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Abstract

Measuring semantic similarity between texts is
a crucial task in natural language processing.
While existing semantic text matching focuses
on pairs of similar-length sequences, matching
texts with non-comparable lengths has broader
applications in specific domains, such as com-
paring professional document summaries and
content. Current approaches struggle with text
pairs of non-comparable lengths due to trunca-
tion issues. To address this, we split texts into
natural sentences and decouple sentence repre-
sentations using supervised contrastive learn-
ing (SCL). Meanwhile, we adopt the embedded
topic model (ETM) for specific domain data.
Our experiments demonstrate the effectiveness
of our model, based on decoupled and topic-
informed sentence embeddings, in matching
texts of significantly different lengths across
three well-studied datasets.

1 Introduction

Text matching is an important research area in nat-
ural language processing (NLP) applications such
as information retrieval, natural language infer-
ence, and question answering. However, many
text-matching approaches assume that the texts be-
ing compared have similar lengths (Gong et al.,
2018; Zhou et al., 2020; Zhang et al., 2021a; Zou
et al., 2022), and most pre-trained models, such as
BERT (Devlin et al., 2019), focus on learning short
sequences and are inadequate to represent complex
domain-specific documents. Large language mod-
els (LLM) can directly process longer texts but
require increasingly extensive training resources
(Qin et al., 2023), which has evident limitations in
some practical application scenarios.

A natural way for humans to deal with long texts
is to break them down into smaller text segments
before processing them (Nguyen et al., 2023). In-
spired by this, for a varying-length text-matching
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Figure 1: Architecture overview of TDE.

task, we can split the two texts into natural sen-
tences and put the sentences of the two texts into
different sets. The motivation of our approach is:
1) If these two texts do not match, then their respec-
tive sets of sentences can be considered to belong
to different classes. Therefore, the sentence points
belonging to the same class should be close in their
representation space, while the points from differ-
ent classes should be further apart. 2) If two texts
are semantically similar and consistent, the top-
ics of the two texts should match. Accordingly,
we present an effective method for varying-length
text-matching with Topic-informed and Decoupled
sentence Embeddings (TDE), as shown in Figure
1 and described in Section 2. First, we segment
the text into sentences and utilize a state-of-the-art
pre-trained model’s transformer encoder to convert
them into embedding points by extracting the last
hidden state. We then employ SCL to optimize
class-wise relations in the embedding space of sen-
tence representations. Meanwhile, we discover the
topic embeddings of the corpus by ETM (Dieng
et al., 2020) and calculate the text embeddings with
topic information. Finally, we concatenate the SCL-
optimized and the topic-informed embeddings to
predict scores for varying-length text matching.

Two related works, the hidden topic comparison
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method (HT) (Gong et al., 2018) and the unsuper-
vised concept generation network (CGNet) (Zhang
et al., 2021a), share similarities with our approach.
HT extracts hidden topics and compares documents
with varying lengths, while CGNet relies on local
phrase features and corpus-level concept features
for matching. In comparison, our method is sim-
pler, more effective, and explainable. Moreover,
our model can leverage the continuous evolution of
LLMs to enhance performance.

2 Methodology

2.1 Topic-Informed Sentence Embedding

Truncating lengthy texts leads to information loss
and diminishes the efficacy of text representa-
tions. To address the high space/time complexity in
varying-length text matching, our proposed TDE,
illustrated in Figure 1, first splits the two texts into
sentences and organizes them into separate sets.
Then, we employ a transformer encoder to produce
fixed-sized sentence embedding vectors by extract-
ing the last hidden state of the transformer encoder
output. However, generating these embeddings can
be challenging, as universal pre-trained models typ-
ically lack highly domain-specific information on
real-world scenario data.

To address the problem, we leverage ETM be-
cause, first, as a neural topic model, ETM is use-
ful for dealing with domain-specific data (Peinelt
et al., 2020) and is also more suitable for joint
training with other neural networks than other tradi-
tional models. Second, ETM treats both vocabulary
words and topics as embeddings in a particular em-
bedding space, which is useful when words of some
specific domain are unknown. So, we follow the
optimization objective (Letm) in ETM literature to
calculate the topic-informed sentence embeddings
by learning the document-topic distribution and
topic embeddings. Then, we concatenate the topic-
informed sentence embedding and the encoded out-
put of BERT to get the full sentence representation.

At last, we calculate the average embedding of
the vectors of each sentence set to obtain the text
embedding (h1 or h2) for the original text corre-
sponding to that set. A classifier layer takes the
two average vectors as inputs and aggregates them
into a single vector m = [h1;h2;h1 − h2;h1 ◦ h2]
before it predicts a final matching probability
with m (Mou et al., 2016). At last, a loss (e.g.,
cross-entropy) function is used to optimize the
whole model with the predicted probability and the

ground truth (◦ denotes element-wise product and
semicolons denote column vector concatenation).

2.2 Supervised Contrastive Optimization

After the classifier outputs the predicted probabil-
ities of two classes through a Softmax operation,
the usual cross-entropy (CE) loss (Lce) is adopted
in a common Siamese text-matching network to
optimize the whole model:

Lce = −
∑

i

yilog(ŷi), (1)

where yi is the ground-truth label of sample i and ŷi
is the sample’s prediction label. However, the CE
loss is unsuitable for optimizing varying-length text
matching, as it is typically used for final representa-
tions, and the task-specific nature of varying-length
texts can hinder its effectiveness for long texts. The
CE loss exhibits shortcomings, including vulnera-
bility to noisy labels (Zhang and Sabuncu, 2018)
and potential poor margins (Elsayed et al., 2018),
resulting in reduced generalization performance in
varying-length text matching. We address this by
dividing two input texts into multiple sentences and
organizing them into sets, recognizing the match-
ing process as a many-to-many relationship akin to
a set matching problem.

Recently, contrastive learning has become the
most popular self-supervised paradigm and has
achieved remarkable success (Wang et al., 2024;
Chen et al., 2020a; Henaff, 2020; Chen et al.,
2020b; Wu et al., 2021). It is based on defining
positive and negative pairs by which it aims to pull
together the samples in the positive pair while push-
ing away the samples in the negative pair. With the
development of contrastive learning, a few loss
functions are proposed to improve the discrimina-
tion power, such as triplet loss (Weinberger et al.,
2006) and N-pair loss (Sohn, 2016). In particular,
supervised contrastive learning is proposed (Khosla
et al., 2020) and used to effectively leverage label
information in classifications (Nasiri and Hu, 2021)
and pre-trained model fine-tuning (Zhang et al.,
2021b), considering many positives and many neg-
atives for each anchor. It is treated as a generaliza-
tion of both the triplet and N-pair losses. The SCL
method contrasts the set of all samples from the
same class as positives against the negatives from
the remainder of one batch.

Our TDE model is well-suited for optimization
through SCL, effectively optimizing in-class and
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many-to-many sentence representations in embed-
ding space. This approach complements the lim-
itations of the CE optimization method, specif-
ically addressing its local optimization deficien-
cies. Therefore, we introduce the supervised con-
trastive (SC) loss with labeled data for optimizing
the Siamese text-matching network:

Lsc= − 1

n|Pi|
n∑

i=1

∑

zj∈Pi

log
e(z

⊤
i zj/τ)

∑
zk∈Ai

e(z
⊤
i zk/τ)

,

(2)

where τ is the temperature, Pi denotes the posi-
tive pairs, and Ai denotes the full pair set of the
anchor zi. As shown in Equation 2, the contrastive
loss with a small τ tends to make the embedding
distribution more uniform (Wang and Isola, 2020).
On the other hand, contrastive loss with a large
temperature is less sensitive to the hard negative
samples (Wang and Liu, 2021). As the temperature
τ controls the strength of penalties on hard negative
samples, we follow the previous literature (Gunel
et al., 2021) and choose the τ values based on the
hardness of negative samples to tune performance.

With supervised contrastive optimization, our
TDE model has a hybrid loss function consisting
of an original cross-entropy and a supervised con-
trastive loss: LOPT = Letm + λ1 · Lsc + λ2 · Lce ,
where λi is a hyperparameter. According to our
experiments, hybrid optimization gives a higher
accuracy than training by these losses alone.

3 Experiments

3.1 Datasets

(1) Concept-Projects1 (Gong et al., 2018) is de-
signed for evaluating text-matching algorithms
with varying-length inputs. A “Concept” repre-
sents a science curriculum summarizing a “Project,”
which is a science project document. To assess if a
project aligns with a concept, individuals must de-
termine the match. Concepts are typically brief,
around 50 words, while project documents are
lengthy, exceeding 1000 words. The dataset com-
prises 537 project-concept pairs annotated by con-
tributors based on human judgment of matching.
(2) CL-SciSumm 20172. This dataset (Prasad,
2017) contains 494 Computational Linguistics re-
search papers in 30 categories. For each category,

1https://github.com/HongyuGong/Document-Similarity-
via-Hidden-Topics

2https://github.com/animeshprasad/clscisumm2017

the dataset provides one reference paper and around
10 citing papers. At the same time, the dataset also
provides a corresponding human-created summary
for each reference paper. Following the literature
(Zhang et al., 2021a), we label the reference pa-
per as the positive candidate and all the citing pa-
pers as negative candidates when conducting paper-
retrieval experiments by the summary. The match-
ing task on this dataset is to retrieve and rank pa-
pers by a summary, which takes its corresponding
reference paper as the top-1 ground truth.
(3) CL-SciSumm 20183. This dataset (Jaidka et al.,
2018) contains 605 research papers in 40 categories.
For each category, the dataset provides one refer-
ence paper and at least 10 citing papers that cite
this reference paper. At the same time, the dataset
also provides a corresponding human-created sum-
mary for each reference paper. Following the litera-
ture (Zhang et al., 2021a), when conducting paper-
retrieval experiments by a summary, we randomly
take 5 citing papers from the same category as this
summary to label them as positive candidates and
randomly take 15 citing papers that do not belong
to the same category as the summary to label them
as negative candidates. The matching task on this
dataset is to retrieve and rank papers by the sum-
mary, which takes the citing papers from the same
category as this summary as the ground truth.

We follow the same splitting settings from the
original literature of all three datasets for a fair
comparison with all baseline models.

3.2 Evaluation Metrics

We evaluate three datasets with different metrics:

• For the Concept-Project, we follow the unified
classification evaluation method (Gong et al.,
2018) to evaluate the matching-prediction la-
bels of texts by calculating a matching thresh-
old using the similarity scores or relative dis-
tances of all text vectors in the model’s pre-
trained representation space from the training
data.

• For the CL-SciSumm 2017, we use popular
ranking evaluation metrics from the literature,
which include: (i) Precision@1: The propor-
tion of predictions where the correct answer
appears in the top-1 location of the retrieval re-
sult. (ii) Mean Reciprocal Rank (MRR). This
ranking metric calculates the location of the

3https://github.com/WING-NUS/scisumm-corpus
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Method Concept-Project Matching Summary-Reference Retrieval
Acc. Prec. Recall F1 Prec@1 NDCG MRR

TF-IDF 53.8 54.0 99.3 70.0 86.7 93.8 91.8
Doc2Vec (Le and Mikolov, 2014) 90.5 86.2 96.1 90.9 65.2 77.2 71.5
WMD (Kusner et al., 2015) 68.5 65.6 88.0 75.2 86.7 95.1 93.3
HT (Gong et al., 2018) 80.1 80.7 83.2 81.9 36.7 66.1 55.5
SBERT (Reimers and Gurevych, 2019) 75.1 78.8 96.4 83.6 65.1 72.4 68.4
RE2 (Yang et al., 2019) 86.6 88.8 92.5 88.9 82.1 85.0 83.0
WRD (Yokoi et al., 2020) 84.9 83.3 89.2 86.2 53.3 77.3 70.1
CGNet (Zhang et al., 2021a) 87.2 86.5 90.4 88.4 90.0 95.9 94.4
TDE w/o ETM (ours) 94.1 97.8 95.2 94.4 88.7 94.7 94.0
TDE (ours) 94.3 98.1 95.8 94.6 90.2 96.9 95.2

Table 1: For Concept-Project Matching, TDE achieves the best the metric scores on accuracy, precision, and F1
score, which are 3.8%, 9.3%, and 3.7% better than the second-best models. For Summary-Reference Retrieval, TDE
achieves the best metric scores on Prec@1, NDCG, and MRR, which are 0.2%, 1.0%, and 0.8% better than the
second-best models.

first correct answer in the retrieval result. The
higher the position of the first correct answer,
the greater the MRR value, represented as
MRR= 1

N

∑N
i=1

1
ranki

for multiple queries N ,
where 1

ranki
is the reciprocal rank for a single

query. (iii) Normalized Discounted Cumula-
tive Gain4 (NDCG): This ranking metric com-
pares the relevance of the answers returned in
the retrieval to the relevance of the answers
in ideal order. NDCG is the quotient of the
actual DCG and the ideal DCG.

• For the CL-Scisumm 2018, we use
Precision@k as the retrieval metric to
calculate the proportion of predictions where
the correct answer appears in the top-k
locations of the retrieval results. We tune k
from 1 to 5 in our experiments.

3.3 Baseline Methods
We use eight strong baselines in experiments of
matching varying-length texts: TF-IDF, Doc2Vec
(Le and Mikolov, 2014), Word Movers’ Distance
(WMD) (Kusner et al., 2015), Hidden Topics (HT)
(Gong et al., 2018), RE2 (Yang et al., 2019),
Sentence-BERT (SBERT) (Reimers and Gurevych,
2019), Word Rotator’s Distance (WRD) (Yokoi
et al., 2020), and CGNet (Zhang et al., 2021a). We
follow the same data pre-processing rules and use
the original implementation methods of baselines.
We did twenty experiments on three datasets to
observe those experiments’ average results.

3.4 Experimental Results and Analysis
Table 1 and Figure 2 show that our proposed TDE
performs better than the baseline models in match-

4https://scikit-learn.org/stable/modules/model_evaluation

Figure 2: For Summary-Citance Retrieval, we adopt
Precision@k as the experiment metric and tune k be-
tween 1 and 5. The experimental results show that our
approach achieves the best performance in the baseline
models when k is from 1 to 4.

τ=0.07 τ=0.2 τ=0.7 τ=1.0
SC + CE (ours) 94.6 94.2 93.8 93.0
SC 93.7 93.5 93.2 92.5
CE (w/o τ ) 92.3

Table 2: Ablation study for SC loss and its temperature
coefficients with the Concept-Project task (F1 score).

ing and retrieval performance on three well-studied
datasets. As shown in Table 1, there is no obvious
improvement with ETM enabled on the Concept-
Project Matching dataset because it is from a more
general domain and is not beneficial for ETM op-
timization with the universal pre-training model
(BERT). For Summary-Reference Retrieval, the
performance improvement is limited before ETM is
enabled. That is because the universal pre-training
model lacks domain-specific information necessary
for text representation encoding of this dataset, a
professional field dataset from linguistics papers.
After ETM was enabled, there were noticeable
performance enhancements, illustrating the impor-
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(a) Concept-Project Matching (b) Summary-Reference Retrieval (c) Summary-Citance Retrieval

Figure 3: Parameter analysis of latent topic number.

tance of the ETM module in generic matching tasks
with domain-specific cases.

We investigate the impact of the key hyper-
parameter, latent topic number (K, as shown in
Figure 1), in the three varying-length matching
tasks. The three subfigures in Figure 3 show
the experimental results using various topic num-
ber settings (from 20 to 200) on three datasets:
(a) Concept-Project, (b) Summary-Reference, and
(c) Summary-Citance, respectively. Figure 3 (a)
shows that both Accuracy and F1 scores are im-
proved until the number of topics increases to 100
in the Concept-Project matching task. After the
topic number reaches 100, the performance starts
to degrade, which indicates that the topic num-
ber has an optimal experimental value. For the
other two tasks (Summary-Reference Retrieval and
Summary-Citance Retrieval), the optimal values
are 100 and 50 in our experiments, as illustrated in
Figure 3 (b) and Figure 3 (c), respectively. There-
fore, we conclude that setting the topic number
too small or too large will lead to semantic con-
fusion in each corresponding latent variable and
performance degradation on the related dataset. A
suitable setting of the latent topic number tends to
make the representations better for the matching
process. Therefore, in the performance comparison
to the baseline models, we take the experimental
results when K is set as 100, 100, and 50 for the
three datasets, respectively, because of the optimal
performance with these settings experimentally.

Our ablation experiments highlight the impact
of varying temperature coefficients (τ ) of the su-
pervised contrastive loss on overall performance.
The results in Table 2 indicate that adjusting some
temperature values has negligible performance im-
provement, but notable gains are observed with
specific τ values. This flexibility in tuning perfor-
mance through supervised contrast learning allows

for finding optimal temperature values tailored to
different datasets. So, the ablation tests show the
crucial role of supervised contrast learning in our
task and its contribution to our method.

4 Conclusion

We present a novel and effective method for match-
ing texts of varying lengths. We split long texts
into sentences and encode them with the advanced
transformer. Leveraging the in-class and many-
to-many optimization characteristics of supervised
contrastive learning and the domain-specific ability
of embedded topic modeling, our model demon-
strates superiority against the baseline models on
three real-world datasets in both effectiveness and
explainability of varying-length text matching.

Limitations

The efficacy of our method may be influenced by
the quality of the natural sentences undergoing seg-
mentation. In our experiments, we observed that
some sentences generated through segmentation
lack essential semantic information. Therefore, in-
corporating these sentences in contrastive learning
training could potentially have a negative impact
on the final quality of sentence representations and
model performance. We anticipate that refining
the pre-processed sentences will lead to further im-
provements in the existing framework in the future.

Acknowledgements

This work is supported by the National Key R&D
Program of China (2022ZD0160703), the National
Natural Science Foundation of China (Grant Nos.
62202422 and 62372408), and the National Key Re-
search and Development Program of China (Grant
Nos. 2022YFB4500300 and 2018YFB1403202).

1278



References
Ting Chen, Simon Kornblith, Mohammad Norouzi, and

Geoffrey Hinton. 2020a. A simple framework for
contrastive learning of visual representations. In
Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 1597–1607.
PMLR.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020b. A simple framework for
contrastive learning of visual representations. In
Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 1597–1607.
PMLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL, pages 4171–4186.

Adji B. Dieng, Francisco J. R. Ruiz, and David M. Blei.
2020. Topic modeling in embedding spaces. Trans-
actions of the Association for Computational Linguis-
tics, 8:439–453.

Gamaleldin Elsayed, Dilip Krishnan, Hossein Mobahi,
Kevin Regan, and Samy Bengio. 2018. Large margin
deep networks for classification. In Advances in
NeurIPS, volume 31.

Hongyu Gong, Tarek Sakakini, Suma Bhat, and Jin-
jun Xiong. 2018. Document similarity for texts of
varying lengths via hidden topics. In ACL, pages
2341–2351.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Veselin
Stoyanov. 2021. Supervised contrastive learning for
pre-trained language model fine-tuning. In Interna-
tional Conference on Learning Representations.

Olivier Henaff. 2020. Data-efficient image recognition
with contrastive predictive coding. In Proceedings
of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine
Learning Research, pages 4182–4192. PMLR.

Kokil Jaidka, Michihiro Yasunaga, Muthu Kumar Chan-
drasekaran, Dragomir Radev, and Min-Yen Kan.
2018. The cl-scisumm shared task 2018: Results and
key insights. In In Proceedings of BIRNDL, pages
74–83.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Super-
vised contrastive learning. In Advances in NeurIPS,
volume 33, pages 18661–18673.

Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kil-
ian Q. Weinberger. 2015. From word embeddings to
document distances. In ICML, pages 957–966.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In ICML,
pages 1188–1196.

Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan,
and Zhi Jin. 2016. Natural language inference by
tree-based convolution and heuristic matching. In
Proceedings of ACL, pages 130–136.

Alireza Nasiri and Jianjun Hu. 2021. SoundCLR: Con-
trastive Learning of Representations For Improved
Environmental Sound Classification. arXiv e-prints,
page arXiv:2103.01929.

Thong Nguyen, Sean MacAvaney, and Andrew Yates.
2023. Adapting learned sparse retrieval for long doc-
uments. In Proceedings of the 46th International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR ’23, page
1781–1785, New York, NY, USA. Association for
Computing Machinery.

Nicole Peinelt, Dong Nguyen, and Maria Liakata. 2020.
tBERT: Topic models and BERT joining forces for
semantic similarity detection. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7047–7055, Online. Asso-
ciation for Computational Linguistics.

Animesh Prasad. 2017. Wing-nus at cl-scisumm 2017:
Learning from syntactic and semantic similarity for
citation contextualization. In Joint Workshop on
BIRNDL, page 26–32, Tokyo, Japan. CEUR.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is
chatgpt a general-purpose natural language process-
ing task solver?

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of EMNLP), pages 3982–
3992.

Kihyuk Sohn. 2016. Improved deep metric learning
with multi-class n-pair loss objective. In Advances in
NeurIPS, volume 29.

Feng Wang and Huaping Liu. 2021. Understanding the
behaviour of contrastive loss. In 2021 CVPR, pages
2495–2504.

Tongzhou Wang and Phillip Isola. 2020. Understanding
contrastive representation learning through alignment
and uniformity on the hypersphere. In Proceedings
of ICML, volume 119, pages 9929–9939. PMLR.

Yihe Wang, Yu Han, Haishuai Wang, and Xiang Zhang.
2024. Contrast everything: A hierarchical contrastive
framework for medical time-series. Advances in Neu-
ral Information Processing Systems, 36.

Kilian Q Weinberger, John Blitzer, and Lawrence Saul.
2006. Distance metric learning for large margin near-
est neighbor classification. In Advances in NeurIPS,
volume 18. MIT Press.

1279

https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1162/tacl_a_00325
https://proceedings.neurips.cc/paper/2018/file/42998cf32d552343bc8e460416382dca-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/42998cf32d552343bc8e460416382dca-Paper.pdf
https://doi.org/10.18653/v1/P18-1218
https://doi.org/10.18653/v1/P18-1218
https://openreview.net/forum?id=cu7IUiOhujH
https://openreview.net/forum?id=cu7IUiOhujH
http://proceedings.mlr.press/v119/henaff20a.html
http://proceedings.mlr.press/v119/henaff20a.html
https://ceur-ws.org/Vol-2132/paper7.pdf
https://ceur-ws.org/Vol-2132/paper7.pdf
https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
http://proceedings.mlr.press/v37/kusnerb15.html
http://proceedings.mlr.press/v37/kusnerb15.html
http://proceedings.mlr.press/v32/le14.html
http://proceedings.mlr.press/v32/le14.html
https://doi.org/10.18653/v1/P16-2022
https://doi.org/10.18653/v1/P16-2022
http://arxiv.org/abs/2103.01929
http://arxiv.org/abs/2103.01929
http://arxiv.org/abs/2103.01929
https://doi.org/10.1145/3539618.3591943
https://doi.org/10.1145/3539618.3591943
https://doi.org/10.18653/v1/2020.acl-main.630
https://doi.org/10.18653/v1/2020.acl-main.630
http://ceur-ws.org/Vol-2002/nusclscisumm2017.pdf
http://ceur-ws.org/Vol-2002/nusclscisumm2017.pdf
http://ceur-ws.org/Vol-2002/nusclscisumm2017.pdf
http://arxiv.org/abs/2302.06476
http://arxiv.org/abs/2302.06476
http://arxiv.org/abs/2302.06476
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://proceedings.neurips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://doi.org/10.1109/CVPR46437.2021.00252
https://doi.org/10.1109/CVPR46437.2021.00252
https://proceedings.neurips.cc/paper/2005/file/a7f592cef8b130a6967a90617db5681b-Paper.pdf
https://proceedings.neurips.cc/paper/2005/file/a7f592cef8b130a6967a90617db5681b-Paper.pdf


Mike Wu, Milan Mosse, Chengxu Zhuang, Daniel
Yamins, and Noah Goodman. 2021. Conditional neg-
ative sampling for contrastive learning of visual repre-
sentations. In International Conference on Learning
Representations.

Runqi Yang, Jianhai Zhang, Xing Gao, Feng Ji, and
Haiqing Chen. 2019. Simple and effective text match-
ing with richer alignment features. In Proceedings of
ACL, pages 4699–4709.

Sho Yokoi, Ryo Takahashi, Reina Akama, Jun Suzuki,
and Kentaro Inui. 2020. Word rotator’s distance. In
Proceedings of EMNLP, pages 2944–2960.

Xuchao Zhang, Bo Zong, Wei Cheng, Jingchao Ni,
Yanchi Liu, and Haifeng Chen. 2021a. Unsupervised
concept representation learning for length-varying
text similarity. In Proceedings of NAACL, pages
5611–5620.

Yifan Zhang, Bryan Hooi, Dapeng Hu, Jian Liang, and
Jiashi Feng. 2021b. Unleashing the power of con-
trastive self-supervised visual models via contrast-
regularized fine-tuning. In Advances in NeurIPS,
volume 34, pages 29848–29860.

Zhilu Zhang and Mert Sabuncu. 2018. Generalized
cross entropy loss for training deep neural networks
with noisy labels. In Advances in NeurIPS, pages
8778–8788.

Xixi Zhou, Chengxi Li, Jiajun Bu, Chengwei Yao,
Keyue Shi, Zhi Yu, and Zhou Yu. 2020. Matching
text with deep mutual information estimation.

Yicheng Zou, Hongwei Liu, Tao Gui, Junzhe Wang,
Qi Zhang, Meng Tang, Haixiang Li, and Daniell
Wang. 2022. Divide and conquer: Text semantic
matching with disentangled keywords and intents.
In Findings of the Association for Computational
Linguistics: ACL 2022, pages 3622–3632, Dublin,
Ireland. Association for Computational Linguistics.

1280

https://openreview.net/forum?id=v8b3e5jN66j
https://openreview.net/forum?id=v8b3e5jN66j
https://openreview.net/forum?id=v8b3e5jN66j
https://doi.org/10.18653/v1/P19-1465
https://doi.org/10.18653/v1/P19-1465
https://doi.org/10.18653/v1/2020.emnlp-main.236
https://doi.org/10.18653/v1/2021.naacl-main.445
https://doi.org/10.18653/v1/2021.naacl-main.445
https://doi.org/10.18653/v1/2021.naacl-main.445
http://arxiv.org/abs/2003.11521
http://arxiv.org/abs/2003.11521
https://doi.org/10.18653/v1/2022.findings-acl.287
https://doi.org/10.18653/v1/2022.findings-acl.287

