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Abstract

Real-world sequential decision making is char-
acterized by sparse rewards and large decision
spaces, posing significant difficulty for expe-
riential learning systems like tabula rasa rein-
forcement learning (RL) agents. Large Lan-
guage Models (LLMs), with a wealth of world
knowledge, can help RL agents learn quickly
and adapt to distribution shifts. In this work,
we introduce Language Guided Exploration
(LGE) framework, which uses a pre-trained
language model (called GUIDE ) to provide
decision-level guidance to an RL agent (called
EXPLORER ). We observe that on Science-
World (Wang et al., 2022), a challenging text en-
vironment, LGE outperforms vanilla RL agents
significantly and also outperforms other sophis-
ticated methods like Behaviour Cloning and
Text Decision Transformer. 1

1 Introduction

Reinforcement Learning (RL) has been used with
great success for sequential decision making tasks.
AI assistants whether text based (Li et al., 2022;
Huang et al., 2022) or multi-modal (Chang et al.,
2020; Patel et al., 2023), have to work with large
action spaces and sparse rewards. In such settings,
the approach of random exploration is inadequate.
One needs to look for ways to use external infor-
mation either to create a dense reward model or to
reduce the size of action space. In this work we
focus on the latter approach.

We make a simple observation that, in many
cases, the textual description of the task or goal
contains enough information to completely rule
out certain actions, thereby greatly reducing the
size of the effective action space. For example,
as shown in Fig.1, if the task description is “De-
termine if a metal fork is electrically conductive”,
then one can safely rule out actions that involve

1The code for this work is available at https://github.
com/hitzkrieg/drrn-scienceworld-clone.
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Figure 1: The Language Guided Exploration (LGE)
Framework: The Guide uses contrastive learning to pro-
duce a set of feasible action given the task description
thereby reducing substantially the space of possible ac-
tions. The Explorer , an RL agent, then uses the set
of actions provided by the Guide to learn a policy
and pick a suitable action using it.

objects like sink, apple, and actions like eat, smell,
etc. Motivated by this observation, we introduce
the Language Guided Exploration (LGE) frame-
work that uses an RL agent but augments it with
a Guide model that uses world knowledge to rule
out large number of actions that are infeasible or
highly unlikely. Along with removing irrelevant
actions, the frameworks supports generalization in
unseen environments where new objects may ap-
pear. For example, if the model observed an apple
in the environment during training, at test time, the
environment may contain an orange instead. But
the guide, which posses commonsense may under-
stand that all fruits are equally relevant or irrelevant
for the given task.

To test our framework, we use the highly chal-
lenging benchmark called SCIENCEWORLD (Wang
et al., 2022), which consists of a purely text based
environment where the observations, actions, and
inventory are expressed using natural language text.
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SCIENCEWORLD embodies the major challenges
faced by RL agents in realy world applications: the
template based actions with slots for verbs and ob-
jects produce a combinatorially large action space,
the long natural language based observations make
for a challenging state representation, and the re-
wards signals based mainly on the completion of
challenging tasks create a delayed and sparse re-
ward signal. Following are the main contributions
of our work:
We propose a novel way to allow language guided
exploration for RL agents. The task instructions
are used to identify relevant actions using a con-
trastively trained LM. The proposed GUIDE model
that uses contrastive learning has not been explored
for text environments before.
We demonstrate significantly stronger results on
the SCIENCEWORLD environment when com-
pared to methods that use Reinforcement Learning,
and more sophisticated methods like Behaviour
Cloning (Wang et al., 2023) and Text Decision
Transformer (Chen et al., 2021).

2 Related Work

Guided exploration for agents Language mod-
els have been used to aid with various parts of
the RL pipeline (Du et al., 2023; Hendrycks et al.,
2021). Due to its importance, the topic of explo-
ration has received a lot of attention, with most
classical methods focusing on intrinsically moti-
vated exploration (Aubret et al., 2019). The recent
advent of general-purpose language models has
created a wave of resurgent interest in the topic,
with works that use pre-trained language models
in various ways to explore efficiently. Zhong et al.
(2024) uses an LLM to remove undesirable actions
by inspecting policy rollouts, followed by imitation
learning using desirable rollouts. Yao et al. (2020),
on the other hand simply trains a sequence model
using imitation learning using gold trajectories. Tri-
antafyllidis et al. (2023) proposes a framework for
intrinsic exploration using LLMs. Previous works
have also used symbolic knowledge from knowl-
edge graphs along with language models to con-
strain or guide the exploration for RL agents (Basu
et al., 2024; Atzeni et al., 2022; Ammanabrolu
and Hausknecht, 2020). In this work, we take a
different perspective, instead of guiding intrinsic
exploration, we focus on reducing the action space
in a meaningful manner such that simple classical
exploration strategies like ϵ-exploration or entropy

maximization can work well. We also propose a
novel way of reducing the effective size of the ac-
tion space using a contrastively trained language
model.

Text-based games Text-based environments
(Lebling et al., 1979; Yin and May, 2019; Muruge-
san et al., 2020; Côté et al., 2019) provide a low-
cost alternative to complex 2D/3D environments,
and real world scenarios, for the development of
the high-level learning and navigation capabilities
of the AI agents. As these games require multi-step
reasoning, Reinforcement Learning serves as the
default method to model these agents (He et al.,
2016; Zahavy et al., 2018; Yao et al., 2020). An-
other way to model these agents is to view this
task as a imitation learning task. Using knowl-
edge graphs in conjunction with RL agents (Am-
manabrolu and Hausknecht, 2020) utilizes the con-
strained actions from the Knowledge graphs cre-
ated dynamically with each trajectory, however the
filtered actions are still inefficient to distinguish
relevant actions from irrelevant ones. Behavior
cloning (Chen et al., 2021) shows success in the
realm of text games, but the utilization of LLM’s to
predict the next action also suffers from the prob-
lem of removing spurious actions, even when the
LLM’s are fine-tuned on expert gold trajectories.
In our work, we address the problem of reducing
the action space of the agent, in order to learn the
action selections in a much simpler way, directly
addressing the problem of predicting irrelevant ac-
tions.

3 Methodology

Notation: The text environment, a partially ob-
servable Markov decision process (POMDP) con-
sists of (S, T,A,R, Õ,Ω). In SCIENCEWORLD,
along with the description of the current state,
the observation also consists of a task description
τ ∈ T that stays fixed throughout the evolution of
a single trajectory, i.e., Õ = O × T , where O is
the set of textual descriptions of the state and T is
the set of tasks (including different variations of
each task). Note that the set of tasks are divided
into different types and each type of task has differ-
ent variations, i.e., T =

⋃Γ
γ=1

⋃Vγ

v=1 τγ,v, where Γ
is the number of task types and Vγ is the number
of variations for the task type γ. Gold trajectories
Gγ,v = {a1, a2, .., aL} are available for each γ, v.

94



3.1 The LGE framework

We propose a Language Guided Exploration Frame-
work (LGE), which consists of an an RL agent
called the EXPLORER, and an auxiliary model that
scores each action called the GUIDE . The EX-
PLORER starts in some state sampled from initial
state distribution d0. At any time step t, a set of all
valid actions Aγ,v,t is provided by the environment.
This set, constructed using the cross product of ac-
tion templates and the set of objects (see Fig.1) is
extremely large, typically in thousands. The pre-
trained GUIDE with frozen weights uses the task
description τγ,v, to produce a set of most relevant
actions Âγ,v,t ⊂ Aγ,v,t. With a probability 1 − ϵ
(resp. ϵ), the EXPLORER samples an action from
Âγ,v,t using its policy π(a|st) (resp., from Aγ,v,t).

The pre-training of the GUIDE is outlined in
3.1.2, which is followed by the training of the EX-
PLORER. Algorithm 1 in Appendix A.1 outlines
the steps involved in the LGE framework using a
DRRN (He et al., 2016) based EXPLORER.

3.1.1 EXPLORER

The EXPLORER learns a separate policy πγ for
each task type γ ∈ Γ by exploring the the envi-
ronment.2 We use the Deep Reinforcement Rele-
vance Network (DRRN) (He et al., 2016) as our
EXPLORER, as it has shown to be the strongest
baseline in Wang et al. (2022). However, our frame-
work allows to swap the DRRN with any other RL
agent. The DRRN uses Q-learning with with pri-
oritized experience replay to perform policy im-
provement using a parametric approximation of the
action value function Q(s, a).3 The current state
st is represented by concatenating the representa-
tions of the past observation ot−1, inventory it and
look around lt, each encoded by separate GRUs,
i.e., hst = ( fθo(ot−1) : fθi(it) : fθl(lt) ) . Each
relevant action a ∈ Arel,t is encoded in the same
manner: hat = fθa(at). Here f∗ are the respec-
tive GRU encoders, θ∗ their parameters and “ : ”
denotes concatenation. The value function Q(s, a)
is represented using a linear layer over the con-
catenation of the action and state representations
Q(st, at|θ) = W T · (hst : hat) + b, where θ is
a collection of θo, θi, θl, θa, W and b. During
training, a stochastic policy based on the value

2The agent learns a separate policy of each task type but
this policy is common across all variations for that particular
task type.

3We follow the implementation of DRRN provided in
Hausknecht et al. (2019).

function is used: â ∼ π(a|s) ∝ Q(s, a|θ), while
at inference time we use greedy sampling: â =
argmaxaQ(s, a|θ).

3.1.2 GUIDE

While LLMs are capable of scoring the relevant ac-
tions without any finetuning, we observed that due
to the idiosyncrasies of the SCIENCEWORLD envi-
ronment, it is beneficial to perform some finetuning.
We use SimCSE (Gao et al., 2021), a contrastive
learning framework, to finetune the GUIDE LM.
The training data {τi, Gi}Mi=1, which consists of
task descriptions τi = τγ,v ∈ T along with the
set of corresponding gold actions Gi = Gγ,v. The
GUIDE model gϕ is used to embed the actions and
the task descriptions into a shared representation
space where the similarity score of a task and an
action is expressed as s(τ, a) = gϕ(τ) · gϕ(a)

λ , with
λ being the temperature parameter. The training
objective is such that the embeddings of a task are
close to those of the corresponding relevant actions,
expressed using the following loss function:

l(ϕ; τi, Gi) = − log
es(τi, a

+)

es(τi,a+) +
∑

a−∈Ni

es(τ,a−)
,

where a+ ∼ Gi is a relevant action and Ni is a
fixed sized subset of irrelevant actions.4

Note that since we only have access to a small
amount of gold trajectories (3442) for training, we
take special steps to avoid overfitting, which is the
main issue plaguing the imitation learning based
methods. First, we only provide the task descrip-
tion to the GUIDE and not the full state information.
Second, unlike the EXPLORER, which uses differ-
ent policy for each task type, we train a common
GUIDE across all tasks, and its weights are frozen
during the training of the EXPLORER.

4 Experiments and Results

As done in Wang et al. (2022), the variations of
each task type are divided into training, validation
and test sets. Both GUIDE and EXPLORER are
trained only using the training variations.

4.1 Evaluating the GUIDE

Before the joint evaluation, we evaluate the GUIDE

in isolation. We sample 5 variations from the vali-
dation set for each task type and compute the three

4Details of the models used and the training data are pro-
vided in Appendix A.1.
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Model top-k RSR MAP GAR GAR (%) GARR

Gg 50 0.71 0.52
N/A N/A N/A

Gτ 50 0.9 0.66

Guide
50 0.99 0.68

7.4 ± 16.2 1.8 ± 9.4 0.31 ± 2.320 0.94 0.67
10 0.79 0.61

Table 1: Various metrics used to evaluate the GUIDE
in isolation. Note that for the baselines Gg and Gτ , we
cannot compute GAR.

metrics: GAR, RST and MAP. We use the follow-
ing two intuitive but strong baselines:
(1) Gold per-task (Gτ ): We create a set of 50
most most used actions in gold trajectories of all
training variations of a particular task. The Gold
per-task baseline, predicts an action to be relevant
if it belongs to this set.
(2) Gold Global (Gg) : Similar to Gold per-task
but we use 50 most used actions in Gold trajectories
of all training variations for all tasks.

Gold Action Rank (GAR): At any time step t,
GAR(γ, v, t) is defined as the rank of the gold at in
the set of valid actions Aγ,v,t, and the Gold Action
Reciprocal Rank (GARR) is defined as 1/GAR.
Since the size of Aγ,v,t is variable for every t, we
also report percent GAR. As seen in Table 1, the
gold action gets an average rank of 7.42, which is
impressive because |Aγ,v,t| averages around 2000.

Relevant Set Recall (RSR): GAR ranks a single
optimal action at any time, but multiple valid action
sequences may exist for task completion. Although
all viable paths are not directly accessible, we esti-
mate them. For each time step t in variation τγ,v,
a set of gold relevant actions Ãγ,v,t is identified
by intersecting the gold trajectory Gγ,v with valid
actions at t, so Ãγ,v,t = {a | a ∈ Gγ,v ∩ Aγ,v,t}.
The GUIDE’s effectiveness is measured by its recall
of this set, considering its top-k predicted actions
Âγ,v,t. Relevant Set Recall (RSR) is calculated as

RSR(γ, v, t) =
|Âγ,v,t∩Ãγ,v,t|

|Ãγ,v,t|
. As seen in Table 1,

the GUIDE has almost perfect average recall of 0.99
while selecting top 50 actions for the EXPLORER

at every step of the episode.

Mean Avg. Precision (MAP): The GUIDE also
functions as a binary classifier, predicting the rele-
vance of each action in Aγ,v,t. Using a threshold-
free metric like average precision score (Pedregosa
et al., 2011), the GUIDE achieves a superior av-
erage precision score of 0.68 compared to base-
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Figure 2: Episode scores on unseen variations of tasks
12, 14 and 25, plotted as the training progresses. The
solid line plots are the exponential moving averages of
episode scores, while the dotted lines are the maximum
episode score achieved till that point. We see both the
ability to reach higher scores and better sample effi-
ciency for LGE as compared to the DRRN. This trend
is observed in most tasks. Plots for more tasks are in
the Appendix- Figure 3

lines. Coupled with perfect recall at 50, this in-
dicates the GUIDE’s strong generalization ability
on new variations and robust performance across
various thresholds. We observe that the threshold
that produces best MAP is 0.52, which corresponds
to |Âγ,v,t| = 28 on average. So, to be conservative,
we use k = 50 in the subsequent evaluations. Table
5 shows an example of the set of actions selected
by GUIDE for the task “Change of state”.

4.2 Evaluating LGE

We follow the same evaluation protocol as (Wang
et al., 2022) and evaluate two versions of the LGE
framework, one with a fixed ϵ of 0.1 and the other
with ϵ increasing from 0 to 1. Table 3 reports the
means returns for each task.
LGE improves significantly over the RL base-
line. The DRRN agent, which only uses RL, per-
forms the best among the baselines. The proposed
LGE framework (last two columns), improves the
performance of DRRN on 20 out of 30 tasks. On
average the LGE with ϵ = 0.1, improves the mean
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Relevant Gold Actions Selected By GUIDE

open cupboard,focus on soap in kitchen, pick up metal pot,move metal pot to sink,pour metal pot into metal pot,
move soap in kitchen to metal pot, open cupboard, activate stove,move metal pot to stove, pick up thermometer,
move metal pot to stove, open freezer, wait, go to outside, open glass jar,look around, open drawer in cupboard,
go to outside,wait1, open drawer in counter,open oven,move ceramic cup to sink,pick up ceramic cup,open fridge,
pick up thermometer, open door to hallway, activate sink, mix metal pot, pour ceramic cup into ceramic cup,
pick up metal pot,look around,activate stove pick up sodium chloride, wait1, focus on metal pot, pick up soap in kitchen

Table 2: Column 1 shows the relevant gold actions for the task “Change of State (variation 1 from the dev set)”, and
column two shows the set of actions selected by the GUIDE. The missed gold actions are in Red, while selected
gold actions are in Green

returns by 35% (0.17→ 0.23). As seen in the Fig-
ure 2, for many tasks, LGE allows the Explorer to
reach rewards earlier (leading to better sample effi-
ciency), and often reach better states which were
unattainable with DRRN.
LGE is better than much more complex, special-
ized methods. The behaviour cloning (BC) model,
uses a Macaw (Tafjord and Clark, 2021) model fine-
tuned on the gold trajectories to predict the next ac-
tion. The Text Decision Transformer (TDT) (Chen
et al., 2021) models the complete POMDP trajec-
tories as a sequence and is capable of predicting
actions that maximize long-term reward. As seen in
Table 3, the simpler LGE framework outperforms
both TDT and BC. This shows the importance of
having an RL agent in the framework that can adapt
to the peculiarities of the environment.
Using an increasing ϵ schedule is slightly worse
LGE-inc uses an increasing ϵ schedule, where the
reliance on the Guide is slowly weaned away, as
the Explorer’s learning matures. We observe that
as the actions provided by the GUIDE almost al-
ways contain the right action, LGE-inc is almost
competitive with LGE-fix, but slightly worse. LGE-
inc should be better in more difficult environments
with not-so-perfect Guide for better generalization.

5 Conclusion

We proposed a simple and effective framework for
using the knowledge in LMs to guide RL agents in
text environments, and showed its effectiveness on
the SCIENCEWORLD environment when used with
DRRN. Our framework is generic and can extend
to work with other RL agents. We believe that the
positive results observed in our work will pave the
way for future work in this area.

6 Limitations

This paper focuses on the ScienceWorld environ-
ment, which is an English only environment. More-
over, it focuses mainly on scientific concepts and
skills. To explore other environments in differ-

Task DRRN* BC* TDT* LGE inc LGE fix Delta

T0 0.03 0.00 0.00 0.04 0.03 0.01(↑)
T1 0.03 0.00 0.00 0.03 0.03 0.00
T2 0.01 0.01 0.00 0.00 0.00 -0.01(↓)
T3 0.04 0.00 0.01 0.03 0.03 -0.01(↓)
T4 0.08 0.01 0.02 0.09 0.06 0.01(↑)
T5 0.06 0.01 0.02 0.07 0.07 0.01(↑)
T6 0.10 0.04 0.04 0.10 0.10 0.00
T7 0.13 0.03 0.07 0.13 0.13 0.00
T8 0.10 0.02 0.05 0.09 0.10 0.00
T9 0.07 0.05 0.05 0.06 0.07 0.00
T10 0.20 0.04 0.05 0.23 0.27 0.07(↑)
T11 0.19 0.21 0.19 0.48 0.47 0.29(↑)
T12 0.26 0.29 0.16 0.28 0.6 0.34(↑)
T13 0.56 0.19 0.17 0.55 0.64 0.08(↑)
T14 0.19 0.17 0.19 0.43 0.65 0.46(↑)
T15 0.16 0.03 0.05 0.17 0.17 0.01(↑)
T16 0.09 0.08 0.03 0.09 0.09 0.00
T17 0.20 0.06 0.10 0.26 0.25 0.06(↑)
T18 0.29 0.16 0.20 0.30 0.27 0.01(↑)
T19 0.11 0.05 0.07 0.11 0.11 0.00
T20 0.48 0.26 0.20 0.55 0.62 0.14(↑)
T21 0.31 0.02 0.20 0.33 0.28 0.02(↑)
T22 0.47 0.14 0.16 0.54 0.50 0.07(↑)
T23 0.10 0.02 0.07 0.28 0.14 0.18(↑)
T24 0.09 0.04 0.02 0.18 0.08 0.09(↑)
T25 0.13 0.05 0.04 0.24 0.26 0.13(↑)
T26 0.13 0.05 0.04 0.25 0.24 0.12(↑)
T27 0.13 0.04 0.04 0.23 0.23 0.10(↑)
T28 0.19 0.06 0.06 0.19 0.22 0.03(↑)
T29 0.17 0.13 0.05 0.17 0.16 0.00

Avg. 0.17 0.08 0.08 0.22 0.23 0.06(↑)

Table 3: Zero-shot performance of the agents on test
variations of across all tasks. The columns with * are
reported from Wang et al. (2022). The Delta column is
the difference between DRRN and the best LGE model.
The LGE performance values are averaged across 3
separate runs. The names of the tasks are in Table 4 in
Appendix.

ent languages with different RL agents will be
an interesting future work. There is also a large
room for improvement to approach human-level
performance which may come from improving the
RL agent and using a larger LM as the Guide.
Also, our current methodology requires supervised
demonstrations to train the GUIDE, so extending
this method to semi/un-supervised settings now
becomes a relevant direction for future work.
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A Appendix

A.1 Implementation details

A.1.1 GUIDE’s architecture
We use a BERT-base model (Devlin et al., 2019)
as the GUIDE. We also performed a rudimentary
experiment of fine-tuning the Encoder part of the
770M Macaw (Tafjord and Clark, 2021) model (T5
Large model pretrained on Question Answering
datasets in Science Domain), but could not achieve
the same quality of pruning post training as the
smaller BERT-base model. This could be attributed
to two reasons:

1. The size of the training dataset may not be
enough to train the large number of parame-
ters in the bigger Macaw model (thus leading
to underfitting).

2. We used a smaller batch size for training the
Macaw model using similar compute as the
BERT-base model (16GB GPU memory). As
the contrastive loss depends on in-batch exam-
ples for negative samples, the smaller batch-
size could mean less effective signal to train
the model. We would explore a fairer com-
parison with similar training settings as the
BERT model in future work.

The code for this work is available
at https://github.com/hitzkrieg/
drrn-scienceworld-clone.

A.1.2 Training the GUIDE

The supervised contrastive loss framework in (Gao
et al., 2021) needs a dataset consisting of example
triplets of form (xi, x+i and x−i ) where xi and x+i
are semantically related and x−i is an example of
a hard negative (semantically unrelated to xi, but
more still more similar than any random sample).

For training the Guide, we want to anchor the
task descriptions closer in some embedding space
to relevant actions and away from irrelevant actions.
Thus we prepare a training data {(τi, a+i , a−i )}Mi=1,
consists of tuples of task descriptions τi = τγ,v ∈
T along with a relevant action a+i ∼ Gγ,v and
an irrelevant action a−i ∼ Nγ (fixed size set of
irrelevant actions for every task γ).

Preparing Nγ : We simulate gold trajectories
from 10 random training variations for each task-
type γ ∈ Γ, and keep taking a union of the
valid actions at each time step to create a large
union of valid actions for that task-type. Nγ =

TaskID Task Name

T0 Changes of State (Boiling)
T1 Changes of State (Any)
T2 Changes of State (Freezing)
T3 Changes of State (Melting)
T4 Measuring Boiling Point (known)
T5 Measuring Boiling Point (unknown)
T6 Use Thermometer
T7 Create a circuit
T8 Renewable vs Non-renewable Energy
T9 Test Conductivity (known)
T10 Test Conductivity (unknown)
T11 Find an animal
T12 Find a living thing
T13 Find a non-living thing
T14 Find a plant
T15 Grow a fruit
T16 Grow a plant
T17 Mixing (generic)
T18 Mixing paints (secondary colours)
T19 Mixing paints (tertiary colours)
T20 Identify longest-lived animal
T21 Identify longest-then-shortest-lived animal
T22 Identify shortest-lived animal
T23 Identify life stages (animal)
T24 Identify life stages (plant)
T25 Inclined Planes (determine angle)
T26 Task 26 Friction (known surfaces)
T27 Friction (unknown surfaces)
T28 Mendelian Genetics (known plants)
T29 Mendelian Genetics (unknown plants)

Table 4: List of Task Names with their task ID’s

⋃10
v=1

⋃
tAγ,v,t. Now, this set is used for sampling

hard negatives for a given task description. For a
batch of size N, the loss is computed as:

l(ϕ) = −
N∑

i=1

log
es(τi, a

+
i )

∑N
j=1 e

s(τi,a
−
j ) + es(τi,a

+
j )

,

(1)

The final training dataset to train the GUIDE

LM on 30 task-types consisting of 3442 training
variations had 214535 tuples. The LM was trained
with a batch size of 128, on 10 epochs and with a
learning rate of 0.00005.

A.1.3 Training and evaluating the Explorer
We use similar approach as (Wang et al., 2022) to
train and evaluate the Explorer. The DRRN archi-
tecture is trained with embedding size and hidden
size = 128, learning rate = 0.0001, memory size
= 100k, priority fraction (for experience replay) =
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0.5. The model is trained simultaneously on 8 envi-
ronment threads at 100k steps per thread. Episodes
are reset if they reach 100 steps, or success/failure
state.

After every 1000 training steps, evaluation is per-
formed on 10 randomly chosen test variations. The
final numbers reported in table 4 are the average
score of last 10% test step scores.

A.2 More examples

Table 2 and Table 5 show examples of the out sam-
ple usage of the GUIDE.

Table 5: Qualitative analysis of Validation set trajectories
for the ScienceWorld Task "Friction Known Surfaces" for
variation 0 at step 17. Note: Missed gold actions are in Red,
while selected gold actions are in Green.

Relevant Gold Actions

look around, move block to inclined plane
with a steel surface, focus on inclined plane
with a steel surface, go to hallway, wait1, look
at inclined plane with a soapy water surface,
move block to inclined plane with a soapy
water surface, look at inclined plane with a
steel surface

Selected By Guide

focus on inclined plane with a soapy water sur-
face, look at inclined plane with a soapy water
surface, move block to inclined plane with a
soapy water surface, look at inclined plane
with a steel surface, move block to inclined
plane with a steel surface, focus on inclined
plane with a steel surface, go to hallway, look
around, wait1, connect red wire terminal 2 to
anode in green light bulb, connect red wire ter-
minal 2 to cathode in green light bulb, connect
battery cathode to red wire terminal 1, connect
black wire terminal 2 to anode in green light
bulb, connect red wire terminal 2 to anode in
red light bulb, connect black wire terminal 2
to cathode in green light bulb, connect battery
cathode to black wire terminal 1, connect red
wire terminal 2 to cathode in red light bulb,
connect black wire terminal 2 to anode in red
light bulb, connect black wire terminal 2 to
cathode in red light bulb, open freezer, wait,
pick up red wire, focus on red light bulb, pick
up black wire, focus on green light bulb, pick
up green light bulb, pick up black wire, focus
on green light bulb, pick up green light bulb
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Figure 3: Episode scores on unseen variations validated
throughout training. The line plots for DRRN and LGE-
fixed are plotted with exponential moving average. We
see both the ability to reach higher scores and better
sample efficiency for LGE as compared to the DRRN
baseline on some tasks.
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Algorithm 1 Training Algorithm: LANGUAGE GUIDED EXPLORATION FRAMEWORK with DRRN
Explorer

Initialize replay memory D to capacity C
Initialize Explorer’s Q-network with random weights θ
Initialize updateFrequency, totalSteps
for episode = 1 to M do

env, v, d← sampleRandomEnv(’train’, γ)
Sample initial state s1 from d0 and get Aγ,v,1

for t = 1 to N do
totalSteps += 1
Identify k most relevant actions using Guide:
Âγ,v,t ← Guide.top_k(Aγ,v,t, k, dT,v)
randomNumber ∼ Uniform(0, 1)
if randomNumber > ϵ then

at ∼ Multinomial(softmax({Q(st, a|θ) for a ∈ Âγ,v,t}))
else

at ∼ Multinomial(softmax({Q(st, a|θ) for a ∈ Aγ,v,t}))
Execute at, observe rt+1, st+1, Aγ,v,t+1

Store (st, at, rt+1, st+1, Aγ,v,t+1) in D
if totalSteps mod updateFrequency = 0 then

Sample batch from D
Lcumulative = 0
for each (s, a, r, s′, A′) in batch do

δ = r + γmaxa′∈A′ Q(s′, a′|θ)−Q(s, a|θ)
Compute Huber loss L:

L =

{
1
2δ

2 if |δ| < 1

|δ| − 1
2 otherwise

Lcumulative += L

Update θ with Adam optimizer:
θ ← AdamOptimizer(θ,∇θLcumulative)

Update state: st ← st+1
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