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Abstract 

Automated speaking assessment (ASA) 
typically involves automatic speech 
recognition (ASR) and hand-crafted feature 
extraction from the ASR transcript of a 
learner's speech. Recently, self-supervised 
learning (SSL) has shown stellar 
performance compared to traditional 
methods. However, SSL-based ASA 
systems are faced with at least three data-
related challenges: limited annotated data, 
uneven distribution of learner proficiency 
levels and non-uniform score intervals 
between different CEFR proficiency levels. 
To address these challenges, we explore the 
use of two novel modeling strategies: 
metric-based classification and loss re-
weighting, leveraging distinct SSL-based 
embedding features. Extensive 
experimental results on the ICNALE 
benchmark dataset suggest that our 
approach can outperform existing strong 
baselines by a sizable margin, achieving a 
significant improvement of more than 10% 
in CEFR prediction accuracy. 

1 Introduction 

With the unprecedented advancements in computer 
technology and the growing number of second-
language (L2) learners worldwide, automated 
speaking assessment (ASA) has aroused much 
attention, figuring prominently in computer-
assisted language learning (CALL). As shown in 
Figure 11, ASA systems are designed to provide 
timely feedback on learners' speaking quality, 
enabling them to improve their spoken language 
skills in a stress-free and self-directed manner. 
What is more, ASA systems can alleviate the 
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workload of language teachers and provide a more 
objective and consistent evaluation on the language 
proficiency of an L2 learner or test-taker. With the 
remarkable developments in human language 
technology, recent years have seen a widespread 
adoption of ASA systems in CALL, so as to support 
L2 learners in language acquisition (Moere and 
Downey, 2016). 

Iconic ASA approaches involved using standard 
classifiers and hand-crafted features related to 
various facets of language proficiency, including 
but not limited to delivery (such as pronunciation, 
fluency and intonation), content (such as 
appropriateness and relevance), and language use 
(such as vocabulary and grammar) (Strik and 
Cucchiarini, 1999; Chen et al., 2010; Coutinho et 
al., 2016; Bhat and Yoon, 2015). In recent years, 
the rise of self-supervised learning (SSL) 
paradigms, such as BERT and its variants (Devlin 
et al., 2019), has opened up new avenues for ASA. 
These SSL models offer contextualized 

1 Icons made by Freepik, xnimrodx, and Eucalyp from 
Flaticon (www.flaticon.com) were used in this paper. 
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Figure 1: A running example illustrates the senario of 
incorporating automated speaking assessment into the 
traditional classroom. 

Automated Speaking Assessment

Holistic: B1
Delivery: 4/6
Content: 5/6
Language use: 3/6
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embeddings that have been successfully integrated 
into various language assessment tasks like 
sentence assessment (Arase et al., 2022), grading 
of essays (Moore et al., 2015; Nadeem et al., 2019; 
Wu et al., 2023), spoken monologues (Craighead et 
al., 2020), and many others. On a separate front, the 
advent of speech-based SSL features has 
introduced another regime of modeling 
sophistication and capability to ASA system 
developments. These features have been 
particularly effective in specialized tasks within the 
CALL tasks, such as mispronunciation detection 
and diagnosis (MDD) (Baevski et al., 2020; Wu et 
al., 2021; Xu et al., 2021; Peng et al., 2021), 
automatic pronunciation assessment (APA) (Kim 
et al., 2022; Chao et al., 2022; Chao et al., 2023) 
and ASA (Park and Ubale, 2023; McKnight et al., 
2023; Banno and Matassoni, 2022; Banno et al., 
2023; Li et al., 2023). 

While the work presented in (Banno and 
Matassoni, 2022; Banno et al., 2023) made 
pioneering attempts to employ SSL features (BERT 
and wav2vec 2.0) for ASA, it falls short when faced 
with three critical issues which our study aims to 
address: 1) relatively small amount of annotated 
data, 2) the imbalanced distribution of CEFR 
proficiency levels (Europe, 2001), and 3) the non-
uniform score gaps between different CEFR levels 
(e.g., B2 − B1 ≠ B1 − A2 ). To address these 
challenges, we first utilize text- and speech-based 
encoders (BERT and wav2vec 2.0) pre-trained on 
large-scale datasets. On top of this, this paper 
introduces effective modeling strategies that are 
underexplored in previous ASA work, including 
metric-based classification (Vinyals et al., 2016; Ye 
and Ling, 2019; Snell et al., 2017; Sun et al., 2019) 
and loss re-weighting (Conneau and Lample, 2019). 
In particular, we draw on a unique set of 
prototypical embeddings for each CEFR level and 
use various similarity functions to mitigate the 
imbalanced distribution. It is our hypothesis that 
metric-based learning not only addresses data 
imbalance but also efficiently tackles the non-
uniform score gaps between CEFR levels. 

All variants of our approach are evaluated on 
the ICNALE corpus (Ishikawa, 2011), an open-
source L2 English benchmark dataset, using both 
text- and speech-based classifiers. Empirical 
results indicate that our approach can effectively 
mitigate the issue of data imbalance and achieve 
significant improvements in accuracy, rising from 
77.88% to 92.63% compared to the state-of-the-art 

baselines (Banno and Matassoni, 2022). Finally, 
we also conduct a series of analytical experiments 
to look into the impacts of our modeling strategies 
on ASA performance, highlighting their practical 
potential for assessing learners’ proficiency. This 
paper has three-fold contributions: 

1. We explore novel and effective modeling 
strategies for SSL feature extraction and 
classification in ASA 

2. We demonstrate through experiments on 
the ICNALE corpus that our best-
performing instantiation establishes a new 
state-of-the-art for ASA on this corpus. 

3. In particular, our work contributes to the 
advancement of ASA techniques by 
addressing challenges related to limited 
data and imbalanced CEFR-level 
distribution. 

2 Related Work 

In general, ASA is deployed for assessing speaking 
proficiency with respect to the responses from an 
L2 learner, predicting the corresponding level of 
overall proficiency (holistic score) or specific 
aspects of proficiency (analytic scores).  

It is currently common practice to treat ASA as a 
classification problem using either text-based or 
speech-based classifiers. Nevertheless, in the early 
days, researchers used to tackle the ASA problem 
with standard classifiers in conjunction with hand-
crafted features pertinent to specific facets of 
language proficiency, such as pronunciation, 
fluency, prosody, grammar, and others. These 
features are extracted from the utterances and 
associated transcripts of an L2 learner and taken as 
input to a meticulously selected classifier to predict 
analytic scores (Strik and Cucchiarini, 1999; Chen 
et al., 2010; Bhat and Yoon, 2015; Moore et al., 
2015; Coutinho et al., 2016). For example, Chen et 
al. (2010) utilized vowel space characteristics for 
ASA. Bhat and Yoon (2015) ventured into 
syntactic analysis by employing part-of-speech 
tag-based complexity measures. Moore et al. (2015) 
scrutinized the efficacy of the Redshift parser in 
processing non-native spoken English, finding 
proficiency in discerning grammatical relations but 
limitations in detecting speech disfluencies. 
Coutinho et al. (2016) also concentrated on 
assessing prosodic and spectral features. 
Nonetheless, Muller et al. (2009) suggest that 
hand-crafted features may not always effectively 
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capture important information about proficiency, as 
their efficacy heavily depends on the underlying 
assumptions of feature curation.  

As for the feature representations of text-based 
classification, the NLP community has witnessed a 
significant trend of transitioning from using static 
token (e.g., word, subword, and others) 
embeddings to contextualized word embeddings, 
such as those derived by BERT (Devlin et al., 2019), 
with SSL paradigms. Consequently, there has been 
a surge of research on adopting these 
contextualized embeddings into automated 
assessments, such as essays (Nadeem et al., 2019; 
Arase et al., 2022; Wu et al., 2023) and spoken 
monologues (Craighead et al., 2020). Nadeem et al. 
(2019) initiated the use of contextualized 
embeddings for essay grading. Arase et al. (2022) 
applied these embeddings in conjunction with 
prototypical embedding for readability assessment. 
Craighead et al. (2020) innovatively employed 
them in evaluating spoken monologues, 
highlighting the embeddings' versatility in 
linguistic assessments. 

On the other hand, the use of speech-based SSL 
features emerges as a promising approach. Recent 
studies have shown good promise in various 
downstream tasks, such as ASR, and speaker 
identification (Baevski et al., 2020). Moreover, 
contextualized representations derived from pre-
trained models can capture a diverse range of 
acoustic and linguistic information for L1 and L2 
speech (Shah et al., 2022). This finding adds 
another dimension to the potential of SSL-based 
ASA systems. With the increasing availability of 
annotated speech data and advancements in SSL 
techniques, there is immense scope for further 
research and development in the speech process. 
Despite the promising use of speech-based SSL 
features in various CALL tasks such as 
mispronunciation detection and diagnosis (MDD) 
(Wu et al., 2021; Xu et al., 2021; Peng et al., 2021) 
and automatic pronunciation assessment (APA) 
(Kim et al., 2022; Chao et al., 2022; Chao et al., 
2023), there is still a dearth of research specifically 
focused on their application in automated speaking 

assessment (ASA) (Park and Ubale, 2023; 
McKnight et al., 2023; Banno and Matassoni, 2022; 
Banno et al., 2023; Li et al., 2023). This situation 
presents significant research space and ample 
opportunity for further exploration and 
investigation.  

3 Dataset 

To evaluate our proposed approach and 
corresponding methods, we employed the 
International Corpus Network of Asian Learners of 
English (ICNALE) corpus (Ishikawa, 2011), which 
is a publicly available dataset consisting of written 
and spoken responses from both native speakers 
and Asian learners from Japan, China, Hong Kong, 
South Korea, Taiwan, Singapore, Indonesia, 
Pakistan, Philippines and Thailand, at various 
CEFR (Common European Framework of 
Reference for Language) levels ranging from A2 to 
B2. Prior to data collection, the ICNALE team 
assigned CEFR levels to the learners based on their 
L2 vocabulary size and proficiency scores in 
English proficiency tests such as IELTS and 
TOEFL. For our experiments, we made exclusive 
use of the monologue section of the corpus, 
consisting of 4,332 speaking responses. In this 
setup, learners were prompted to describe their 
opinions on smoking in restaurants and the 
importance of engaging in part-time employment. 
Following the methodological practice adopted by 
(Banno and Matassoni, 2022), this curated 
collection was divided into a training set of 3,898 
responses, as well as a validation set and a test set 
of 217 responses for each. To evaluate the 
proficiency of L2 speakers, we will frame the ASA 
task as a classification problem with five 
proficiency levels, as illustrated in Table 1.  

4 Methodology  

CEFR levels generally follow an ordinal scale 
where, for example, the B1 level is considered 
lower than the B2 level. While it may seem 
reasonable to approach the ASA task as a 
regression problem, the non-uniform gaps between 
the proficiency levels may lead to challenges in 
interpreting regression outputs (Heilman et al., 
2008). As such, we adopt a classification regime to 
design and implement assessment methods for 
CEFR-oriented ASA.  

A bit of terminology: a training set with 𝑁 
samples {(𝐱!, 𝑦!), (𝐱", 𝑦"),···, (𝐱#$", 𝑦#$")}  are 

 A2 B1_1 B1_2 B2 native 
Train 299 792 1681 586 540 
Valid 16 44 94 33 30 
Test 17 44 93 33 30 

Table 1: Statistical information for each CEFR 
proficiency level in ICNALE. 
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given, where 𝐱%  is an utterance embedding 
extracted from either text- or speech-based encoder; 
𝑦% ∈ {0, 1, … , 𝐽 − 1} indicates the index 𝑖  of the 
corresponding level (𝐽 = 5 in the ICNALE corpus). 

In addition, we utilize two types of SSL-based 
neural encoders separately as our backbone 
architectures, namely, a text-based encoder (BERT) 
and a speech-based encoder (wav2vec 2.0), as 
schematically depicted in Figure 2. On top of this, 
we employ two modeling strategies: metric-based 
classification (cf. Section 4.2) and loss re-
weighting (cf. Section 4.3). These are used to train 
both text- and speech-based classifiers, with the 
goal to address the scarcity of learner data at basic 
(e.g., A1 and A2 speakers) and highly proficient 
(e.g., C1, C2, and native speakers) levels. 

4.1 Baseline Classification 

4.1.1 Text-based classification 

This work uses an off-the-shelf BERT architecture 
to form our text-based encoder Enc&'()(*). BERT 
takes an ASR transcript 𝑤!:+$"  as input, where 
each word 𝑤,  is first transformed into its 
corresponding token embedding and all words are 
fed into the encoder layer of BERT altogether to 
obtain their respective contextualized embedding 
in a holistic manner: 

𝐡!:#$% = TextModel(𝑤!:#$%) (1) 

 
2 https://huggingface.co/openai/whisper-large 

𝐱 = MeanPool(𝐡!:#$%) (2) 

where the semantic representation 𝐱 ∈ ℝ-  is 
computed by mean pooling of contextualized 
embedding, 𝐡!:+$" ∈ ℝ- , of the transcript. 
Following that, 𝐱  is fed into a multi-layer 
perceptron (MLP) to predict the corresponding 
CEFR level. To draw on the benefits of a pre-
trained language model, we initialize the model 
parameters with a pre-trained BERT model and 
learn the parameterization of the MLP layers from 
scratch. During training, the entire BERT model is 
tuned to learn more CEFR-aware knowledge. 

As for obtaining the automatic transcripts, we 
conducted ASR on the ICNALE monologues using 
the Whisper toolkit (Radford et al., 2022), from 
which we obtained an average word error rate 
(WER) of 18.62% with the multi-lingual large 
model2 (i.e., the default language is set to English). 
To avoid losing any possibly existing information 
about fluency and sentence structure, we managed 
to retain all relevant information cues, including 
hesitations, punctuations and others. Notably, since 
the input to the text-based classifier is an error-
prone ASR transcript, it may not accurately 
represent a learner’s proficiency. Moreover, a text-
based classifier inevitably fails to capture other 
important traits of an L2 speaker, such as intonation 
and prosody. 

4.1.2 Speech-based classification 

We capitalize fully on the off-the-shelf wav2vec 
2.0 (W2V) encoder as our speech-based encoder 
Enc./''01. W2V is a pre-trained speech model that 
consists of a feature encoder, a context network, 
and a quantization module. Analogously to Eq. (1), 
we encode an input raw waveform 𝑎!:2$" with 𝑇 
samples using the last layer of the W2V encoder to 
obtain latent representation  𝐡!:2!$"  ∈ ℝ-  (i.e., 
𝑇3 ≤ 𝑇): 

𝐡!:&!$% = SpeechModel(𝑎!:&$%) (3) 

Then, we employ mean pooling to handle latent 
representations 𝐡!:2!$"  of different temporal 
lengths, and the mean-pooled representation is 
subsequently fed into the MLP layer for 
classification. Similar to the text-based classifier, 
we expect that the W2V encoder can produce 
CEFR-aware representations as well during the 
training phase. 

 

Figure 2: A schematic diagram of proposed models for 
automated speaking assessment, where σ is the 
softmax function that aims to choose the maximum 
value of the prediction vector. 
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4.2 Metric-based classification 

An imbalanced label distribution (as previously 
exemplified in Table 1) will lead to overfitting 
major classes while catering less to minor ones. 
Because rare classes (referred here to infrequent 
CEFR levels) must be well considered for real use 
cases, we alternatively leverage a metric-based 
classification as a workaround against the label 
imbalance problem. The metric-based 
classification has been examined for few-shot 
learning, where examples are classified based on 
embedding distances between labeled and 
unlabeled samples. Previous studies (Vinyals et al., 
2016; Ye and Ling, 2019; Snell et al., 2017; Sun et 
al., 2019) have shown that this type of classifier 
categorizes samples based on distances within a 
vector space. The most prevalent techniques in 
metric-based classification are the matching 
network (Vinyals et al., 2016; Ye and Ling, 2019) 
and the prototypical network (Snell et al., 2017; 
Sun et al., 2019). Bearing some resemblance to an 
earlier study (Arase et al., 2022) that graded 
sentence-level text, we adopt a prototypical 
network to learn embeddings from the training set, 
which represent CEFR prototypes and predict 
CEFR levels based on a similarity value. In 
particular, we extend this approach to investigate 
speech-based embeddings, disparate similarity 
functions, and loss re-weighting for enhancing 
metric-based classification in ASA, which is 
promising yet underexplored.   

After the holistic embeddings of a speaker’s 
spoken response (cf. Section 4.1) are obtained, we 
then adopt the softmax function to compute the 
distribution 𝑝 for a response embedding 𝐱 over the 
levels 𝐿4  based on similarities to the disparate 
prototypes: 

𝑝8𝑦 = 𝐿';𝐱< =
exp	(𝑠 ∗ Sim8𝐱, 𝐜'< + 𝑏)

∑ exp	(𝑠 ∗ Sim8𝐱, 𝐜'< + 𝑏)(
 (4) 

where Sim(𝐱, 𝐜4) calculates the similarity between 
the response embedding 𝐱  and a level-specific 
prototype 𝐜4. Two similarity functions are explored 
in the prototypical network: one is cosine similarity 
(dubbed COS) with scaling factors (𝑠  and 𝑏  are 
learnable parameters) (Chung et al., 2020), and the 
other is square Euclidean distance (dubbed SED) 
without scaling factors (𝑠 and 𝑏 are set to 1 and 0, 
respectively) (Snell et al., 2017):  

 
3https://huggingface.co/bert-base-uncased 

Sim)*+8𝐱, , 𝐜'< =
𝐱, ∗ 𝐜'
‖𝐱,‖‖𝐜'‖

 (5) 

Sim+-.8𝐱, , 𝐜'< = I𝐱, −	𝐜'I/
/ (6) 

We leverage these two similarity functions in the 
current work to probe their respective feasibility 
and performance. When each CEFR level has 
multiple prototypes (𝐾 > 1), we compute the mean 
of the embeddings of these prototypes as the new 
centroid 𝐜4 or the mean of 𝐾 similarity values: 

𝑆𝑖𝑚8𝐱, , 𝐜'< =
1
𝐾P𝑆𝑖𝑚(𝐱, ,

0

	𝐜'0)  (7) 

4.3 Loss re-weighting 

Apart from the metric-based classifier, we adopt 
loss re-weighting to address the uneven label 
distribution, which is based on the multinomial 
distribution of level frequency and their inverted 
frequencies (Conneau and Lample, 2019). The loss 
re-weighting is formulated as: 

𝑞, =
𝑝,1

Σ'2!
($%𝑝'1

∗
1
𝑝,
	 (8) 

where 𝑝% is to represent the frequency of level 𝑖 in 
the training set, and 𝛼 ∈ [0,1]  regulates the 
importance weight. A small value of 𝛼  places a 
larger weight on infrequent CEFR levels (such as 
A2 or native). As an aside, we also use a simple loss 
re-weighting mechanism that only considers the 
inverted frequencies of CEFR levels in the training 
set: 

𝑞S, =
Σ'2!
($%𝑝'
𝑝,

	 (9) 

The classification loss of all classifiers, including 
baseline classifiers (cf. Section 4.1) and metric-
based classifiers (cf. Section 4.2), are calculated 
using cross entropy with (or without) loss re-
weighting. 

5 Experiments 

5.1 Implementation details 

We initialized the model configuration from 
toolkits provided by HuggingFace (Wolf et al., 
2019). The baseline systems are the BERT-based 
classifier built on bert-base-uncased 3  and the 
wav2vec 2.0-based classifier built on wav2vec2-
base4. The number of prototypes 𝐾 is set to 3. We 

4https://huggingface.co/facebook/wav2vec2-base 
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use loss re-weighting presented in Eq. (8) for the 
BERT-based classifier (𝛼  is set to 0.5), while 
using that depicted in Eq. (9) for the wav2vec 2.0-
based classifier, both of which are suggested by 
our preliminary experiments.  

All models were trained on an NVIDIA 3090 
GPU using AdamW (Loshchilov and Hutter, 2019) 
optimizer, with a batch size of 8 and an initial 
learning rate of 5e-5. The training process of the 
BERT-based classifier was stopped early with 10 
patience epochs based on the averaged macro-
accuracy score from the validation set. The 
training process of the wav2vec 2.0-based 
classifier was stopped at 10 epochs based on the 
averaged macro-accuracy score measured on the 
validation set. 

5.2 Evaluation metrics 

Evaluations of classifiers’ effectiveness are crucial 
for grading applications, where accurate prediction 
of all levels is essential. However, as the 
distribution of CEFR levels is unbalanced, 
conventional evaluation metrics such as accuracy 
(ACC) and adjacent accuracy (ADJ) may need to 
be revised. Therefore, macro-type evaluation 
metrics, ACCMC and RMSEMC, were used to 
penalize models that treats the minor classes poorly. 
Moreover, since CEFR levels are ordinal, 
additional evaluation metrics, including root mean 
squared error (RMSE) and Pearson correlation 
coefficient (PCC), were employed to evaluate the 
model performance. These metrics altogether 
provide a comprehensive evaluation of the 
classifier's ability to predict all CEFR levels 
accurately, including minor ones. 

5.3 Overall performance 

At the outset, we report on the performance of two 
strong baselines, which are SSL-based classifiers 
on the ICNALE dataset, viz. BERT- and wav2vec 
2.0 (W2V)-based classifiers. After that, the 
prototypical network (PT) in conjunction with loss 
re-weighting (LW), where the similarity function is 
either in the form of squared Euclidean distance 
(SED) or cosine similarity (COS), is employed to 
enhance the baseline SSL-based classifiers.  

In the first set of experiments, we discuss the 
overall performance of our various methods in 
comparison with state-of-the-art baselines (Banno 
and Matassoni, 2022). Table 2 displays the 
evaluation results of the two classifiers (BERT– 

Model Exp. Tag RMSE↓ RMSEMC↓ PCC↑ ACC↑ ACCMC↑ 
- ADJ - ADJ 

BERT* - - - - 53.45 - - - 
W2V* - - - - 77.88 - - - 
BERT - 0.948 1.028 0.628 57.60 88.02 55.53 82.99 

+ LW 0.851 0.935 0.678 62.67 89.86 55.55 83.52 
PT(COS) 0.931 1.024 0.644 58.99 89.40 52.44 84.98 

+ LW 0.877 0.937 0.674 62.21 90.78 57.89 85.21 
PT(SED) 0.943 0.969 0.684 57.14 88.48 56.70 86.06 

+ LW 0.823 0.892 0.711 59.91 93.09 53.51 88.84 
W2V - 0.580 0.595 0.860 79.72 96.31 72.73 91.73 

+ LW 0.560 0.522 0.873 75.58 97.70 75.06 96.70 
PT(COS) 0.539 0.605 0.876 83.41 95.85 78.03 91.06 

+ LW 0.517 0.510 0.890 80.18 97.70 78.48 94.69 
PT(SED) 0.390 0.392 0.937 92.63 98.16 90.65 96.82 

+ LW 0.429 0.426 0.924 89.40 98.16 88.51 96.59 

Table 2: Overall performance of our proposed approaches on the ICNALE corpus. * means the results adopted 
from previous work (Banno and Matassoni, 2022). 

 
Exp. Tag ACC↑ ACCMC↑ 

- ADJ - ADJ 
PT(COS) 83.41 95.85 78.03 91.06 
PT(SED) 92.63 98.16 90.65 96.82 
PT(COS)+ 86.64 96.31 83.53 93.02 
PT(COS)+* 89.40 96.77 84.76 93.48 
PT(SED)+ 82.95 93.31 76.97 93.56 
PT(SED)+* 86.63 95.85 82.23 92.26 

Table 3: Effectiveness of initialization for the 
prototypical model. The last four rows with the 
symbol + denotes encoder weight initialization from 
the vanilla W2V classifier (9th row in Table 2). The 
symbol * indicates prototypical embedding weight 
initialization using wav2vec 2.0. 
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and W2V-based baselines) on the ICNALE test set 
in terms of accuracy and various metrics. W2V 
exhibits superior performance over BERT in terms 
of all metrics. Two modeling strategies explored in 
this study, including loss re-weighting (LW) and 
prototypical network (PT-COS and PT-SED), 
achieve superior results than vanilla BERT and 
W2V across most evaluation metrics, especially for 
macro-type evaluation metrics (e.g., RMSEMC and 
ACCMC). The experiment results clearly 
demonstrate the effectiveness of our proposed 
modeling strategies in enhancing the SSL-based 
models. Strikingly, with the best setup, which 
utilizes the W2V-based classifier in conjunction 
with the prototypical network (SED) and loss re-
weighting (LW), our modeling strategy can yield a 
remarkable improvement in accuracy from 77.88% 
to 92.63% compared with the start-of-the-art 
baselines (Banno and Matassoni, 2022). This 
significant boost in performance confirms the 
promising potential of our proposed modeling 
strategies in automated speaking assessment.  

While Table 2 demonstrates encouraging 
performance, it's important to note that the 
effectiveness of the W2V prototypical model, 
particularly its clustering effect, can vary 
depending on the dataset's characteristics and the 
complexity of the speaking tasks. Therefore, 

further experiments and evaluations are necessary 
to validate the proposed approach's robustness and 
generalizability. In the following subsections, we 
analyze the performance of different models using 
various evaluation metrics and discuss potential 
areas for future research and improvement.  

5.4 Effect of initialization 

Table 3 presents the impact of the wav2vec 2.0 
encoder on training the metric-based method. 
Since cosine similarity (referred to as PT(COS)) 
performs worse than squared Euclidean distance 
(referred to as PT(SED)), as shown in Table 2, we 
specifically focus on examining the influence of 
pretrained embeddings on the performance of 
PT(COS). From Table 3, it is evident that proper 
initialization of the encoder and prototypical 
embeddings have a great impact on the efficacy of 
the training approach based on the cosine 
similarity, while it leads to relatively inferior 
results when using the squared Euclidean distance. 
Specifically, notable performance improvements 
are observed by initializing the encoder weights 
with W2V from the vanilla W2V classifier and 
using W2V for the weight initialization of 
prototypical embeddings. However, the results 
were less pronounced when training with a 
similarity function based on SED. Our findings 
highlight the importance of proper initialization of 

      Vanilla      PT(COS)+LW      PT(SED)+LW 
BE

RT
 

   

W
2V

 

   
Figure 2: Confusion matrices for SSL-based classifiers using different strategies in predicting proficiency levels. 

1358



 
 

the encoder and prototypical embeddings, 
meanwhile validating the effectiveness of the 
cosine similarity in metric-based approaches.  

5.5 Confusion matrices 

Figure 3 illustrates the confusion matrices for each 
CEFR level, showcasing the performance of two 
SSL-based methods: BERT (top of Figure 3) and 
W2V (bottom of Figure 3), with the utilization of 
squared Euclidean distance (SED), cosine 
similarity (COS) and loss re-weighting (LW). 
Notably, the W2V-based classifier consistently 
outperforms the BERT-based classifier across all 
proficiency levels, demonstrating substantial 
advancements, particularly for A2, B1_2, and 
native speakers. The key differentiating factor 
leading to the superior performance of the W2V-
based classifier lies in its ability to capture crucial 
acoustic, prosodic, and linguistic traits that might 
be overlooked when relying solely on ASR 
transcripts. This result signifies the fundamental 
importance of such latent traits in accurately 
discerning the distinct CEFR proficiency levels. 

5.6 ASA Performance for learners from 
different L1s 

Figure 4 plots the histogram of classification 
performance achieved by our proposed approaches 
across learners with diverse mother-tongue 
languages. These tongue languages include Taiwan 
(TWN), Hong Kong (HKG), Japan (JPN), Korea 
(KOR), Singapore (SIN), China (CHN), Indonesia 
(IND), Pakistan (PAK), Philippines (PHL) and 
Thailand (THA), thereby representing a wide range 
of language backgrounds. As shown in Figure 4, 
our best-performing model, W2V-PT(SED), 
achieves an average accuracy of 90% in predicting 
CEFR proficiency levels across different tongue 

languages. Notably, learners from Hong Kong 
(HKG), Singapore (SIN), Philippines (PHL) and 
native speakers attained a perfect accuracy rate of 
100%.  

5.7 Visualization of CEFR-aware 
embeddings 

Figure 5 illustrates the t-SNE dimensionality 
reduction visualization, comparing the original 
W2V embeddings (left) with the W2V+PT(COS) 
(right). The left plot shows scattered embeddings 
forming a manifold. In contrast, the right plot 
demonstrates an apparent clustering effect, 
indicating that the W2V prototypical model with 
cosine similarity successfully groups embeddings 
by CEFR levels. These results indicate that the 
metric-based classifier fosters discriminative 
embeddings reflecting learners' proficiency, which 
likely account for the improvements in Table 2, 
underscoring the prototypical approach's efficacy 
in ASA. 

 
Figure 4: The ASA performance (accuracy%) of our 
proposed modeling strategies for test learners of 
different mother-tongue languages. 
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Figure 5: Visualization of CEFR-aware embeddings of vanilla wav2vec2.0 (left) and prototypical wav2vec2.0 
with cosine similarity (right). The colors red, green, blue, orange, and purple correspond to A2, B1_1, B1_2, B2, 
and native speakers, respectively. 
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6 Conclusion 

This paper has put forward two innovative ASA 
modeling strategies, namely metric-based 
classification and loss re-weighting, to enhance the 
performance of self-supervised learning (SSL) 
models for use in ASA. Both strategies work well 
with pre-trained embeddings, meanwhile 
addressing the challenging issues of data scarcity 
and imbalanced distribution. Extensive 
experiments on the ICNALE dataset have 
demonstrated the practical utility of our methods in 
relation to previous methods in terms of accuracy 
and various metrics for measuring L2 learners’ 
speaking proficiency. The corresponding results 
also provide valuable insights for discussing the 
efficacy of SSL made inroads into ASA. For future 
work, we plan to delve deeper into the investigation 
of diverse features and traits, pre-trained models 
and fine-tuning strategies to mitigate the impact of 
imbalanced data distribution. Additionally, we 
envisage extending the scope of our proposed 
modeling approach to other corpora and tasks, for 
the purpose of further generalizing its applicability. 

Limitations  
The model proposed in this paper focuses on 
Automated Speaking Assessment using self-
supervised learning but exhibits key limitations. Its 
effectiveness is primarily tied to the ICNALE 
benchmark dataset, which might not capture the 
vast diversity of global English learners, 
potentially limiting the model's generalizability. 
Additionally, while our model shows promise on 
this specific dataset, its performance across varied 
datasets with different learner profiles and 
proficiency distributions remains untested, raising 
concerns about its broader applicability. Another 
challenge is interpreting SSL-based embedding 
features in relation to specific language proficiency 
indicators, crucial for enhancing model 
transparency and facilitating further improvements. 
To address these issues, we are expanding our 
dataset to include a design similar to ICNALE, 
incorporating parallel manual annotation of 
questions in the corpus. This expansion aims to 
complement proficiency levels that are currently 
underrepresented. Furthermore, while we suspect 
that our method could be applicable to other label-
imbalanced classification problems, an empirical 
investigation of this application is beyond the 
scope of this paper and is reserved for future 

research.  

Ethical Considerations 
Bias in Language Assessment The risk of 
reinforcing existing educational or linguistic biases 
is present, especially if the dataset lacks 
representation from diverse linguistic backgrounds. 

Transparency and Accountability There's a need 
for clear communication about how the system 
assesses language proficiency and mechanisms for 
feedback to address potential inaccuracies or biases. 

Impact on Learners If assessments are perceived 
as unfair, it could affect learners' motivation and 
confidence, highlighting the importance of 
aligning the system with diverse learner needs.  
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