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Abstract

Large Language Models (LLMs) have exhib-
ited remarkable proficiency across a wide ar-
ray of NLP tasks. However, the escalation in
model size also engenders substantial deploy-
ment costs. While few efforts have explored
model pruning techniques to reduce the size
of LLMs, they mainly center on general or
task-specific weights. This leads to suboptimal
performance due to lacking specificity on the
target domain or generality on different tasks
when applied to domain-specific challenges.
This work introduces an innovative unstruc-
tured dual-pruning methodology, D-PRUNER,
for domain-specific compression on LLM. It ex-
tracts a compressed, domain-specific, and task-
agnostic LLM by identifying LLM weights
that are pivotal for general capabilities, like lin-
guistic capability and multi-task solving, and
domain-specific knowledge. More specifically,
we first assess general weight importance by
quantifying the error incurred upon their re-
moval with the help of an open-domain cali-
bration dataset. Then, we utilize this general
weight importance to refine the training loss,
so that it preserves generality when fitting into
a specific domain. Moreover, by efficiently
approximating weight importance with the re-
fined training loss on a domain-specific cali-
bration dataset, we obtain a pruned model em-
phasizing generality and specificity. Our com-
prehensive experiments across various tasks
in healthcare and legal domains show the ef-
fectiveness of D-PRUNER in domain-specific
compression. Our code is available at https:
//github.com/psunlpgroup/D-Pruner.

1 Introduction

Large Language Models (LLMs) such as the GPT
family (Brown et al., 2020) and the LLaMA family
(Touvron et al., 2023) have exhibited remarkable
advancements across a diverse spectrum of NLP

†Work done as a Research Intern at NEC Labs America.

tasks. However, the substantial size of LLMs en-
genders cost-intensive deployment in real-world
applications and renders them unsuitable for sce-
narios necessitating efficient inference and low la-
tency (Bai et al., 2024). Recently, model pruning
techniques have been successfully applied to lan-
guage models (Han et al., 2015; Xia et al., 2022;
Frantar and Alistarh, 2023). These methods aim
to yield a compact language model characterized
by a significantly reduced parameter count, which
is cost-efficient for deployment. However, most of
them target relatively small language models, and
only a few focus on LLMs (Frantar and Alistarh,
2023; Ma et al., 2023; Sun et al., 2023; Xia et al.,
2023). Moreover, the existing strategies mainly
center on general or task-specific weights, leading
to suboptimal performance due to lacking speci-
ficity on the target domain or generality on different
tasks when applied to domain-specific challenges.
Here generality refers to the general capabilities
of an LLM such as language understanding and
generation, and multi-task solving, and specificity
refers to the capability of an LLM to understand
domain-specific knowledge.

As shown in Figure 1, the weights in an LLM
work together to support its general capabilities
and to store various domain knowledge. The
domain-shared weights (or general weights) em-
power the LLM with linguistic and multi-task solv-
ing prowess akin to human language usage and
thinking. The domain-specific weights (or do-
main weights) are pivotal for endowing the LLM
with domain-specific expertise mirroring that of do-
main experts. However, the current pruning meth-
ods mainly focus on preserving general or task-
specific weights, which may not be enough to deal
with domain-specific problems. For example, post-
training pruning methods (Frantar and Alistarh,
2023) assume the model is optimized and prune
unimportant weights based on an open-domain cal-
ibration dataset. This leads to a pruned model that
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Figure 1: Different types of pruning methods. An LLM
is composed of domain-shared weights and domain-
specific weights. Post-training pruning focuses on
domain-shared weights for generality, pruning with fine-
tuning focuses on domain-specific weights for speci-
ficity, and our dual-pruning method preserves weights
pivotal for both generality and specificity.

focuses on model generality with domain-specific
weights not considered. On the other hand, pruning
with fine-tuning methods (Ma et al., 2023) utilizes
gradients during fine-tuning on a specific task to
estimate the importance of parameters. As a result,
the pruned model focuses on the model specificity
while decreasing the linguistic and multi-task solv-
ing capabilities, compromising the LLM’s capacity
as a versatile task-agnostic solver.

To this end, this study introduces a novel dual-
pruning approach, D-PRUNER, for domain-specific
unstructured pruning on LLMs, which aims to ex-
tract a domain-specific LLM from the foundation
LLM. This extracted model is able to solve dif-
ferent tasks in the target domain and facilitates
further domain-specific fine-tuning. D-PRUNER

is designed to harness calibration data for guiding
LLM pruning processes while preserving general-
ity and specificity for multi-task solving and do-
main challenges. The resulting compressed LLM
can be seamlessly adapted to the target domain,
enabling deployment with limited computing re-
sources. Specifically, D-PRUNER adeptly captures
and retains both general and domain parameters
while selectively eliminating insignificant model
parameters. This mechanism comprises the fol-
lowing steps: firstly, a general weight importance
module operates to assess the significance of model
parameters for general capabilities. Subsequently,
we propose an updated training loss function based
on the autoregressive training objective for the next
token prediction by integrating the general impor-
tance as a regularization term. This way, we iden-

tify weights contributing to both generality and
domain specificity when training on a domain cali-
bration dataset. Then, with the updated loss func-
tion, we compute the weight importance leverag-
ing gradients without updating the model. More-
over, an approximation algorithm, empirical Fisher
(Martens, 2020; Sung et al., 2021), is utilized to
compute the weight importance efficiently for prun-
ing.

We evaluate the performance of D-PRUNER

on LLaMA2 (Touvron et al., 2023), a widely
adopted open-source LLM. Our experimental find-
ings demonstrate that D-PRUNER exhibits remark-
able efficiency in the extraction of sparse domain
networks from pre-trained LLMs, with a limited
amount of calibration data provided. Remarkably,
D-PRUNER achieves comparable results to the full
dense model while achieving 50% sparsity, surpass-
ing the performance of alternative pruning tech-
niques across diverse domain-specific datasets in
healthcare and legal domains encompassing lan-
guage comprehension, question answering, and
summarization tasks.

2 Related Work

Model compression involves transforming a large,
resource-intensive model into a compact version
suitable for low-resource deployment (Deng et al.,
2020; Zhu et al., 2023). There are mainly three
techniques for model compression, which are prun-
ing, knowledge distillation, and quantization.

Pruning. Pruning techniques in neural networks
can be broadly classified into structured pruning
and unstructured pruning (Xia et al., 2022; Sanh
et al., 2020; Du et al., 2021). Structured pruning
entails the removal of entire network components,
such as channels or layers, guided by specific cri-
teria, while maintaining the overall network archi-
tecture. In contrast, unstructured pruning targets
individual weights, leading to an irregular sparse
structure.

While numerous attempts have been made to
prune language models of relatively small scales,
such as BERT (Kenton and Toutanova, 2019), scant
attention has been devoted to pruning LLMs con-
taining billions of parameters. These larger mod-
els possess 100-1000 times more weights, render-
ing the pruning task significantly more challeng-
ing. SparseGPT (Frantar and Alistarh, 2023), a
post-training method for Large Language Mod-
els (LLMs), lacks the capability to identify crucial
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weights tailored to specific domains or tasks as it
refrains from fine-tuning. On the other hand, LLM-
Pruner (Ma et al., 2023) employs gradient-based
techniques for pruning. However, it falls short in
identifying pivotal weights essential for domain-
shared knowledge, resulting in pruned models that
lack the desired level of generality.

The existing pruning methods either focus on
general or domain-specific weights, yet none of
them consider preserving both at the same time.
To the best of our knowledge, we are the first to
work on pruning LLMs while preserving weights
important to both generality and specificity.

Knowledge Distillation. Knowledge Distillation
(KD) has emerged as a powerful technique, draw-
ing considerable interest for its ability to augment
model performance and enhance generalization ca-
pacities (Hinton et al., 2015; Zhu et al., 2023). At
its core, KD revolves around the transfer of ex-
pertise from a complex model, referred to as the
“teacher model”, to a simplified counterpart known
as the “student model”. This intricate process of
knowledge transfer aims to distill the profound
insights encapsulated within the teacher models,
condensing them into a more concise and efficient
representation within the student models.

While KD has been proven a powerful tool for
model compression, it needs specific downstream
tasks and a large amount of data for the student
models to learn from the teacher models. Thus, the
output that student models produce mainly focuses
on a specific task and loses the generality capabil-
ity. KD generally sets higher requirements on data
availability and computation budgets (e.g., GPU
memory) than pruning.

Quantization. In the realm of model compres-
sion, quantization has emerged as a widely em-
braced technique to alleviate the storage and com-
putational challenges inherent in deep learning
models (Guo et al., 2020; Dettmers et al., 2021,
2022, 2023). Conventional model representations
rely on floating-point numbers, but quantization
converts them into integers or discrete forms. This
transformation leads to substantial reductions in
storage requirements and computational complex-
ities. While a certain degree of precision loss is
inevitable, carefully designed quantization meth-
ods can achieve significant model compression
with minimal accuracy degradation. Although chal-
lenges remain, such as maintaining model inter-
pretability and addressing task-specific intricacies,

the current body of research establishes a robust
groundwork for ongoing advancements in LLM
quantization, which could be complementary to
LLM pruning.

3 Methodology

To preserve both generality and specificity on
the pruned model, our dual-pruning method D-
PRUNER considers weights important to both gen-
erality and specificity during training on a calibra-
tion dataset. Note we only use the weight gradient
generated from the training process but do not up-
date the model weights. Our model is pruned in
a task-agnostic fashion (e.g., we adopted a pre-
training objective, next token prediction, as a part
of training loss) so that the pruned model can solve
different tasks in the target domain.

D-PRUNER comprises the following steps:
firstly, a general weight locating module operates to
assess the significance of model parameters for gen-
eral understanding (Section 3.1). Subsequently, an
updated loss function for the training process is pro-
posed by integrating the general weight importance
as a regularization term. This way, we identify
weights contributing to both general and domain
knowledge (Section 3.2). Finally, with the updated
loss function, we compute the weight gradients on
a small domain calibration dataset without updat-
ing the model and approximate our dual-pruning
weight importance by utilizing the empirical Fisher
index (Sung et al., 2021) for pruning (Section 3.3).

Our method concentrates on unstructured prun-
ing in a layer-by-layer manner for the Transformers
model. We consider query, key, value, and output
projections of all self-attention layers and gate (Liu
et al., 2021), down, and up projections of all MLP
(multilayer perceptron) layers for pruning.

3.1 General Weight Importance

The first step of our method involves locating im-
portant weights in terms of general knowledge. Fol-
lowing the same hypothesis as Frantar and Alistarh
(2023), we assume that an important weight will
cause a larger increase in loss value than those
less important ones if it is pruned (set to 0) during
training. Formally, if a dataset of the open-domain
calibration Dg = {xj , yj}Nj=1 with size N is used
for training and W stands for weight matrices of a
model, the importance of each weight at index m,
denoted as IWm , can be approximated using Taylor
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series as shown by LeCun et al. (1989):

IWm = |L(Dg)− LWm=0(Dg)|

= |∂L(Dg)

∂Wm
Wm +

1

2
WmHmmWm

+O(||Wm||3)|

(1)

where H denotes the Hessian matrix, and L is the
cross-entropy loss. For a model that is sufficiently
trained to a local minimum on its loss curvature
(e.g., pretrained foundational language models such
as LLaMA), the classic Optimal Brain Surgeon
(Hassibi et al., 1993) further approximates the im-
portance of Wm as:

εm =
1

2

(Wm)2

[H−1]mm
(2)

εm can also be viewed as the error caused by re-
moving the weight Wm. We compute εm for all
the weights subject to pruning and construct a ma-
trix of importance scores G with respect to general
domains that have the same dimension as W .

3.2 Updated Loss with Regularization
To identify the weights that are important in both
general and domain-specific knowledge, we modify
the original loss function of LLM training. In LLM
training, cross-entropy loss is used in the next token
prediction task (Radford et al., 2018). Similar to
Thompson et al. (2019), we add a regularization
term to constrain the change of important general
weights found in the first step. Suppose that there
are M number of prunable weights in total. To
train on a domain-specific calibration dataset Ds =
{xj , yj}Pj=1, we add the proposed regularization
term on top of the next token prediction loss Lnext

to obtain our final training objective:

Lours = Lnext + λ
M∑

m=1

Gm(Wm′ −Wm)2 (3)

where Gm is the general weight importance, Wm′

denotes the updated weight value of Wm, λ is a
hyperparameter, and the second term on the right
is Lregular.

In practice, the direct calculation of this regular-
ization term in the forward pass is computationally
expensive for two reasons: (1) it involves both Wm

and Gm which are very large, and (2) gathering
updated model parameters (Wm′) in a partitioned
(Rasley et al., 2020) or sharded (Zhao et al., 2023)
system is inefficient. Based on the recent success

of applying gradient descent on full fine-tuning of
LLMs (Lv et al., 2023), we choose to use gradient
descent to optimize parameters. Therefore, at a
learning rate α, denoting the gradient of each pa-
rameter with respect to Lnext as gmnext, we reduce
the regularization term to:

Lregular =

M∑

m=1

Gm(Wm′ −Wm)2

= λ

M∑

m=1

Gm(Wm − αgmnext −Wm)2

= λ

M∑

m=1

α2Gm(gmnext)
2

(4)

During the backward pass, optimizing this reg-
ularization term requires second-order derivatives,
which indicates that Hessian matrices (H) are
needed. Directly computing the Hessian matrices
is infeasible for such a large number of parameters.
Therefore, we use the Fisher information matrix
to approximate the diagonal of the Hessian (Sung
et al., 2021). And the Fisher information matrix
can be further approximated by the average of the
squared gradient of the model’s prediction over P .
We write the gradient of the regularization with
respect to every parameter matrix in a finer granu-
larity:

∂Lregular

∂Wm
≈ 2λα2GmgmnextHmm (5)

Hmm ≈ 1

P

P∑

j=1

(gmnext(xj , yj))
2 (6)

We directly compute ∂Lregular
∂W via Equation 5

above instead of relying on PyTorch backward pass
to maximize computing efficiency. The final gradi-
ent computation of our regularized loss function is
shown below:

∂Lours

∂Wm
=

∂Lnext

∂Wm
+

∂Lregular

∂Wm
(7)

3.3 Dual-pruning Importance Score
Finally, we calculate the dual-pruning importance
score of each weight, and unimportant weights can
be pruned according to their importance. We use
Equation 1 for importance estimation instead of
Equation 2, because our model has not converged to
an optimum on the target domain. However, direct
computation of the Hessian matrix in Equation 2 is
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InternalMed_Harrison MedNLI PubMedQA HQS MultiLegalPile CaseHOLD BillSum

Domain Healthcare Healthcare Healthcare Healthcare Legal Legal Legal
Task / Type Generation NLI QA Summarization Generation QA Summarization
# Instances in Test 300 1422 500 100 300 200 200
Metrics Perplexity Accuracy Macro-F1 ROUGE Perplexity Macro-F1 ROUGE

Table 1: Details of each dataset that we use for model evaluation.

infeasible since it involves O(M2) complexity for
each weight update. Therefore, we also leverage
Sung et al. (2021) to approximate the diagonal of
the Hessian, and the final importance score Sm can
be defined as:

Sm ≈ |∂Lours(Ds)

∂Wm
Wm +

1

2
[
∂Lours(Ds)

∂Wm
Wm]2

+O(||Wm||3)|
(8)

Here O(||Wm||3) can be neglected according to
the quadratic approximation (LeCun et al., 1989).
Note the calculation of Sm considers both general
and domain-specific knowledge via our regular-
ized training objective. Combining both regular-
ization and importance estimation via empirical
Fisher approximation, our method expects to con-
duct pruning that maintains weights important to
both general and domain-specific knowledge, thus
preserving generality and specificity. And these
importance scores are used to guide our pruning
decisions. For example, if we set the sparsity level
to be 50%, weights that have the smallest 50% of
importance scores in each layer will be pruned.

4 Experiment Setup

We evaluate D-PRUNER on two knowledge-
intensive domains, which are healthcare and legal.
For model generality under domain-specific chal-
lenges, we evaluate the linguistic capability using
domain text generation, and evaluate the multi-task
solving capability on different domain tasks, i.e.,
natural language inference (NLI), question answer-
ing (QA), and summarization. Since we use do-
main datasets, the model specificity on domains
can also be evaluated. In addition, we fine-tune
the pruned model on domain datasets to further
evaluate the generality and specificity.

We evaluate D-PRUNER on the LLaMA2 model
family, which is the most used open-source LLM.
We mainly apply our pruning method and base-
line methods to LLaMA2-7B and LLaMA2-13B
to show our results. Our method can also be eas-
ily applied to other LLMs with different sizes and

architectures. For instance, Appendix B shows fur-
ther experiment on BLOOM model (Le Scao et al.,
2022).

4.1 Iterative blocking

Motivated by Frantar and Alistarh (2023), we per-
form experiments (in Table 2) on D-PRUNER with
and without iterative blocking. Iterative blocking
means to make pruning decisions for every fixed
number (Bs) of columns within a weight matrix.
In other words, instead of selecting a single prun-
ing mask for an entire weight matrix, a pruning
sub-mask is selected for every Bs columns to reach
overall sparsity level. We set Bs = 128 for weight
matrices with the smallest number of columns and
increase Bs for those with more columns. Except
Table 2, D-PRUNER in other tables does not adopt
iterative blocking.

4.2 Datasets and Evaluations

Datasets. Table 1 shows the details of each dataset
that we used. Specifically, for healthcare, we select
a medical textbook InternalMed_Harrison (Bigby,
1988), MedNLI (Romanov and Shivade, 2018),
PubMedQA (Jin et al., 2019), and Health Ques-
tion Summarization (HQS) from the MEDIQA
2021 shared task 1 (Ben Abacha et al., 2021;
Ben Abacha and Demner-Fushman, 2019) as do-
main datasets. For legal domain, we select MultiLe-
galPile (Niklaus et al., 2023), CaseHOLD (Zheng
et al., 2021), and BillSum (Kornilova and Eidel-
man, 2019). As for open-domain calibration data,
we extract text from C4 dataset (Raffel et al., 2019).

To construct our domain-specific calibration
data, we select training instances from MedNLI,
PubMedQA, and HQS at a ratio of 20%/60%/20%
and from CaseHOLD and BillSum at a ratio of
50%/50%. These ratios are determined based on
the difficulties and training sizes of these bench-
marks. Both NLI and QA tasks that we adopt are
asking models to perform classification. We exper-
iment with different sizes of the domain-specific
calibration dataset and find a size of 1000 achieves
the best trade-off in terms of pruning efficiency and
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effectiveness for both domains. For model eval-
uation, besides using the test instances of those
benchmarks, we leverage InternalMed_Harrison
and MultiLegalPile for perplexity evaluation. 300
paragraphs are selected from each data source to
form the test set of perplexity. Note that we use a
subset of all the test examples of CaseHOLD and
BillSum, since these two benchmarks are signifi-
cantly larger in size and their individual instance
tends to be longer.
Evaluation Metrics. We first evaluate the lin-
guistic capability of pruned models on Inter-
nalMed_Harrison and MultiLegalPile using per-
plexity. We then evaluate the multi-task solving
capability and domain specificity on different do-
main tasks. Specifically, we choose accuracy met-
ric for NLI task (MedNLI), macro-F1 for QA tasks
(PubMedQA and CaseHOLD), and ROUGE scores
(Lin, 2004) for summarization tasks (HQS and Bill-
Sum).

4.3 Baselines
We compare our method with a variety of LLM
pruning baselines. All methods are applied to
the same foundation model (either 7B of 13B of
LLaMA2) for fair comparisons. As an ablation
study, we also evaluate an unstructured pruning
method using weight gradient by removing the reg-
ularization term in the training loss of D-PRUNER.
• Magnitude pruning prunes weights based on

their magnitudes (Han et al., 2015). We follow
the standard practice of magnitude pruning on
language models, where weights are compared
layer-wise. Magnitude pruning is a simple and
robust baseline that has been demonstrated to
outperform many other pruning methods.

• LLM-Pruner is a structured pruning method
using weight gradient to evaluate weight impor-
tance (Ma et al., 2023). A calibration dataset
is used for its gradient calculation, so we com-
bine both open-domain (C4) and domain-specific
calibration data when we use LLM-Pruner.

• SparseGPT is an unstructured post-training
pruning method (Frantar and Alistarh, 2023). It
uses an efficient weight update procedure that
iterates between weight removal and weight up-
date at each layer. It also uses a calibration
dataset for approximation. Thus, similarly to D-
PRUNER and LLM-Pruner, we use open-domain
and domain-specific calibration data for fair com-
parisons.
Moreover, for all the baseline methods, we con-

tinue to fine-tune their pruned models using LoRA
(Hu et al., 2021) on all the datasets together (NLI,
QA, and summarization data combined) in each
domain and then test the fine-tuned model on the
datasets in Table 1. We only use the default open-
domain calibration dataset for the pruned models of
LLM-Pruner and SparseGPT at this step, because
these models will eventually undergo LoRA fine-
tuning. Data instances of our fine-tuning dataset
follow the Alpaca (Taori et al., 2023) template so
that models are trained to predict the responses.
Specifically, for healthcare, we have 7000, 7000,
and 1000 training instances from MedNLI, Pub-
MedQA, and HQS, respectively. For legal domain,
we have 13000 training instances from CaseHOLD
and 2000 from BillSum.

4.4 Implementation Details

We perform prompt engineering in a zero-shot set-
ting before prompting a series of models. The
finalized prompt is kept the same across all candi-
date models on one task to ensure fairness. The
hyperparameters used by different models are in
Appendix C.

5 Results and Analysis

Our results and analysis aim to answer the follow-
ing research questions:
• RQ 1: How does D-PRUNER compare against

other pruning baselines (5.1)?
• RQ 2: What are the performance of all candidate

models after LoRA fine-tuning (5.2)?
• RQ 3: As an important contribution of D-

PRUNER, is dual-pruning an effective method of
compressing LLM (5.1, 5.3, and 5.5)?

• RQ 4: How does D-PRUNER perform under dif-
ferent sparsity levels or different sizes of domain-
specific calibration data (5.4)?

5.1 Overall Results

Our overall results for the two domains are pre-
sented in Table 2. All models are pruned to 50%
sparsity level except the dense one.

Improvement on NLI and QA D-PRUNER de-
livers consistent score improvement on NLI and
QA tasks when it is compared against baselines
based on LLaMA2-7B and LLaMA2-13B. With
two exceptions, variants of D-PRUNER based on
the inclusion and exclusion of iterative blocking
outperform baselines on 4 out of 6 cases when
classification is performed (MedNLI, PubMedQA,
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Model
Healthcare Legal

Perplexity MedNLI PubMedQA R1 R2 RL Perplexity CaseHOLD R1 R2 RL

LLaMA2-7B

Dense 5.49 37.62 23.77 22.51 7.18 19.50 2.26 28.82 32.64 18.32 26.48
Magnitude (Han et al., 2015) 16.08 33.90 28.29 9.60 1.63 8.09 8.64 23.84 7.84 2.21 6.13
LLM-Pruner (Ma et al., 2023) 88.25 33.90 22.34 5.52 0.30 5.45 32.22 13.59 6.76 0.72 5.40
SparseGPT (Frantar and Alistarh, 2023) 6.39 33.47 36.22 22.60 7.68 19.13 2.62 28.41 32.68 18.89 26.19
D-PRUNER (w/ iterative blocking) 7.07 34.53 45.38 24.72 8.87 21.09 2.70 30.56 33.77 18.53 26.25
D-PRUNER (w/o iterative blocking) 6.96 34.81 42.40 25.05 9.65 22.34 2.72 26.14 32.14 18.42 26.14

LLaMA2-13B

Dense 5.20 35.02 40.54 19.26 5.80 16.40 2.12 28.89 35.34 21.19 27.82
Magnitude (Han et al., 2015) 6.59 36.71 45.12 19.60 5.01 16.33 2.81 21.95 29.90 16.94 24.51
LLM-Pruner (Ma et al., 2023) 23.95 34.39 17.37 7.60 1.24 7.00 12.16 13.46 17.21 3.08 12.37
SparseGPT (Frantar and Alistarh, 2023) 5.77 34.39 52.65 22.25 8.35 19.19 2.39 28.62 33.68 19.35 27.60
D-PRUNER (w/ iterative blocking) 6.30 34.88 52.86 20.56 6.95 17.85 2.40 28.30 33.83 20.51 27.56
D-PRUNER (w/o iterative blocking) 6.16 35.16 50.87 23.99 7.78 20.04 2.40 27.27 35.77 21.81 28.42

Table 2: Overall results when candidate models (at 50% sparsity) are tested on two domains. The best scores are
in bold except the ones from the dense models. Note that the ROUGE scores reported in the healthcare domain
correspond to HQS dataset while those in the legal domain correspond to BillSum. Perplexity in healthcare is tested
on InternalMed_Harrison and perplexity in legal is tested on MultiLegalPile.

Model (Fine-tuned with LoRA)
Healthcare Legal

Perplexity MedNLI PubMedQA R1 R2 RL Perplexity CaseHOLD R1 R2 RL

LLaMA2-7B

Dense 5.68 64.84 41.37 33.26 12.60 28.92 2.26 28.82 34.64 20.47 28.33
Magnitude (Han et al., 2015) 8.39 62.59 23.71 32.02 12.25 29.27 7.28 25.89 17.64 8.19 14.52
LLM-Pruner (Ma et al., 2023) 44.56 58.72 26.78 22.21 6.12 20.57 215.13 14.37 7.97 0.78 6.68
SparseGPT (Frantar and Alistarh, 2023) 6.44 68.85 27.37 28.97 11.27 25.93 2.86 27.31 27.79 17.55 23.74
D-PRUNER 6.74 61.88 32.58 36.49 13.71 31.85 2.73 27.58 31.00 19.03 25.96

Table 3: Results of fine-tuned candidates models at 50% sparsity. LoRA fine-tuning is conducted on D-PRUNER
without iterative blocking.

and CaseHOLD on both 7B and 13B LLaMA2)
in Table 2. It is clear to see that magnitude prun-
ing and SparseGPT are generally stronger models
than LLM-Pruner. The dense model sometimes
has worse scores than others across 7B and 13B
LLaMA2, which indicates that scaling parameters
of a pre-trained language model does not neces-
sarily increase the performance on a single bench-
mark on NLI and QA. We can see that iterative
blocking generally yields better scores on these
classification tasks such as reaching 30.56 F1 score
on CaseHOLD based on LLaMA2-7B, which is
a significant improvement over baselines and D-
PRUNER without it. Thus, we recommend to adopt
iterative blocking on the classification tasks when
strong domain knowledge is required.

Improvement on Summarization D-PRUNER

presents the strongest summarization performance.
The most exciting thing is that its ROUGE scores
are mostly higher than the dense ones. We notice
the top summarization performance of LLaMA2-
13B-based models on HQS is lower than that of
LLaMA2-7B-based models, which is counterin-

tuitive. According to the state-of-the-art of HQS
(Zhang et al., 2023; He et al., 2021), we find that
D-PRUNER is close to the best ROUGE scores pro-
duced by single systems, so we consider that this
dataset is relatively simple. Thus, our LLaMA2-
7B-based models seem to find an upper limit of
ROUGE given the existing reference summaries, so
going from 7B to 13B incurs a small performance
degradation on dense model, SparseGPT, and D-
PRUNER. The strong summarization performance
of D-PRUNER on both domains demonstrates its
usability as an efficient and domain-specific lan-
guage model. As for iterative blocking, D-PRUNER

without it generally has better perplexity and sum-
marization performance. However, considering the
exception in the legal domain based on LLaMA2-
7B, we recommend to check perplexity scores on
the validation data when deciding whether to use
iterative blocking for perplexity and summarization
assessment.

Improvement on Perplexity D-PRUNER has
the second best perplexity scores on healthcare
and legal domains across 7B and 13B LLaMA2.
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These scores reflect the strong linguistic capabili-
ties of SparseGPT and D-PRUNER when they en-
counter knowledge-intensive domains. D-PRUNER

does not surpass SparseGPT on perplexity metric,
and the reason might come from the fine-tuning
pipeline (Lv et al., 2023) we use. Lv et al. (2023)
is a full-parameter fine-tuning pipeline that aims
towards GPU memory efficiency, so its effective-
ness on a specific metric might be compromised.
Moreover, we suspect that the data we use from In-
ternalMed_Harrison and MultiLegalPile may be
closer to the general domain both semantically
and syntactically. Since SparseGPT prunes LLM
mainly based on generality, it has better perplexity
scores than ours.

5.2 Performance After Fine-tuning

Table 3 shows the results of fine-tuned candidate
models at 50% sparsity. Similar to the performance
discussed above, D-PRUNER always delivers the
best summarization scores and mostly presents the
best classification results after fine-tuning, which
demonstrates that fine-tuning can further improve
the pruning performance of our method. For most
models, macro-F1 on PubMedQA decreases after
fine-tuning, because this test set is imbalanced and
models mostly learn to predict the majority class
labels. In fact, the accuracies of most models on
PubMedQA increase after fine-tuning as shown in
Appendix A, so this fine-tuning method still makes
a difference. We also do not see too much score im-
provement for many models on CaseHOLD, since
it is a quite challenging task for our experiment
setting (e.g., we combine only a small subset of
original training data for each task and perform
multi-task fine-tuning as discussed in Section 4).

5.3 Ablation Study

In Table 4, we show that pruning without inte-
grating general domain importance as a regulariza-
tion term yields suboptimal performance. In other
words, this means to remove the consideration of
generality. We find perplexities in both domains
are higher than pruning with regularization. This
demonstrates that our dual pruning mechanism that
considers both generality and specificity is able to
improve model performance.

5.4 Effect of Sparsity and Domain Calibration
Data

In Table 5, it is clear that perplexity keeps increas-
ing when D-PRUNER becomes more sparse, which

Model Healthcare perplexity Legal perplexity

no regularization 7.23 2.82
D-PRUNER 6.96 2.72

Table 4: Results of removing the regularization.

Sparsity Healthcare perplexity Legal perplexity

10% 5.49 2.26
20% 5.52 2.27
30% 5.61 2.31
40% 5.91 2.42
50% 6.96 2.72
60% 15.19 4.59
70% 223.63 84.25

Table 5: Results of changing sparsities on D-PRUNER.

# samples Healthcare perplexity Legal perplexity

100 8.18 3.34
500 7.15 2.97
1000 6.96 2.72
1500 7.96 2.70

Table 6: Results of trying different sizes of domain-
specific calibration data.

is expected. Since 50% sparsity is a good balance
between sparsity and performance, we select it to
report our performance in Table 2 and 3.

Based on Table 6, we believe setting the size of
domain-specific calibration data to 1000 is reason-
able. As the last row shows, increasing its size does
not always guarantee a performance improvement.

5.5 Mask Similarity

To better understand the pruned model on different
domains, we compare the similarity of the pruning
masks. In our study on LLaMA2-7B, each gen-
erated mask contains 7*32 matrices for 32 layers
and 7 projection matrices in the self-attention mod-
ule (q, k, v, o) and MLP module (down, up, gate)
in each layer. For each matrix, we calculate the
similarity as the number of shared “1” elements
(“1” means weights not pruned) in the two masks
divided by the matrix size. Note all the masks are
generated in 50% sparsity.

Figure 2 (a) shows the mask similarity between
the open-domain and healthcare domain, and 2 (b)
shows the mask similarity between the healthcare
domain and legal domain. The results show that the
masks are quite different, with shared elements as
low as 35%. Generally, the self-attention modules
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(a) Open-domain vs healthcare domain. (b) Healthcare domain vs legal domain.

Figure 2: Illustration of mask similarity. It shows that masks for different domains are quite different. The
self-attention modules contribute more to specificity, and MLP modules store knowledge that is shared by different
domains.

share fewer elements than the MLP modules. This
means self-attention modules contribute more to
specificity, and MLP modules store knowledge that
is shared by different domains.

6 Conclusion

We introduce D-PRUNER, an innovative unstruc-
tured dual-pruning method for domain-specific
compression on LLM. It is able to extract a com-
pressed, domain-specific, and task-agnostic LLM
by identifying weights that are pivotal for both
generality and specificity. More specifically, the
general weight importance is first assessed by quan-
tifying the error incurred upon their removal with
the help of open-domain calibration data. Then, we
utilize this general weight importance to refine our
training loss, so that it considers generality when
fitting into a specific domain. Moreover, by effi-
ciently approximating weight importance with the
refined training loss on a domain-specific calibra-
tion dataset, we obtain a pruned model emphasiz-
ing general capabilities and domain-specific knowl-
edge. Our comprehensive experiments across vari-
ous tasks in different domains show the effective-
ness of D-PRUNER in domain-specific pruning.

Limitations

Although D-PRUNER presents strong performance
in Section 5, many of its perplexity scores reach
the second place in healthcare and legal domains
(dense model is not counted here). Further improv-
ing this perplexity is a valuable extension of this
paper.

Another limitation of this work is that
D-PRUNER is more memory-intensive than

SparseGPT during pruning, since D-PRUNER is
based on full-parameter fine-tuning and SparseGPT
does not leverage global gradient information. D-
PRUNER sets similar memory requirement as LLM-
Pruner. As a trade-off, D-PRUNER reaches better
performance on most of the metrics. It is also
more flexible, since it computes matrices of im-
portance scores without actually sparsifying LLMs.
Therefore, researchers can make real-time deci-
sions about the desired sparsity level, and changing
the sparsity is very efficient.
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lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.

Yann LeCun, John Denker, and Sara Solla. 1989. Opti-
mal brain damage. Advances in neural information
processing systems, 2.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Hanxiao Liu, Zihang Dai, David So, and Quoc V Le.
2021. Pay attention to mlps. Advances in Neural
Information Processing Systems, 34:9204–9215.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao,
Qipeng Guo, and Xipeng Qiu. 2023. Full parameter
fine-tuning for large language models with limited
resources. arXiv preprint arXiv:2306.09782.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. arXiv preprint arXiv:2305.11627.

James Martens. 2020. New insights and perspectives on
the natural gradient method. The Journal of Machine
Learning Research, 21(1):5776–5851.

Joel Niklaus, Veton Matoshi, Matthias Stürmer, Ilias
Chalkidis, and Daniel E. Ho. 2023. Multilegalpile:
A 689gb multilingual legal corpus.

1426

https://doi.org/10.18653/v1/2021.bionlp-1.12
https://doi.org/10.18653/v1/2021.bionlp-1.12
https://doi.org/10.18653/v1/2021.bionlp-1.12
https://doi.org/10.18653/v1/D19-1259
https://doi.org/10.18653/v1/D19-1259
https://doi.org/10.18653/v1/D19-5406
https://doi.org/10.18653/v1/D19-5406
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
http://arxiv.org/abs/2306.02069
http://arxiv.org/abs/2306.02069


Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv e-prints.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505–3506.

Alexey Romanov and Chaitanya Shivade. 2018.
Lessons from natural language inference in the clini-
cal domain. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1586–1596, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Victor Sanh, Thomas Wolf, and Alexander Rush. 2020.
Movement pruning: Adaptive sparsity by fine-tuning.
Advances in Neural Information Processing Systems,
33:20378–20389.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. 2021.
Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems,
34:24193–24205.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Brian Thompson, Jeremy Gwinnup, Huda Khayrallah,
Kevin Duh, and Philipp Koehn. 2019. Overcoming
catastrophic forgetting during domain adaptation of
neural machine translation. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 2062–2068.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi
Chen. 2023. Sheared llama: Accelerating language
model pre-training via structured pruning. In Work-
shop on Advancing Neural Network Training: Com-
putational Efficiency, Scalability, and Resource Opti-
mization.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. 2022.
Structured pruning learns compact and accurate mod-
els. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics, pages
1513–1528.

Nan Zhang, Yusen Zhang, Wu Guo, Prasenjit Mitra, and
Rui Zhang. 2023. FaMeSumm: Investigating and
improving faithfulness of medical summarization.
In Proceedings of the 2023 Conference on Empir-
ical Methods in Natural Language Processing, pages
10915–10931, Singapore. Association for Computa-
tional Linguistics.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo,
Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, et al. 2023. Py-
torch fsdp: experiences on scaling fully sharded data
parallel. arXiv preprint arXiv:2304.11277.

Lucia Zheng, Neel Guha, Brandon R. Anderson, Peter
Henderson, and Daniel E. Ho. 2021. When does
pretraining help? assessing self-supervised learning
for law and the casehold dataset. In Proceedings
of the 18th International Conference on Artificial
Intelligence and Law. Association for Computing
Machinery.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weip-
ing Wang. 2023. A survey on model compres-
sion for large language models. arXiv preprint
arXiv:2308.07633.

A Accuracy Scores on PubMedQA

In Table 7, we report the accuracy score of each
model on PubMedQA before and after LoRA fine-
tuning. Except LLM-Pruner, we see score improve-
ment on all other models after fine-tuning. Thus,
Table 7 indicates that our fine-tuning is still improv-
ing model performance on PubMedQA in some
ways.

B Experiments on BLOOM

We conduct a small set of experiments in health-
care domain for illustrative purpose. SparseGPT
is chosen for comparison, since it is the strongest
baseline. We run SparseGPT under two settings:
(1) only open-domain calibration dataset is used
for pruning, and (2) both open-domain and domain-
specific calibration datasets are used, which is the
same as the setting in Section 5. All BLOOM exper-
iments are based on the bigscience/bloom-7b1
model on Hugging Face.

As shown in Table 8, SparseGPT yields the
best performance on BLOOM across all three met-
rics. Although D-PRUNER surpasses SparseGPT
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Model Before LoRA After LoRA

Dense 39.20 64.60
Magnitude 47.00 55.20
LLM-Pruner 51.40 40.20
SparseGPT 53.80 57.00
D-PRUNER 58.80 59.20

Table 7: Accuracy scores of different models on Pub-
MedQA dataset.

Model Perplexity MedNLI PubMedQA

Dense 9.40 33.26 23.72
SparseGPT* 11.16 32.07 29.74
SparseGPT 10.88 33.47 24.23
D-PRUNER 14.70 32.70 20.95

Table 8: Performance of SparseGPT and D-PRUNER (at
50% sparsity) on metrics of healthcare domain based
on BLOOM. * denotes the model that only uses open-
domain calibration data (C4) for pruning.

on MedNLI when SparseGPT only uses open-
domain data, it struggles on both medical perplex-
ity and PubMedQA. Because our method is based
on Lv et al. (2023) for fine-tuning and this fine-
tuning pipeline only discusses performance scores
on LLaMA, Lv et al. (2023) might require a sig-
nificant adaptation when we change our backbone
models from LLaMA to BLOOM. It might also
not work well on BLOOM-based models when we
integrate the general importance as a regulariza-
tion term. Therefore, we might need to switch the
fine-tuning pipeline we use in order to obtain the
optimal performance of D-PRUNER.

C Hyperparameters

We stick to the default values of hyperparame-
ters for our baseline models. For D-PRUNER, in
the healthcare domain, we set λ (regularization
strength) and learning rate to 0.1 and 0.03. In the
legal domain, we set λ and learning rate to 0.001
and 0.03.
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