@inproceedings{srivatsa-kochmar-2024-makes,
title = "What Makes Math Word Problems Challenging for {LLM}s?",
author = "Srivatsa, Kv Aditya and
Kochmar, Ekaterina",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2024",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-naacl.72",
doi = "10.18653/v1/2024.findings-naacl.72",
pages = "1138--1148",
abstract = "This paper investigates the question of what makes math word problems (MWPs) in English challenging for large language models (LLMs). We conduct an in-depth analysis of the key linguistic and mathematical characteristics of MWPs. In addition, we train feature-based classifiers to better understand the impact of each feature on the overall difficulty of MWPs for prominent LLMs and investigate whether this helps predict how well LLMs fare against specific categories of MWPs.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="srivatsa-kochmar-2024-makes">
<titleInfo>
<title>What Makes Math Word Problems Challenging for LLMs?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kv</namePart>
<namePart type="given">Aditya</namePart>
<namePart type="family">Srivatsa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Kochmar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper investigates the question of what makes math word problems (MWPs) in English challenging for large language models (LLMs). We conduct an in-depth analysis of the key linguistic and mathematical characteristics of MWPs. In addition, we train feature-based classifiers to better understand the impact of each feature on the overall difficulty of MWPs for prominent LLMs and investigate whether this helps predict how well LLMs fare against specific categories of MWPs.</abstract>
<identifier type="citekey">srivatsa-kochmar-2024-makes</identifier>
<identifier type="doi">10.18653/v1/2024.findings-naacl.72</identifier>
<location>
<url>https://aclanthology.org/2024.findings-naacl.72</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>1138</start>
<end>1148</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T What Makes Math Word Problems Challenging for LLMs?
%A Srivatsa, Kv Aditya
%A Kochmar, Ekaterina
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Findings of the Association for Computational Linguistics: NAACL 2024
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F srivatsa-kochmar-2024-makes
%X This paper investigates the question of what makes math word problems (MWPs) in English challenging for large language models (LLMs). We conduct an in-depth analysis of the key linguistic and mathematical characteristics of MWPs. In addition, we train feature-based classifiers to better understand the impact of each feature on the overall difficulty of MWPs for prominent LLMs and investigate whether this helps predict how well LLMs fare against specific categories of MWPs.
%R 10.18653/v1/2024.findings-naacl.72
%U https://aclanthology.org/2024.findings-naacl.72
%U https://doi.org/10.18653/v1/2024.findings-naacl.72
%P 1138-1148
Markdown (Informal)
[What Makes Math Word Problems Challenging for LLMs?](https://aclanthology.org/2024.findings-naacl.72) (Srivatsa & Kochmar, Findings 2024)
ACL
- Kv Aditya Srivatsa and Ekaterina Kochmar. 2024. What Makes Math Word Problems Challenging for LLMs?. In Findings of the Association for Computational Linguistics: NAACL 2024, pages 1138–1148, Mexico City, Mexico. Association for Computational Linguistics.