
Findings of the Association for Computational Linguistics: NAACL 2024, pages 1320–1332
June 16-21, 2024 ©2024 Association for Computational Linguistics

Learning Cross-Architecture Instruction Embeddings for
Binary Code Analysis in Low-Resource Architectures

Junzhe Wang
George Mason University
jwang69@gmu.edu

Qiang Zeng
George Mason University

zeng@gmu.edu

Lannan Luo �
George Mason University

lluo4@gmu.edu

Abstract

Binary code analysis is indispensable for a va-
riety of software security tasks. Applying deep
learning to binary code analysis has drawn
great attention because of its notable perfor-
mance. Today, source code is frequently com-
piled for various Instruction Set Architectures
(ISAs). It is thus critical to expand binary anal-
ysis capabilities to multiple ISAs. Given a bi-
nary analysis task, the scale of available data
on different ISAs varies. As a result, the rich
datasets (e.g., malware) for certain ISAs, such
as x86, lead to a disproportionate focus on these
ISAs and a negligence of other ISAs, such as
PowerPC, which suffer from the “data scarcity”
problem. To address the problem, we propose
to learn cross-architecture instruction embed-
dings (CAIE), where semantically-similar in-
structions, regardless of their ISAs, have close
embeddings in a shared space. Consequently,
we can transfer a model trained on a data-rich
ISA to another ISA with less available data.
We consider four ISAs (x86, ARM, MIPS, and
PowerPC) and conduct both intrinsic and ex-
trinsic evaluations (including malware detec-
tion and function similarity comparison). The
results demonstrate the effectiveness of our
approach to generate high-quality CAIE with
good transferability.

1 Introduction

Binary code analysis, which allows one to analyze
binary code without access to the corresponding
source code, plays a critical role in a wide range
of different tasks, including code plagiarism de-
tection (Luo et al., 2014; Jhi et al., 2015), mal-
ware classification (Zhang et al., 2014; Sebastio
et al., 2020), function similarity detection (Li et al.,
2022; Ding et al., 2019), and vulnerability discov-
ery (Pewny et al., 2015; Eschweiler et al., 2016).

Today, software is frequently cross-compiled
for various Instruction Set Architectures (ISAs).
For example, hardware vendors often use the same

code base to compile firmware for different devices
that operate on varying ISAs (e.g., x86 and ARM),
which causes a single vulnerability at source-code
level to spread across binaries of diverse devices.
As a result, cross-architecture binary code analysis
has become an emerging problem that draws great
attention (Pewny et al., 2015; Feng et al., 2016; Xu
et al., 2017; Zuo et al., 2019). Analysis of binaries
across ISAs, however, is non-trivial: such binaries
differ greatly in instruction sets, calling conven-
tions, general- and special-purpose CPU register
usages, memory addressing modes, and more.

Recently, we have witnessed a surge of research
efforts that leverage deep learning to tackle vari-
ous binary code analysis tasks. Deep learning has
demonstrated its strengths on code analysis, and
shown noticeably better performances over tradi-
tional program analysis-based methods in terms
of both accuracy and scalability. However, train-
ing a deep learning model usually requires massive
amount of data. As a result, most deep learning-
based binary analysis models have been dedicated
to a high-resource ISA, such as x86, where large-
scale labeled datasets exist for training their models.
But for many other ISAs, such as PowerPC, there
are few or even no labeled dataset, resulting in a
negligence focus on those low-resource ISA. More-
over, it is labor intensive and time-consuming to
collect data samples and manually label them to
build datasets for such low-resource ISAs.

Our Approach. A binary, after being disassem-
bled, is expressed in an assembly language. Given
this insight, InnerEye (Zuo et al., 2019) pro-
posed to adapt deep learning techniques developed
for natural language processing (NLP) to binary
code analysis. Since then a surge of NLP-inspired
binary analysis approaches have been proposed (Li
et al., 2022, 2023; Zan et al., 2022; Chen et al.,
2021; Redmond et al., 2019; Duan et al., 2020).
In many NLP tasks, words are often converted

1320

into word embeddings, which capture the seman-
tic meaning of words, to facilitate further process-
ing (Mikolov et al., 2013a; Wieting et al., 2015;
Tang et al., 2014). To analyze binary code, we
regard instructions as words and basic blocks as
sentences.

Inspired by cross-lingual word embeddings in
NLP (Mikolov et al., 2013b), we propose a novel
approach to tackle the challenge of data scarcity
in binary code analysis. Our approach learns
cross-architecture instruction embeddings (CAIE),
where semantically-similar instructions, regardless
of their ISAs, have close embeddings in a shared
space. Equipped with such a shared space, we can
transfer knowledge from one ISA to another, espe-
cially in low-resource scenarios. Specifically, by
projecting instructions disassembled from binaries
in different ISAs into the shared space, we can train
a model using only the data in a high-resource ISA,
and transfer it to a low-resource ISA.

Unlike NLP, where obtaining cross-lingual sig-
nals can be difficult, obtaining cross-architecture
signal for binary code analysis across ISAs is not
a challenging task (see Section 4.1). We thus de-
sign a supervised model by borrowing the idea and
technique from the Bi-SENT2VEC algorithm (Sa-
bet et al., 2019) in NLP to learn CAIE. We first
build a dataset consisting of a large number of
semantically-equivalent basic block pairs and use
them to train a joint model which learns to predict
both the instruction and context in the source and
target basic blocks. The model explores rich se-
mantic relationships among instructions within its
own ISA as well as across a different ISA. It is also
fully self-supervised, which helps overcome the
limitation of unsupervised linear transformation.

We have implemented our model, called
CrossIns2Vec, and evaluated it on four ISAs:
x86, ARM, MIPS and PowerPC (PPC). (1) In intrin-
sic evaluation, we conduct the instruction similarity
task to evaluate the quality of CAIE—whether they
capture the syntax and semantic information of
instructions across ISAs. (2) In extrinsic evalua-
tion, we conduct two downstream binary analysis
tasks to evaluate the transferability of CAIE, includ-
ing function similarity comparison and malware
detection. We also compare CrossIns2Vec
to the baseline methods. The results show that
CrossIns2Vec can effectively generate high-
quality CAIE with better transferability. Below
summarizes our contributions:

• To address the data scarcity issue in binary
code analysis, we propose to learn cross-
architecture instruction embeddings (CAIE),
where semantically-similar instructions, re-
gardless of their ISAs, have close embeddings
in a shared space. Equipped with such a
shared space, given a binary analysis task, we
can transfer a model trained on a data-rich
ISA to another ISA with less available data.

• We have implemented a supervised model for
learning CAIE and conducted both intrinsic
and extrinsic evaluations on four ISAs: x86,
ARM, MIPS and PPC. The results demon-
strate the effectiveness of our approach.

• NLP-inspired binary code analysis is a promis-
ing research direction, but not all NLP tech-
niques are applicable to binary code analysis.
Thus, studies like ours that identify and exam-
ine effective NLP techniques for binary code
analysis are valuable in advancing exploration
along this direction. Our evaluation shows
how the adaptation works and why it is useful
through two critical binary analysis tasks.

• We release the source code, datasets, trained
models, and learned CAIE to facilitate the
follow-up research in this direction1.

2 Related Work

2.1 Traditional Code Analysis

Mono-architecture. Most traditional approaches
work on a single ISA. Some analyze source
code (Kamiya et al., 2002; Wang and Luo, 2022;
Luo and Zeng, 2016). Others analyze binary
code (Luo, 2020; Zeng et al., 2019b; Luo et al.,
2019a; Zeng et al., 2019a, 2018; Luo et al., 2016),
e.g., using symbolic execution (Luo et al., 2014,
2021, 2017), but are expensive, and inapplicable
for large codebases. Dynamic approaches include
API birthmark (Tamada et al., 2004; Chae et al.,
2013), system call birthmark (Wang et al., 2009),
and instruction birthmark (Tian et al., 2013; Park
et al., 2008). Extending them to other ISAs would
be hard. Plus, code coverage is another challenge.

Cross-architecture. Recent works have applied
traditional approaches to the cross-architecture sce-
nario (Pewny et al., 2015; Eschweiler et al., 2016;
Chandramohan et al., 2016; Feng et al., 2017;

1https://github.com/lannan/
CrossIns2Vec

1321

https://github.com/lannan/CrossIns2Vec
https://github.com/lannan/CrossIns2Vec

David et al., 2017, 2018, 2016). Multi-MH and
Multi-k-MH (Pewny et al., 2015) are the first
two for comparing functions in different ISAs, but
their fuzzing-based basic-block similarity compari-
son and graph (i.e., CFG) matching algorithms are
expensive. discovRE (Eschweiler et al., 2016)
uses pre-filtering to boost the matching process,
but is unreliable and has many false negatives.
Esh (David et al., 2016) compares basic blocks
using a SMT solver, which is unscalable.

2.2 Machine/Deep Learning-based Analysis

Mono-architecture. Recent research has applied
machine/deep learning to code analysis (Li et al.,
2022; Ahmad et al., 2020; Allamanis et al., 2016;
Wei et al., 2019; Hu et al., 2018; Shido et al., 2019;
Chen et al., 2021; Nguyen et al., 2017; Van Nguyen
et al., 2017; Ahmad and Luo, 2023; Han et al.,
2017). Asm2Vec (Ding et al., 2019) considers
functions as documents and uses a PV-DM model
to generate function embeddings. PalmTree (Li
et al., 2021) generates token embeddings based on
BERT (Devlin et al., 2018). However, these works
only focus on a single ISA.

Cross-architecture. Most existing models are
trained and tested on a pair of ISAs and the train-
ing needs the task-specific data for each ISA of
a given pair (Feng et al., 2016; Xu et al., 2017;
Chandramohan et al., 2016; Zuo et al., 2019; Mas-
sarelli et al., 2019). InnerEye (Zuo et al., 2019)
adopts Neural Machine Translation techniques to
measure the similarity of binary code across ISAs.
VulHawk (Luo et al., 2023) lifts binary code into
IR and uses NLP techniques to generate function
embeddings. These approaches require the task-
specific data for each ISA, and cannot resolve the
data scarcity problem. Our approach differs signifi-
cantly from them: we aim at model reuse, that is,
transferring a model trained on one ISA to another,
thereby eliminating the need for data from another
ISA, especially for low-resource ISAs.

The Most Related Work. To the best of our
knowledge, UniMap (Wang et al., 2023) is the only
work that shares the same goal as ours: focusing on
learning cross-architecture instruction embeddings
(CAIE) to tackle the data scarcity issue. Their
approach relies on unsupervised learning, elimi-
nating the requirement for parallel data. However,
in the context of binary code analysis, due to the
prevalence of cross-compilation, obtaining cross-
architecture signals is not challenging compared

int foo (int a) {
 int r;
 if (a == 1234) {
 r = 1;
 } else {
 r = 0;
 }
 return r;
}

int r;
if (a == 1234)

r = 1 r = 0

return r

(a) Source code (b) Control flow graph

A	basic	block	

Figure 1: Control flow graph and basic block.

to that in NLP when seeking cross-lingual signals
(see Section 4.1). Moreover, in NLP, studies have
shown that cross-lingual word embeddings, learned
through supervised learning, have superior trans-
ferability compared to those learned by unsuper-
vised learning (Upadhyay et al., 2016; Ruder et al.,
2019). Based on these, our approach takes a differ-
ent direction by designing a supervised model for
learning CAIE. The evaluation results demonstrate
that our supervised learning-based CAIE exhibit
superior quality and enhanced transferability when
compared to the most related work.

3 Background and Motivation

3.1 Control Flow Graph and Basic Block
A control flow graph (CFG) is the graphical repre-
sentation of control flow or computation during the
execution of programs or applications. A CFG is
a directed graph in which each node represents a
basic block and each edge represents the flow of
control between basic blocks.

A basic block is a sequence of consecutive state-
ments in which flow of control enters at the begin-
ning and leaves at the end without halt or branching
except at the end. Figure 1 shows an example of
a piece of source code and its CFG, where each
node is a basic block. Similarly, we can generate
the CFG for a piece of binary code. We here use
the source code as an example for simplicity.

3.2 Motivation
Let us consider the malware detection task as an ex-
ample. Recently, applying deep learning to detect
malware has garnered significant attention due to
its remarkable performance capabilities. However,
training a deep learning model usually requires a
large amount of data. As a result, the rich datasets
(e.g., malware) for certain ISAs, such as x86, lead
to a disproportionate focus on these ISAs and a
negligence of other ISAs, such as PowerPC, which
suffer from the “data scarcity” problem (i.e., few

1322

or even no labeled datasets exist). Moreover, it is
labor-intensive and time-consuming to collect data
samples and manually label them to build datasets
for such low-resource ISAs. Dealing with the data
scarcity issue is an unresolved challenge.

With some ISAs, like x86, being widely used, it
becomes more feasible to collect sufficient data for
these ISAs. Thus, it would be a great advantage
if the abundance of training data for widely-used
ISAs could facilitate the automated analysis of bi-
naries in other ISAs where such data is scarce. For
example, suppose a large training dataset exists for
ISA X, but we need to analyze a binary b in ISA
Y, for which the available training data is insuffi-
cient. As a result, it is difficult to train a model on
Y for analyzing b. To address this issue, our idea
is to transfer knowledge from ISA X to Y, such that
we can train a model on X and transfer the trained
model to perform prediction on b in Y.

To achieve this objective, it is essential to
address the syntactic variations among different
ISAs. Drawn inspiration from cross-lingual word
embeddings in NLP, we propose to learn cross-
architecture instruction embeddings (CAIE), where
semantically-similar instructions, regardless of
their ISAs, have close embeddings in a shared
space. Equipped with such a shared space, we
can transfer knowledge from one ISA to another,
especially in low-resource scenarios. As a result,
we can train a model using only the data in a high-
resource ISA, and transfer it to a low-resource ISA.

3.3 Why not IR?
Intermediate representation (IR) can be used to
represent code of different ISAs. For example,
VEX IR is an architecture-agnostic and side-effect-
free representation that can represent instruction
sets of different ISAs in a uniform style. Thus, this
raises the question of whether IR can serve as the
bridge for achieving model reuse.

After conducting thorough investigations and ex-
periments, we found that: given two binaries with
different ISAs that are compiled from the same
piece of source code, after we lift them into a
common IR, the resulting IR code differs greatly.
Specifically, the lengths and types of the IR state-
ments can vary significantly from one another. Fig-
ure 2 in shows an example, where the source code
is highlighted in blue at the top and the correspond-
ing assembly code and VEX IR in x86 and MIPS
are shown below. In VEX IR, the IMark statement
indicates the address and length of its correspond-

for (i = 0; i < sizeof line_format / sizeof line_format[0]; ++i)

409a52 mov eax, [rbp-0xa0]
409a58 cmp eax, 0x2
409a5b jbe 0x409a09

409e08 lw $v0, 0x40($fp)
409e0c sltiu $v0, $v0, 0x3
409e10 bnez $v0, 0x409dc4

---- IMark(0x409a52, 6, 0) ----
t12 = Add64(t9,0xffffffffffffff60)
t15 = LDle:I32(t12)
t27 = 32Uto64(t15)
t14 = t27
PUT(rax) = t14
---- IMark(0x409a58, 3, 0) ----
t28 = 64to32(t14)
t16 = t28
PUT(cc_op) = 0x07
t29 = 32Uto64(t16)
t18 = t29
PUT(cc_dep1) = t18
PUT(cc_dep2) = 0x02
PUT(rip) = 0x409a5b
---- IMark(0x409a5b, 2, 0) ----
t32 = 64to32(0x02)
t33 = 64to32(t18)
t31 = CmpLE32U(t33,t32)
t30 = 1Uto64(t31)
t25 = t30
t34 = 64to1(t25)
t20 = t34
if (t20) { PUT(rip) = 0x409a09;
ljk_Boring }

---- IMark(0x409e08, 4, 0) ----
t15 = Add32(t8,0x40)
t17 = LDbe:I32(t15)
---- IMark(0x409e0c, 4, 0) ----
t19 = CmpLT32U(t17,0x03)
t18 = 1Uto32(t19)
PUT(v0) = t18
---- IMark(0x409e10, 4, 0) ----
PUT(pc) = 0x00409e14
if (t19) { PUT(pc) = 0x409dc4;
Ijk_Boring }

x86 MIPS
Assembly Code

VEX IR

Figure 2: A example of C source code (highlighted in
blue) and the corresponding assembly code and VEX
IR code in different ISAs.

ing assembly instruction. For example, in x86, the
address of the first assembly instruction mov eax,
[rbp-0xa0] is 0x409a52, and it is translated
to five IR statements belonging to the first IMark
statement, IMark(0x409a52, 6, 0). This is
similar for the IR code in ARM and MIPS, where
the resulting IR code is significantly distinct. (Ad-
ditional examples can be found in Figure 1 and
Figure 3 of (Pewny et al., 2015)).

Therefore, existing works that utilize IR for ana-
lyzing binaries across ISAs have to perform further
advanced analysis on the IR code. For example,
(1) Multi-MH (Pewny et al., 2015) uses fuzzing
to detect whether two pieces of VEX IR code (after
lifting) are semantically similar. (2) GitZ (David
et al., 2017) conducts complex re-optimization
on IR code to compare function similarity. (3)
GeneDiff (Luo et al., 2019b) applies deep learn-
ing analysis to VEX IR code for cross-architecture
binary clone detection. Thus, IR is not “magic”
that can directly serve as the “bridge” for facili-
tating model reuse. This work, therefore, focuses
on building the “bridge”—i.e., cross-architecture
instruction embeddings (CAIE)—for enabling a
model trained for one ISA to be reused for other
ISAs.

1323

4 Model Design

In contrast to the challenges faced in NLP, where
obtaining cross-lingual signals can be a difficult
task, acquiring cross-architecture signals for bi-
nary analysis across ISAs is straightforward (Sec-
tion 4.1). Moreover, studies have shown that su-
pervised methods typically exhibit superior per-
formance compared to unsupervised ones (Upad-
hyay et al., 2016; Ruder et al., 2019). We thus de-
sign a supervised model, called CrossIns2Vec,
to learn cross-architecture instruction embeddings
(CAIE). Figure 3 shows the model architecture. As
we consider instructions as words and basic blocks
as sentences, the input is a pair of semantically-
equivalent basic blocks, B1 and B2, in different
ISAs. Initially, each instruction is assigned a ran-
dom vector. During the joint learning process,
CrossIns2Vec effectively learns CAIE for each
instruction. Below we present the detailed process.

4.1 Collecting Semantically-Equivalent Basic
Block Pairs

We first need to collect the semantically-equivalent
basic block pairs from different ISAs. We consider
basic blocks of different ISAs that are compiled
from the same piece of source code as semantically-
equivalent. To determine the ground truth regard-
ing the similarity of basic blocks, we rely on the
source code line number. Specifically, if two basic
blocks from different ISAs have the same start-
ing and end source code line numbers, they are
considered to be semantically-equivalent.

To this end, we first collect the source code of
various programs and compile each one for differ-
ent ISAs by cross-compilation. This process proves
to be both convenient and feasible for handling
various ISAs, thanks to the availability of tools
such as QEMU (QEMU, 2023) and LLVM (LLVM,
2023). Consequently, the task of acquiring cross-
architecture signals across ISAs poses no signifi-
cant challenge in binary code analysis.

During the cross-compilation process, we in-
clude the “-g” compiling option. This ensures
that the compiled binary file contains the DWARF
debug information, including valuable details like
the source code line number for each assembly in-
struction. After getting the binaries, we use IDA
Pro (IDA, 2023) to disassemble each binary and
generate control flow graphs (CFGs), where each
node represents a basic block. During disassem-
bly, we take advantage of IDA disassembly options,

which can display the source code line number for
each basic block. By leveraging these line num-
bers, we can identify semantically-equivalent basic
block pairs. Specifically, for each basic block in
one ISA, we search for its counterpart in another
ISA if they have the same starting and end source
code line number, indicating that they are compiled
from the same piece of source code.

4.2 Learning Cross-architecture Instruction
Embeddings

Our goal is to learn CAIE, where semantically-
similar instructions, regardless of their ISAs, have
embeddings that are close in a shared space.

In NLP, if a trained model is used to convert a
word that has never appeared during training, the
word is called an out-of-vocabulary (OOV) word
and the embedding generation for them will fail. To
mitigate the OOV issue, similar to UniMap (Wang
et al., 2023), we normalize instructions by applying
the following rules: (C1) replacing number con-
stants with 0, while preserving minus signs; (C2)
replacing string literals with <STR>; and (C3) re-
placing function names with <FOO>; (C4) other
symbols are replaced with <TAG>.

Drawing inspiration from Bi-SENT2VEC (Sa-
bet et al., 2019) in NLP, we design our model to
learn CAIE based on two objectives: (1) mono-
architecture objective: similar instructions in the
same ISA are assigned close embeddings; (2) cross-
architecture objective: similar instructions across
different ISAs are assigned close embeddings.

Mono-Architecture Objective. The training ob-
jective is to predict a masked instruction et in a
basic block B using the representation of the rest
instructions in B, denoted as vB\{et}. We use lo-
gistic loss l : x → log(1 + e−x) in conjunction
with negative sampling to formulate the training
objective. The training objective is computed as:

min
∑

B∈C

∑

et∈B

(l(uT
etvB\{et}) +

∑

e′∈Net

l(−uT
e′vB\{et}))

(1)

where et the masked instruction in B, and Net the
set of words sampled negatively for the masked
instruction et. The set of negative instructions Net

are sampled following a multinomial distribution
where each instruction e is associated with a prob-
ability: p =

√
fe/

∑
ei∈C

√
fei , where fe is the

normalized frequency of e in the corpus.

Cross-Architecture Objective. To capture seman-
tic relations of instructions across ISAs, we include

1324

Mono-architecture Prediction

mov eax, [rbp-0xa0]

cmp eax, 0x2

jbe 0x409a09

Cross-architecture Prediction

lw $v0, 0x40($fp) bnez $v0, 0x409dc4

Predi
ctPredict e

Rest of B1 B2
sltiu $v0, $v0, 0x3

Figure 3: The CrossIns2Vec model.

a cross-architecture training objective, where given
two semantically-equivalent basic blocks (B1, B2),
a masked instruction et in B1 is predicted using all
instructions in B2, denoted as vB2 . The training
objective is computed as:

min
∑

(B1,B2)∈C

∑

et∈B1

(l(uT
etvB2) +

∑

e′∈Net

l(−uT
e′t
vB2))

(2)

where et is the masked instruction in B1, and Net

is the set of words sampled negatively for et ∈ B1,
following the same strategy as Equation 1.

Model Final Objective. By combining the mono-
architecture and cross-architecture objectives, the
objective function of our model is formulated as:

min
∑ ∑

et∈B1

(l(uT
etvB1\{et}) +

∑

e′∈Net

l(−uT
e′vB1\{et})

︸ ︷︷ ︸
Mono-architecture loss

+

l(uT
etvB2) +

∑

e′∈Net

l(−uT
e′t
vB2))

︸ ︷︷ ︸
Cross-architecture loss

(3)

In summary, for a masked instruction et in B1,
we use the rest instructions in B1 as well as all the
instructions in B2 to predict et and vice-versa, as
shown in Figure 3. In this example, the masked
instruction et is cmp eax, 0x2 in B1. For the
mono-architecture objective, we use the rest in-
structions in B1 (colored in grey) to predict et.
For the cross-architecture objective, we use all
instructions in B2 (colored in blue) to predict
et. By combining the two objectives, we train
CrossIns2Vec to learn CAIE, such that simi-
lar instructions, regardless of their ISAs, tend to
have close embeddings in a shared vector space.

5 Evaluation

We evaluate our model in terms of the quality and
transferability of CAIE. We have two questions:
(Q1) Quality: how well can CAIE tolerate architec-
tural differences and capture code semantics across

ISAs? (Q2) Transferability: whether CAIE can
transfer knowledge from one ISA to another? To
answer Q1, we conduct the intrinsic evaluation, in-
cluding the instruction similarity task. To answer
Q2, we conduct the extrinsic evaluation, including
two critical binary analysis tasks: function similar-
ity comparison and malware detection.

5.1 Experimental Settings

Building Datasets for Learning CAIE. We con-
sider four ISAs: x86, ARM, MIPS, and Pow-
erPC (PPC). We consider x86 as the high-resource
ISA, and the other ISAs as the low-resource
ISAs.2 We first collect various programs, in-
cluding OpenSSL-1.1.1, Binutils-2.34, Curl-7.87,
Findutils-4.8.0, gmp-6.2.0, Libgpg-error-1.45, and
Zlib-1.2.11. These programs are widely used in
prior NLP-based binary code analysis works (Luo
et al., 2023; Ding et al., 2019; Marcelli et al., 2022;
Massarelli et al., 2019; Li et al., 2021). For each
program, we compile it on the four ISAs using
different optimization levels (O0-O3).

Given a pair of ISAs (one is x86 and an-
other a low-resource ISA), we build the dataset
comprising semantically-equivalent basic block
pairs for learning CAIE (the details of how to
collect such pairs are discussed in Section 4.1).
Through this, we have three datasets: Dx86↔ARM

contains 2,058,484 semantically-equivalent basic
block pairs between x86 and ARM; Dx86↔MIPS

contains 2,121,125 semantically-equivalent ba-
sic block pairs between x86 and MIPS; and
Dx86↔PPC contains 2,189,139 semantically-
equivalent basic block pairs between x86 and PPC.

Subsequently, we use each of the three datasets
to train CrossIns2Vec to learn CAIE for the
instructions across the respective pair of ISAs.

Note that in our evaluation, the datasets used for
learning CAIE have no overlap with the testing
datasets used in the downstream tasks, the details

2We are aware that ARM does not have the data scarcity
issue. Given its importance, our evaluation involves ARM.

1325

of which are introduced in Sections 5.3 and 5.4.

Baseline Method. To the best of our knowledge,
UniMap (Wang et al., 2023) is the only work that
shares the same goal as ours: focusing on learning
CAIE to tackle the data scarcity issue. We thus
consider it as the baseline method. UniMap em-
ploys an unsupervised learning approach, while
our approach relies on supervised learning. As we
discussed in Section 2.2, in the context of binary
code analysis, obtaining cross-architecture signals
is not challenging due to the prevalence of cross-
compilation. Although the collection of parallel
data demands increased engineering efforts, the
additional efforts prove their worth if the learned
CAIE exhibits superior transferability.

All the experiments were conducted on a com-
puter with a 64-bit 2.50 GHz Intel Core (TM) i7
CPU, a Nvidia GeForce RTX 3080, 64 GB RAM,
and 2 TB HD.

5.2 Instruction Similarity Task

This task is to evaluate whether CAIE can tolerate
the syntactic differences and capture the semantic
information of instructions across ISAs. To eval-
uate this, we measure whether two semantically-
similar instructions, regardless of their ISAs, have
close embeddings. Unlike word embeddings,
which have many existing corpora for evaluation,
we do not have such data. We thus create the
datasets ourselves, which contain manually-labeled
instruction pairs. We rely on the assembly language
references (x86, 2023; ARM, 2023; MIPS, 2023;
PowerPC, 2023) to create our datasets.

Similar to UniMap, we categorize instructions
into 6 categories, including data transfer, arith-
metic, logical, shift/rotate, bit/byte, and control
transfer. Note that this categorization serves the
purpose for conducting the instruction similarity
task. Thus, when preparing the datasets, we encom-
pass instructions from all categories that are shared
across the four ISAs (x86, ARM, MIPS, and PPC).
For each category, we randomly select 40 x86 in-
structions. For each selected x86 instruction, we
find their corresponding similar instructions from
the other three ISAs based on whether their op-
codes share similar semantics (i.e., performing the
same operation). Finally, we create three datasets:
D1 contains 240 similar and 240 dissimilar pairs
of x86↔ARM instructions; D2 contains the same
number of pairs of x86↔MIPS instructions; and
D3 contains the same number of pairs of x86↔PPC

instructions. Given a pair of instructions, we calcu-
late the cosine similarity of their CAIE to measure
their similarity. For D1, D2, and D3, we achieve
AUC = 0.78, 0.73, and 0.74, respectively.

Comparison with Baseline Method. To com-
pare with the baseline UniMap, we use the same
datasets created by UniMap, which contain 120
similar and 120 dissimilar pairs of x86↔ARM in-
structions, as well as the same number of similar
and dissimilar pairs of x86↔MIPS and x86↔PPC
instructions. We achieve higher AUCs of 0.79, 0.71,
0.72 for x86↔ARM, x86↔MIPS, and x86↔PPC,
respectively, while the prior work yields 0.76, 0.66,
and 0.68. Thus, our model exhibits better capabil-
ities of learning CAIE that excel in capturing the
semantic relations among various ISAs.

Nearest Neighbor Instructions. We next examine,
for a given x86 instruction, its top-K similar
instructions in the other ISAs. We first select
eight high-frequency x86 instructions from all
the six categories. For each x86 instruction, we
search for the top-two similar instructions in ARM,
MIPS, and PPC, respectively, based on the cosine
similarity of their CAIE. The results are shown in
Table 1. We can see that for a given x86 instruction,
its top-two similar instructions in the other ISAs
share similar semantics, as predicted. For example,
for the x86 instruction ADC RDX,R11, we find
the relevant ARM instructions ADC R11,R7,R3
and ADDS R10,R6,R11, MIPS instructions
ADDU R6,R3,R4 and ADDU R2,R3,R16,
and PPC instruction ADDE R23,R8,R10 and
ADDC R7,R7,R28, where all of them add the
values in two operands and store the result back in
the destination operand.

5.3 Function Similarity Detection Task

The extrinsic evaluation is to evaluate the transfer-
ability of CAIE. We conduct two binary analysis
tasks: function similarity detection and malware de-
tection. This section presents the result of the first
task. For each task, we train a model using the task-
specific data on x86, and transfer the trained model
on another ISA (e.g., ARM, MIPS, and PPC).

FunGnn Model. FuncGNN (Nair et al., 2020) is
a graph neural network trained on labeled control
flow graph (CFG) pairs to measure the function sim-
ilarity. To evaluate the transferability of CAIE, we
modify the input layer of FuncGNN to encode each
instruction as its CAIE. We then train FuncGNN

1326

Table 1: Nearest neighbor instructions cross-architecturally as measured by cosine similarity of CAIE. The top
two similar ARM, MIPS, and PPC are shown for each of the eight x86 instructions randomly selected from the six
categories of instructions.

MOV R15D,[R9+0] Score ADC RDX,R11 Score SAR EDX,CL Score LEA R14,[RSP+0+<TAG>] Score

ARM
MOVNE R9,R3 0.59 ADC R11,R7,R3 0.80 ASRS R3,R5 0.69 ADD R9,SP,0 0.53
MOVLT R0,R4 0.58 ADDS R10,R6,R11 0.80 ASRS R0,R1 0.64 MOV R8,SP 0.51

MIPS
MOVN R16,R5,R16 0.56 ADDU R6,R3,R4 0.59 SRAV R3,R4 0.61 ADDIU R19,R29,0 0.62
MOVE R15,R16 0.55 ADDU R2,R3,R16 0.52 SRL R17,R16,0 0.56 ADDIU R21,R29,0 0.58

PPC
MR R21,R4 0.76 ADDE R23,R8,R10 0.78 SRAW R9,R8,R9 0.71 ADDI R29,R1,0 0.55
MR R23,R4 0.72 ADDC R7,R7,R28 0.78 SRAW R8,R21,R9 0.63 LWZ R29,<OFF>R24 0.52

AND ECX,EAX Score XOR ECX,EAX Score JMP DEF_<TAG> Score SHL EAX,CL Score

ARM
ANDS R2,R1 0.69 EORS R2,R3 0.51 B DEF_<TAG> 0.49 LSL R3,R3,LR 0.62

AND R3,R9,R3 0.63 EOR LR,R5,R6 0.48 LDR R3,[R8,0] 0.49 ASR R9,R9,R4 0.61

MIPS
AND R6,R3 0.69 XOR R3,R2 0.69 B DEF_<TAG> 0.50 SLL R3,R16,R5 0.60
AND R10,R6 0.69 XOR R4,R3 0.66 SUBU R5,R17,R30 0.43 SRA R20,R7 0.59

PPC
AND R3,R10,R3 0.69 XOR R6,R6,R9 0.63 B DEF_<TAG> 0.60 SLW R9,R28,R9 0.59
AND R8,R9,R8 0.70 XOR R10,R10,R9 0.62 LWZ R12,<OFF>R23 0.46 SLW R8,R8,R5 0.58

Table 2: Results of function similarity detection task.

Train Test
CrossIns2Vec (Ours) UniMap (Baseline)
AUC Prec. Recall AUC Prec. Recall

x86
ARM 0.99 0.95 0.98 0.95 0.93 0.95
MIPS 0.99 0.97 0.98 0.93 0.90 0.93
PPC 0.98 0.93 0.97 0.94 0.90 0.91

on x86 and transfer the trained model to test data
in ARM, MIPS, and PPC, respectively.

Task-Specific Datasets. We first build the task-
specific training dataset on x86, containing 50,000
similar and 50,000 dissimilar x86 function pairs.
We then build the testing datasets for ARM, MIPS
and PPC, each containing 5,000 similar and 5,000
dissimilar function pairs in the corresponding ISA.
To ensure no overlap between the training and test-
ing datasets, we select different programs to build
them: (1) OpenSSL-1.1.1, Binutils-2.34, Curl-7.87,
Findutils-4.8.0, gmp-6.2.0, Libgpg-error-1.45, and
Zlib-1.2.11 are used to build the training dataset;
(2) Coreutils-9.0 and Diffutils-3.7 are used to build
the testing datasets.

Following the dataset building method in
InnerEye (Zuo et al., 2019), we consider two
functions similar if they are compiled from the
same piece of source code, and dissimilar if their
source code is different. Each program is com-
piled using four optimization levels (O0-O3). For
a given piece of source code, by applying different
optimization levels, we can find six similar pairs.
Then, the similar and dissimilar function pairs in
the training and testing datasets are evenly divided
among the six possible pairs of optimization levels.

Results. Table 2 shows the performance results, in-
cluding AUC, precision, and recall. We can observe

that when the model trained on x86 is transferred
to ARM, MIPS, and PPC, it achieves AUC values
of 0.99, 0.99, and 0.98, respectively. The results
show that the model achieves exceptional perfor-
mance when transferred from x86 to the other ISAs,
demonstrating the superior transferability of CAIE.

Comparison with Baseline Method. To com-
pare with the baseline UniMap, we first modify
the input layer of FuncGNN, such that the CAIE
generated by UniMap are used to encode each in-
struction. We then use the same training dataset
to train FuncGNN on x86. Finally, we transfer the
trained model to perform testing on ARM, MIPS,
and PPC, respectively. The testing datasets are the
same as those used for evaluating the transferability
of CAIE generated by CrossIns2Vec.

The results are shown in Table 2. We ob-
serve that when the model trained on x86 is trans-
ferred to ARM, MIPS, and PPC, it achieves lower
AUC/precision/recall values than those obtained
when employing the CAIE generated by our model
CrossIns2Vec. This demonstrates that the
CAIE learned by CrossIns2Vec exhibits bet-
ter transferability compared to UniMap.

5.4 Malware Detection Task

LSTM Model. We use the Long Short Term Mem-
ory (LSTM) model (HaddadPajouh et al., 2018)
to detect malware. We modify the input layer of
LSTM to encode each instruction as its correspond-
ing CAIE. We then train LSTM on x86 and transfer
the model to ARM, MIPS, and PPC.

Task-Specific Datasets. We first collect malware
samples from VirusShare.com (virusShare, 2023),
and then deduplicate the collected samples to elim-

1327

Table 3: Results of malware detection task.

Train Test
CrossIns2Vec (Ours) UniMap (Baseline)
AUC Prec. Recall AUC Prec. Recall

x86
ARM 0.94 0.91 0.94 0.93 0.89 0.93
MIPS 0.93 0.91 0.94 0.91 0.90 0.92
PPC 0.95 0.90 0.98 0.91 0.89 0.92

Table 4: Performance changes as the training dataset
size varies. The testing dataset remains the same. (M
and B stands for malware and benign, respectively.)

Train Training Size Test Testing Size AUC

PPC 300(M) + 300(B) PPC 200(M) + 200(B) 0.87

x86

300(M) + 300(B)

PPC 200(M) + 200(B)

0.78
600(M) + 600(B) 0.85
900(M) + 900(B) 0.90

2000(M) + 2000(B) 0.91

inate redundant ones. As a result, we have 2000,
1100, 1000, and 500 samples in x86, ARM, MIPS,
and PPC, respectively. It should be noted that we
spent a lot of efforts in collecting malware sam-
ples in MIPS and PPC, which are considered as
low-resource ISAs.

We then build the task-specific training and test-
ing datasets. The x86 malware samples are used
for training. For the other ISAs, the malware
samples are used for testing. In each training
and testing dataset, we include the same num-
ber of benign samples. In the training dataset,
the benign samples are randomly selected from
OpenSSL-1.1.1, Binutils-2.34, Curl-7.87, Findutils-
4.8.0, gmp-6.2.0, Libgpg-error-1.45, and Zlib-
1.2.11, while the testing dataset contains benign
samples selected from different programs, includ-
ing Coreutils-9.0 and Diffutils-3.7. We ensure no
overlap between the training and testing datasets.

Results. Table 3 shows the performance results,
including AUC, precision, and recall. We can see
that when the model trained on x86 is transferred
to ARM, MIPS, and PPC, it achieves AUC values
of 0.94, 0.92, and 0.91, respectively. The fact that
the model’s accuracies keep high demonstrates the
efficacy of our learned CAIE in facilitating the
transfer of knowledge across ISAs.

We then seek to understand how performance
changes as the training dataset size varies. Specif-
ically, we conduct experiments starting from the
same size of the x86 and PPC training datasets,
gradually increasing the x86 dataset size. The re-
sults are shown in Table 4. We can see that when
the model is trained on an x86 training dataset con-

taining more than 900 malware samples and then
reused for PPC, it outperforms the model trained
and tested on PPC with less available data. This
demonstrates the critical role of a sufficiently large
training dataset in order to achieve desirable perfor-
mance. However, for low-resource ISAs like PPC,
acquiring a large dataset proves to be challenging.

Comparison with Baseline Method. We first mod-
ify the input layer of LSTM, such that the CAIE
generated by UniMap are used to encode each in-
struction. We then use the same training datasets to
train LSTM on x86. Finally, we transfer the trained
model to perform prediction on the same testing
datasets on ARM, MIPS, and PPC, respectively.
The results are shown in Table 3. When com-
paring the AUC/precision/recall values obtained
when employing CAIE learned by UniMap to
those leaned by CrossIns2Vec, it demonstrates
that our learned CAIE have superior transferability
compared to the baseline UniMap.

6 Conclusion

Applying deep learning to binary code analysis
has drawn great attention. Limited availability of
data on low-resource ISAs, however, hinders deep
learning-based binary code analysis. In this work,
we propose to learn cross-architecture instruction
embeddings (CAIE), where semantically-similar
instructions, regardless of their ISAs, have close
embeddings in a shared space. As a result, we can
transfer a model trained on a data-rich ISA to an-
other ISA with less available data. We conducted
experiments to evaluate the quality and transferabil-
ity of the learned CAIE. In the downstream tasks,
when a model trained on x86 is transferred to ARM,
MIPS and PPC, the prediction accuracies keep high.
Our approach significantly outperforms the prior
work. Therefore, our approach can generate CAIE
with high quality and transferability, and resolve
the data scarcity problem in low-resource ISAs for
binary code analysis tasks.

Acknowledgments

This work was supported in part by the US Na-
tional Science Foundation (NSF) under grants
CNS-2304720, CNS-2310322, CNS-2309550, and
CNS-2309477. It was also partially supported by
the Commonwealth Cyber Initiative (CCI). The au-
thors would like to thank the anonymous reviewers
for their valuable comments.

1328

Ethical Considerations

Datasets. To train our model CrossIns2Vec,
we first need to collect semantically-equivalent ba-
sic block pairs from different ISAs. We first collect
open-source programs, and compile them for dif-
ferent ISAs using cross compilers. Given the wide
availability of open-source code, this requires little
effort. To determine the ground truth regarding the
similarity of basic blocks, we rely on the source
code line number. Specifically, if two basic blocks
from different ISAs have the same starting and end
source code line numbers, they are considered to be
semantically-equivalent. The detailed description
of the process can be found in Section 4.1.

For training CrossIns2Vec, we use a dataset
of semantically-equivalent basic block pairs. We
acknowledge that aggressive optimizations, such
as inlining in O3, have an impact for searching
basic block pairs. However, we clarify that we skip
including basic blocks that involve inlining into our
datasets. Given the large number of basic blocks
available, this does not impose a barrier for creating
the datasets for training CrossIns2Vec.

For each downstream task, we collect the task-
specific training and testing datasets, the details of
which are introduced in Sections 5.3 and 5.4. A
special note is about malware samples, which are
collected from VirusShare.com (virusShare, 2023).
VirusShare.com is a repository of malware samples
that researchers use to study and develop cybersecu-
rity solutions. While it can be a valuable resource,
there are ethical considerations, including using
the samples responsibly for legitimate research pur-
poses, preventing the creation of new threats, and
respecting privacy and legal boundaries.

In our efforts to support subsequent research,
we plan to make the datasets available for public
use. Specifically, datasets obtained using open-
source programs will be openly released. How-
ever, in the case of malware samples, we will pro-
vide the file names and hash values sourced from
VirusShare.com. This offers researchers the means
to identify specific malware samples without di-
rectly sharing the potentially harmful code.

Applications. To cope with the data scarcity issue
and alleviate the per-ISA effort, this work proposes
to learn cross-architecture instruction embeddings
(CAIE), where semantically-similar instructions,
regardless of their ISAs, have close embeddings in
a shared vector space. Enabled by the technique,
we can train a single model on a high-resource ISA

and reuse it for low-resource ISAs, without any
modification. Compared to existing methods, this
work offers significant advantages by eliminating
the need for data collection in multiple ISAs (par-
ticularly for low-resource ISAs where labeled data
is limited or unavailable) as well as the per-ISA
fine tuning efforts. It will not only advance binary
code analysis by developing a bridge for enabling
model reuse, but also have various security appli-
cations, including malware detection and function
similarity comparison.

Limitations

NLP-inspired binary code analysis is a promising
research direction, but not all NLP techniques are
applicable to binary code analysis. Thus, studies
like ours that identify and examine effective NLP
techniques for binary code analysis are valuable in
advancing exploration along this direction.

To validate the effectiveness of our approach, we
conducted two downstream tasks to evaluate the
transferability of the learned CAIE. We acknowl-
edge that the learned CAIE may not be generalize
to all types of code, such as Windows, iPhone, and
Android applications. To ascertain this, further in-
vestigation and comprehensive testing are needed.

Due to the extensive range of binary analysis
tasks and their inherent complexity, we do not
claim that our approach can be applied to all tasks.
However, the successful performance of our ap-
proach in two critical tasks highlights the signifi-
cant value of CAIE, while demonstrating the ap-
plication of CAIE for other tasks needs dedicated
future work. Much research can be done for explor-
ing and expanding the boundaries of the approach.

References
Iftakhar Ahmad and Lannan Luo. 2023. Unsupervised

binary code translation with application to code clone
detection and vulnerability discovery. In Findings
of the 2023 Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,
and Kai-Wei Chang. 2020. A transformer-based
approach for source code summarization. arXiv
preprint arXiv:2005.00653.

Miltiadis Allamanis, Hao Peng, and Charles Sutton.
2016. A convolutional attention network for extreme
summarization of source code. In International con-
ference on machine learning (ICML).

ARM. 2023. Arm instruction reference.
http://infocenter.arm.com/help/

1329

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0068b/CIHEDHIF.html

index.jsp?topic=/com.arm.doc.
dui0068b/CIHEDHIF.html.

Dong-Kyu Chae, Sang-Wook Kim, Jiwoon Ha, Sang-
Chul Lee, and Gyun Woo. 2013. Software plagiarism
detection via the static api call frequency birthmark.
In Proceedings of the 28th Annual ACM Symposium
on Applied Computing (SAC). ACM.

Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu,
Yang Liu, Chia Yuan Cho, and Hee Beng Kuan Tan.
2016. Bingo: Cross-architecture cross-os binary
search. In Proceedings of the ACM SIGSOFT Inter-
national Symposium on the Foundations of Software
Engineering (FSE). ACM.

Fuxiang Chen, Mijung Kim, and Jaegul Choo. 2021.
Novel natural language summarization of program
code via leveraging multiple input representations.
In Findings of the Association for Computational
Linguistics: EMNLP 2021.

Yaniv David, Nimrod Partush, and Eran Yahav. 2016.
Statistical similarity of binaries. In Proceedings of
the ACM SIGPLAN conference on programming lan-
guage design and implementation (PLDI).

Yaniv David, Nimrod Partush, and Eran Yahav. 2017.
Similarity of binaries through re-optimization. In
Proceedings of the ACM SIGPLAN conference on
programming language design and implementation
(PLDI).

Yaniv David, Nimrod Partush, and Eran Yahav. 2018.
Firmup: Precise static detection of common vulner-
abilities in firmware. In Proceedings of the Twenty-
Third International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS). ACM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Steven HH Ding, Benjamin CM Fung, and Philippe
Charland. 2019. Asm2vec: Boosting static repre-
sentation robustness for binary clone search against
code obfuscation and compiler optimization. In
2019 IEEE Symposium on Security and Privacy (SP).
IEEE.

Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin.
2020. Deepbindiff: Learning program-wide code
representations for binary diffing. In Network and
distributed system security symposium (NDSS).

Sebastian Eschweiler, Khaled Yakdan, Elmar Gerhards-
Padilla, et al. 2016. discovre: Efficient cross-
architecture identification of bugs in binary code. In
Network and distributed system security symposium
(NDSS).

Qian Feng, Minghua Wang, Mu Zhang, Rundong Zhou,
Andrew Henderson, and Heng Yin. 2017. Extracting
conditional formulas for cross-platform bug search.

In Proceedings of the 2017 ACM on Asia Confer-
ence on Computer and Communications Security
(AsiaCCS). ACM.

Qian Feng, Rundong Zhou, Chengcheng Xu, Yao
Cheng, Brian Testa, and Heng Yin. 2016. Scalable
graph-based bug search for firmware images. In Pro-
ceedings of the ACM Conference on Computer and
Communications Security (CCS). ACM.

Hamed HaddadPajouh, Ali Dehghantanha, Raouf
Khayami, and Kim-Kwang Raymond Choo. 2018.
A deep recurrent neural network based approach for
internet of things malware threat hunting. Future
Generation Computer Systems, 85:88–96.

Zhuobing Han, Xiaohong Li, Zhenchang Xing, Hong-
tao Liu, and Zhiyong Feng. 2017. Learning to pre-
dict severity of software vulnerability using only vul-
nerability description. In 2017 IEEE International
Conference on Software Maintenance and Evolution
(ICSME). IEEE.

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi
Jin. 2018. Summarizing source code with transferred
api knowledge. In The Twenty-Seventh International
Joint Conference on Artificial Intelligence (IJCAI).

IDA. 2023. IDA Pro. https://hex-rays.com/
ida-pro/.

Yoon-Chan Jhi, Xiaoqi Jia, Xinran Wang, Sencun Zhu,
Peng Liu, and Dinghao Wu. 2015. Program charac-
terization using runtime values and its application to
software plagiarism detection. IEEE Transactions on
Software Engineering (TSE).

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
2002. CCFinder: a multilinguistic token-based code
clone detection system for large scale source code.
IEEE Transactions on Software Engineering (TSE).

Peng Li, Tianxiang Sun, Qiong Tang, Hang Yan, Yuan-
bin Wu, Xuanjing Huang, and Xipeng Qiu. 2023.
Codeie: Large code generation models are better few-
shot information extractors. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics (ACL).

Xiaonan Li, Yeyun Gong, Yelong Shen, Xipeng Qiu,
Hang Zhang, Bolun Yao, Weizhen Qi, Daxin Jiang,
Weizhu Chen, and Nan Duan. 2022. Coderetriever:
A large scale contrastive pre-training method for code
search. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Xuezixiang Li, Qu Yu, and Heng Yin. 2021. Palmtree:
Learning an assembly language model for instruction
embedding. In Proceeding of the ACM Conference
on Computer and Communications Security (CCS).

LLVM. 2023. The llvm compiler infrastructure.
https://llvm.org.

1330

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0068b/CIHEDHIF.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0068b/CIHEDHIF.html
https://hex-rays.com/ida-pro/
https://hex-rays.com/ida-pro/
https://llvm.org

Lannan Luo. 2020. Heap memory snapshot assisted pro-
gram analysis for android permission specification.
In IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER).

Lannan Luo, Yu Fu, Dinghao Wu, Sencun Zhu, and
Peng Liu. 2016. Repackage-proofing android apps.
In Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE.

Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and
Sencun Zhu. 2014. Semantics-based obfuscation-
resilient binary code similarity comparison with ap-
plications to software plagiarism detection. In Pro-
ceedings of the ACM SIGSOFT International Sym-
posium on the Foundations of Software Engineering
(FSE). ACM.

Lannan Luo and Qiang Zeng. 2016. Solminer: mining
distinct solutions in programs. In Proceedings of the
38th International Conference on Software Engineer-
ing Companion. ACM.

Lannan Luo, Qiang Zeng, Chen Cao, Kai Chen, Jian
Liu, Limin Liu, Neng Gao, Min Yang, Xinyu Xing,
and Peng Liu. 2017. System service call-oriented
symbolic execution of android framework with ap-
plications to vulnerability discovery and exploit gen-
eration. In Proceedings of the 15th Annual Interna-
tional Conference on Mobile Systems, Applications,
and Services (MobiSys). ACM.

Lannan Luo, Qiang Zeng, Chen Cao, Kai Chen, Jian
Liu, Limin Liu, Neng Gao, Min Yang, Xinyu Xing,
and Peng Liu. 2019a. Tainting-assisted and context-
migrated symbolic execution of android framework
for vulnerability discovery and exploit generation.
IEEE Transactions on Mobile Computing (TMC).

Lannan Luo, Qiang Zeng, Bokai Yang, Fei Zuo, and
Junzhe Wang. 2021. Westworld: Fuzzing-assisted
remote dynamic symbolic execution of smart apps
on iot cloud platforms. In Annual Computer Security
Applications Conference (ACSAC).

Zhenhao Luo, Baosheng Wang, Yong Tang, and Wei
Xie. 2019b. Semantic-based representation binary
clone detection for cross-architectures in the internet
of things. Applied Sciences, 9(16):3283.

Zhenhao Luo, Pengfei Wang, Baosheng Wang, Yong
Tang, Wei Xie, Xu Zhou, Danjun Liu, and Kai Lu.
2023. Vulhawk: Cross-architecture vulnerability de-
tection with entropy-based binary code search. In
The Network and Distributed System Security Sympo-
sium (NDSS).

Andrea Marcelli, Mariano Graziano, Xabier Ugarte-
Pedrero, Yanick Fratantonio, Mohamad Mansouri,
and Davide Balzarotti. 2022. How machine learning
is solving the binary function similarity problem. In
USENIX Security Symposium (USENIX Security).

Luca Massarelli, Giuseppe Antonio Di Luna, Fabio
Petroni, Roberto Baldoni, and Leonardo Querzoni.
2019. Safe: Self-attentive function embeddings for

binary similarity. In International Conference on De-
tection of Intrusions and Malware, and Vulnerability
Assessment. Springer.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013b.
Exploiting similarities among languages for machine
translation. arXiv preprint arXiv:1309.4168.

MIPS. 2023. Mips opcode and in-
struction reference home. https:
//s3-eu-west-1.amazonaws.com/
downloads-mips/documents/
MD00086-2B-MIPS32BIS-AFP-6.06.pdf.

Aravind Nair, Avijit Roy, and Karl Meinke. 2020.
funcgnn: A graph neural network approach to
program similarity. In Proceedings of the 14th
ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM).

Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang
Phan, and Tien N Nguyen. 2017. Exploring api em-
bedding for api usages and applications. In Pro-
ceedings of the International Conference on Software
Engineering (ICSE). IEEE.

Heewan Park, Seokwoo Choi, Hyun-il Lim, and Taisook
Han. 2008. Detecting code theft via a static instruc-
tion trace birthmark for java methods. In IEEE Inter-
national Conference on Industrial Informatics. IEEE.

Jannik Pewny, Behrad Garmany, Robert Gawlik, Chris-
tian Rossow, and Thorsten Holz. 2015. Cross-
architecture bug search in binary executables. In
IEEE Symposium on Security and Privacy (SP).
IEEE.

PowerPC. 2023. Powerpc opcode and instruc-
tion reference home. http://math-atlas.
sourceforge.net/devel/assembly/
ppc_isa.pdf.

QEMU. 2023. Qemu: A generic and open source
machine emulator and virtualizer. https://www.
qemu.org.

Kimberly Redmond, Lannan Luo, and Qiang Zeng.
2019. A cross-architecture instruction embedding
model for natural language processing-inspired bi-
nary code analysis. The NDSS Workshop on Binary
Analysis Research (BAR).

Sebastian Ruder, Ivan Vulić, and Anders Søgaard. 2019.
A survey of cross-lingual word embedding models.
Journal of Artificial Intelligence Research.

Ali Sabet, Prakhar Gupta, Jean-Baptiste Cordonnier,
Robert West, and Martin Jaggi. 2019. Robust cross-
lingual embeddings from parallel sentences. arXiv
preprint arXiv:1912.12481.

1331

https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00086-2B-MIPS32BIS-AFP-6.06.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00086-2B-MIPS32BIS-AFP-6.06.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00086-2B-MIPS32BIS-AFP-6.06.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00086-2B-MIPS32BIS-AFP-6.06.pdf
http://math-atlas.sourceforge.net/devel/assembly/ppc_isa.pdf
http://math-atlas.sourceforge.net/devel/assembly/ppc_isa.pdf
http://math-atlas.sourceforge.net/devel/assembly/ppc_isa.pdf
https://www.qemu.org
https://www.qemu.org

Stefano Sebastio, Eduard Baranov, Fabrizio Biondi,
Olivier Decourbe, Thomas Given-Wilson, Axel
Legay, Cassius Puodzius, and Jean Quilbeuf. 2020.
Optimizing symbolic execution for malware behavior
classification. Computers & Security.

Yusuke Shido, Yasuaki Kobayashi, Akihiro Yamamoto,
Atsushi Miyamoto, and Tadayuki Matsumura. 2019.
Automatic source code summarization with extended
tree-lstm. In 2019 International Joint Conference on
Neural Networks (IJCNN). IEEE.

Haruaki Tamada, Keiji Okamoto, Masahide Nakamura,
Akito Monden, and Ken-ichi Matsumoto. 2004. Dy-
namic software birthmarks to detect the theft of win-
dows applications. In International Symposium on
Future Software Technology.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu,
and Bing Qin. 2014. Learning sentiment-specific
word embedding for twitter sentiment classification.
In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (ACL).

Zhenzhou Tian, Qinghua Zheng, Ting Liu, and Ming
Fan. 2013. DKISB: Dynamic key instruction se-
quence birthmark for software plagiarism detection.
In 2013 IEEE 10th International Conference on High
Performance Computing and Communications &
2013 IEEE International Conference on Embedded
and Ubiquitous Computing. IEEE.

Shyam Upadhyay, Manaal Faruqui, Chris Dyer, and
Dan Roth. 2016. Cross-lingual models of word em-
beddings: An empirical comparison. arXiv preprint
arXiv:1604.00425.

Thanh Van Nguyen, Anh Tuan Nguyen, Hung Dang
Phan, Trong Duc Nguyen, and Tien N Nguyen.
2017. Combining word2vec with revised vector
space model for better code retrieval. In Proceedings
of the 39th International Conference on Software
Engineering Companion. IEEE Press.

virusShare. 2023. open repository of malware samples.
https://virusshare.com/.

Junzhe Wang and Lannan Luo. 2022. Privacy leak-
age analysis for colluding smart apps. In 2022 52nd
Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks Workshops (DSN-W).
IEEE.

Junzhe Wang, Matthew Sharp, Chuxiong Wu, Qiang
Zeng, and Lannan Luo. 2023. Can a deep learn-
ing model for one architecture be used for others?
Retargeted-Architecture binary code analysis. In
32nd USENIX Security Symposium (USENIX Secu-
rity).

Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng
Liu. 2009. Behavior based software theft detection.
In Proceedings of the 16th ACM conference on Com-
puter and communications security (CCS). ACM.

Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019.
Code generation as a dual task of code summarization.
Advances in neural information processing systems
(NeurIPS).

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2015. Towards universal paraphrastic sen-
tence embeddings. arXiv preprint:1511.08198.

x86. 2023. x86 opcode and instruction reference home.
http://ref.x86asm.net/coder32.html.

Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song,
and Dawn Song. 2017. Neural network-based graph
embedding for cross-platform binary code similarity
detection. In Proceedings of the 2017 ACM SIGSAC
conference on computer and communications secu-
rity (CCS).

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu,
Bingchao Wu, Bei Guan, Yongji Wang, and Jian-
Guang Lou. 2022. Large language models meet
nl2code: A survey. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

Qiang Zeng, Golam Kayas, Emil Mohammed, Lan-
nan Luo, Xiaojiang Du, and Junghwan Rhee. 2019a.
Heaptherapy+: Efficient handling of (almost) all heap
vulnerabilities using targeted calling-context encod-
ing. In Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks
(DSN).

Qiang Zeng, Lannan Luo, Zhiyun Qian, Xiaojiang Du,
and Zhoujun Li. 2018. Resilient decentralized an-
droid application repackaging detection using logic
bombs. In Proceedings of the International Sympo-
sium on Code Generation and Optimization (CGO).
ACM.

Qiang Zeng, Lannan Luo, Zhiyun Qian, Zhoujun Li,
Chin-Tser Huang, and Csilla Farkas. 2019b. Re-
silient user-side android application repackaging and
tampering detection using cryptographically obfus-
cated logic bombs. IEEE Transactions on Depend-
able and Secure Computing (TDSC).

Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. 2014.
Semantics-aware android malware classification us-
ing weighted contextual api dependency graphs. In
Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security (CCS).
ACM.

Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo,
Qiang Zeng, and Zhexin Zhang. 2019. Neural ma-
chine translation inspired binary code similarity com-
parison beyond function pairs. In Network and Dis-
tributed System Security Symposium (NDSS).

1332

https://virusshare.com/
http://ref.x86asm.net/coder32.html

