%
CoRe (Khalifa et al., 2023) GPT-J-12B finetuned 40 Simulation 63.2%
Feng et al. (2023) Llama2-7B finetuned 10 VM 52.2% ± 0.9%
Feng et al. (2023) Llama2-7B finetuned 50 Simulation+Aggregation 59.4%
Ours – OVM (Llama2-7B) Llama2-7B finetuned 10 VM 66.5% ± 0.2%
Ours – OVM (Mistral-7B) Mistral-7B finetuned 10 VM 81.2% ± 0.6%

Table 4: Accuracy on GSM8K and Game of 24. Results averaged over 3 runs are reported. K denotes sampling size.

Method GSM8K Game of 24
Llama2-7B Mistral-7B Llama2-7B

Vanilla Sampling

Greedy 38.6% 58.4% 11%

SC K=20 53.3% ± 0.3% 70.2% ± 0.7% 10.3% ± 1.7%
K=100 57.4% ± 0.8% 72.6% ± 0.2% 11.7% ± 1.3%

ORM K=20 65.5% ± 0.7% 81.8% ± 0.2% 65.3% ± 5.3%
K=100 71.9% ± 0.6% 84.7% ± 0.4% 95.3% ± 0.5%

PRM K=20 66.4% ± 0.5% - 60.3% ± 4.2%
K=100 70.8% ± 0.7% - 93.3% ± 0.9%

Planning OVM K=20 69.0% ± 0.3% 82.6% ± 0.1% 78.7% ± 1.7%
K=100 73.8% ± 0.4% 84.7% ± 0.3% 98.3% ± 1.2%

6 Analysis and Discussion

This section seeks to answer the following two
Research Questions (RQs).

RQ 1. Can OVM plan?

RQ 2. How is outcome supervision compared to
process supervision for guided decoding?

Evaluation with correct answer proportion To
assess planning effectiveness, we analyze the pro-
portion of sampled solution paths yielding correct
answers in the final sampling stage, immediately
preceding the final solution selection. This offers
insights into guided decoding’s efficiency in steer-
ing towards correct answers.

6.1 RQ1: Can OVM plan?

We use “vanilla sampling” as the baseline for com-
parison, which relies on random solution sampling
based solely on LM probabilities, without guiding.

OVM is an effective planner guiding to the cor-
rect answers The result is shown in Figure 3. No-
tably, in GSM8K, less than 35% of the generator’s
randomly sampled solution paths are correct, and
this proportion increases to over 65% with OVM

planning. Similarly, in the Game of 24, OVM plan-
ning significantly boosts the correct answer pro-
portion from approximately just 10% in vanilla
sampling to an impressive 80%. Additionally, in
vanilla sampling, the proportion of correct solu-
tions remains consistent across various sampling
sizes. In contrast, OVM planning demonstrates im-
proved benefits with increased sampling sizes, up
to a point of saturation.

6.2 RQ2: How is outcome supervision
compared to process supervision for
guided decoding?

We further compare the performance of reward
models, trained under process supervision 5, with
OVM in guiding decoding for GSM8K and Game
of 24. Due to resource constraints, we only con-
ducted the experiments on Llama2-7B.

We investigate both typical and modified future-
oriented rewards in our study. The former rewards
steps (i.e. labeled as 1) for logical correctness,
while the latter rewards steps that are not only cor-
rect but also contribute to the correct final answer.
We refer to the model trained with this enhanced

5The training datasets and hyperparameters for the reward
models are identical to those of OVM

864

reward scheme as PRM-O, denoting its implicit
consideration of future Outcomes. See the details
for per-step correctness annotations in Appendix C.

Comparison in Game of 24 Figure 2 demon-
strates the evolving trends across training epochs,
illustrating that both OVM and PRM-O effec-
tively guide towards correct answers, in contrast
to PRM’s failure, highlighting the importance of
anticipating outcomes. 6 Notably, PRM-O shows
faster convergence than OVM, but OVM eventually
reaches a performance comparable to PRM-O. This
indicates that outcome supervision, relying only on
final answer correctness, may suffice for models
to learn outcome evaluation, while more detailed
step-level signals can accelerate this process.

1 2 4 6 8 10 11 12
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Co
rre

ct
 A

ns
we

r P
ro

po
rti

on

OVM
PRM-O
PRM

Figure 2: Comparison among OVM, PRM, and PRM-O
in correct answer proportion in Game of 24 (K=20)

Comparison in GSM8K See the results in Ta-
ble 5. PRM-O outperforms PRM, consistently fa-
voring anticipating outcomes. However, OVM and
PRM show similar performance levels. We analyze
the reason behind OVM’s lack of superior perfor-
mance over PRM as follows.

Table 5: Correct answer proportion in GSM8K in com-
parison among OVM, PRM, and PRM-O.

K=20 K=100

OVM 65.8% ± 0.6% 68.9% ± 0.2%
PRM 65.9% ± 0.6% 69.1% ± 0.3%
PRM-O 67.4% ± 0.6% 70.4% ± 0.2%

Analysis of the difference between Game of 24
and GSM8K Distinct patterns emerge in com-
paring outcome supervision versus process super-

6Two more training epochs are conducted for better visual-
ization.

vision across Game of 24 and GSM8K, likely due
to data specificity and data efficiency.

Data specificity concerns how well “correctness”
aligns with “helpfulness”. Our analysis shows a
stark contrast in the consistency between PRM la-
bels (logical correctness only) and PRM-O labels
(emphasizing contribution to the correct answer)
in Game of 24 and GSM8K, which are 56.9% and
98.6% respectively. This suggests that in Game
of 24, logical correctness does not reliably predict
answer success, making PRM vulnerable in such a
scenario. Conversely, OVM/PRM-O, with its em-
phasis on the helpfulness towards the final answer,
appears more robust. In GSM8K, where logically
correct steps typically lead to correct outcomes
(98.6% of cases), PRM is nearly as effective as
OVM in finding correct answers.

Data efficiency considers the dataset size rela-
tive to task complexity. In scenarios like GSM8K,
where the dataset is small for the task’s complexity,
PRM/PRM-O might offer more efficiency through
detailed step-by-step supervision. However, in sim-
pler tasks with adequately large datasets, such as
the Game of 24, while fine-grained supervision
might speed up training, it doesn’t necessarily trans-
late to better performance.

Overall, when considering both the performance
and annotation costs (see the statistics in Ap-
pendix C.3), outcome supervision demonstrates
superior utility across various settings: it reaches
competitive and even better performance than pro-
cess supervision, with significantly reduced de-
mands on annotation efforts.

7 Related Works

Complete path verification in mathematical rea-
soning Mathematical reasoning presents signifi-
cant challenges in arithmetic computation and com-
plex, multi-step reasoning. The complexity of such
tasks arises from the ease of making mistakes at
each step, which can influence subsequent steps
and final answers. In such scenarios, Verification
has gained popularity as a means of improving
accuracy by prioritizing the most plausible solu-
tions among multiple alternatives (Shen et al., 2021;
Cobbe et al., 2021; Weng et al., 2022; Zhou et al.,
2023). A common implementation of verification
involves training a specialized model to predict the
correctness of complete solutions, which is called
the verifier (Cobbe et al., 2021; Uesato et al., 2022;
Li et al., 2022; Khalifa et al., 2023). In training

865

verifiers, a debate exists between outcome-based
and process-based supervision, with recent trends
favouring process supervision (Uesato et al., 2022;
Lightman et al., 2023). In this paper, we explore
the potential of outcome supervision in planning.

Guided decoding in multi-step problem solving
Compared to selecting from the completed paths,
it is more efficient to guide the model decoding in
the middle of the process to filter harmful or less
helpful steps for multi-step problem-solving. There
are mainly two types of evaluation criteria for in-
termediate steps: reward-based (past-oriented) and
value-based (future-oriented). Reward-based meth-
ods assess the intermediate steps according to their
correctness or other characteristics of the steps al-
ready taken (Khalifa et al., 2023; Hao et al., 2023;
Xie et al., 2023). In contrast, value-based meth-
ods evaluate the intermediate steps based on the
potential outcomes in the unseen future (Yao et al.,
2023; Hao et al., 2023; Zhu et al., 2023; Feng et al.,
2023). The previous value-based approaches evalu-
ate the future potential through simulation, utilizing
Monte Carlo Tree Search (Hao et al., 2023; Zhu
et al., 2023). ToT simplifies the simulation process
using heuristics aided by GPT-4 in the Game of 24
(Yao et al., 2023). However, creating heuristics for
more complex and realistic mathematical datasets,
such as GSM8K, poses significant challenges. In
this paper, we explore developing a specialized
model to predict values on the fly without complex
simulation.

8 Conclusion

In conclusion, this paper presents a novel approach
in verifying intermediate steps and guiding model
generation. This is achieved through the introduc-
tion of the Outcome-based Value Model (OVM),
which employs outcome supervision in training a
value model for intermediate steps. Both theoreti-
cal and empirical evidence highlight the effective-
ness of outcome supervision for value estimation in
planning, offer a method that is more efficient and
effective than process supervision, which results
in a reward-based model. The OVM, requiring no
costly step-level annotations and fewer sampled
paths, demonstrates superior performance in com-
plex multi-step reasoning tasks, as evidenced by its
state-of-the-art results on GSM8K and impressive
success rate improvement in the Game of 24.

Limitations

Guided decoding, while effective, introduces a lim-
itation: it introduces an additional model to aid
the generator decoding, which imposes a more sub-
stantial demand on memory resources and deceler-
ates the inference process. This poses a significant
challenge in some real-world applications where
rapid response is crucial. Besides, our study does
not delve into the costs associated with training a
sufficiently accurate value model. While process
supervision may enable the training of a reward
model with a small dataset, outcome supervision
could necessitate a considerably larger dataset for
the effective training of a value model. This raises
concerns about the scalability of such a system. Ad-
ditionally, the generalization capability of the value
model remains unexplored in our research. This
omission leaves unanswered questions regarding
the model’s adaptability and performance consis-
tency across diverse or unforeseen scenarios.

Acknowledgement

This work is supported by the Shen-
zhen Science and Technology Program
(JCYJ20220818103001002), Shenzhen Doctoral
Startup Funding (RCBS20221008093330065),
and Tianyuan Fund for Mathematics of National
Natural Science Foundation of China (NSFC)
(12326608).

References
Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan,

Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter
Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg,
Harsha Nori, Hamid Palangi, Marco Túlio Ribeiro,
and Yi Zhang. 2023. Sparks of artificial general
intelligence: Early experiments with GPT-4. CoRR,
abs/2303.12712.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Antonia Creswell, Murray Shanahan, and Irina Higgins.
2023. Selection-inference: Exploiting large language
models for interpretable logical reasoning. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.

Tri Dao. 2023. Flashattention-2: Faster attention with

866

https://doi.org/10.48550/ARXIV.2303.12712
https://doi.org/10.48550/ARXIV.2303.12712
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://openreview.net/pdf?id=3Pf3Wg6o-A4
https://openreview.net/pdf?id=3Pf3Wg6o-A4
https://doi.org/10.48550/ARXIV.2307.08691

better parallelism and work partitioning. CoRR,
abs/2307.08691.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
In NeurIPS.

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen,
Weinan Zhang, and Jun Wang. 2023. Alphazero-like
tree-search can guide large language model decoding
and training. CoRR, abs/2309.17179.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2023. Tora: A tool-integrated reasoning
agent for mathematical problem solving. CoRR,
abs/2309.17452.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. CoRR, abs/2305.14992.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022.
Large language models can self-improve. CoRR,
abs/2210.11610.

Muhammad Khalifa, Lajanugen Logeswaran, Moon-
tae Lee, Honglak Lee, and Lu Wang. 2023.
Discriminator-guided multi-step reasoning with lan-
guage models. CoRR, abs/2305.14934.

Chengpeng Li, Zheng Yuan, Hongyi Yuan, Guanting
Dong, Keming Lu, Jiancan Wu, Chuanqi Tan, Xiang
Wang, and Chang Zhou. 2023a. Query and response
augmentation cannot help out-of-domain math rea-
soning generalization. CoRR, abs/2310.05506.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2022. On the
advance of making language models better reasoners.
CoRR, abs/2206.02336.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023b. Making
language models better reasoners with step-aware
verifier. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 5315–5333. Association for
Computational Linguistics.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Har-
rison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl
Cobbe. 2023. Let’s verify step by step. CoRR,
abs/2305.20050.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
CoRR, abs/2308.09583.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A. Smith, and Mike Lewis. 2022. Measuring
and narrowing the compositionality gap in language
models. CoRR, abs/2210.03350.

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin
Jiang, Ming Zhang, and Qun Liu. 2021. Generate &
rank: A multi-task framework for math word prob-
lems. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 16-20 November,
2021, pages 2269–2279. Association for Computa-
tional Linguistics.

Richard S Sutton and Andrew G Barto. 2018. Reinforce-
ment learning: An introduction. MIT press.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed Chi, Denny
Zhou, and Jason Wei. 2023. Challenging big-bench
tasks and whether chain-of-thought can solve them.
In Findings of the Association for Computational
Linguistics: ACL 2023, Toronto, Canada, July 9-14,
2023, pages 13003–13051. Association for Computa-
tional Linguistics.

Jonathan Uesato, Nate Kushman, Ramana Kumar,
H. Francis Song, Noah Y. Siegel, Lisa Wang, An-
tonia Creswell, Geoffrey Irving, and Irina Higgins.
2022. Solving math word problems with process- and
outcome-based feedback. CoRR, abs/2211.14275.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He,
Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao.
2022. Large language models are better reasoners
with self-verification. CoRR, abs/2212.09561.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min-
Yen Kan, Junxian He, and Qizhe Xie. 2023. De-
composition enhances reasoning via self-evaluation
guided decoding. CoRR, abs/2305.00633.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. CoRR,
abs/2305.10601.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T. Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. 2023. Meta-
math: Bootstrap your own mathematical questions
for large language models. CoRR, abs/2309.12284.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Chuanqi Tan, and Chang Zhou. 2023. Scaling
relationship on learning mathematical reasoning with
large language models. CoRR, abs/2308.01825.

867

https://doi.org/10.48550/ARXIV.2307.08691
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2309.17179
https://doi.org/10.48550/ARXIV.2309.17179
https://doi.org/10.48550/ARXIV.2309.17179
https://doi.org/10.48550/ARXIV.2309.17452
https://doi.org/10.48550/ARXIV.2309.17452
https://doi.org/10.48550/ARXIV.2305.14992
https://doi.org/10.48550/ARXIV.2305.14992
https://doi.org/10.48550/ARXIV.2210.11610
https://doi.org/10.48550/ARXIV.2305.14934
https://doi.org/10.48550/ARXIV.2305.14934
https://doi.org/10.48550/ARXIV.2310.05506
https://doi.org/10.48550/ARXIV.2310.05506
https://doi.org/10.48550/ARXIV.2310.05506
https://doi.org/10.48550/ARXIV.2206.02336
https://doi.org/10.48550/ARXIV.2206.02336
https://doi.org/10.18653/V1/2023.ACL-LONG.291
https://doi.org/10.18653/V1/2023.ACL-LONG.291
https://doi.org/10.18653/V1/2023.ACL-LONG.291
https://doi.org/10.48550/ARXIV.2305.20050
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2210.03350
https://doi.org/10.48550/ARXIV.2210.03350
https://doi.org/10.48550/ARXIV.2210.03350
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.195
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.195
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.195
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.48550/ARXIV.2211.14275
https://doi.org/10.48550/ARXIV.2211.14275
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2212.09561
https://doi.org/10.48550/ARXIV.2212.09561
https://doi.org/10.48550/ARXIV.2305.00633
https://doi.org/10.48550/ARXIV.2305.00633
https://doi.org/10.48550/ARXIV.2305.00633
https://doi.org/10.48550/ARXIV.2305.10601
https://doi.org/10.48550/ARXIV.2305.10601
https://doi.org/10.48550/ARXIV.2309.12284
https://doi.org/10.48550/ARXIV.2309.12284
https://doi.org/10.48550/ARXIV.2309.12284
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2308.01825

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi Song,
Mingjie Zhan, and Hongsheng Li. 2023. Solving
challenging math word problems using GPT-4 code
interpreter with code-based self-verification. CoRR,
abs/2308.07921.

Xinyu Zhu, Junjie Wang, Lin Zhang, Yuxiang Zhang,
Yongfeng Huang, Ruyi Gan, Jiaxing Zhang, and Yu-
jiu Yang. 2023. Solving math word problems via
cooperative reasoning induced language models. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2023, Toronto, Canada, July 9-14,
2023, pages 4471–4485. Association for Computa-
tional Linguistics.

Notation Description
q Mathematical reasoning question requiring a sequence of steps
Q A question set
S Solution path for a question, S = [s1, . . . , sm, a]
si The i-th step in a solution path
a Final answer in a solution path
m Number of steps in a solution path
y A binary label, either 1 or 0, indicating the correctness of a

S(1:t) Partial solution path up to step t, S = [s1, . . . , st]

S(1:t) Set of candidate partial paths S(1:t) =
{
S

(1:t)
k

}K

k=1
K Sampling size for candidates when inference
b Beam size for selecting top-scored candidates
n Number of sampled paths per question for training value models
Φ The language model as the generator
f A scoring model that maps a partial path to a number

v(1:t) Value (a number) of a partial path up to step t
θ Model parameter

PRM Process Reward Model, trained with process supervision
ORM Outcome Reward Model, trained with outcome supervision
OVM Outcome Value Model, trained with outcome supervision

Table 6: Summary of Notations Used in the paper

A Training Strategies

A.1 Outcome supervision for OVM
We train OVM with outcome supervision.

Training labels in outcome supervision In out-
come supervision, each question-solution pair only
requires a single binary label yo ∈ {0, 1}, indicat-
ing whether the final answer a is correct or not. In
practice, this label is expanded into a consistent
vector, yo = [yo, . . . , yo], matching the length of
the token sequence to enhance the robustness of
training procedures (Cobbe et al., 2021).

Training objective in outcome supervision
Given the training data (q, S, yo), the mean squared
error loss is calculated as

l(S,yo; q) = ||f(q;S)− yo| |2

Additionally, the model is jointly trained with lan-
guage modeling loss unweighted, following Cobbe
et al. (2021).

A.2 Process supervision for PRM
We train reward models (PRM and PRM-O) for
comparison with process supervision.

Training labels in process supervision In pro-
cess supervision, each question-solution pair re-
quires a vector of labels, [y1, . . . , ym], correspond-
ing to the number of steps involved, denoted by
m. Each element within this vector indicates
the correctness of its respective step. In prac-
tice, this vector is expanded to align with the
token sequence length by attributing the identi-
cal label, yi, across all tokens within the i-th
step. This results in the final label vector yp =
[y1, . . . , y1, . . . , ym, . . . , ym].

868

https://doi.org/10.48550/ARXIV.2308.07921
https://doi.org/10.48550/ARXIV.2308.07921
https://doi.org/10.48550/ARXIV.2308.07921
https://doi.org/10.18653/V1/2023.ACL-LONG.245
https://doi.org/10.18653/V1/2023.ACL-LONG.245

Complete path evaluation Partial path evaluation

Process supervision Reward Reward
Outcome supervision Reward Value

Table 7: Types of scores predicted by process- or outcome-supervised models on the complete path and partial path,
respectively. When evaluating partial paths, the predicted scores of outcome-supervised models are values.

Training objective in process supervision Pro-
cess supervision shares the same training objective
as outcome supervision, but differs in training la-
bels.

l(S,yp; q) = ||f(q;S)− yp| |2

B Implementation Details

Training generators We use the newline char-
acter as the marker for the end of each step. In
GSM8K, we fine-tuned Mistral-7B and Llama2-
7B on the training set. Given that GSM8K pro-
vides calculation annotations, our models were also
trained to utilize calculators. In Game of 24, we
fine-tuned Llama2-7B on problem indices 1-900
with enumerated solution paths. For both datasets,
the fine-tuning was carried out for 2 epochs, with
a batch size of 128. We set the maximum learn-
ing rate to 1e-5, using a linear scheduler with the
AdamW optimizer. We implement FlashAttention
for Llama2-7B (Dao et al., 2022, Dao, 2023).

Building training dataset for OVM Given the
training question set, we first sample 100 solution
paths for each question from the generator. The
decoding temperature is 0.7, top k is 50, top p is
1.0 and the maximum new tokens is 400. Then,
we detect the answer correctness for each sample.
In GSM8K, the answer correctness is determined
by exact string matching to the ground truth since
all the answers are integers. In Game of 24, the
answer correctness is based on the validity of the
equation equating to 24 and the singular usage of
input numbers, following (Yao et al., 2023). This
allows us to produce numerous OVM training sam-
ples using just question-answer pairs, without path
annotations, resulting in 747,300 training samples
for GSM8K and 90,000 for Game of 24.

Training OVMs/ORMs 7 OVMs were initial-
ized from the corresponding generator checkpoints.
In GSM8K, OVM was trained for 1 epoch with a

7Since we train the value model with outcome supervision,
the objective originally intended for ORM, the same model is
simultaneously used as OVM for partial paths and ORM for
complete paths in this paper.

batch size of 512. In Game of 24, OVM is trained
for 10 epochs with a batch size of 128, due to its
smaller training set. The optimizer was AdamW
and the maximum learning rate was set to 1e-5 for
Llama2-7B and 2e-6 for Mistral-7B respectively,
following a linear scheduler.

Training PRM and PRM-O Same as OVM,
PRM and PRM-O were initialized from the cor-
responding generator checkpoints. The training
dataset is the same set of question-solution pairs as
in OVM, but details per-step correctness as training
labels. See the annotation details in Appendix C.
All the training hyperparameters are consistent to
OVM’s.

Value-guided beam search The decoding tem-
perature is 0.7, top k is 50, and top p is 1.0. We
set the maximum new token length as 400 and the
maximum number of steps as 10. In Game of 24,
the generator produces more duplicated outputs
due to the small output space. During the beam
search process, we give priority to non-duplicate
sequences for selection.

C Process Label Annotation

C.1 Annotation protocol
Game of 24 We derive process labels by check-
ing the syntax and calculation, and matching to
all possible correct solutions, enumerated by rules.
Specifically, for PRM training (logical correctness
only), steps are labeled as 1 when the steps are log-
ically correct in rules, i.e. the calculation is correct
and each used number is given and only used in
once. For PRM-O training (logical correctness and
helpfulness), steps are labeled as 1 when they cor-
respond to any of the enumerated feasible correct
solution paths.

GSM8K We query GPT-4 to annotate process la-
bels without references. GPT-4 is asked to classify
each step into “correct”, “incorrect”, or “unneces-
sary”. The used prompt is shown as follows:

[Question]
question

869

[Correct Answer]
answer

[Solution]
solution path

[System]
You are an expert math examiner.
Review the student’s solution and mark
each step as correct only if it’s based on
accurate premises and helps solve the
problem. Mark it as "unnecessary" when
it is logically valid but doesn’t help.
Please mark with "[Conclusion]"
and summary all your judgements
in the format of "Step i is cor-
rect/incorrect/unnecessary".

We label “correct” steps as 1 and “incorrect”
steps as 0. For PRM training, “unnecessary” steps
are labeled as 1, while for PRM-O training, they
are labeled as 0.

C.2 Consistency evaluation for GPT-4
labeling in GSM8K

We conduct a consistency evaluation of GPT-4 la-
beling compared to human labeling on a small set.

Evaluation set construction To ensure coverage
of this set across paths of different lengths, we
randomly select two solutions from each length
set, including one with the correct final answer and
one with an incorrect answer. For instance, we
sample a correct solution and an incorrect solution
from both the 1-step path set and the 2-step path
set. Additionally, we apply the same sampling
procedure to the sets classified by the step length of
reference solutions. Finally, we get 116 question-
solution pairs.

Human evaluation We hire three master-level
students to annotate those examples as “correct”,
“incorrect”, or “unnecessary”.

Consistency analysis The agreement rates be-
tween GPT-4 labels and human labels are shown in
Table 8. This indicates GPT-4 can provide process
labels with high consistency to humans.

C.3 Annotation cost
PRM and PRM-O incur a considerably higher an-
notation cost compared to OVM due to the need for

Human 1 Human 2 Human 3 GPT-4

Human 1 - 0.89 0.88 0.87
Human 2 0.89 - 0.91 0.86
Human 3 0.88 0.91 - 0.86
GPT-4 0.87 0.86 0.86 -

Table 8: Agreement rates on 116 samples between GPT-
4 labeling and human labeling

detailed per-step correctness assessments. With N
questions and n sampled solution paths per ques-
tion, and an average step count of m for these paths,
the annotation cost for process supervision scales as
O(Nnm). In contrast, the annotation cost for out-
come supervision is O(Nn), requiring only the fi-
nal answer’s correctness for each question-solution
pair. Specifically, see the data statistics in Table 9.

Cost comparison in Game of 24 In Game of
24, the annotation cost for PRM and PRM-O is
four times higher than that of OVM, corresponding
to the average number of steps in solution paths.
Clearly, the longer the solution path, the greater the
annotation cost disparity between process supervi-
sion and outcome supervision.

Cost comparison in GSM8K In GSM8K, where
each question has a unique answer, the final an-
swer correctness for each sampled solution can
be derived by comparing the final answer to the
ground truth. This process significantly lowers the
annotation cost for outcome supervision to O(N),
compared to O(Nn(m−1)+N) for process super-
vision. Consequently, for OVM, 7,473 annotations
are needed (equivalent to the number of questions),
whereas PRM and PRM-O require 2,619,923 anno-
tations — 350 times more than OVM.

These comparisons underscore OVM’s lower an-
notation cost and better scalability.

D Detailed Experiment Results and
Hyperparameter Analysis

There are two critical hyperparameters in value-
guided beam search: sampling size and beam size.
We present the detailed results across various sam-
pling sizes and beam sizes in Table 10, Table 11
and Table 12.

D.1 Impact of beam sizes on OVM planning
In this section, we mainly explore the impact of
beam size choices on OVM performance. Notably,
there is one special case: when the beam size is
equal to the sampling size, the approach functions

870

#Questions #Solutions #Steps Cost in outcome supervision Cost in process supervision
all per question all per solution all labels annotations labels annotations

Game of 24 900 100 90,000 4.01 360,914 90,000 90,000 360,914 360,914
GSM8K 7,473 100 747,300 4.50 3,359,750 747,300 7,473 3,359,750 2,619,923

Table 9: Label and annotation statistics of outcome supervision and process supervision in GSM8K and Game of
24.

as vanilla sampling rather than guided decoding, as
it omits any intermediate selection or pruning.

Inference cost is consistent across various beam
sizes Regardless of the beam size, given a fixed
sampling size, the inference cost typically remains
unchanged. This uniformity arises because the gen-
erator produces a consistent number of next steps
(i.e., the sampling size) at each level of the tree,
leading to stable peak memory usage and inference
time which is primarily influenced by the genera-
tion phase, not by beam selection or data storage.

The impact of beam size on OVM effectiveness
We can observe from the tables that

(1) A relatively large beam size enhances the
accuracy. In GSM8K (Table 10 and Table 11),
accuracy improves with an increase in beam size,
but the proportion of correct answers first rises
then falls. In Game of 24 (Table 12), accuracy ini-
tially increases before declining, while the correct
answer proportion consistently decreases. These
observations imply that a larger beam size can posi-
tively impact accuracy up to a point, beyond which
it may become detrimental. We attribute the pat-
tern to (1) an initial reduction in error propagation
risk with increasing beam size, leading to higher
accuracy, and (2) an excessively large beam size
potentially introducing incorrect solutions, as in-
dicated by the drop in correct answer proportion,
thereby increasing the risk of false positives.

(2) OVM’s superiority over vanilla sampling
is robust. As shown in Table 10-Table 12, OVM
demonstrates a robust and consistently superior
planning capability compared to vanilla sampling,
as evidenced by a higher proportion of correct an-
swers across all beam sizes, including when the
beam size is 1 (losing the advantage of error prop-
agation), in both GSM8K and Game of 24. Addi-
tionally, OVM achieves better accuracy across a
range of moderate beam sizes, rather than limited
to specific settings, indicating the effectiveness of
OVM planning over vanilla sampling is not a result
of cherry pick. For example, any beam size of 4
or greater improves accuracy over vanilla sampling

for K=20 in GSM8K (Table 10 and Table 11). Sim-
ilarly, for K=100 in Game of 24, all beam sizes be-
tween 10 and 25 surpass the performance of vanilla
sampling (Table 12). The small standard variation
further underscores the reliability of these improve-
ments.

D.2 Comparison between outcome
supervision and process supervision

Comparison between two supervision strategies
in guided decoding across various beam sizes
When evaluating the performance across a spec-
trum of beam sizes beyond just the peak perfor-
mance, the analysis consistently shows that out-
come supervision is competitive and even better
than process supervision in terms of effectiveness.
Specifically,

(1) Outcome supervision excels in Game of 24.
According to Table 12, OVM outperforms PRM
in terms of both accuracy and correct answer pro-
portion across all beam sizes. When compared
to PRM-O, OVM demonstrates superior overall
performance. Specifically, OVM achieves higher
accuracy than PRM-O in 4 out of 5 scenarios at
K=20, and in 4 out of 8 scenarios at K=100.

(2) Outcome supervision holds up well in
GSM8K. In Table 10, the superiority of PRM-
O over PRM consistently underscores the value
of focusing on outcomes. OVM’s performance is
closely matched with PRM, reaching higher accu-
racy in 6 out of 13 scenarios for K=20 and K=100.
While OVM generally trails behind PRM-O across
all beam sizes, the difference is typically narrow,
often within a 3-point margin.

Overall, considering the annotation costs in Ap-
pendix C.3, OVM demonstrates superior utility in
both settings.

Comparison between two supervision strategies
in complete path verification When evaluat-
ing the performance of complete path verification
(vanilla sampling along with post-selection), it ap-
pears that process supervision does not necessarily
outperform outcome supervision. This observation
contrasts with previous findings, which suggested

871

process supervision is either on par with (Uesato
et al., 2022) or superior to outcome supervision
(Lightman et al., 2023) in certain contexts. See the
analysis below for this unexpected phenomenon:

(1) Outcome supervision exploits shortcuts
in Game of 24. Table 12 indicates that ORM
(outcome supervision) surpasses both PRM and
PRM-O (process supervision). Upon closer ex-
amination of the data, we identified cases where
intermediate steps were incorrect, yet the final an-
swers were correct. These cases imply that the
generator might occasionally find the right an-
swers by chance. Process-supervised models miss
these instances due to their incorrect pathways,
whereas outcome-supervised models benefit from
these “shortcuts” by prioritizing the accuracy of
the final answer, irrespective of the process taken
to arrive there.

(2) Two potential factors influencing the re-
sults in GSM8K. In GSM8K, ORM initially lags
behind PRM and PRM-O at K=20 but outperforms
them at K=100, as shown in Table 10. This shift
might be attributed to two potential factors: the
presence of shortcuts and the quality of process
labels. Firstly, similar to Game of 24, shortcuts
also exist in GSM8K, which might explain the
parallel findings by Uesato et al. (2022) that out-
come supervision and process supervision perform
comparably in GSM8K. As the number of sam-
pled paths increases, ORM’s chances of exploiting
a shortcut also rise, thereby enhancing its perfor-
mance over PRM and PRM-O. Secondly, the dis-
crepancy in process label quality might influence
results. According to Table 8, the average human
agreement rate is 89.3%, while the average human-
GPT4 agreement rate is 86.3% with a difference of
3 percentage points. This underscores the complex-
ities involved in annotating process labels.

872

Sampling size Beam size OVM PRM PRM-O
Accuracy Proportion Accuracy Proportion Accuracy Proportion

20

20† 65.5% ± 0.7% 32.9% ± 0.2% 66.4% ± 0.5% 32.9% ± 0.2% 66.6% ± 0.5% 32.9% ± 0.2%
10 69.0% ± 0.4% 62.3% ± 0.6% 69.4% ± 0.4% 63.0% ± 0.3% 69.6% ± 0.3% 63.2% ± 0.6%
5 68.9% ± 0.3% 65.4% ± 0.4% 69.6% ± 0.7% 65.9% ± 0.6% 71.3% ± 1.0% 67.4% ± 0.6%
4 69.0% ± 0.3% 65.7% ± 0.9% 69.2% ± 0.8% 65.3% ± 0.6% 70.7% ± 0.7% 66.4% ± 0.3%
2 67.8% ± 0.3% 65.8% ± 0.6% 68.4% ± 0.7% 65.9% ± 0.7% 69.2% ± 0.6% 66.4% ± 0.6%
1 55.9% ± 0.1% 55.2% ± 0.1% 66.8% ± 0.8% 65.4% ± 0.8% 67.4% ± 0.9% 66.0% ± 0.9%

50

50† 70.1% ± 0.2% 32.9% ± 0.1% - - - -
25 72.6% ± 0.4% 65.0% ± 0.2% - - - -
10 71.2% ± 0.3% 67.1% ± 0.2% - - - -
5 71.1% ± 0.6% 67.8% ± 0.6% - - - -
2 70.1% ± 0.8% 68.3% ± 0.8% - - - -
1 55.9% ± 0.2% 55.3% ± 0.2% - - - -

80

80† 70.5% ± 0.1% 32.8% ± 0.1% - - - -
40 72.4% ± 0.3% 65.9% ± 0.1% - - - -
20 71.8% ± 0.1% 68.6% ± 0.3% - - - -
10 71.6% ± 0.2% 68.5% ± 0.1% - - - -
5 70.4% ± 0.8% 68.2% ± 1.0% - - - -
4 70.9% ± 0.7% 68.5% ± 0.7% - - - -
2 69.4% ± 0.8% 68.0% ± 1.1% - - - -
1 67.5% ± 1.3% 66.6% ± 1.3% - - - -

100

100† 71.9% ± 0.6% 32.9% ± 0.01% 70.8% ± 0.7% 32.9% ± 0.01% 71.4% ± 0.7% 32.9% ± 0.01%
50 73.8% ± 0.4% 65.6% ± 1.5% 72.2% ± 0.3% 68.0% ± 0.2% 74.2% ± 0.4% 67.9% ± 0.1%
25 73.1% ± 0.5% 68.9% ± 0.2% 72.1% ± 0.2% 69.1% ± 0.3% 74.9% ± 0.2% 70.4% ± 0.2%
20 72.1% ± 0.5% 68.4% ± 0.3% 72.1% ± 0.2% 68.5% ± 0.4% 74.3% ± 0.4% 70.2% ± 0.2%
10 71.0% ± 0.4% 67.9% ± 0.3% 71.3% ± 0.4% 67.6% ± 0.6% 73.8% ± 0.3% 69.5% ± 0.1%
5 70.1% ± 0.3% 68.2% ± 0.1% 70.1% ± 0.4% 67.3% ± 0.4% 72.8% ± 0.5% 69.6% ± 0.4%
4 70.6% ± 0.7% 68.4% ± 0.3% 69.4% ± 0.6% 66.3% ± 0.2% 72.8% ± 0.2% 69.4% ± 0.1%
2 69.0% ± 0.5% 67.5% ± 0.5% 68.4% ± 0.2% 65.6% ± 0.4% 71.9% ± 0.1% 69.0% ± 0.1%
1 67.8% ± 0.7% 67.1% ± 0.7% 67.0% ± 1.0% 65.6% ± 1.1% 71.4% ± 0.3% 69.2% ± 0.2%

Table 10: Answer and correct answer proportion across various sampling sizes and beam sizes in GSM8K (Llama2-
7B). “Proportion” denotes “correct answer proportion”. ‘†’ denotes the setting of “vanilla sampling + post-selection”.
Due to resource constraints, experiments with PRM and PRM-O were limited to sampling sizes of K=20 and K=100.

Sampling size Beam size
OVM

Accuracy Proportion

20

20† 81.8% ± 0.2% 52.4% ± 0.2%
10 82.6% ± 0.1% 78.1% ± 0.3%
5 82.1% ± 0.4% 80.1% ± 0.4%
4 82.1% ± 0.3% 80.0% ± 0.2%
2 81.7% ± 0.3% 80.6% ± 0.2%
1 80.1% ± 0.8% 79.7% ± 0.7%

100

100† 84.7% ± 0.4% 52.4% ± 0.1%
50 84.7% ± 0.4% 80.9% ± 0.3%
25 84.7% ± 0.3% 82.0% ± 0.1%
20 84.3% ± 0.1% 81.2% ± 0.1%
10 84.2% ± 0.4% 81.7% ± 0.4%
5 83.0% ± 0.4% 81.3% ± 0.4%
4 83.2% ± 0.7% 81.4% ± 0.8%
2 82.0% ± 0.1% 81.0% ± 0.3%
1 81.2% ± 0.4% 80.8% ± 0.5%

Table 11: Answer and correct answer proportion across various sampling sizes and beam sizes in GSM8K (Mistral-
7B). “Proportion” denotes “correct answer proportion”. ‘†’ denotes the setting of “vanilla sampling + post-selection”.
Due to resource constraints, experiments were limited to sampling sizes of K=20 and K=100 with OVM.

873

Sampling size Beam size OVM PRM PRM-O
Accuracy Proportion Accuracy Proportion Accuracy Proportion

20

20† 65.3% ± 5.3% 8.8% ± 0.5% 60.3% ± 4.2% 8.8% ± 0.5% 61.7% ± 5.4% 8.8% ± 0.5%
10 72.3% ± 2.6% 16.0% ± 0.8% 53.3% ± 3.3% 9.2% ± 0.4% 68.7% ± 1.7% 15.5% ± 0.3%
5 78.0% ± 2.2% 36.8% ± 2.7% 27.7% ± 4.1% 8.5% ± 1.5% 73.3% ± 2.1% 33.7% ± 1.9%
4 78.7% ± 1.7% 46.7% ± 1.4% 24.0% ± 2.2% 8.4% ± 0.4% 77.7% ± 2.6% 42.4% ± 0.2%
2 76.0% ± 4.5% 61.7% ± 4.3% 9.7% ± 2.5% 6.0% ± 1.2% 78.7% ± 2.4% 63.3% ± 1.9%
1 76.7% ± 2.5% 76.7% ± 2.5% 6.0% ± 0.8% 6.0% ± 0.8% 72.7% ± 0.9% 73.0% ± 0.8%

50

50† 86.3% ± 3.4% 8.6% ± 0.3% - - - -
25 90.0% ± 0.0% 13.2% ± 0.2% - - - -
10 92.7% ± 0.9% 31.6% ± 0.2% - - - -
5 89.7% ± 0.5% 56.8% ± 0.2% - - - -
2 87.3% ± 0.5% 76.3% ± 0.2% - - - -
1 84.7% ± 1.2% 84.7% ± 1.2% - - - -

80

80† 95.7% ± 1.9% 8.5% ± 0.3% - - - -
40 95.0% ± 0.0% 12.0% ± 0.0% - - - -
20 96.0% ± 0.0% 20.6% ± 0.4% - - - -
10 97.3% ± 0.5% 40.2% ± 0.9% - - - -
5 92.0% ± 0.8% 63.3% ± 1.2% - - - -
4 92.3% ± 0.5% 70.0% ± 1.1% - - - -
2 88.7% ± 0.9% 79.0% ± 0.4% - - - -
1 85.0% ± 2.2% 85.0% ± 2.2% - - - -

100

100† 95.3% ± 0.5% 8.6% ± 0.1% 93.3% ± 0.9% 8.6% ± 0.1% 93.3% ± 0.9% 8.6% ± 0.1%
50 94.3% ± 1.7% 13.2% ± 0.6% 88.7% ± 0.5% 7.7% ± 0.2% 94.3% ± 0.9% 13.3% ± 0.2%
25 98.3% ± 1.2% 18.7% ± 0.5% 76.7% ± 2.9% 7.8% ± 0.4% 94.7% ± 1.9% 17.2% ± 0.9%
20 95.7% ± 0.9% 22.7% ± 0.4% 65.7% ± 2.9% 7.3% ± 0.3% 95.0% ± 1.4% 21.3% ± 0.7%
10 97.7% ± 0.5% 43.3% ± 0.5% 35.3% ± 3.4% 6.8% ± 0.7% 95.3% ± 1.2% 40.0% ± 0.9%
5 93.3% ± 1.2% 66.3% ± 0.9% 23.0% ± 1.6% 6.3% ± 0.6% 96.7% ± 0.5% 64.6% ± 0.9%
4 91.3% ± 0.5% 70.5% ± 0.9% 17.3% ± 2.5% 6.0% ± 0.7% 95.3% ± 0.9% 68.9% ± 0.8%
2 89.3% ± 1.9% 80.7% ± 1.6% 7.0% ± 1.4% 5.3% ± 0.8% 91.0% ± 0.0% 79.7% ± 1.7%
1 84.3% ± 0.5% 84.3% ± 0.5% 4.7% ± 1.2% 4.7% ± 1.2% 84.3% ± 0.9% 84.7% ± 1.2%

Table 12: Answer and correct answer proportion across various sampling sizes and beam sizes in Game of 24.
“Proportion” denotes “correct answer proportion”. ‘†’ denotes the setting of “vanilla sampling + post-selection”.
Due to resource constraints, experiments with PRM and PRM-O were limited to sampling sizes of K=20 and K=100.

874

20 50 80 100
Sampling Size (i.e. K)

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

OVM
ORM
SC

(a) Accuracy in GSM8K

20 50 80 100
Sampling Size (i.e. K)

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

OVM
ORM
SC

(b) Accuracy in Game of 24

20 50 80 100
Sampling Size (i.e. K)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Co
rre

ct
 A

ns
we

r P
ro

po
rti

on

OVM
Vanilla Sampling

(c) Correct answer proportion in GSM8K

20 50 80 100
Sampling Size (i.e. K)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Co
rre

ct
 A

ns
we

r P
ro

po
rti

on

OVM
Vanilla Sampling

(d) Correct answer proportion in Game of 24

Figure 3: The tendency of accuracy and correct answer proportion with respect to the sampling size (Llama2-7B)

875

