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Abstract

Encoder-decoder transformer models have
achieved great success on various vision-
language (VL) and language tasks, but they
suffer from high inference latency. Typically,
the decoder takes up most of the latency be-
cause of the auto-regressive decoding. To ac-
celerate the inference, we propose an approach
of performing Dynamic Early Exit on Decoder
(DEED). We build a multi-exit encoder-decoder
transformer model which is trained with deep
supervision so that each of its decoder layers is
capable of generating plausible predictions. In
addition, we leverage simple yet practical tech-
niques, including shared generation head and
adaptation modules, to keep accuracy when
exiting at shallow decoder layers. Based on
the multi-exit model, we perform step-level dy-
namic early exit during inference, where the
model may decide to use fewer decoder layers
based on its confidence of the current layer at
each individual decoding step. Considering dif-
ferent number of decoder layers may be used at
different decoding steps, we compute deeper-
layer decoder features of previous decoding
steps just-in-time, which ensures the features
from different decoding steps are semantically
aligned. We evaluate our approach with three
state-of-the-art encoder-decoder transformer
models on various VL and language tasks. We
show our approach can reduce overall inference
latency by 20%-74% with comparable or even
higher accuracy compared to baselines.

1 Introduction

Transformer models with auto-regressive decoders
have shown great success on vision-language (VL)
(Wang et al., 2022; Biten et al., 2022; Chen et al.,
2022; Appalaraju et al., 2024; Tang et al., 2024)
and language tasks (Raffel et al., 2020; Tay et al.,
2022; Radford et al., 2019; Vaswani et al., 2017).
Among many successful models tackling these

*Work conducted during an internship at Amazon.

Figure 1: Inference latency and accuracy (ANLS
(Mathew et al., 2021)) of LaTr++ (Biten et al., 2022) us-
ing different number of decoder layers on the DocVQA
validation set. The decoder takes most of the inference
time compared to the encoder (104.3 ms vs. 20.5 ms).
In addition, even using one decoder layer can achieve
decent accuracy (77.5% vs. 81.5%), implying that most
examples do not need all decoder layers during infer-
ence.

tasks, encoder-decoder transformer models (Wang
et al., 2022; Biten et al., 2022; Chen et al., 2022;
Appalaraju et al., 2021, 2024; Tang et al., 2024;
Raffel et al., 2020; Tay et al., 2022) usually show
the best accuracy thanks to the strong representa-
tion ability of encoder and the strong generative
ability of the decoder.

Nevertheless, encoder-decoder models rely on
the auto-regressive decoding to bring its ability into
full play at inference. With auto-regressive decod-
ing, each output token is generated conditioned on
previous tokens. Therefore, it has to generate to-
kens one after another, and repeat the feed-forward
in each layer as many times. This mechanism leads
to high inference latency in the decoder, and makes
the decoder take up most of the total inference la-
tency, as shown in Figure 1. Interestingly, even
using only one decoder layer, an encoder-decoder
model can still get decent prediction accuracy (see
Figure 1), which means samples got correct by
the one decoder layer do not need the excessive
computations in the deeper decoder layers.
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Inspired by these facts, we propose an approach
to dynamically allocate adequate amount of com-
putation at a particular decoding step in order to
speed-up inference without sacrificing accuracy.
Specifically, we build Dynamic Early Exit on De-
coder (DEED), a multi-exit model with an early
exit strategy to let the model decide whether or
not to exit at a specific decoder layer at each de-
coding step dynamically. Following existing work
(Xin et al., 2020; Liu et al., 2021, 2020; Zhang
et al., 2022; Geng et al., 2021; Xin et al., 2021;
Zhou et al., 2020), we employ confidence-based
dynamic early exit where the decoder may decide
to exit when it is confident about its prediction. Un-
like encoder acceleration, the dynamic early exit
for auto-regressive decoder is more challenging.
The challenge is two-fold:

• Multi-exit model, i.e., a model that can exit /
make prediction at each layer. To get accurate
predictions out of dynamic early exit, we must
build and train a strong multi-exit encoder-
decoder model, where each of the decoder
layers have strong generative ability.

• Semantic misalignment at inference. To-
kens can be generated at different decoder
layers at different decoding steps. But the
auto-regressive decoding requires n-layer fea-
tures from all the previous steps if the current
step is inferring at layer n. They won’t be
available if the previous decoding steps exit at
shallower layers. This semantic misalignment
between different layers imposes difficulties
when applying naive early exit strategy, lead-
ing to degraded accuracy.

Previous approaches address the first challenge
by using different prediction heads after each trans-
former layer (Schwartz et al., 2020; Xin et al., 2020;
Geng et al., 2021; Xin et al., 2021). In contrast, we
build our multi-exit model by sharing the genera-
tion head among different decoder layers and train-
ing with deep supervision. The generation head
generates the output sequence prediction, e.g., the
answer text for visual question answering (Biten
et al., 2022; Chen et al., 2022; Alayrac et al., 2022;
Lu et al., 2022) or box coordinates for referring
expression comprehension (Wang et al., 2022; Lu
et al., 2022). In addition, we insert an adaptation
module between decoder layers and the generation
head. This design helps to strengthen the genera-
tive ability of shallow decoder layers by sharing the
common generation knowledge among different de-
coder layers. Moreover, to maintain the generative

ability when exiting at the final layer, we proposes
a loss function that emphasizes the learning of the
final layer. These simple yet effective techniques
help to improve the accuracy of shallow decoder
layers without sacrificing the accuracy at the final
decoder layer.

To address the second challenge, we propose
a novel algorithm that dynamically computes re-
quired deeper-layer features for previous decod-
ing steps just-in-time. This algorithm effectively
resolves the semantic misalignment among differ-
ent layers at different generation steps. In con-
trast, the existing work, DAT (Elbayad et al., 2019)
and CALM (Schuster et al., 2022), which uses the
shallow-layer features as the deeper-layer features
directly for later decoding steps, failed to mitigate
such semantic misalignment and thus substantially
undermine the generative ability of the model.

Our contributions are summarized as follows:
• We propose DEED, a multi-exit model with

step-level dynamic early exit on decoder to
speed-up inference without sacrificing accu-
racy for encoder-decoder transformer models.

• We apply our approach to three state-of-the-
art encoder-decoder transformer models and
evaluate on various VL and language tasks.
Our approach is able to reduce 20%-74% over-
all inference latency with comparable or even
higher accuracy compared to baseline models
and other dynamic early exit approaches.

2 Related Work

Encoder-Decoder Models for Vision-Language
and Language Tasks Transformer models, when
first proposed, consist of encoder and decoder
and are mainly for language tasks (Vaswani et al.,
2017). Following researches improve encoder-
decoder transformer models by introducing bet-
ter unsupervised pre-training strategies and small
model architecture changes (Raffel et al., 2020;
Tay et al., 2022). Recently, encoder-decoder trans-
former models have pushed the edge for Vision-
Language (VL) tasks (Alayrac et al., 2022; Wang
et al., 2022; Biten et al., 2022; Lu et al., 2022;
Chen et al., 2022; Appalaraju et al., 2024; Tang
et al., 2024) because of strong representation abil-
ity of encoder and generative ability of decoder.
For example, Flamingo (Alayrac et al., 2022) uses
a vision encoder to encode input images and a text
decoder to generate text predictions for various
VL tasks. LaTr (Biten et al., 2022) utilizes the
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sequence generation ability in decoder and layout
in multi-modality learning and achieves state-of-
the-art accuracy on text-based VQA tasks. OFA
(Wang et al., 2022) proposes a unified sequence-to-
sequence learning framework to incorporate vari-
ous VL tasks into the encoder-decoder scheme. Our
work focuses on accelerating the decoder inference
for this type of encoder-decoder transformer mod-
els on VL and language tasks.
Dynamic Early Exit Using Dynamic Early Exit
(DEE) is a popular strategy to reduce the infer-
ence latency of transformer models (Xin et al.,
2020; Liao et al., 2021; Liu et al., 2021, 2020;
Zhang et al., 2022; Geng et al., 2021; Xin et al.,
2021; Zhou et al., 2020; Li et al., 2021; Hou et al.,
2020; Kim and Cho, 2021; Akbari et al., 2022).
For example, DeeBERT (Xin et al., 2020) and
RomeBERT (Geng et al., 2021) applies DEE to
BERT (Kenton and Toutanova, 2019) based on clas-
sification confidence scores from different encoder
layers. BERxiT (Xin et al., 2021) learns a policy
for dynamic early exit. TOKEE (Li et al., 2021)
introduces a token-level early exit approach for se-
quence labelling. However, these encoder-focused
approaches cannot be applied to transformer de-
coders directly, due to the challenges imposed by
the auto-regressive mechanism in decoder models.

DAT (Elbayad et al., 2019) is one approach
tackling decoder early exit. It introduces a halt-
and-copy approach, which halts the computa-
tion at a layer if the prediction is confident, and
copies the feature from shallow decoder layers to
deeper layers in later decoding steps when needed.
CALM (Schuster et al., 2022) follows the same halt-
and-copy approach for decoder early exit. However,
this approach suffers strong semantic misalignment
because the semantic information from different
decoder layers are not compatible. Thus the later
decoding step at deeper layers cannot obtain mean-
ingful features from previous steps, leading to sig-
nificant accuracy drops. In contrast, our approach
dynamically computes the deeper-layer features
from earlier steps just-in-time to resolve the seman-
tic misalignment and to achieve high accuracy.
Multi-exit Models The most straightforward way
of building multi-exit models is adding deep su-
pervision to each layer (Lee et al., 2015; Teer-
apittayanon et al., 2016; Schwartz et al., 2020).
Nonetheless, it often degrades the accuracy of the
final prediction layer. To preserve the final layer
accuracy, DeeBERT (Xin et al., 2020) proposes a
two-stage training strategy, in which the final pre-

diction layer and the backbone are trained firstly,
and other prediction layers are trained secondly
with the rest of the parts frozen. However, this
two-stage training strategy leads to reduced accu-
racy of shallow layers. RomeBERT (Geng et al.,
2021) designs an approach to increase the accu-
racy of shallow layers using self-distillation and
gradient regularization. BERxiT (Xin et al., 2021)
uses an alternating training scheme to improve the
accuracy of shallow layers. It alternates between
two training objectives: the loss of the final layer
only and the loss of all layers. Unlike previous
work, we build the multi-exit model by sharing
the prediction head among all layers and inserting
adaptation modules to align the feature spaces. Our
approach shows the best trade-off between final
layer accuracy and shallow layer accuracy.
Other Directions for Latency Reduction Apart
from dynamic early exit, there are attempts in
other directions to reduce latency for transform-
ers. For example, knowledge distillation (Hinton
et al., 2015; Jiao et al., 2020; Lin et al., 2022; Sanh
et al., 2019) is applied to reduce the model size
and latency by distilling information from a large
teacher model to a small student model. Model
pruning (Gordon et al., 2020; Michel et al., 2019)
reduces model size by removing redundant param-
eters. Non-autoregressive generation (Gu et al.,
2018; Qian et al., 2021) avoids the time-consuming
step-by-step generation by decoding the predic-
tions in parallel. These directions are orthogonal to
dynamic early exit, hence they are not our focus.

3 Approach

We propose DEED, a dynamic early exit on de-
coder approach to accelerate encoder-decoder trans-
former models for VL and language tasks. Specifi-
cally, we leverage confidence-based step-level dy-
namic early exit to decide which decoder layer to
exit based on how confident we are at each decod-
ing step. At training, we train our multi-exit model
with deep supervision (Lee et al., 2015), where
the output features of each decoder layer are input
to a shared generation head and supervised using
the ground truth. At inference, we apply dynamic
early exit on the auto-regressive decoder. At each
decoding step, the model decides how many de-
coder layers to use based on its confidence about
the output token – hence different number of lay-
ers may be used at different decoding steps. In
the follow sections, we first introduce the auto-
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regressive decoding process and the challenge of
semantic misalignment in dynamic early exit on
decoder in Section 3.1. Then we describe our multi-
exit model architecture and our training strategy
in Section 3.2. Finally we show how we resolve the
semantic misalignment problem with just-in-time
computation of decoder features in Section 3.3.

3.1 Background
Auto-Regressive Decoding At inference, de-
coder typically generates the prediction in an auto-
regressive decoding way, i.e., decoder generates
tokens step-by-step and the generated token in each
step is conditioned on the previously generated to-
kens. Theoretically, all the previous tokens are
supposed to be input to the decoder to generate
the current token, which would cause redundant
computation for the previous tokens as their fea-
tures have been computed at previous decoding
steps. In common practice, to reduce redundant
computation, the key-value features in the multi-
head self-attention layers are all saved and provided
for later steps. This practice decreases computation
complexity and reduces inference latency, by avoid
re-computing key-value features of earlier decoder
steps at later steps.
Semantic Misalignment In step-level dynamic
early exit, each decoding step can use a different
number of decoder layers. As a result, the past
key-value features may not always be available for
every layer. This misalignment makes it difficult to
implement the step-level dynamic early exit, as it
cannot retrieve the cached key-value features from
previous steps when the current step uses deeper
layers. One option is to copy shallower-layer fea-
tures to deeper-layers (Elbayad et al., 2019; Schus-
ter et al., 2022). However, the deeper-layer fea-
tures encode higher-level semantics compared to
shallower-layer features. A mixture of them across
decoding steps will cause semantic misalignment
and undermine the generative ability of the model.
An easy workaround is to constrain the model to al-
ways exit at the same decoder layer, but this would
upset our observation that some tokens are harder
to generate than others. In experiments, we will
show that this constrained approach is not desirable
in terms of accuracy and latency. While we have
to stick to step-level dynamic early exit and solve
semantic misalignment, pre-computing the deeper-
layer key-value features is not efficient because we
do not know how many layers the following steps
will use. To address this issue, we do step-level
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Figure 2: Decoder architecture of our multi-exit model.
We share the generation head across different decoder
layers and insert adaptation modules between early de-
coder layers and the generation head.

dynamic early exit with just-in-time computation,
see Section 3.3.

3.2 Multi-exit Model
To perform step-level dynamic early exit, it is cru-
cial to have a multi-exit model to ensure each de-
coder layer is capable of generating plausible pre-
dictions. So we introduce our multi-exit model
here before moving on to how we do step-level
dynamic early exit.
Model Architecture In our multi-exit encoder-
decoder transformer model, we have a generation
head that maps decoder features into tokens. In con-
trast to existing work (Geng et al., 2021; Xin et al.,
2020, 2021), we share the generation head across
different decoder layers to share the common gen-
eration knowledge among different decoder layers,
which strengthens the generative ability of shallow
decoder layers. In addition, we insert separate adap-
tation modules between the shallow decoder layers
and the generation head to adapt the features from
shallow decoder layers to the semantic space of
features from the final decoder layer (see Figure 2).
Specifically, the adaptation module is composed of
a linear layer followed by layer normalization.
Model Training To train the multi-exit model, the
most straightforward way is to add deep supervi-
sion (Lee et al., 2015) after outputs of each decoder
layer as follows

Lavg =
1

N

N∑

n=1

Ln, (1)

where N,Ln,Lavg correspond to the total num-
ber of decoder layers, the loss for the n-th decoder
layer, and the average loss across all decoder layers,
respectively. However, this approach does not op-
timize the model for the final decoder layer solely.
As a result, the model suffers from degraded accu-
racy of the final decoder layer, which will cap the
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Algorithm 1 Step-level dynamic early exit with
just-in-time computation

Require: Current decoding step i, saved past key-
value features P = {pi′

n}, saved hidden states
H = {hi′

n}, decoder layers D = {Dn}, the
number of decoder layers N , confidence score
threshold τ .

Ensure: Decoded token output ti.
1: for n = 1 to N do
2: Get saved past key-value features p1:j

n and
hidden states hj+1:i

n−1 .
3: Feed p1:j

n and hj+1:i
n−1 into Dn to compute

pj+1:i
n ,hj+1:i

n , tin with confidence score cin.
4: Save pj+1:i

n to P and hj+1:i
n to H.

5: if cin > τ then
6: Set ti to tin and terminate the for loop.
7: end if
8: end for

accuracy of our approach. To address this issue,
we emphasize the loss of the final layer so as to
maintain high accuracy for the final decoder layer.
To this end, we add the final decoder layer loss to
the training objective as follows

L = Lavg + LN . (2)

3.3 Step-Level Dynamic Early Exit with
Just-in-Time Computation

We perform step-level dynamic early exit at in-
ference on top of the multi-exit model. To avoid
semantic misalignment and improve efficiency, we
design an algorithm to compute the past key-value
features just-in-time. For step i and decoder layer
n, we denote the decoder layer n as Dn, the past
key-value features as pi

n, the decoded token output
as tin, the corresponding confidence score as cin,
and the confidence score threshold as τ . We use
colon separated numbers to denote intervals, e.g.,
i : j denotes the decoding steps from i to j (in-
clusive). Apart from pi

n, we also save any output
hidden states hi

n of Dn at step i if it is computed.
As shown in Algorithm 1, for each decoding

step, we go through the decoder one layer per itera-
tion. At decoding step i, first we prepare saved past
key-value features p1:j

n and hidden states hj+1:i
n−1

(for the decoding steps where the key-value fea-
tures are absent), where j (< i) corresponds to the
sequence length of saved past key-value features
for Dn, see line 2 in Algorithm 1. Next we feed
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Figure 3: Step-level dynamic early exit with just-in-time
computation. Blue boxes: the decoder layers where
the model exits. Green boxes: the internal decoder
layers. Orange boxes: the layer used for just-in-time
computation. Features/hidden states in the dashed boxes
are inputs to decoder layer 2 at decoding step 3.

p1:j
n and hj+1:i

n−1 into Dn to compute key-value fea-
tures pj+1:i

n , hidden states hj+1:i
n , decoded token

output tin, and the corresponding confidence score
cin, see line 3 in Algorithm 1. We save these newly
computed pj+1:i

n and hj+1:i
n for future use, see line

4 in Algorithm 1. Taking the decoding process in
Figure 3 as an example, at decoding step 3 when
the model is about to enter layer 2, the past key-
value features p1

2 are available but p22 are absent,
so p1

2 along with the saved hidden states h2:3
1 will

be fed into decoder layer 2. We repeat the same
process for every decoder layer until the predicted
confidence score cin is larger than a threshold τ ,
where cin is computed by the classification score af-
ter softmax, see line 5-6 in Algorithm 1. Note that
although the deeper-layer features are computed
for the previous decoding steps, the previous token
outputs will not be updated with those features, be-
cause each token is supposed to be dependent on
the past and any change in the previous tokens will
break the dependency.

One may notice that our approach assumes the
availability of hj+1:i

n−1 at decoding step i. This is
assured by our per-layer traversal - the hidden states
are always computed and saved at the previous
decoder layer.

4 Experiments

We evaluate DEED on LaTr++ (Biten et al., 2022)
and OFA (Wang et al., 2022) with various vision-
language tasks and on T5 (Raffel et al., 2020) with
various language tasks. We do auto-regressive pre-
diction for all the tasks.
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DocVQA OCR-VQA
ANLS↑ Dec. Latency↓ Tot. Latency↓ Accuracy↑ Dec. Latency↓ Tot. Latency↓

Original-b 81.5 104.3 124.6 68.4 109.7 125.6

CALM-b (Schuster et al., 2022) 80.1 73.7 94.1 67.0 73.1 89.0
SLEX-b 81.4 90.1 111.4 68.3 109.0 124.7
FTEX-b 81.2 47.1 67.4 67.1 53.8 70.3
DEED-b 81.9+0.4 46.1-55.8% 66.5-48.6% 68.1-0.3 52.4-52.2% 68.5-45.5%

Original-L 83.5 181.5 216.3 70.1 202.5 229.6

CALM-L (Schuster et al., 2022) 81.2 81.5 115.6 68.8 93.5 122.5
SLEX-L 83.7 154.3 190.6 69.6 111.5 139.8
FTEX-L 83.1 58.6 91.5 68.6 79.6 108.1
DEED-L 83.8+0.3 49.2-72.9% 82.8-61.7% 69.7-0.4 79.2-60.9% 107.5-53.2%

Table 1: Accuracy and latency (in ms) on DocVQA and OCR-VQA validation sets. The best results are in bold
face. The percentage reductions are w.r.t. the original model.

ST-VQA Text-VQA
ANLS↑ Dec. Latency↓ Tot. Latency↓ Accuracy↑ Dec. Latency↓ Tot. Latency↓

Original-b 69.7 71.9 88.6 61.1 71.7 89.0

CALM-b (Schuster et al., 2022) 69.6 59.1 76.2 57.8 48.3 66.1
SLEX-b 69.8 60.4 77.3 59.6 51.9 68.9
FTEX-b 69.5 41.7 59.0 60.0 45.5 62.4
DEED-b 69.9+0.2 33.5-53.4% 50.1-43.5% 61.0-0.1 43.5-39.3% 61.4-31.0%

Original-L 70.3 136.5 164.2 63.1 136.5 165.5

CALM-L (Schuster et al., 2022) 70.5 104.7 133.0 59.1 87.1 117.2
SLEX-L 70.2 85.0 114.5 61.3 93.5 122.9
FTEX-L 70.4 65.9 96.4 61.8 79.3 108.9
DEED-L 71.5+1.2 50.0-63.4% 78.5-52.2% 63.6+0.5 72.1-47.2% 102.7-37.9%

Table 2: Accuracy and latency (in ms) on ST-VQA and Text-VQA validation sets. The best results are in bold face.
The percentage reductions are w.r.t. the original model.

4.1 DEED on LaTr++

LaTr (Biten et al., 2022) is the state-of-the-art
approach for text-based visual question answer-
ing (text-VQA). LaTr uses multi-modal encoder-
decoder transformer models with OCR text, layout,
and visual features as inputs. We improve LaTr by
using a better vision backbone and adding better
unsupervised pre-training tasks, see Section A.2
for more details. We refer to the improved LaTr
as LaTr++ here. Following LaTr, we focus on the
text-VQA task.

4.1.1 Settings

We evaluate on four text-VQA datasets: DocVQA
(Mathew et al., 2021), OCR-VQA (Mishra et al.,
2019), ST-VQA (Biten et al., 2019), and TextVQA
(Singh et al., 2019), using accuracy and latency
as the metric. For accuracy, we follow the stan-
dard protocol to report the metrics on each dataset,
i.e., Average Normalized Levenshtein Similarity
(ANLS) (Biten et al., 2019; Mathew et al., 2021)
for DocVQA and ST-VQA, and accuracy of exact
text match between groundtruth and prediction for

OCR-VQA and TextVQA. For latency, we report
both the total inference latency and the decoder-
only latency, as our approach only affects the de-
coder inference. The latency is measured w.r.t. wall-
clock time on the same machine which has 1 Nvidia
A100 GPU with 40GB memory. All approaches
are implemented in Pytorch (Paszke et al., 2017)
with Huggingface (Wolf et al., 2019). To measure
the most accurate per sample latency, we use batch
size 1 in inference to avoid unnecessary padding.
See Section A.3 for more details.

Baselines We compare DEED to the original
model, the SOTA approach CALM (Schuster et al.,
2022), and two strong baselines SLEX and FTEX
we proposed and built:

• Original: the vanilla LaTr++ model, on which
no early-exit or deep-supervision is applied.

• CALM (Schuster et al., 2022): CALM is the
state-of-the-art decoder speed-up algorithm.
At the step when the model exits at a deeper
layer, it simply copies the features of the shal-
low layer from previous steps to all deeper
layers.
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VQA RefCOCO
test-dev↑ test-std↑ Dec. Lat.↓ Tot. Lat.↓ val ↑ testA ↑ testB ↑ Dec. Lat.↓ Tot. Lat.↓

OFA 79.3 79.4 753.5 811.3 90.6 92.5 85.9 132.8 187.1
DEED 79.0 79.1 480.7 538.5 90.2 92.4 85.1 79.5 133.8

RefCOCO+ RefCOCOg
val ↑ testA ↑ testB ↑ Dec. Lat.↓ Tot. Lat.↓ val-u ↑ test-u ↑ Dec. Lat.↓ Tot. Lat.↓

OFA 85.7 89.9 78.6 142.7 197.9 87.2 87.6 132.5 187.6
DEED 85.3 89.6 77.9 61.6 117.9 87.0 87.4 83.0 138.1

Table 3: Accuracy and latency (in ms) of OFA and DEED on various multi-modal tasks using the large size model.

• Sequence-level early exit (SLEX): the de-
coder always exits at layer m at each decod-
ing step. m is chosen by the accumulated
confidence score of the entire sequence. More
precisely, for each decoder layer, SLEX needs
to infer all decoding steps to get the accu-
mulated confidence score, which makes this
baseline unpractical. This baseline is similar
to ReasoNet (Shen et al., 2017) for machine
comprehension.

• First-token early exit (FTEX): the decoder
always exit at layer m at each decoding step.
Unlike SLEX, m is chosen based on the con-
fidence score of the first token, which makes
FTEX more practical than SLEX because
FTEX only needs to infer the first decoding
step to make the decision.

Note that in our experiments, SLEX, FTEX, and
CALM use the same multi-exit model trained for
DEED for fair comparisons, which improves the
accuracy of the shallow layers.
Implementation Details We evaluate our approach
DEED on both base (-b) and large (-L) variations
of LaTr++. The base version has 12 encoder and
12 decoder layers, and the large version has 24
encoder and 24 decoder layers. We follow LaTr
(Biten et al., 2022) to do pre-training first and
fine-tuning later. We add deep supervision loss
in Eq. (2) in both pre-training and fine-tuning. The
confidence score threshold τ is selected using cross-
validation, specifically, 0.99 on DocVQA and 0.95
for other datasets. See Section A.4 for more details.

4.1.2 Results
Table 1 and Table 2 show the comparisons of accu-
racy and latency among DEED and baselines.

Our approach shows excellent performance com-
pared to the original model. It consistently reduces
the inference latency for both base and large vari-
ations, while maintaining the evaluation accuracy
on all benchmark datasets. The latency reduc-

tion on decoder is between 40% and 73% across
all model and dataset combinations. Specifically,
on DocVQA, DEED reduces the decoder latency
on the larger variation from 181.5ms to 49.2ms,
achieving a large 72.9% reduction, while its ANLS
is 0.3 higher than the original LaTr++. DEED also
always outperforms other baseline approaches with
clear margins. CALM (Schuster et al., 2022) re-
duces the decoder latency slightly, but it suffers
from major accuracy degradation, due to the se-
mantic misalignment introduced by the copy mech-
anism. SLEX can maintain high accuracy as it
makes the decision based on the entire sequence,
but its latency improvement is minor compared to
DEED . FTEX can reach significant inference ac-
celeration as it can decide to use a shallow layer
after the first decoding step. However, it often sac-
rifices more accuracy because the layer with the
maximum first token confidence might not have the
best generation for the entire sequence. In contrast,
our approach makes exit decisions at each layer and
each step, and recomputes the deeper features when
necessary, which helps it achieve the best accuracy
and latency comparing to all other approaches.

Notice that there is usually more the latency re-
duction on the large model, because the large model
has more decoder layers and early exit still happens
at very shallow layers instead of going deeper. In
addition, our approach can improve the accuracy
of the vanilla LaTr++ in most cases, because our
multi-exit model with deep supervision pre-training
significantly improves the accuracy for shallow lay-
ers (see Section 4.4), and DEED often chooses the
layer with the best generative ability based on the
confidence scores. In fact, shallow layers can have
better predictions than deeper layers on certain ex-
amples. If we can choose which layer to make
the prediction according to groundtruth, the base
model can obtain ANLS 85.0 on DocVQA.
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SQuAD CNN/DailyMail SamSum
F1↑ Dec. Lat.↓ Tot. Lat.↓ Rouge-L↑ Dec. Lat.↓ Tot. Lat.↓ Rouge-L↑ Dec. Lat.↓ Tot. Lat.↓

T5 92.1 186.8 221.9 41.1 1879.6 1975.7 49.1 694.7 755.6
CALM 90.0 24.4 59.2 20.9 1346.0 1446.1 27.1 556.8 616.8
DEED 91.6 22.5 57.6 40.7 1183.3 1283.3 47.6 544.8 605.0

Table 4: Accuracy and latency (in ms) on language tasks using the large size T5 model.

(a) Ablation on model architecture. (b) Ablation on training objective. (c) Ablation on pre-training.

Figure 4: Ablation studies on the techniques for building and training the multi-exit model. The figure plots
the ANLS when exiting at the specific decoder layer. SH: share generation head, AM: adaptation module, AT:
alternating training, FL: Additional final layer loss, P: Pre-training with deep supervision, Baseline: the baseline
model with unshared generation heads and without the adaptation module.

4.2 DEED on OFA

OFA (Wang et al., 2022) is an encoder-decoder
model that unifies multiple modalities and multiple
VL tasks with a single paradigm. The encoder and
decoder are chosen based on the task.

Experimental Setup Following (Wang et al.,
2022), we evaluate DEED with OFA on vari-
ous multi-modal downstream tasks, specifically,
VQAv2 (Goyal et al., 2017) for VQA, and Ref-
COCO/RefCOCO+/RefCOCOg (Yu et al., 2016;
Mao et al., 2016) for referring expression compre-
hension. We also report the accuracy, the total
inference latency, and the decoder-only latency and
compare DEED to the baseline model, as described
in Section 4.1. For each dataset, the latency is av-
eraged on samples from all splits. Here we only
compare to the original OFA model. We use the
original pre-trained OFA model and the same fine-
tuning procedure as in (Wang et al., 2022) to repro-
duce the OFA results and train DEED. We do not
pre-train the model with deep supervision due to
its overwhelming computational costs. We use the
large size OFA model and the threshold τ is chosen
via cross-validation, i.e., 0.96 for VQA and 0.1 for
RefCOCO/RefCOCO+/RefCOCOg.

Results The accuracy and latency of the origi-
nal OFA and DEED are shown in Table 3. The
results of OFA are reproduced using the official

code, which are very close to the reported num-
bers. Again DEED consistently reduces the de-
coder inference latency with marginal accuracy
drops. Specifically, it achieves an average 36.2%
and 44% decoder latency reduction on the VQA
task and the referring expression comprehension
task respectively. In addition, even without deep-
supervision pre-training, DEED obtains compara-
ble accuracy compared to the original OFA. The
accuracy of DEED should be boosted if we do deep-
supervision pre-training for OFA as well. These
results demonstrate that our approach can be gen-
eralized to different encoder-decoder transformer
models and various VL tasks.

4.3 DEED on T5

Experimental Setup Following (Bae et al., 2023),
we evaluate DEED with the large size T5 model
on various language tasks, specifically, SQuAD
(Rajpurkar et al., 2016) for text question answering,
CNN/DailyMail (See et al., 2017) and SamSum
(Gliwa et al., 2019) for text summarization. We
report the accuracy, the total inference latency, and
the decoder-only latency and compare DEED to
the baseline model and CALM (Schuster et al.,
2022). For each dataset, the latency is averaged
on samples from all splits. We pre-train T5 with
deep supervision on 5M tokens from C4 (Raffel
et al., 2020) first and follow the same fine-tuning
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procedure as in (Bae et al., 2023) to reproduce the
T5 results and train DEED.
Results The accuracy and latency of the original
T5, CALM (Schuster et al., 2022), and DEED are
shown in Table 4. Similar to vision-language ex-
periments, DEED reduces the decoder inference
latency with comparable accuracy compared to the
original T5 large model without early exit. Specifi-
cally, DEED achieves 74% overall latency reduc-
tion on the text question answering dataset SQuAD.
These results confirm that our DEED approach can
be generalized to other encoder-decoder models
and more than vision-language tasks.

4.4 Ablation Study
We study the contribution of each component
in DEED. All ablation studies are conducted on
DocVQA with LaTr++ base variation. Also see
Section B for more ablation studies on the con-
fidence score threshold, the distribution of tokens
exiting at each layer, and the number of parameters.
Model Architecture We inspect the effect of
shared generation head (SH) and the adaptation
module (AM) for multi-exit model. We compare
the models of using SH only, using AM only, and
using both (SH + AM), to the baseline trained with
unshared generation heads without the adaptation
module. We use Lavg in Eq. 1 for training and we
do not do deep-supervision pre-training. Figure 4a
shows results of different approaches. By using
both the shared generation head and the adaptation
module, the model achieves consistently better ac-
curacy than the baseline, except for the 9-th layer.
Notice that the improvement on the first layer is the
greatest (>1%), which hugely contributes to the
overall latency reduction as more examples can exit
at layer 1 without sacrificing the accuracy. How-
ever, without the adaptation module, the shared
generation head has inferior performance due to
the mis-alignment between the generation head and
the intermediate features for generation.
Training Objective In Figure 4b, we visualize the
ANLS of models trained with the vallina deep su-
pervision Lavg in Eq. 1, alternating training (AT)
(Xin et al., 2021), and the additional final layer loss
(FL) LN in Eq. 2. We can see both AT and FL
can improve the accuracy of the deep (> 8) lay-
ers, which helps DEED achieve the same or even
better accuracy compared to the original model.
FL gives better accuracy for most layers than AT,
which confirms the effectiveness of our proposed
training objective.

Pre-training In our experiments, we found that pre-
training the model with deep supervision can signif-
icantly improve the accuracy of the shallow layers,
as shown in Figure 4c. The magenta curve is the
model pre-trained with the deep supervision while
the brown curve is the one without. Pre-training
with deep supervision increases the accuracy of
the first layer by 3%. It also consistently increases
the ANLS between layer 2 and layer 8. We argue
that deep supervision during the pre-training stage
helps the model learn strong generative ability in
the shallow layers.

5 Conclusions

We propose DEED, a multi-exit model with
step-level dynamic early exit on decoder for
encoder-decoder transformer model acceleration.
DEED leverages confidence-based step-level dy-
namic early exit to reduce the computation at each
decoding step. To improve the accuracy when
exiting at shallow layers, we build a multi-exit
model leveraging multiple techniques including
deep supervision, shared generation head, adap-
tation modules, and emphasizing the learning of
the final decoder layer. We apply our approach to
three state-of-the-art encoder-decoder transformer
models. Results on various vision-language and
language tasks show that our approach significantly
reduces the inference latency with comparable or
even higher accuracy compared to baselines. In
the future, we will explore DEED for decoder-only
models.
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This is the appendix for the main DEED paper.
Here we discuss the architecture and results of
LaTr++, and the results of our reproduced OFA
vs. the original OFA results.
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Figure 5: The architecture of LaTr++ for text-VQA.

A LaTr++

LaTr (Biten et al., 2022) obtains the state-of-the-
art results on the text-based visual question an-
swering (text-VQA) task. LaTr uses multi-modal
encoder-decoder transformer models which takes
OCR text, layout, and visual features as inputs. We
improve LaTr by replacing the ViT-based vision
backbone (Dosovitskiy et al., 2020) with simple
multi-layer perceptrons and adding more unsuper-
vised pre-training tasks, following DocFormerv2
(Appalaraju et al., 2024). We refer to the improved
LaTr as LaTr++. See Figure 5 for the architecture
of LaTr++ and more details below.

A.1 Architecture
In LaTr++, given an input image, we resize the
image to size 500x384 and split the image into 196
patches with patch size 32x32. Instead of using
ViT (Dosovitskiy et al., 2020), we simply use a
linear projection layer to generate 196 visual to-
ken embeddings for each patch. We further use
one more linear layer with the intention of com-
pressing the extracted 196 visual tokens to only
128 visual tokens. These visual tokens are then
concatenated with word embeddings, from here the
architecture is identical to LaTr (Biten et al., 2022)
and T5 (Raffel et al., 2020). Arguably our LaTr++
architecture is much more simpler than LaTr (Biten
et al., 2022) as we do not have a pre-trained ViT as
a dependency, hence our model has less number of
parameters for equal model size compared to LaTr
(Biten et al., 2022).

A.2 Pre-training
We use the IDL dataset1 described in the main
paper to pre-train the LaTr++ models. We use

1https://www.industrydocuments.ucsf.edu/
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ST-VQA (ANLS) ↑ TextVQA (Accuracy) ↑ OCR-VQA (Accuracy) ↑
LaTrbase 68.3 59.5 67.5
LaTr++base 69.7 61.1 68.4

LaTrlarge 70.2 61.1 -
LaTr++large 70.3 63.1 70.1

Table 5: Accuracy comparison between LaTr++ and LaTr on ST-VQA, TextVQA, and OCR-VQA validation sets.
The best results are in bold face.

VQA RefCOCO RefCOCO+ RefCOCOg
test-dev↑ test-std↑ val ↑ testA ↑ testB ↑ val ↑ testA ↑ testB ↑ val-u ↑ test-u ↑

OFA (original) 79.4 79.5 90.1 92.9 85.3 85.8 89.9 79.2 85.9 86.6
OFA (reproduced) 79.3 79.4 90.6 92.5 85.9 85.7 89.9 78.6 87.2 87.6

Table 6: Accuracy comparisons between the original OFA and our reproduced OFA.

the standard T5 denoising pre-training task (Raffel
et al., 2020) as in the original LaTr paper (Biten
et al., 2022). In addition, to make the LaTr++ a
more competitive baseline we add two more unsu-
pervised pre-training tasks at the encoder: a) Line
prediction task - in order to teach the model the
relative position semantic information between text
tokens, we randomly pick two text tokens and ask
the model to predict how many lines are between
them. There are only three labels: 0, 1 and 2. Any
text token pairs that have more than 2 lines between
them are assigned to 2 because distant text tokens
are not related and the model does not need the
precise number of lines between them. b) Token-
to-grid task - To utilize global information the task
involves creating a virtual 3x3 grid and asking the
network to predict which grid each text token falls
in. Losses of all three tasks, i.e., standard denois-
ing, line prediction, and token-to-grid, are added to
form the final pre-training loss for LaTr++.

A.3 Settings

We evaluate on four text-VQA datasets: DocVQA
(Mathew et al., 2021), OCR-VQA (Mishra et al.,
2019), ST-VQA (Biten et al., 2019), and TextVQA
(Singh et al., 2019). DocVQA is a VQA dataset
dedicated to document text understanding, and
OCR-VQA focuses on question-answering on book
covers. ST-VQA and TextVQA contain natural
images of everyday scenes with textual informa-
tion and require the understanding of the text in
the image to answer the question. Following
(Biten et al., 2022), we use Amazon Textract2 for

2https://aws.amazon.com/textract/

DocVQA, Amazon Text-in-Image3 for ST-VQA
and TextVQA, and Rosetta (Borisyuk et al., 2018)
for OCR-VQA, to extract text information from
images.

A.4 Implementation Details

We pre-train our models on the Industrial Docu-
ment Library (IDL) dataset4, using the tasks de-
scribed in Section A.2. We add deep-supervision
loss of the T5 denoising task on all decoder layers
for DEED, because we found it considerably im-
proves the generative ability of shallow layers, as
discussed in our main paper. We pre-train the base
version with deep supervision on 5M IDL data for
30 epochs. For the large variation, to reduce the
computational costs while achieving competitive
performance, we firstly pre-train the model on 64M
IDL data for 1.5 epochs without deep supervision,
and then pre-train it on 64M IDL data with deep
supervision using batch size 18 for 60k steps. The
models are then fine-tuned on each dataset follow-
ing the same settings as in (Powalski et al., 2021;
Biten et al., 2022). We follow the convention of
fine-tuning on the combination of ST-VQA and
TextVQA training sets when evaluating on these
two datasets (Biten et al., 2022). Label smoothing
is used to calibrate the confidence scores (Müller
et al., 2019). The confidence score threshold τ is
selected using cross-validation, specifically, 0.99
on DocVQA and 0.95 for other three datasets.

3https://docs.aws.amazon.com/rekognition/
latest/dg/text-detecting-text-procedure.html

4https://www.industrydocuments.ucsf.edu/
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Figure 6: ANLS against decoder latency for DEED and
the original model on the DocVQA validation set.
DEED are obtained by tuning the confidence thresh-
old τ . The original model is trained with different
numbers of decoder layers.

A.5 Results

Here we compare LaTr++ to LaTr on three text-
VQA datasets: ST-VQA (Biten et al., 2019),
TextVQA (Singh et al., 2019), and OCR-VQA
(Mishra et al., 2019). For ST-VQA and TextVQA,
we train LaTr++ on the combination of ST-VQA
and TextVQA training sets, following LaTr (Biten
et al., 2022). For OCR-VQA, we train LaTr++ on
the OCR-VQA training set only. All results are re-
ported on the validation sets of these three datasets.
As we can see in Table 5, LaTr++ obtains better
results than state-of-the-art approach LaTr on the
text-VQA task.

B More Ablation Studies

B.1 The Influence of the Confidence Score
Threshold

DEED can realize different trade-offs between the
accuracy and latency by tuning the confidence
score threshold τ , to fit in different use cases with-
out retraining the model. In Figure 6, we visual-
ize the decoder latency and ANLS of DEED w.r.t.
different thresholds ([0.5, 0.99]). We compare
DEED to the original LaTr++ trained with 2, 4,
8, and 12 decoder layers. When using the thresh-
old 0.99, our approach reaches the highest ANLS
score of 81.9, which exceeds the vanilla 12-layer
LaTr++, while achieving 2.26X decoder speed-up.
At the other end of the spectrum, DEED can reduce
the decoder latency to 25.9ms (4.03X speed-up vs.
12-layer LaTr++) with ANLS score of 81.2. In
contrast, to reduce the latency to 26ms, the original
model can only use 2 decoder layers, resulting in a
significant 3.2 ANLS drop compared to DEED.

Figure 7: Histogram of layer at which our model exits
when evaluated on the validation set of different VQA
datasets.

# Parameters
Baseline Ours Previous

LaTr++ (-b) 232M 239M 503M
LaTr++ (-L) 750M 774M 1507M

Table 7: # parameters of the baseline model (Baseline),
our approach (Ours), and previous approaches (Previ-
ous).

B.2 The Distribution of Tokens Exiting at
Each Layer

We visualize the distribution of tokens exit at each
layer on four text-VQA datasets in Figure 7. The
majority of the tokens exit at the first layer, then
the last layer. Only a small amount of tokens exit
at middle layers. This shows that the model ex-
its at shallow layers for easy predictions, which
aligns with our observation that most samples do
not need all decoder layers during inference. In ad-
dition, from Figure 4 in the main paper, the second
most samples are hard samples that can be correctly
predicted by the final decoder layer or even the fi-
nal decoder layer fails, so the second peak of the
histogram appears at the final decoder layer (i.e.,
decoder layer 12).

B.3 Analyses on the Number of Parameters

Compared to the previous multi-exit models, one
advantage of our multi-exit model is fewer number
of parameters. For LaTr++, the base version (-b)
has 232M parameters with hidden size (dmodel)
768, 12 encoder layers, and 12 decoder layers.
The large version (-L) has 750M parameters with
dmodel 1024, 24 encoder layers, and 24 decoder
layers. Each adaptation module consists of a lin-
ear layer (dmodel × dmodel parameters) followed
by layer normalization (dmodel parameters). There-
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questionID documentID Question Baseline DEED

2193 gsxk0226_3 what is the name of the firm
mentioned at the top in bold let-
ters?

merrill lynch pierce fen-
ner & smith inc.

merrill lyner fenner fen-
ner & smith

6010 fllg0224_1 name the materials for which
this procedure note is given

g14-9a and g19-33a g14tho

7590 flxn0020_1 what is the "street adress(no po
box)" ?

409 n. main st. 409 lake plaza dr. main
st.

22076 fnnp0227_6 who is the applicant? gerard jean dubois gerard jean jean jean
jean jean jean - b

42105 fkxn0226_9 what is the name of the con-
sulting agency given below the
logo?

"accumyn" "accaccyn"

45675 glxn0226_4 which mechanism is used to lift
the insert out of the shell?

suction cup mechanism suction cup

50469 fgfl0228_4 what type of plant is scgp 1? demonstration plant demonstration
51502 gjhp0000_1 what is the objective given in the

document?
announce and explain
forsyth’s labor day 1998
wholesale promotion.

announce and explain
fors labor day exten-
sion.

52622 fglc0003_1 what is the full form for ncciu? north carolina center
for international under-
standing

north carolina center for
international

55281 fsgj0223_63 what is written on the top left
corner of the page?

"gtc" "gtl"

55304 glvj0223_10 what is subheading a? related party with whom
transaction have taken
place during the year

related party of persons
persons persons persons
persons during the year

58295 fyvw0217_3 what is the text on the top right
corner of the page?

achieving clarity, renew-
ing confidence

achieving clarity, re-
newal of confidence

58312 fqvw0217_39 what is the adverse effects of us-
ing megestrol acetate?

menstrual bleeding in
women after discontin-
uation

menstrual bleeding in
women after completion

59990 ggbm0227_2 what is the short form for es-
quire?

"esq." "esquin"

63045 fhjc0228_2 what is the name of the bank ad-
vertised?

first american national
bank

first american

Table 8: Error cases of DEED vs. baseline (LaTr++) with base model size on DocVQA. The baseline outputs are
the identical to the ground truth for these examples.

fore, each adaption module only has 0.6M parame-
ters (-b) and 1.05M parameters (-L). The adaption
modules from all layers only increase ∼3% of the
full model parameters. In contrast, a generation
head has 24.7M parameters (-b) and 32.9M pa-
rameters (-L) due to the output dimension (32128).
Using unshared generation heads increases the total
number of parameters by >100%. So our adapta-
tion module has much fewer parameters than un-
shared generation heads in previous approaches.
See Table 7 for more details.

C OFA Results

We use the original pre-trained OFA model and
the same fine-tuning procedure as in (Wang et al.,
2022) to reproduce the OFA results and train
DEED, using the official code5. The only excep-
tion is RefCOCOg - we fine-tune our model on

5https://github.com/OFA-Sys/OFA

top of the RefCOCO fine-tuned model, because
RefCOCOg has fewer training samples than Ref-
COCO and RefCOCO+, which makes the accuracy
on RefCOCOg inferior if we fine-tune our model
on RefCOCOg directly. Here we compare our re-
produced OFA results and the original OFA results
on VQAv2 (Goyal et al., 2017) for VQA and Re-
fCOCO/RefCOCO+/RefCOCOg (Yu et al., 2016;
Mao et al., 2016) for referring expression compre-
hension. As we can see, our reproduced results are
close to the reported numbers.

D Qualitative Results

We provide some qualitative results of DEED on
DocVQA to help understand the behavior of our
method and its impact on the accuracy. Specifically,
we list the error cases of DEED where the predic-
tions of the baseline model are correct. The outputs
from DEED and the baseline model are tabulated
in Tab. 8. From the error cases, we observed a few
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patterns of the errors from DEED :

1. Missing words at the end of the prediction
(e.g., 2193, 45675, 63045, etc.).

2. Making errors on rare words like names
(e.g., 51502: "forsyth" → "fors", 42105:
"accumyn"→ "accaccyn", etc.).

3. Repeating the same word (e.g., 22076:
gerard jean → gerard jean jean ...,
etc.).
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