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Abstract

Are multimodal inputs necessary for grammar
induction? Recent work has shown that mul-
timodal training inputs can improve grammar
induction. However, these improvements are
based on comparisons to weak text-only base-
lines that were trained on relatively little textual
data. To determine whether multimodal inputs
are needed in regimes with large amounts of
textual training data, we design a stronger text-
only baseline, which we refer to as LC-PCFG.
LC-PCFG is a C-PFCG that incorporates em-
beddings from text-only large language models
(LLMs). We use a fixed grammar family to
directly compare LC-PCFG to various multi-
modal grammar induction methods. We com-
pare performance on four benchmark datasets.
LC-PCFG provides an up to 17% relative im-
provement in Corpus-F1 compared to state-of-
the-art multimodal grammar induction meth-
ods. LC-PCFG is also more computationally
efficient, providing an up to 85% reduction in
parameter count and 8.8× reduction in train-
ing time compared to multimodal approaches.
These results suggest that multimodal inputs
may not be necessary for grammar induction,
and emphasize the importance of strong vision-
free baselines for evaluating the benefit of mul-
timodal approaches.

1 Introduction

Prior studies have shown that multimodal inputs
can facilitate grammar induction. These studies
paired text with inputs from images and videos, and
found that models trained with paired multimodal
inputs outperform text-only models on grammar
induction (Shi et al., 2019; Zhao and Titov, 2020;
Zhang et al., 2021, 2022a). These results suggest
that multimodal inputs improve grammar induction
by grounding textual inputs to the visual world.
Indeed, a long line of work in human language
learning suggests that paired multimodal inputs are
crucial for language acquisition in humans (Gleit-

man, 1990; Pinker, 1984). While multimodal in-
puts can undoubtedly help with grammar induction,
especially in regimes with low textual data, are mul-
timodal inputs necessary to learn a grammar? To
investigate this question, we test whether the ben-
efits of multimodal inputs for grammar induction
can be achieved by more textual data.

Prior studies of multimodal grammar induction
compared multimodal methods to weak text-only
baselines which were trained with relatively lit-
tle data (Shi et al., 2019; Zhao and Titov, 2020;
Zhang et al., 2021, 2022a). However, recent gram-
mar induction approaches that incorporate repre-
sentations from large language models (LLMs)
produced large improvements in text-only gram-
mar induction performance (e.g., Cao et al., 2020;
Drozdov et al., 2019; Li and Lu, 2023). The per-
formance of these LLM-based grammar induction
methods suggest that exposure to larger quantities
of textual training data can substantially improve
grammar induction. However, prior studies used
different settings to evaluate multimodal and text-
only methods for grammar induction. Thus, it is
unclear whether the performance of LLM-based
grammar induction approaches can match the per-
formance of multimodal approaches.

Here we compare multimodal methods for gram-
mar induction to a strong text-only baseline. Our
text-only baseline, which we refer to as LC-PCFG,
is a C-PCFG that incorporates embeddings from
text-only LLMs. We use and use a fixed grammar
family (C-PCFGs) to directly compare LC-PCFG
to multimodal methods, and perform comparisons
with four multimodal grammar induction datasets.
We find that compared to previous state-of-the-
art multimodal methods, LC-PCFG achieves up
to 17% relative improvement in Corpus-F1 score
while requiring 8.8× less time to train. More-
over, the benefits of incorporating LLM embed-
dings does not straightforwardly stack with the
benefits of multimodal training inputs: adding mul-
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Figure 1: Comparison with prior multimodal methods
on image-assisted grammar induction. Prior works
showed that paired images can improve grammar in-
duction (53.6 → 59.3 Corpus-level F1). We show that
a strong text-only baselined line that incorporates em-
beddings from large language models (LLM) can match
(and surpass) multimodal methods, suggesting that mul-
timodal inputs may not be necessary for grammar induc-
tion (53.6 → 67.2).

timodal training inputs to LC-PCFG does not im-
prove performance on grammar induction, suggest-
ing that the benefits of multimodal inputs may
be subsumed by training on large quantities of
text. While multimodal training inputs may be
useful in some settings, our results suggest that
grammar induction may not require multimodal
inputs. To facilitate further research we release
our code at https://github.com/Boyiliee/Vision-free-
Multimodal-Grammar-Induction.

2 Related Work

Grammar induction Grammar induction, the
task of inducing syntactic structure without explicit
supervision, has been extensively studied over the
past few decades (e.g., Lari and Young, 1990; Car-
roll and Charniak, 1992; Clark, 2001; Klein and
Manning, 2002; Smith and Eisner, 2005).

Many methods for grammar induction train on
data from text alone (e.g., Lari and Young, 1990;
Carroll and Charniak, 1992; Klein and Manning,
2002; Shen et al., 2018, 2019). However, based on
the intuition that multimodal inputs capture infor-
mation that is missing in text, recent studies have
devised methods for grammar induction that incor-
porate information from images and videos (Shi
et al., 2019; Zhao and Titov, 2020; Zhang et al.,
2021, 2022a). These multimodal methods have
been shown to outperform some text-only meth-
ods (Zhao and Titov, 2020; Shi et al., 2019; Zhang
et al., 2022a, 2021).

LLM features for grammar induction. Recent
advances in LLMs have enabled vast improvements
on a wide range of downstream tasks, including

both supervised syntactic parsing and grammar in-
duction (e.g., Devlin et al., 2019; Radford et al.,
2019; Kitaev et al., 2018; Cao et al., 2020; Drozdov
et al., 2019; Li and Lu, 2023). However, prior work
that evaluated the benefit of multimodal inputs for
grammar induction used text-only baselines that
incorporated much weaker word representations,
such as random word embeddings or lexical word
embeddings such as fastText. Thus, it is unclear
whether stronger text-only methods for grammar in-
duction can match the performance of multimodal
approaches.

3 LC-PCFG: Grammar Induction with
Large Language Models

The goal of grammar induction is to learn syntac-
tic structure without explicit supervision. Meth-
ods for grammar induction assume a grammar for-
malism and then optimize grammar parameters
to fit the data. We use Compound Probabilistic
Context-Free Grammars (C-PCFGs) (Kim et al.,
2019) as a grammar formalism. We construct a
C-PCFG that incorporates LLM representations.
We refer to this method as LC-PCFG. We compare
LC-PCFG to prior methods that incorporate mul-
timodal data (Zhao and Titov, 2020; Zhang et al.,
2021, 2022a). Figure 2 provides an overview of
our experiments.

Background. C-PCFGs extend the Probabilistic
Context Free Grammar (PCFG) formalism, and are
defined by a 5-tuple G = (S,N ,P,Σ,R), consist-
ing of a start symbol S, a set of non-terminals N ,
a set of pre-terminals P , a set of terminals Σ, and
a set of derivation rules R:

S → A A ∈ N
A → BC A ∈ N , B,C ∈ N ∪ P
T → w T ∈ P, w ∈ Σ

PCFGs define a probability distribution over trans-
formation rules π = {πr}r∈R. Then the inside
algorithm (Baker, 1979) can be used to efficiently
perform inference over this probability distribution.
In neural PCFGs, this distribution may be formu-

1114

https://github.com/Boyiliee/Vision-free-Multimodal-Grammar-Induction
https://github.com/Boyiliee/Vision-free-Multimodal-Grammar-Induction


C-PCFG

Randomly 
initialized

embeddings

C-PCFG

LLM
embeddings

C-PCFG

Randomly 
initialized

embeddings

C-PCFG

LLM
embeddings

Matching
Loss

Matching
Loss

+LLM features 

+LLM features
+Pixels

+PixelsText only

Figure 2: Experimental Settings. We explore using large language model features for unsupervised grammar
induction. We use three experimental settings. (1) the standard setting in which word representations are learned
from scratch (Text Only), (2) prior methods that incorporate a multimodal regularization loss (+Pixels), and (3) our
method, which uses pre-trained text-only LLM features (+LLM features). We show that LLM features can obtain
state-of-the-art performance, without requiring multimodal regularization.
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Figure 3: LC-PCFG workflow. A sentence x is fed to
an LLM to obtain a sentence embedding E(x). E(x) is
passed through a fully-connected layer (FC), producing
the latent z. z is fed to the C-PCFG to obtain a con-
stituency parse tree. Note that unlike prior work, our
approach does not require multimodal data.

lated as follows:

πS→A =
exp(u⊤

Af1(wS))

ΣA′∈N exp(u⊤
A′f1(wS))

πA→BC =
exp(u⊤

BCwA)

ΣB′C′∈Mexp(u⊤
B′C′wA)

πT→w =
exp(u⊤

wf2(wT ))

Σw′∈Σexp(u⊤
w′f2(wT ))

where u are transformation vectors for each pro-
duction rule, w are learnable parameter vectors for
each symbol, and f1 and f2 are neural networks.
The neural PCFG formulation preserves the ben-
efits of fast inference while additionally incorpo-
rating distributional representations from neural
networks.

Because PCFGs contain a strong context-free
assumption, PCFGs cannot leverage global infor-
mation that is useful for computing production
probabilities during inference. C-PCFGs (Kim
et al., 2019) extend PCFGs to incorporate global
information. C-PCFGs formulate rule probabilities
as a compound probability distribution (Robbins,

1956):

z ∼ pγ(z) πz = fλ(z,EG)

Where z is a latent variable generated by a prior dis-
tribution (generally assumed to be spherical Gaus-
sian) and EG = {wN |N ∈ {S}∪N ∪P} denotes
the set of symbol embeddings. Rule probabilities
πz are additionally conditioned on this latent vari-
able:

πz,S→A ∝ exp(u⊤
Af1([wS ; z])),

πz,A→BC ∝ exp(u⊤
BC [wA; z]),

πz,T→w ∝ exp(u⊤
wf2([wT ; z]))

Importantly, the latent variable z allows global in-
formation to be shared across production decisions
during, while maintaining the context-free assump-
tion needed for efficient inference when z is fixed.

Becase the introduction of z makes inference
intractable, variational methods are used to opti-
mize C-PCFGs (Kingma and Welling, 2013) At
inference time, given a sentence x, the variational
inference network qϕ is used to produce the latent
z = µϕ(g(E(x))). Here, g is a sentence encoder
used to generate a vector representation given token
embeddings E(x). For a more thorough treatment
of C-PCFGs, please see Kim et al. (2019).

LLM-based C-PCFG for grammar induction.
We design LC-PCFG, a simple but strong text-only
baseline which incorporates pre-trained LLM rep-
resentations into the C-PCFG inference network.
Specifically, we formulate the inference network
as:

E(x) = LLM(x) (1)

g(x) = FC(m(E(x))) (2)
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Table 1: Grammar induction with image and text. Corpus-level F1 (C-F1) and sentence-level F1 (S-F1) scores
on the MSCOCO 2014 caption dataset. We compare LC-PCFG against simple rule-based baselines (top, from (Zhao
and Titov, 2020)), prior state-of-the-art methods that employ image data (middle), and methods, including ours,
that use purely textual data (bottom). RGB indicates whether each method uses multimodal inputs. LC-PCFG
outperforms all prior multimodal methods.

Method RGB LLM Params (M) C-F1 S-F1

Rule-based baselines
Left Branching No No - 15.1 15.7
Right Branching No No - 51.0 51.8
Random Trees No No - 24.2±0.3 24.6±0.2

Methods using extra-linguistic inputs
VG-NSL (Shi et al., 2019) Yes No - 50.4±0.3 -
VC-PCFG (Zhao and Titov, 2020) Yes No 41.5 59.3±8.2 59.4±8.3

VC-PCFG++ Yes No 41.5 64.2±7.0 64.6±7.2

Methods using only textual inputs
C-PCFG (Kim et al., 2019) No No 15.3 53.6±4.7 53.7±4.6

LC-PCFG (Ours) No Yes 6.2 67.2±1.1 67.8±1.2

where m represents a mean-pool operation. Here,
an LLM is used to obtain text embeddings for each
sentence x, which are then fed to a fully connected
(FC) layer as the C-PCFG inference network. Fig-
ure 3 provides an example of this method. A sen-
tence x (“A squirrel jumps on a stump") is fed
into an LLM to obtain an embedding of the sen-
tence. Then the sentence embedding is passed into
a fully-connected layer to obtain the latent variable
z. Finally, we feed z into the C-PCFG to obtain
a constituency parse tree. Note that compared to
prior multimodal CPFGs which used multimodal
inputs for regularization, our approach does not use
any multimodal data.

4 Experiments

4.1 Image-assisted Parsing

We compare LC-PCFG against VG-NSL (Shi et al.,
2019) and VC-PCFG (Zhao and Titov, 2020),
two state-of-the-art multimodal grammar induction
methods that incorporate visual signals from paired
image-caption data. In VG-NSL and VC-PCFG,
a visual matching loss between representations of
images and their captions serves as a regularizer
during grammar induction.

Setup. We follow the experimental setup of
Zhao and Titov (2020), evaluating on the same
splits of the MSCOCO 2014 dataset (Lin et al.,
2014). (Because MSCOCO does not provide cap-
tions for their test set, a portion of the validation
set is used as a held-out test set.) Images in the
MSCOCO dataset are each associated with 5 cap-
tions. The final dataset consists of 82,783 training,
1,000 validation, and 1,000 test images. During

preprocessing, all sentences are converted to low-
ercase and numbers are replaced with the letter
"N". For models using word embedding matrices,
the most frequent 10,000 words (based on white-
space tokenization) are maintained with all other
words mapped to a special UNK token. Captions
greater than 45 words in length are removed. For
LC-PCFG, we preprocess the dataset by extracting
token-level embeddings for each caption from the
last layer of an LLM.

Evaluation. Because the MSCOCO dataset does
not have annotated ground truth parse trees, we
follow prior work and use a supervised neural
parser, Benepar (Kitaev and Klein, 2018), to gener-
ate parse trees for evaluation. Each unsupervised
grammar induction method is evaluated by comput-
ing the F1 score between the predicted parse tree
and the parse tree generated by Benepar. Due to
instabilities observed during training, each method
is trained with 10 random seeds and then the mean
and standard deviation over the top 4 seeds (based
on validation F1) are reported.

Implementation. For baseline models we use the
implementation and hyperparameters provided by
Zhao and Titov (2020).1

The original implementation of VC-PCFG uses
a ResNet-152 network to embed images. How-
ever, there are now image embedding networks
that are stronger than ResNet-152. To provide
a fair comparison between our text-only model
and multimodal approaches, we improve VC-
PCFG by replacing ResNet-152 with ResNetV1.5

1https://github.com/zhaoyanpeng/vpcfg
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Table 2: Grammar induction with video and text. Comparison across three video-text parsing benchmark datasets
(DiDeMo, YouCook2 & MSRVTT). We show performance of simple rule-based baselines (top), prior state-of-the-art
multimodal methods (middle) and text-only models including ours (LC-PCFG) (bottom). LC-PCFG outperforms all
prior methods.

PCFG Method LLM RGB
DiDeMo YouCook2 MSRVTT

C-F1 S-F1 C-F1 S-F1 C-F1 S-F1

Rule-based baselines
Left Branching No No 16.2 18.5 6.8 5.9 14.4 16.8
Right Branching No No 53.6 57.5 35.0 41.6 54.2 58.6
Random No No 29.4±0.3 32.7±0.5 21.2±0.2 24.0±0.2 27.2±0.1 30.5±0.1

Methods using extra-linguistic inputs
VC-PCFG (Zhao and Titov, 2020) No Yes 42.2±12.3 43.2±14.2 42.3±5.7 47.0±5.6 49.8±4.1 54.2±4.0

MMC-PCFG (Zhang et al., 2021) No Yes 55.0±3.7 58.9±3.4 44.7±5.2 48.9±5.7 56.0±1.4 60.0±1.2

Methods using only textual inputs
C-PCFG (Kim et al., 2019) No No 38.2±5.0 40.4±4.1 37.8±6.7 41.4±6.6 50.7±3.2 55.0±3.2

LC-PCFG (Ours) Yes No 57.1±4.7 60.0±5.2 52.4±0.1 57.7±0.1 56.1±3.6 61.2±3.7

- 152 (ResNetV1.5, 2022). We also improve the
optimization hyperparameters (learning rate and
network dropout). We refer to the modernized ver-
sion of VC-PCFG as VC-PCFG++. VC-PCFG++
outperforms VC-PCFG by about 3 points in both
corpus and sentence-level F1 scores.

For LC-PCFG, we use an OPT-2.7B (Zhang
et al., 2022b) model to extract token-level embed-
dings for each sentence. Sentence embeddings are
then mean-pooled and passed through a single lin-
ear layer inference network. We use dropout of 0.5
on both the mean-pooled sentence embedding and
the output latent vector from the inference network.

4.1.1 Results
Table 1 shows test F1 scores for each model. LC-
PCFG achieves the highest overall corpus-level F1
(C-F1) and sentence-level F1 (S-F1) scores. Note
that LC-PCFG does not use paired visual features,
and contains 85% fewer parameters than the previ-
ous state-of-the-art approach (VC-PCFG).

4.2 Video-assisted Parsing
The results in Table 1 show that a text-only ap-
proach can outperform approaches that incorporate
multimodal inputs from images. However, some
have argued that images are a static snapshot of the
world, and therefore may lack information needed
to induce verb phrases (Zhang et al., 2021). Based
on the intuition that video can provide better multi-
modal training signals, one study presented an ap-
proach for grammar induction (MultiModal Com-
pound PCFG; MMC-PCFG) that incorporates both
visual and auditory signals from videos (Zhang
et al., 2021). MMC-PCFG aggregates multimodal
features and achieved a substantial improvement

over previous multimodal methods for grammar
induction. To test whether a text-only baseline
can achieve the same improvements as a video-
enhanced method, we compare LC-PCFG to MMC-
PCFG.

Setup. Following Zhang et al. (2021), we
use three benchmarking video datasets for our
experiments: Distinct Describable Moments
(DiDeMo) (Anne Hendricks et al., 2017), Youtube
Cooking (YouCook2) (Zhou et al., 2018) and
MSRVideo to Text (MSRVTT) (Xu et al., 2016).
DiDeMo consists of unedited, personal videos in
diverse visual settings with pairs of localized video
segments and referring expressions. It includes
32994, 4180 and 4021 video-sentence pairs in the
training, validation, and test sets. YouCook2 con-
tains 2000 videos that are nearly equally distributed
over 89 recipes. Each video contains 3–16 proce-
dure segments. It includes 8713, 969 and 3310
video-sentence pairs in the training, validation and
test sets. MSRVTT is a large-scale benchmark for
video understanding with 10K web video clips with
41.2 hours and 200K clip-sentence pairs in total. It
includes 130260, 9940 and 59794 video-sentence
pairs across all the data splits.

The extracted multimodal features (Zhang et al.,
2021) include object features (SENet (Xie et al.,
2017)), action features (I3D (Carreira and Zisser-
man, 2017)), scenes (Huang et al., 2017; Zhou et al.,
2017), audio (Hershey et al., 2017), OCR (Deng
et al., 2018; Liu et al., 2018), faces (Liu et al., 2016;
He et al., 2016) and speech (Mikolov et al., 2013).

We run all experiments 4 times for 10 epochs
each, with different random seeds. We report the
mean and standard deviation of the C-F1 and S-F1
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Table 3: Transferring Learnt Grammar. Models are trained on the ‘Trainset’ data and evaluated without additional
training on the target benchmarks (DiDeMO, YouCook2 & MSRVTT) on the Sentence-level F1 (S-F1) and Corpus-
level F1 (C-F1) metrics. All HowTo100M results are reported on 592k samples.

Method Trainset DiDeMo YouCook2 MSRVTT

C-F1 S-F1 C-F1 S-F1 C-F1 S-F1

MMC-PCFG DiDeMo 55.0±3.7 58.9±3.4 49.1±4.4 53.0±4.9 49.6±1.4 53.8±0.9

MMC-PCFG YouCook2 40.1±4.4 44.2±4.4 44.7±5.2 48.9±5.7 34.0±6.4 37.5±6.8

MMC-PCFG MSRVTT 59.4±2.9 62.7±3.3 49.6±3.9 54.2±4.1 56.0±1.4 60.0±1.2

MMC-PCFG HowTo100M 58.5±7.3 62.4±7.9 53.9±6.6 58.0±7.1 55.1±7.0 60.2±8.0

PTC-PCFG HowTo100M 61.3±3.9 65.2±5.3 58.9±2.5 63.2±2.3 57.4±4.6 62.8±5.7

LC-PCFG (Ours) HowTo100M 60.6±5.2 61.5±6.1 61.1±2.1 65.2±1.4 59.4±5.0 63.0±5.8

scores.

4.2.1 Results
Table 2 compares grammar induction performance
between C-PCFG, VC-PCFG (which incorporates
visual signals), and MMC-PCFG (which incorpo-
rates signals from multiple extralinguistic modali-
ties). LC-PCFG outperforms the video-regularized
models for all three benchmark datasets.

4.3 Large-scale Video Pretraining

While MMC-PCFG incorporates multimodal in-
puts from small amounts of video data, other
work has proposed to use larger scale video
data for improve grammar induction (Zhang
et al., 2022a). That work proposed Pre-Trained
Compound PCFGs (PTC-PCFG), a multimodal
method for grammar induction that obtains paired
video and text inputs from captioned instructional
YouTube videos in the HowTo100M dataset (Miech
et al., 2019). Then a matching loss between these
paired inputs is used as a regularizer during gram-
mar induction. PTC-PCFG outperformed previ-
ous state-of-the-art multimodal grammar induction
models.

To determine how PTC-PCFG compares to our
text-only baseline, we train LC-PCFG with the
captions of the HowTo100Mdataset (Miech et al.,
2019) without using any multimodal inputs. Fol-
lowing Zhang et al. (2022a), we induce a gram-
mar from 592k samples of the HowTo100M train
set and then evaluate on the three video-enhanced
parsing benchmarks shown in Table 2 (DiDeMo,
YouCook2, and MSRVTT).

Table 3 shows the test F1 scores for MMC-
PCFG, PTC-PCFG, and LC-PCFG on the
three video-enhanced parsing benchmarks. LC-
PCFG outperforms MMC-PCFG, even in settings
where LC-PCFG is trained on out-of-distribution
HowTo100M dataset and MMC-PCFG is trained

Table 4: Training Time Evaluation for both image-
based (top) and video-based (bottom) grammar induc-
tion methods. Run-time for both pre-extracting the em-
beddings (‘Embedding’) and model training (‘Training’)
are reported. We pre-embed captions for LC-PCFG
with two 24GB Titan RTX GPUs and pre-embed im-
ages/videos for models with a visual component. Train-
ing times for image and video results are benchmarked
on a single 12G 2080 Ti and on 2× 32G V100s respec-
tively.

PCFG Method Embedding (hours) Training (hours)

C-PCFG - 7.6
VC-PCFG 0.25 13.3
LC-PCFG 2.0 8.0

C-PCFG - 1.5
MMC-PCFG >25 15
PTC-PCFG >25 10
LC-PCFG (Ours) 2.5 1.7

on in-distribution samples from each benchmark
dataset. On the three benchmarks, LC-PCFG either
outperforms or nearly matches PTC-PCFG.

4.4 Runtime Comparison

To compare the runtime of each method, we follow
the setting of PTC-PCFG and calculate the time
to extract embeddings and train each model. Ta-
ble 4 shows the runtime for each model. LC-PCFG
requires more time for embedding extraction than
VC-PCFG, but LC-PCFG results 10× less time
for embedding extraction time compared to video-
enhanced models. LC-PCFG is 1.3 to 8.8 times
faster to train than either image-enhanced or video-
enhanced models.

5 Model Analysis

5.1 Perplexity-based Evaluation

To facilitate comparisons between methods, the re-
sults reported in Section 4 are based on the model
selection procedure used in prior studies (Zhao
and Titov, 2020; Zhang et al., 2021, 2022a). This
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model selection procedure trains models with dif-
ferent random seeds, and then uses validation C-F1
score to choose a subset of random seeds for test
evaluation.

However, this model selection procedure as-
sumes that gold parse trees are available during
validation. To ensure that our results do not rely on
having gold trees at validation time, we repeat our
experiments but instead use perplexity (PPL) (Chen
et al., 1998) to perform model selection:

PPL(X) = −1

t

t∑

i

log p(xi|x<i)

where X = (x1, x2, x3, ..., xt) is a tokenized se-
quence of words and p(xi|x<i) represents the log-
likelihood of the ith token conditioned on the pre-
ceding tokens x<i.

PPL allows us to perform model selection with-
out relying on gold parse trees. We train models
with 10 random seeds, and then use PPL to select
the four best-performing seeds.

Table 5 shows test C-F1 performance on image-
assisted parsing for experiments in which we used
PPL to perform model selection. LC-PCFG con-
sistently outperforms methods that use multimodal
inputs. We observe the same results for video-
assisted parsing (Table 6).

Table 5: Unsupervised Run Selection Criterion for
Unsupervised Grammar Induction. Corpus-level F1
scores using validation set F1 (‘Val-F1’), perplexity
(‘PPL’), and mean branching factor (‘MBF’, the av-
erage proportion between leaves in the right and left
branches of nodes in each tree across the corpus). Un-
like Validation-F1 based-selection, PPL and MBF do
not require gold trees during validation.

PCFG Method Run Selection Criteria

Val-F1 PPL MBF

C-PCFG 60.1±4.6 52.0±7.5 56.8±9.3

VC-PCFG 61.3±2.6 55.3±10.2 51.0±13.4

LC-PCFG (Ours) 67.2±1.1 67.2±1.1 65.3±2.1

5.2 Branching Factor

We performed grammar induction over texts in En-
glish, which is a right-branching language. To in-
vestigate whether induced grammars capture the
right-branching nature of English, we measure the
branching factor of predicted parse trees. For each
branch in each parse tree we measure the propor-
tion of leaves under the right branch over those of
the left branch. This proportion is then averaged
across all nodes in the tree to produce an average
score s. s is referred to as the branching factor
of the tree (s > 1.0 means that the tree is overall
right-branching, whereas s < 1.0 means that the
tree is overall left-branching). Formally, for each
parse tree t with |t| nodes n ∈ t we compute the
mean over nodes’ ratio of leaves in their right and
left branches:

MBF(t) =
1

|t|
∑

n∈t

CR(n)
CL(n)

where CR and CL are the respective counts of
leaves under the right and left branches of a node.

Table 7 shows the mean branching factor (MBF)
for each model (computed over 10 seeds). We find
that all models predict right-branching trees, and
LC-PCFG has the lowest MBF (i.e., most right-
branching trees).

To test whether MBF could be used as a run
selection criteria, we used MBF instead of vali-
dation C-F1 score to select random seeds. For
VC-PCFG and LC-PCFG, using MBF as a seed-
selection method performs slightly worse than us-
ing PPL or validation C-F1 score as a seed selection
method.

5.3 Model Ablations

To understand the effect of different model com-
ponents on grammar induction performance, we
perform a series of ablations on parsers trained on
the MSCOCO dataset.

Table 6: Unsupervised Run Selection Criterion for Unsupervised Grammar Induction. Similar to Table 5, we
report the results of run selection based on validation perplexity (PPL) for video benchmarks (Section 5.1).

PCFG Method DiDeMo YouCook2 MSRVTT

C-F1 S-F1 C-F1 S-F1 C-F1 S-F1

Compound (Kim et al., 2019) 40.4±10.1 42.1±9.1 38.6±7.2 42.8±7.7 49.2±3.8 53.1±4.0

Multi-modal (Zhang et al., 2021) 42.1±12.6 45.7±12.4 38.9±3.6 43.8±3.3 48.1±1.0 52.4±0.9

LC-PCFG (Ours) 46.3±6.9 49.9±7.3 46.7±1.1 52.4±0.8 50.5±4.0 55.2±4.4
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Table 7: MBF on image-assisted parsing.

PCFG Method MBF

C-PCFG 3.4±0.3

VC-PCFG 3.4±0.3

LC-PCFG 2.5±0.7

To understand the contribution of the latent vari-
able z, we ablate z in both training and in evalua-
tion.

First we perform inference-time ablations. Dur-
ing inference-time we zero out the latent variable z
(‘Zero-z’), or randomly shuffle z within an evalua-
tion batch (‘Random-z’). Next we perform training-
time ablations. We train a C-PCFG model with-
out latents (‘Zero-Train’, a vanilla neural PCFG
model).

The performance of each ablated model is shown
in Table 8. We find that inference-time ablations
on the latent yield comparable performance to the
default parsers, whereas omitting the latent dur-
ing training yields reduced performance from the
standard C-PCFG/LC-PCFG models. These re-
sults suggest that the latent variable may be largely
ignored at inference time, but that it serves an im-
portant role in the learning process of the parser.

Lastly, we ablate the input sentences. We evalu-
ate parsers when shuffling (‘Shuffle’) or zeroing out
input caption embeddings (‘Zero-C’), word embed-
dings for VC-PCFG or LLM embeddings for LC-
PCFG). We find that ablating the input sentences
substantially reduces test performance, suggesting
that learned parsers do not merely degenerate to a
learned prior at inference time.

Table 8: Parser Ablations. Corpus-level F1 scores for
PCFG parsers under ablations. We compare the default
formulations (‘Default’) to conditions zeroing out the
latent z (‘Zero-z’), randomly shuffling latents across
a batch (‘Random-z’), shuffling words in each caption
(‘Shuffle’) or zeroing captions out (‘Zero-C’), as well as
zeroing out latents during training (‘Zero-Train’). Note
that C-PCFG and LC-PCFG are functionally equivalent
in the Zero-Train condition because LLM features are
only used in latent computation.

Ablation Test Corpus F1

C-PCFG VC-PCFG LC-PCFG

Default 60.1±4.6 61.3±2.6 67.2±1.1

Zero-z 60.3±5.2 60.6±2.6 67.2±1.1

Random-z 60.3±5.2 60.9±2.5 67.2±1.1

Shuffle 30.0±0.7 31.0±0.9 40.6±1.0

Zero-C 35.2±16.1 44.6±7.6 48.6±7.5

Zero-Train 57.1±6.5 58.8±0.9 57.1±6.5

Method Params (M) C-F1 S-F1

Ours 6.2 67.2±1.1 67.8±1.2

Ours + ImgFeas 32.3 59.2±0.5 59.4±0.5

Table 9: Adding visual features to LC-PCFG. In-
corporating visual features (“ImgFeas") into LC-PCFG
degrades performance.

5.4 Re-adding Visual Signals to LC-PCFG

Section 4 showed that LC-PCFG outperforms pre-
vious multimodal approaches to grammar induc-
tion. But can re-adding visual signals to LC-PCFG
further improve grammar induction? Such an im-
provement would suggest that multimodal signals
contribute to grammar induction beyond what can
be learned from text alone.

To test this possibility we re-trained LC-PCFG
with the addition of paired visual features. Visual
features were incorporated with the same multi-
modal regularization loss as used in prior work
(Shi et al., 2019; Zhao and Titov, 2020). Table 9
and Table 10 show the effect of adding image and
video signals to LC-PCFG.

Adding visual signals to LC-PCFG reduces per-
formance compared to the text-only version of the
model. We observe this degradation across all
datasets, both for pixel-based and video-based vi-
sual features. We hypothesize that LC-PCFG may
overfit to the added visual features and thereby ob-
fuscate the signals in LLM embeddings.

6 Conclusion and Future Work

We propose LC-PCFG, a strong text-only baseline
for grammar induction. LC-PCFG is a C-PCFG
model that incorporates representations from LLMs
trained on text alone. On four benchmarks for
multimodal grammar induction, LC-PCFG outper-
forms several prior state-of-the-art multimodal ap-
proaches. Furthermore, adding visual inputs to LC-
PCFG does not improve grammar induction. These
experiments show that for grammar induction, the
benefits of multimodal inputs can be achieved by
more textual data. Our results challenge the notion
that multimodal inputs are necessary for grammar
induction.

Based on the result that LC-PCFG performs
as well as methods trained on multimodal inputs,
we speculate that representations from LLMs pro-
vide information that is redundant with informa-
tion provided by multimodal inputs. Indeed, some
work has shown that multimodal inputs improve
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grammar induction by providing signals of noun
concreteness (Kojima et al., 2020). Other work
has shown that LLMs acquire some knowledge
of word concreteness (Ramakrishnan and Deniz,
2021). Thus, large amounts of textual training data
may provide signals of word concreteness that ob-
viate multimodal inputs for grammar induction.

7 Broader Impacts Statement

Our experiments show that a text-only baseline can
outperform computationally intensive multimodal
approaches for grammar induction. These results
emphasize the promise of less computationally de-
manding methods, and we we hope they encourage
the community to re-think the necessity of expen-
sive multimodal approaches for certain tasks.

8 Limitations

Our results show that a strong LLM-based text-
only baseline outperforms current state-of-the-art
multi-modal grammar induction methods, and that
adding visual features to this baseline does not fur-
ther improve grammar induction. It is possible that
future work will find better methods of combining
visual features with LLMs, and that these methods
will outperform any text-only approaches.
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DiDeMo YouCook2 MSRVTT

PCFG Method C-F1 S-F1 C-F1 S-F1 C-F1 S-F1

Ours 57.1±4.7 60.0±5.2 52.4±0.1 57.7±0.1 56.1±3.6 61.2±3.7

Ours + VideoFeas 50.1±3.7 52.9±3.7 53.2±1.1 58.0±0.8 51.5±0.5 55.9±1.2

Table 10: Incorporating video features (“VideoFeas") into LC-PCFG degrades performance.
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