
Findings of the Association for Computational Linguistics: NAACL 2024, pages 1005–1017
June 16-21, 2024 ©2024 Association for Computational Linguistics

SLiM: Speculative Decoding with Hypothesis Reduction

Chi-Heng Lin Shikhar Tuli James Seale Smith

Yen-Chang Hsu Yilin Shen Hongxia Jin
Samsung Research America

{chiheng.lin,shikhar.tuli,james.smith,yenchang.hsu,
yilin.shen,hongxia.jin}@samsung.com

Abstract

Speculative decoding has emerged as a promi-
nent alternative to autoregressive decoding for
expediting inference in large language models
(LLMs). However, prevailing assumptions of-
ten focus solely on latency reduction, neglect-
ing the computational expenses. In this pa-
per, we present Speculate Less, validate More
(SLiM), a speculative decoding enhancement
to reduce the speculation set while validating
more effective tokens. SLiM is designed to mit-
igate LLMs’ computation costs associated with
the token verification by introducing hypothesis
reduction based on a fast posterior estimation.
It consistently surpasses counterparts lacking
cost reduction across a spectrum from CPU
to GPU. Our evaluation with diverse conver-
sational datasets shows that SLiM can achieve
a substantial 70% reduction in FLOPs while
generating more effective predictions on top of
prior arts.

1 Introduction

Recent advancements in large language models
(LLMs), such as LLaMA (Touvron et al., 2023a,b),
GPT-4 (OpenAI, 2023b), and Vicuna (Chiang et al.,
2023a), have showcased their tremendous potential
as proficient artificial intelligence (AI) assistants
(Geng and Liu, 2023; Biderman et al., 2023) across
diverse domains. Despite their widespread adop-
tion, these models are severely limited by inference
speed due to their serial decoding mechanisms.

To address this concern, several methods have
been proposed to expedite token generation. In
particular, speculative decoding (Leviathan et al.,
2023; Xia et al., 2022; Miao et al., 2023; Liu et al.,
2023; Spector and Re, 2023; Yang et al., 2023) has
emerged as a prominent strategy by leveraging the
speculate and verify mechanism, resulting in sub-
stantial inference time reduction. It is a dual-stage
procedure wherein (1) lightweight models generate
hypothesized token sequences speculatively, and

I’ll meet you

Drafting mechanism

at, the, party, where
at, our, house, and
at, the, house, and
at, your, party, and
at, our, party, and

0.3

0.2
0.1
0.3
0.1

Fast posterior estimation

New stage: hypothesis reduction

Stage 1: speculation

at, the, party, where
at, our, house, and
at, the, house, and
at, your, party, and
at, our, party, and

at the party where
at our house and
at the house and
at your party and
at our party and

Stage 2: verification

I’ll meet you
at the party

Original model

Figure 1: Prior works parallelize token generation by (1)
generating multiple hypotheses with a lightweight drafting
mechanism and (2) verifying the hypotheses with powerful
hardware in parallel. Our work introduces a hypothesis re-
duction stage to drastically reduce the computation, making
our approach friendly for resource-constrained devices.

(2) the original LLMs verify their acceptance. The
key principle of speculative decoding is that it re-
frames the inherent sequential decoding of tokens
as a parallel operation, leveraging hardware’s paral-
lelization power to reduce latency for time-sensitive
applications.

Two criteria need to be met for speculative de-
coding to gain speed: (1) the lightweight model
must draft the predictions much faster than the
original LLM, and (2) the device must have suffi-
cient computation throughput for the parallel ver-
ification of multiple hypotheses. While the first
criterion (light drafting mechanism) has garnered
attention and inspired several works, the second
criterion (speedy verification) has been generally
overlooked in the community. This becomes a
substantial concern since recent methods tend to
generate a relatively larger number of hypotheses
(Cai et al., 2023). In many practical scenarios, the
inference has very limited computational budgets,
and therefore a high-complexity verification step

1005

Table 1: Computational budget per iteration versus its in-
ference time with 8-bit quantized Vicuna-7B on NVIDIA
GeForce RTX 4090.

Hypothesis 1 4 5 8 26 65 95
GFLOPs/iter 19.6 40.0 59.0 117.6 254.8 431.2 607.6
Time/iter (ms) 1.00 1.74 1.87 1.94 2.65 2.74 2.83

can offset the speed-up benefits gained from specu-
lation. Table 1 shows an actual example, where the
forward latency increases with FLOPs along with
a larger number of hypotheses verification.

To mitigate the above caveat, we introduce the
three-stage speculative decoding process which in-
serts a novel hypothesis reduction stage between
the two existing stages. Figure 1 illustrates the pro-
cess, in which our hypothesis reduction performs a
fast posterior estimation to eliminate unlikely can-
didates, yielding high computation savings in the
verification stage. In other words, we propose to
have a lightweight verification strategy before per-
forming the expensive one. Our lightweight verifi-
cation computes the corrected posterior estimation
based on a simple bigram correlation function, pro-
viding a more confident assessment to prune the
hypotheses.

Figure 2 provides a preview of how our strategy
significantly reduces the number of floating-point
operations (FLOPs) per speculation step needed to
achieve the same speed. In summary, we make the
following contributions:

• Motivated by the need to reduce the number of
costly verifications for real-time applications, we
expand the speculative decoding paradigm with
a third hypothesis reduction stage to achieve sub-
stantial computation savings in the verification
stage.

• We contribute SLiM as a method for hypothesis
reduction in speculative decoding and show that
we can save 70% computations while achieving
a competitive speed-up performance (1.8-2.3×)
on various conversational benchmarks and dif-
ferent model sizes, paving the way for fast LLM
inference for on-device applications.

• We conduct empirical studies of SLiM on diverse
devices from CPUs to powerful GPUs. SLiM
universally outperforms both autoregressive de-
coding and state-of-the-art batch-speculative de-
coding in terms of real-time latency and token
generations per forward pass.

0 100 200 300 400 500 600 700
FLOPs/iter (G)

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Av
er

ag
e

ac
ce

pt
ed

 to
ke

ns
/it

er

w/ hypothesis reduction

w/o hypothesis reduction

Figure 2: Speedup-computations trade-offs for LLM infer-
ence on Vicuna-80 generic prompts (Chiang et al., 2023a).
The green and red points illustrate the distribution of speedup-
computation trade-offs within speculative decoding, both with
and without the hypothesis reduction proposed in this study.
Our proposed hypothesis reduction technique increases the
token acceptance rate with reduced computations.

2 Related Works

Given the widespread use of Large Language Mod-
els (LLMs) across diverse applications, the accel-
eration of their inference speed has garnered sig-
nificant attention (Kim et al., 2023a). Extensive
efforts have been dedicated to replacing the autore-
gressive decoding method with parallel decoding
(or non-autoregressive decoding) (Gu et al., 2017;
Wang et al., 2019; Li et al., 2019; Wei et al., 2019;
Shao et al., 2020; Ghazvininejad et al., 2019; Guo
et al., 2020; Kasai et al., 2020). While these works
focus on machine translation, Welleck et al. (2019);
Gu et al. (2019); Stern et al. (2019); Schuster et al.
(2022) consider sentence generation task. However,
these approaches often necessitate intricate model
training, which limits their practical applicability
in the context of large models.

Recently, Speculative Decoding (Chen et al.,
2023; Leviathan et al., 2023) has stood out as
a prominent approach to accelerate LLMs’ infer-
ences. This method adopts a “speculate and verify”
strategy, utilizing a draft model—a smaller model
with faster inference capabilities—to propose to-
kens for verification by the original model. This
approach enables the generation of multiple tokens
simultaneously, enhancing overall inference speed.

While earlier works predominantly focus on
single-sequence speculation (Stern et al., 2018; Xia
et al., 2022; Chen et al., 2023; Leviathan et al.,
2023; Gante, 2023; Liu et al., 2023), recent ad-
vancements leverage parallel computing for batch-

1006

Table 2: Speculative decoding methods categorized by impor-
tant features.

Draft and base Batch Hypothesis
Method models combined speculation reduction

Chen et al. (2023) ✗ ✗ ✗

Xia et al. (2022) ✗ ✓ ✗

Stern et al. (2018) ✓ ✗ ✗

Cai et al. (2023) ✓ ✓ ✗

Ours ✓ ✓ ✓

sequence speculations to further accelerate infer-
ences (Cai et al., 2023; Miao et al., 2023; Spector
and Re, 2023; Yang et al., 2023). Notably, (Fu
et al., 2023) introduces a novel lossless parallel
decoding method based on Jacobi iteration. How-
ever, these approaches often come at the cost of
increased computation due to the enlargement of
the hypothesis set.

In the context of lossy acceleration methods,
where the generated output deviates from the orig-
inal model, BiLD (Kim et al., 2023b) employs a
large model to enhance and refine the generation
of a smaller model. On the other hand, SoT (Ning
et al., 2023) takes a distinct approach by initially
creating a skeleton of points and subsequently com-
pleting each point in parallel. SLiM differs from
them by preserving the original outputs.

In contrast to existing research, SLiM incorpo-
rates the batch-speculative strategy with sequence
posterior estimation to reduce the hypothesis set
without compromising the acceptance rate. The
estimation has been guided with a correlation func-
tion learned from online corpora. While (Yang
et al., 2023) also leverages online corpora for spec-
ulation, it necessitates an exact match of context
between the corpus and model inputs, limiting
its applicability to specific types of problems like
retrieval-augmented generation. In contrast, SLiM
is application agnostic. When selecting the draft
model, SLiM follows the strategy introduced by
Stern et al. (2018) and Cai et al. (2023) to mitigate
additional complexity. This method entails inte-
grating additional prediction heads atop the base
model, allowing it to predict extra tokens. Notably,
while these approaches share a common founda-
tion, neither incorporates any hypothesis reduction
technique. SLiM stands out as the first method
specifically designed to reduce the complexity of
both speculative and verification stages. Table 2
provides an overview of SLiM’s position in the
speculative decoding landscape alongside represen-
tative examples.

3 Method

3.1 Background

Speculative decoding endeavors to predict the next
m tokens x1:m simultaneously, given an input
prompt h. It comprises two sequential stages in
each iteration: (i) speculate and (ii) verify.

In the speculate stage, the method speculates
sequences of the next m tokens. This involves
relying on a draft model g to approximate the
distribution of the next m tokens, expressed as
g(h) ≈ p(x1:m|h) and generate a set of hypoth-
esized sequences H. Moving on to the verify stage,
the original model f comes into play to validate
each guess. To ensure consistency with autoregres-
sive decoding, the method identifies the longest
sequence x1:l satisfying the condition:

xj = argmax f([h,x1:j−1]), j = 1, . . . , l, (1)

among all hypothesized sequences {xj}j ∈ H.
This paradigm involves a trade-off between the

two stages. An accurate draft model can generate
more accurate guesses, resulting in a smaller H
and fewer sequences needing verification by the
original model during the verification stage. How-
ever, designing a powerful draft model is nontriv-
ial, and a complex model might incur significant
latency during the forward call of g(h), offsetting
the benefits of multi-token acceleration in real time.
Conversely, a simple draft model is easier to obtain
but may necessitate a larger set H for verification,
leading to higher hardware requirements of parallel
computing and increased latency.

3.2 SLiM: Speculate Less and Validate More

SLiM proposes a solution to the dilemma that alle-
viates computation burdens in both the speculate
and verify stages by adopting a simple draft model
and a hypothesis reduction technique. In the spec-
ulate stage, rather than directly approximating the
joint distribution of x1:m, SLiM trains m− 1 addi-
tional prediction heads atop the same backbone f
to predict the marginal distributions p(xi|h), where
i = 2, . . . ,m. This results in a draft model com-
prising m−1 models approximating the marginals,
gi(h) ≈ p(xi|h), with each gi having a similar
complexity to the original prediction head of f .

The hypothesis set H is constructed through the
Cartesian product of the top-k selection for each gi

1007

alongside the top-1 prediction of f :

H = Top1(f(h))×
m∏

i=2

Topk(gi(h)), (2)

where Topk(p) denotes the set of elements with the
top k probabilities in the distribution p. Notably,
the set’s size grows exponentially as km−1.

SLiM introduces a hypothesis reduction tech-
nique by estimating the posterior probability
p(x1:m|h) for each sequence and retaining those
with the top k probabilities. Given that decoding
with maximum posterior is Bayes’ optimal, this ap-
proach ensures that accuracy is not compromised.
Furthermore, the hypothesis size is reduced from an
exponential to a linear function of the top-k param-
eter. This reduction empowers SLiM to explore a
larger hypothesis set without the necessity of verify-
ing every hypothesis with the LLM. Consequently,
SLiM effectively engages in less speculation while
validating more tokens.

The posterior is estimated by the formula:

p̂(x1:m|h) =
m∏

i=1

p(xi|h)×
m−1∏

j=1

r(xj ,xj+1),

(3)

where r : V × V 7→ R is some fixed correlation
function of two adjacent tokens, and p(xi|h) can be
approximated by the prediction heads gi(h). The
first term in equation 3 represents joint estimation
under the assumption of token independence, while
the second term enhances estimation with bigram.

For a visual representation of our posterior esti-
mation, we employ Fig. 3. In this illustration, the
hypothesis H is constructed by combining the top-2
and top-3 tokens predicted by the 2nd and 3rd pre-
diction heads. These combinations are represented
as nodes in a tree. Each edge is assigned a weight
equivalent to the correlation r calculated by the
endpoint nodes, and each node is associated with
the probability assessed by the prediction heads.
The posterior probability of a node is determined
by the product of all node probabilities and edge
weights along the path leading to it. The complete
SLiM method is summarized in Algorithm 1.

Theoretical Interpretation: SLiM’s posterior
estimation is a problem of joint distribution esti-
mation based on marginals (Frogner and Poggio,
2019). An effective strategy involves leveraging
a multimarginal variant of the optimal transport
problem (Peyré et al., 2019; Séjourné et al., 2019).

p2,2

p3,1 p3,3p3,2 p3,1 p3,3p3,2

r(t1,t2,1) r(t1,t2,2)

r(t2,1,t3,1) r(t2,1,t3,2) r(t2,1,t3,3) r(t2,1,t3,1) r(t2,1,t3,2) r(t2,1,t3,3)

Posterior Estimation = p1 × r(t1,t2,1) × p2,1 × r(t2,1,t3,3) × p3,3

p1

p2,1

Original head 1st extra head 2nd extra head

Figure 3: Illustration of SLiM’s posterior estimation.

Algorithm 1 SLiM
Require: input prompt h, original model f , marginal draft

models gi, i = 2, . . . ,m, correlation function r, top-k
parameter K.

1: while stop criteria not met do
2: Form the hypothesis setH in equation 2.
3: ∀x1:m ∈ H, obtain posterior by equation 3.
4: Form the pruned set H̃ by choosing

elements with largest K posteriors inH.
5: Choose the sequence x1:l in H̃ that has

the longest length satisfying equation 1.
6: Concatenate the prompt h← [h,x1:l].
7: end while

Multimarginal optimal transport is a technique
designed to identify the joint distribution p(x1:m)
that minimizes the cost of assembling a sequence.
Formally, given marginal distributions pi(xi) and a
cost c(x1:m) associated with forming the sequence
x1:m, the joint distribution is determined as the
solution to the constrained optimization problem:

min
p

∫
p(x1:m)c(x1:m) + KL

(
p||

m⊗

i=1

pi

)
, (4)

with constraints that p’s marginals equal to pi. In
SLiM, we relax these constraints for faster com-
putation. The following theorem establishes the
equivalence of the solution to SLiM’s posterior es-
timation in equation 3. The proof is available in
Appendix A.

Theorem 1. Suppose the optimal transport cost
is c(x1:m) = −∑m

j=1 log r(xj ,xj+1), the relaxed
solution to the optimization equation 4 is the poste-
rior estimation in equation 3, subject to a normal-
ization constant.

3.3 Implementation
In our study, we focus on transformer-based lan-
guage models and adopt prediction-head-based
draft models following the approach used in Stern
et al. (2018); Xia et al. (2022); Cai et al. (2023).

1008

It
is

di cult

is

di cult

is

is

di cult

is

di cult

is

has

has

is

has

di�cult

Speculate

Hypothesis reduction

Verify
LLM

0.7

0.2

0.3

0.3
0.2

0.2

0.2

0.1
0.02

0

0.05

0

2

14

0.04

0

21

0

Posterior (x10-2)
has
is di�cult

Figure 4: Tree attention with hypothesis reduction. Left and
right visualize the attention mask before and after reduction.

Specifically, each extra head consists of two lin-
ear layers with a SiLU activation in between them.
The first linear layer has an input and output size
equivalent to the token embedding size, while the
second linear layer has an output size equivalent
to the vocabulary size. A skip connection was also
introduced before the first linear layer and after the
SiLU activation.

To construct the correlation function r, we esti-
mate the prior distribution of two adjacent tokens
by p(x,y) := n(x,y)

n and the correlation function
is defined as follows:

r(x,y) =
p(x,y)∑

y p(x,y)
∑

x p(x,y)
. (5)

The correlation can be presented as a sparse matrix
with a shape of RV×V for storage efficiency.

For efficient verification of batch-speculated se-
quences, we leverage the tree attention mechanism
used in the work of Cai et al. (2023). The strategy
flattens the tree representation (see Figure 3) for the
whole set of hypotheses and encodes its structure
through the attention mask. This method effec-
tively avoids duplicated computation of the com-
mon prefix among similar hypotheses. We adopt
this strategy and convert our pruned tree with the
same tree attention mechanism. Figure 4 provides
a visual example of our verification reduction com-
bined with tree attention, where the left and right
heatmaps illustrate the mask before and after the
hypothesis reduction. Note that the attention masks
in our work are dynamically computed since the
tree has a dynamic shape. This is significantly dif-
ferent from the implementation of Cai et al. (2023),
which uses a static mask designed heuristically.

4 Results

4.1 Experimental Setup

Models. We employ the Medusa model (Cai
et al., 2023), built upon the Vicuna-7B and Vicuna-
13B (Chiang et al., 2023a) as base models. Ad-
ditionally, the model is trained on the public
ShareGPT dataset to incorporate four additional
prediction heads, enabling speculation on a maxi-
mum of four additional tokens. To derive the corre-
lation function r for SLiM’s posterior estimation,
we record the frequency of adjacent tokens in the
LMSYS-Chat-1M dataset (Zheng et al., 2023). The
resulting r is stored in the sparse format, amounting
to 82MB in size. We implement our framework on
top of PyTorch (Paszke et al., 2019) and the Hug-
gingFace Transformers library (Wolf et al., 2019).

Datasets. We evaluate SLiM’s generation ca-
pabilities using prompts from six conversational
datasets: Vicuna-80 (Chiang et al., 2023b) includes
nine different categories of prompts: (CF), cod-
ing (CD), knowledge (KL), generic (GN), fermi
(FM), roleplay (RP), writing (WT), common sense
(CS) and math (MA), and five datasets, each having
360 to 1000 prompts: Chatbot Instruction Prompts
(CIP) (Palla, 2023), ChatGPT Prompts (CP) (Ope-
nAI, 2023a), WebQA (Berant et al., 2013), Alpaca
(Taori et al., 2023; Peng et al., 2023), and PIQA
(Bisk et al., 2020).

Environments. We test the performance on three
devices, spanning a spectrum of computation
power: Intel(R) Xeon(R) CPU E5-2670 v2 @
2.50GHz with 20 cores, single NVIDIA RTX 4090
24GB GPU, and single NVIDIA A100 80GB GPU.
Except for the A100, all models undergo testing
with 8-bit quantization (Dettmers et al., 2022) to
ensure compatibility with RAM constraints.

Comparing methods. For a fair comparison, we
evaluate SLiM’s performance against other spec-
ulative methods that use extra prediction heads to
generate hypotheses. All methods utilize the same
public models, Vicuna-7B and Vicuna-13B, with
the same set of prediction heads trained by Cai et al.
(2023). We examined two extremes in speculative
methods: block parallel decoding (BPD) (Stern
et al., 2018) and Medusa (Cai et al., 2023). BPD
opts for a single-sequence speculation per iteration,
while Medusa adopts batch speculation, concur-
rently verifying multiple sequences through an op-
timized tree attention mechanism. SLiM positions

1009

1.3x
1.2x

2.1x 2.1x 2.1x 2.1x
2.6x

2.8x

-46%

-72%

Figure 5: Inference acceleration and FLOPs consumptions for prediction-head-based speculative methods on various devices.

Table 3: Inference results of prediction-head based speculative methods on single RTX 4090 GPU across diverse conversational
datasets. Left: real-time accelerations (in tokens per second), with speed-up multipliers relative to the autoregressive decoding.
Right: GFLOPs consumption, with percentage relative to Medusa.

Inference Speed (tokens/s) GFLOPs per token
Dataset CIP CP WebQA Alpaca PIQA Avg. CIP CP WebQA Alpaca PIQA Avg.
Autoregressive Decoding 5.56 5.69 5.66 5.76 5.72 5.68 (1.00x) 27.74 25.89 23.23 24.09 18.45 23.58
BPD (Stern et al., 2018) 8.33 7.97 7.47 8.35 8.39 8.12 (1.43x) 56.26 58.48 61.63 55.3 51.49 56.36
Medusa (Cai et al., 2023) 10.51 9.47 8.85 10.05 10.37 9.91 (1.74x) 401.63 417.53 456.55 454.58 426.89 433.38
SLiM-S 11.13 10.09 9.19 10.46 10.52 10.31 (1.82x) 124.21 134.88 145.10 124.54 126.42 130.46 (30%)

itself between these extremes with reduced batch
speculation. We evaluate three configurations of
SLiM, denoted as SLiM-SS, SLiM-S and SLiM-L,
which have 1, 10 and 20 average hypothesis se-
quences, respectively. They reduce computation
by roughly 70% and 40% as compared to Medusa,
respectively. The detailed configurations can be
found in Appendix C.

Metrics. We investigate three important metrics:
(i) Real-time acceleration: quantified in tokens/s,
this metric represents the average number of to-
kens generated per second. (ii) Device-agnostic
acceleration: measured in tokens/iter, this metric
reflects the average number of tokens verified or
generated with each forward call of the base model.
(iii) Computation consumption per effective token
generation: denoted as GFLOPs/token, this met-
ric signifies the average number of floating-point
operations required to generate a valid token.

4.2 Generation speed-up experiments

The key advantage of SLiM is in mitigating com-
putation burdens without compromising the accu-
racy of multi-token predictions, making it versatile
across devices with diverse computation capabil-
ities. To substantiate this claim, our experiments
encompassed three distinct devices in Fig. 5. It
delineates real-time acceleration, token generation
per iteration, and FLOPs consumption, utilizing
Vicuna-7B as the base model on the Vicuna-80
dataset. Notably, on CPUs, SLiM stands out as the
sole method achieving real-time speed-up, despite

all approaches showcasing device-agnostic accel-
eration. The gap between real-time and device-
agnostic acceleration on CPUs is attributed to the
limited parallel computation capability, resulting in
significant latency when verifying a large number
of batch speculations—offsetting the advantages of
multi-token prediction. While BPD incurs lower
computation costs, its verification acceptance rate
is modest, and Medusa achieves a high acceptance
rate at the expense of excessive computation costs.

In contrast, as depicted in the middle and right
figures, SLiM-S and SLiM-L generate a compa-
rable number of tokens while utilizing only 28%
and 58% of the computations required by Medusa.
These findings underscore the significance of hy-
pothesis reduction, especially in applications with
constrained computation power. Achieving an op-
timal balance between the number of speculations
and the verification acceptance rate becomes cru-
cial in such scenarios.

On GPUs, Medusa and SLiM demonstrate com-
parable performance, outperforming BPD due to
their batch speculations and efficient parallel verifi-
cation. Table 3 zooms in on GPU evaluation for five
additional datasets, testing on a single GTX 4090.
Notably, SLiM surpasses Medusa with only 30%
of the computations. As SLiM introduces a hypoth-
esis reduction scheme distinct from Medusa, these
results underscore the consistent enhancement the
scheme provides across diverse environments in
computation and inference speed.

We conducted an analysis of various model sizes

1010

Table 4: Inferences on Vicuna-80 with varying model sizes. Left: real-time accelerations, with speed-up multipliers relative to
autoregressive decoding. Right: FLOPs consumption, with percentage relative to the batch-speculative method Medusa.

Inference speed (Tokens/s) Tokens/iter GFLOPs/token
Model CF CD KL GN FM RP WT CS MA AVG
Vicuna-7B 5.87 6.1 5.96 5.97 6.05 5.99 6.00 5.93 6.15 5.99 1.00 19.61
BPD-7B (Stern et al., 2018) 6.58 9.49 8.02 9.74 8.53 7.79 9.09 8.66 10.37 8.52 (1.42×) 1.75 48.85
Medusa-7B (Cai et al., 2023) 10.6 14.75 11.01 12.83 10.91 10.07 11.79 11.21 14.47 11.63 (1.94×) 2.50 403.91
SLiM-S-7B 11.13 16.68 11.68 13.92 11.95 10.85 12.91 12.26 15.64 12.63 (2.11×) 2.58 113.23 (28%)
SLiM-L-7B 11.23 16.63 11.65 13.84 11.88 10.78 12.82 12.19 15.58 12.59 (2.10×) 2.77 233.76 (58%)
Vicuna-13B 4.4 4.48 4.38 4.31 4.41 4.45 4.4 3.99 3.63 4.32 1.00 37.92
BPD-13B (Stern et al., 2018) 6.23 9.3 6.65 7.51 6.57 6.03 7.21 6.73 7.89 6.98 (1.62×) 1.81 90.01
Medusa-13B (Cai et al., 2023) 8.36 11.41 9.1 9.94 8.77 7.84 9.28 8.75 10.79 9.16 (2.12×) 2.59 695.03
SLiM-S-13B 8.55 11.66 9.55 10.46 9.22 8.09 9.8 8.99 9.92 9.47 (2.19×) 2.64 208.89 (30%)
SLiM-L-13B 8.84 12.9 9.9 11.1 9.56 8.55 10.5 9.61 11.29 10.06 (2.33×) 2.88 427.27 (61%)

Table 5: Inferences on Vicuna-80 compared with different methods. We compare with the original speculative decoding (Chen
et al., 2023) implemented by Huggingface’s assisted generation. We tested against speculative decoding (SD) with draft models
of various sizes. The results indicate that prediction-head-based draft models (BPD, Medusa, SLiM) consistently outperform the
original speculative decoding in wall-clock inference speed.

Speculation batch Wallclock Speedup (Tokens/s) Theoretical Speedup(Tokens/iter) GFLOPs/token Parameter Overhead (#)
Vicuna-13B 1 4.32 1 37.92 0
BPD-13B (Stern et al., 2018) 1 6.98 (1.62×) 1.81 90.01 760M
Medusa-7B (Cai et al., 2023) 42 9.16 (2.12×) 2.59 695.03 760M
SD-SS-13B(Chen et al., 2023) 1 5.67 (1.31×) 2.02 114.54 68M
SD-S-13B(Chen et al., 2023) 1 3.83 (0.89×) 2.43 111.91 160M
SD-L-13B(Chen et al., 2023) 1 3.53 (0.82 ×) 3.45 115.53 1.1B
SLiM-SS-13B 1 7.61 (1.76×) 2.17 89.00 760M + 82M
SLiM-S-13B 10 9.47 (2.19×) 2.64 208.89 760M + 82M
SLiM-L-13B 26 10.06 (2.33×) 2.88 427.27 760M + 82M

and prompt categories, and the findings are sum-
marized in Table 4. The results indicate improved
speed-ups for larger models, highlighting the grow-
ing significance of speculative decoding in scenar-
ios where there is more room to trade speed-up for
computational resources. Furthermore, the analysis
indicates that acceleration is particularly effective
for coding and math problems. This observation
suggests that responses to these types of questions
may be more amenable to multi-step ahead predic-
tions than linguistic inquiries, possibly due to their
formalizable nature.

In Table 5, we conducted experiments to com-
pare with the original speculative decoding (Chen
et al., 2023) implemented by Huggingface’s as-
sisted generation. The setup is the same as that
of Table 4, using Vicuna-13B as the target model.
We tested against speculative decoding with draft
models of various sizes (68M, 160M, 1B denoted
as SD-SS, SD-S, SD-L, respectively) from Hug-
gingface. We observe that despite the speculative
decoding achieves impressive theoretical speedup,
it does not necessarily translate into good real-time
acceleration due to the overheads in complex draft
model computations.

The results indicate that prediction-head-based
draft models (BPD, Medusa, SLiM) consistently
outperform the original speculative decoding in
wall-clock inference speed while incurring small

overheads from additional prediction heads (760M)
and sparse bigram matrix (82M).

4.3 Model analysis

In this section, we delve into a detailed exploration
of SLiM’s acceleration capabilities, focusing on
experiments conducted on the Vicuna-80 dataset.

Effectiveness of equation 3: How does the corre-
lation change the posterior estimation? Fig. 6
visually illustrates the transformation of the poste-
rior through correlation adjustment in SLiM. In
this illustrative example, we employ a specific
prompt: “...Here are some tips to get you started: 1.
Prioritize tasks:”. The base model predicts ‘Make’
as the next token, while simultaneously, the pre-
diction head generates the distribution for the sub-
sequent token, depicted by the red line in Fig. 6.
The noticeable misalignment between the red curve
and the ground-truth distribution (depicted in blue)
highlights the need for adjustment.

The correlation function, denoted by the grey
curve, assigns a high value to ‘Make a’. This
weight, when multiplied with the posterior, results
in the adjusted estimation denoted by the dotted
red curve. Remarkably, the distribution now aligns
closely with the ground truth, and its prediction of
‘a’ becomes an accepted outcome. Table 6 provides
a quantitative record of the accuracy for the top
1 prediction from the second extra head. The re-

1011

sults unequivocally demonstrate that the correlation
function consistently enhances accuracy across all
categories.

posterior w/o correlation

posterior w/ correlation
groundtruth posterior

correlation intensity

Figure 6: Posterior estimations with and without correlation
adjustment.

Table 6: Extra-token prediction accuracies with and without
correlation on Vicuna benchmark.

Category CF CD KL GN FM RP WT CS MA AVG

w/ corr. 43% 61% 49% 57% 47% 43% 52% 50% 59% 50%
w/o corr. 52% 66% 59% 66% 54% 50% 61% 60% 66% 59%

When is the correlation is helpful? While corre-
lation is a valuable tool for posterior adjustment, as
depicted in Fig. 6, it is essential to acknowledge its
potential to mislead the prior estimation generated
by the prediction heads. To gain a comprehensive
understanding of when correlation can provide a
positive impact, we conduct an analysis to assess
its effectiveness.

To this end, we present SLiM’s speed-ups on
the Vicuna-80 dataset, utilizing correlation func-
tions learned from various numbers of sentences
from the LMSYS-Chat-1M dataset (Zheng et al.,
2023), as illustrated in Fig. 7. Notably, we observe
a steady increase in speed-up as the number of
prompts grows, reaching saturation at 2.6× when
the number exceeds 50,000. This finding under-
scores the positive correlation between the number
of sequences and the improvement in speed-up, in-
dicating that learning from a larger corpus is indeed
beneficial. However, the improvement becomes
marginal beyond a certain threshold.

To determine when correlation may be detrimen-
tal, we compare the results with hypothesis reduc-
tion that uses conditional independent predictions
(i.e., r = 1 in equation 3), yielding a speed-up
of 2.26×. Consequently, we identify 2,000 as the
threshold prompt number that demarcates the re-
gions into helpful (depicted in green) and harmful
(depicted in red) in the figure. This insight suggests

Table 7: Speed-ups vs. number of extra prediction heads.

SLiM Medusa
Extra heads 1 2 3 4 4

Counterfactual 1.78 2.18 2.31 2.29 2.29
Coding 1.88 2.55 2.94 3.28 3.07
Knowledge 1.80 2.24 2.48 2.43 2.39
Generic 1.84 2.42 2.86 2.96 2.76
Fermi 1.78 2.25 2.41 2.43 2.32
Roleplay 1.75 2.12 2.32 2.19 2.23
Writing 1.78 2.32 2.58 2.64 2.49
Common Sense 1.84 2.30 2.51 2.57 2.48
Math 1.89 2.47 2.73 2.92 3.07

Average speed-up 1.81 2.30 2.54 2.58 2.50

FLOPs/token 51.52 109.52 125.49 113.23 403.91

Table 8: Method ablation study.

Batch Hypothesis With Tokens GFLOPs
Model speculation reduction Correlation per iter per token

BPD ✗ ✗ ✗ 1.75 48.85
Medusa ✓ ✗ ✗ 2.50 403.91

SLiM-S ✗ ✗ ✓ 1.97 44.37
SLiM-S ✓ ✓ ✗ 2.26 124.18
SLiM-S ✓ ✓ ✓ 2.58 113.23

that sufficient sentences are necessary for construct-
ing an effective correlation function.

How many heads do we need? Moving forward,
we delve into an analysis of speed-up concerning
the number of prediction heads in Table 7. The
results show a higher speed-up with more heads.
However, the most efficient computation occurs
when having only one extra head, and the effi-
ciency diminishes as we increase the number of
heads. This observation prompts considerations for
selecting a proper number of heads for resource-
constrained devices.

How does the posterior choose sequences with
different length? Since the correlation function
in equation 5 is unbounded, it can exceed 1, imply-
ing that shorter candidates are not always favored
over longer ones. In general, one can also explicitly
penalize shorter sequence by adding a regulariza-
tion to our selection stage.

4.4 Method ablation

We conducted a comprehensive study on various
SLiM variants to understand the impact of different
components on speed-ups. Three key factors were
considered: (i) whether to speculate multiple se-
quences, (ii) whether to adopt hypothesis reduction,
and (iii) whether to use correlation or rely on pre-
diction heads alone for estimating posteriors in the
reduction stage. Furthermore, average results for
BPD and Medusa on the entire Vicuna-80 dataset
are presented in Table 8, where BPD and Medusa

1012

100 101 102 103 104 105 106

Number of sentences

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8
To

ke
ns

/it
er

2000

Figure 7: Speed-ups vs. the amount of corpus used for correla-
tion training. The green region represents the cases where the
resulting r is better than conditional independent predictions.

denote specific configurations of SLiM with partic-
ular choices for these factors.

The results reveal that batch speculation provides
the most significant acceleration boost, with all
configurations exceeding 2.2× speed-ups, whereas
configurations without batch speculation exhibit
speed-ups below 2.0×. However, batch speculation
introduces a substantial increase in computations.
The second-to-last row demonstrates that hypothe-
sis reduction alone reduces computations to 30%,
corresponding to approximately 2.2× the computa-
tion required for a single speculation, at the expense
of 10% reduction in speed-up. The final row fur-
ther illustrates that correlation not only maintains
a similar level of computation but also enhances
speed-ups. Notably, even for single speculation, the
correlation alone yields a non-negligible speed-up,
corroborating the evidence in Table 6.

5 Conclusions

In this work, we introduced SLiM, a speculative
decoding enhancement framework designed to al-
leviate the computational burden associated with
token verification. Our method leverages sequence
posterior estimation as a lightweight verifier by in-
corporating bigram information. Starting with an
exponentially large speculative set, we judiciously
eliminate most speculations with low posteriors.
Subsequently, only the sequences in the reduced
hypothesis set are verified using the LLM. This ap-
proach allows SLiM to speculate fewer sequences
while validating more tokens.

Empirically, our results demonstrate that SLiM’s
acceleration surpasses alternative methods lack-
ing this augmentation across diverse devices. On
an RTX 4090, SLiM achieves a notable 1.8-2.3×
speed-up across various conversational datasets.

6 Limitations

While SLiM presents a significant improvement
in terms of reduced computational requirements
and enhanced speed-ups compared to conventional
speculative decodings, there are still two primary
challenges that warrant attention:

• Computation consumption: Despite its advan-
tages, SLiM’s computation remains higher
than the autoregressive method. In sce-
narios where power is a critical constraint,
SLiM may still underperform the baseline.
Achieving optimal trade-offs between reduced
FLOPs and increased speed-up compared to
autoregressive methods may require an ag-
gressive and extremely accurate hypothesis
reduction strategy.

• Prediction head efficiency: Although SLiM’s
approach is relatively straightforward, it ne-
cessitates additional training of prediction
heads. Our empirical results indicate that
prediction heads are less accurate when pre-
dicting tokens for further steps and therefore
may require more complex heads to be trained.
Addressing this challenge involves designing
efficient heads with minimal capacity while
maintaining high predictive accuracy.

These challenges underscore potential areas for
further research and optimization to enhance the
overall effectiveness of SLiM in various applica-
tion scenarios.

References
Jonathan Berant, Andrew Chou, Roy Frostig, and Percy

Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
conference on empirical methods in natural language
processing, pages 1533–1544.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language models
across training and scaling. In Proceedings of the In-
ternational Conference on Machine Learning, pages
2397–2430.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. PIQA: Reasoning about physical com-
monsense in natural language. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 7432–7439.

1013

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
and Tri Dao. 2023. Medusa: Simple framework for
accelerating llm generation with multiple decoding
heads.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023a. Vicuna: An open-
source chatbot impressing GPT-4 with 90%* Chat-
GPT quality.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023b. Vicuna: An open-
source chatbot impressing gpt-4 with 90% chatgpt
quality.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Llm.int8(): 8-bit matrix multi-
plication for transformers at scale. arXiv preprint
arXiv:2208.07339.

Charlie Frogner and Tomaso Poggio. 2019. Fast and
flexible inference of joint distributions from their
marginals. In International Conference on Machine
Learning, pages 2002–2011. PMLR.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.
2023. Breaking the sequential dependency of llm
inference using lookahead decoding.

Joao Gante. 2023. Assisted generation: a new direction
toward low-latency text generation.

Xinyang Geng and Hao Liu. 2023. OpenLLaMA: An
open reproduction of LLaMA.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel
decoding of conditional masked language models.
arXiv preprint arXiv:1904.09324.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor OK Li, and Richard Socher. 2017. Non-
autoregressive neural machine translation. arXiv
preprint arXiv:1711.02281.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019. Lev-
enshtein transformer. Advances in Neural Informa-
tion Processing Systems, 32.

Junliang Guo, Linli Xu, and Enhong Chen. 2020.
Jointly masked sequence-to-sequence model for non-
autoregressive neural machine translation. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 376–385.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,
and Noah A Smith. 2020. Deep encoder, shallow
decoder: Reevaluating non-autoregressive machine
translation. arXiv preprint arXiv:2006.10369.

Sehoon Kim, Coleman Hooper, Thanakul Wattanawong,
Minwoo Kang, Ruohan Yan, Hasan Genc, Grace
Dinh, Qijing Huang, Kurt Keutzer, Michael W Ma-
honey, et al. 2023a. Full stack optimization of
transformer inference: a survey. arXiv preprint
arXiv:2302.14017.

Sehoon Kim, Karttikeya Mangalam, Jitendra Malik,
Michael W Mahoney, Amir Gholami, and Kurt
Keutzer. 2023b. Big little transformer decoder. arXiv
preprint arXiv:2302.07863.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Zhuohan Li, Zi Lin, Di He, Fei Tian, Tao Qin, Liwei
Wang, and Tie-Yan Liu. 2019. Hint-based training
for non-autoregressive machine translation. arXiv
preprint arXiv:1909.06708.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Sto-
ica, Zhijie Deng, Alvin Cheung, and Hao Zhang.
2023. Online speculative decoding. arXiv preprint
arXiv:2310.07177.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuom-
ing Chen, Daiyaan Arfeen, Reyna Abhyankar, and
Zhihao Jia. 2023. Specinfer: Accelerating generative
llm serving with speculative inference and token tree
verification. arXiv preprint arXiv:2305.09781.

Xuefei Ning, Zinan Lin, Zixuan Zhou, Huazhong Yang,
and Yu Wang. 2023. Skeleton-of-Thought: Large
language models can do parallel decoding. arXiv
preprint arXiv:2307.15337.

OpenAI. 2023a. ChatGPT.

OpenAI. 2023b. GPT-4 technical report. arXiv preprint
arXiv:2303.08774.

Alessandro Palla. 2023. chatbot instruction prompts.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Gabriel Peyré, Marco Cuturi, et al. 2019. Computa-
tional optimal transport: With applications to data
science. Foundations and Trends in Machine Learn-
ing, 11(5-6):355–607.

1014

https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https: //lmsys.org/blog/2023-03-30-vicuna
https: //lmsys.org/blog/2023-03-30-vicuna
https: //lmsys.org/blog/2023-03-30-vicuna
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://huggingface.co/blog/assisted-generation
https://huggingface.co/blog/assisted-generation
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://chat.openai.com
http://arxiv.org/abs/2303.08774
https: //hugging face.co/datasets/alespalla/chatbot_ instruction_prompts

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani,
Dara Bahri, Vinh Tran, Yi Tay, and Donald Metzler.
2022. Confident adaptive language modeling. Ad-
vances in Neural Information Processing Systems,
35:17456–17472.

Thibault Séjourné, Jean Feydy, François-Xavier Vialard,
Alain Trouvé, and Gabriel Peyré. 2019. Sinkhorn
divergences for unbalanced optimal transport. arXiv
preprint arXiv:1910.12958.

Chenze Shao, Jinchao Zhang, Yang Feng, Fandong
Meng, and Jie Zhou. 2020. Minimizing the bag-
of-ngrams difference for non-autoregressive neural
machine translation. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, pages
198–205.

Benjamin Spector and Chris Re. 2023. Accelerating llm
inference with staged speculative decoding. arXiv
preprint arXiv:2308.04623.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion transformer: Flexible se-
quence generation via insertion operations. In In-
ternational Conference on Machine Learning, pages
5976–5985. PMLR.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information
Processing Systems, 31.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
, and Tatsunori B. Hashimoto. 2023. alpaca: An
instruction-following llama model.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. LLaMA: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang
Zhai, and Tie-Yan Liu. 2019. Non-autoregressive
machine translation with auxiliary regularization. In
Proceedings of the AAAI conference on artificial in-
telligence, volume 33, pages 5377–5384.

Bingzhen Wei, Mingxuan Wang, Hao Zhou, Junyang
Lin, Jun Xie, and Xu Sun. 2019. Imitation learning
for non-autoregressive neural machine translation.
arXiv preprint arXiv:1906.02041.

Sean Welleck, Kianté Brantley, Hal Daumé Iii, and
Kyunghyun Cho. 2019. Non-monotonic sequential
text generation. In International Conference on Ma-
chine Learning, pages 6716–6726. PMLR.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Heming Xia, Tao Ge, Si-Qing Chen, Furu Wei, and
Zhifang Sui. 2022. Speculative decoding: Lossless
speedup of autoregressive translation.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin
Jiang, Linjun Yang, Rangan Majumder, and Furu
Wei. 2023. Inference with reference: Lossless ac-
celeration of large language models. arXiv preprint
arXiv:2304.04487.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle
Li, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zhuohan Li, Zi Lin, Eric. P Xing, Joseph E. Gonzalez,
Ion Stoica, and Hao Zhang. 2023. Lmsys-chat-1m:
A large-scale real-world llm conversation dataset.

1015

https://github. com/tatsu-lab/stanford_alpaca
https://github. com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2309.11998
http://arxiv.org/abs/2309.11998

Supplementary Material

A Proof of Theorem 1

Proof of Theorem 1. Since p is a probability distribution, it satisfies
∫
p(x1:m)dx1 . . . dxm = 1. Coupling

this with the objective, we obtain the Lagrangian of the objective by

L =

∫
p(x1:m) c(x1, . . . ,xm)dx1 . . . dxm

+ KL

(
p(x1:m)||

m∏

i=1

pi(xi)

)
+ λ

(∫
p(x1:m)dx1 . . . dxm − 1

)

=

∫
p(x1:m) c(x1, . . . ,xm)dx1 . . . dxm +

∫
p(x1:m) log

(
p(x1:m)∏m
i=1 pi(xi)

)
dx1 . . . dxm

+ λ

(∫
p(x1:m)dx1 . . . dxm − 1

)
.

Setting the derivative of L w.r.t. p(x1:m) to zero for every x1:m, we get

c(x1:m) + log

(
p(x1:m)∏m
i=1 pi(xi)

)
+ 1 + λ = 0,

⇒ p∗(x1:m) ∝
m∏

i=1

pi(xi)× exp (−c(x1:m)) =
m∏

i=1

pi(xi)×
m−1∏

j=1

r(xj ,xj+1).

B Additional Experiments

We exhaustively explore different configurations of SLiM, considering various combinations of the
top-k predictions in the heads. We plot the average accepted tokens with and without correlation and
hypothesis reduction on the generic category prompt of Vicuna-80. The green points without hypothesis
reduction exhibit the least efficiency in terms of the trade-off between the number of accepted hypotheses
and efficiency. They are followed by hypothesis reduction without using correlation, with comparable
pareto boundaries that require more careful tuning when hypothesis reduction is not utilized. Meanwhile,
configurations with correlation in hypothesis, represented by red points, achieve optimal efficiency,
outperforming speed-ups compared to Medusa.

C Detailed Configurations of SLiM

We implement SliM-SS, SLiM-S and SLiM-L by choosing top-1, top-20, and top-40 sequences based on
the estimated posterior in equation 3. Since many short sequences are prefixes for longer ones, the final
number of sequences to be verified is around 10 and 26 on average. Note that the formula in equation 3
does not always favor shorter sequences as the posterior is not normalized. As such, the correlation
function can be larger than 1, making a longer sequence have a higher score.

1016

0 5 10 15 20 25 30 35 40
Number of hypothesis sequences

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Av
er

ag
e

ac
ce

pt
ed

 to
ke

ns

SLIM

Medusa

Block Parallel Decoding
w/o hypothesis reduction
w/ correlation
w/o correlation

Figure 8: Average accepted tokens for various numbers of hypothesis sequences. The black line denotes the Pareto efficiency
achieved by SLiM.

1017

