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Abstract

In noisy label learning, instance selection based
on small-loss criteria has been proven to be
highly effective. However, in the case of noisy
multi-label text classification (NMLTC), the
presence of noise is not limited to the instance-
level but extends to the (instance-label) pair-
level. This gives rise to two main challenges.
(1) The loss information at the pair-level fails
to capture the variations between instances. (2)
There are two types of noise at the pair-level:
false positives and false negatives. Identify-
ing false negatives from a large pool of neg-
ative pairs presents an exceedingly difficult
task. To tackle these issues, we propose a novel
approach called instance-label pair correction
(iLaCo), which aims to address the problem of
noisy pair selection and correction in NMLTC
tasks. Specifically, we first introduce a holistic
selection metric that identifies noisy pairs by
simultaneously considering global loss infor-
mation and instance-specific ranking informa-
tion. Secondly, we employ a filter guided by la-
bel correlation to focus exclusively on negative
pairs with label relevance. This filter signifi-
cantly reduces the difficulty of identifying false
negatives. Experimental analysis indicates that
our iLaCo framework effectively corrects noisy
pairs in NMLTC datasets, leading to a signifi-
cant improvement in model performance.

1 Introduction

Multi-label text classification (MLTC) aims to pre-
dict the most relevant labels for each text from a
label set. In real applications, noise is inevitably
present in the data of MLTC (Snow et al., 2008;
Chen et al., 2023). It poses a significant chal-
lenge for machine learning models, particularly
deep learning models (Frénay and Verleysen, 2014;
Arazo et al., 2019). When dealing with learning
from noisy labels (LNL), one effective approach
to mitigate the impact of noisy data is to identify
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Figure 1: An example of noise in multi-label text classi-
fication.

a clean subset through sample (instance) selection
(Hu et al., 2023; Li et al., 2023). By removing
data with noisy labels, we can reduce the influence
of mislabeled data and improve the learning pro-
cess. The small-loss criteria is a popular method
(Han et al., 2018; Wei et al., 2020; Xia et al., 2022),
assuming that samples with lower loss values are
likely to be clean. This is based on the observation
that deep networks initially learn simple patterns
and later tend to overfit to the noisy patterns (Wei
et al., 2022; Han et al., 2018; Northcutt et al., 2021).

However, what distinguishes noisy multi-label
text classification (NMLTC) from typical LNL is
that in NMLTC, noise occurs not at the instance-
level but at the (instance-label) pair-level, as de-
picted in Figure 1. In this scenario, using the
small-loss criterion for selection encounters two
challenges. (1) The pair-level loss information is
global and instance-independent, meaning it does
not capture the distinctions between each individ-
ual instance. (2) NMLTC exhibits two types of
noise: false positives (FP) and false negatives (FN).
Specifically, due to the abundance of true negative
(TN) pairs in NMLTC, it becomes challenging to
identify the FN noise from the large pool of nega-
tive pairs.

To address these challenges, we propose a novel
instance-Label pair Correction (iLaCo) framework,
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aiming to achieve pair selection and correction
for noisy multi-label text classification tasks. The
framework introduces three key components: holis-
tic selection metric, negative pair filter, and co-
correction.

We first designed a holistic selection metric
(HSM) to assess the learning difficulty of instance-
label pairs. Our HSM consists of both a loss-based
metric and a rank-based metric. The loss-based
metric captures the global learning difficulty of
instance-label pair by considering the associated
loss values. A lower loss indicates a lower learn-
ing difficulty for the corresponding instance-label
pair. On the other hand, the rank-based metric re-
flects the instance-specific learning difficulty of
instance-label pair. In MLTC, predictions rely
heavily on the label rank, with lower ranks indi-
cating better memorization of the instance-label
pair by the model (Xiao et al., 2021). By incor-
porating the rank-based metric, we can prevent
some instance-label pairs with high loss values but
correctly predicted pairs from being classified as
corrupted pairs. To ensure stability and consistency,
we adopt a time-consistent approach (historical av-
erage) (Zhou et al., 2020; Xia et al., 2022), to reflect
the learning difficulty of each instance-label pair
throughout the entire training process.

To address the challenge posed by the abundance
of negative pairs, as depicted in Figure 1, we first
observe a strong label correlation between FN la-
bels (i.e., Pluto) and true positive (TP) labels (i.e.,
Astronomy and Neptune) for the same instance.
As a result, we adopt a filter guided by instance-
specific label correlation, focusing on negative
pairs that exhibit a certain level of label correlation
with the positive pairs of each instance. By doing
so, we significantly reduce the number of candidate
negative pairs for each instance, thereby reducing
the difficulty of identifying FN pairs within the
negative pairs.

In the final stage, we perform noise estimation
and label correction simultaneously for both posi-
tive and negative pairs. After obtaining the HSM
for positive and negative pairs, we utilize a Gaus-
sian mixture model (GMM) to estimate the noise
rates. We then employ a pseudo-labeling approach
that combines both soft and hard correction strate-
gies for label correction. It is important to note that
in multi-class tasks, after identifying noisy labels,
the common practice is to utilize sample selection
or sample weighting methods (Li et al., 2023; Hu

et al., 2023). However, in the case of instance-label
pairs being a binary classification problem, we can
directly flip the labels to correct them.

Our contributions can be summarized into four
key aspects: (1) We propose the instance-label pair
correction (iLaCo) approach, which successfully
applies the memorization effect to multi-label text
classification for noise reduction. (2) We intro-
duce a holistic selection metric (HSM) that com-
bines the global information of the training process
(loss) with the instance-specific information (rank).
HSM provides a better reflection of the difficulty
in memorizing instance-label pairs. (3) We devise
a label correlation-based negative pair filter, which
enhances the recognition of false negative pairs
by removing most irrelevant true negative pairs
through label correlation. (4) The superior per-
formance of iLaCo is validated through extensive
experiments on three benchmark datasets.

2 Method

The overall architecture of our model is illustrated
in Figure 2. We first employ the standard architec-
ture for multi-label text classification to train the
model on the noisy dataset. Subsequently, based on
the historical information obtained during the train-
ing process, we utilize our proposed iLaCo method
to correct the labels and generate pseudo labels. Fi-
nally, we retrain the multi-label text classification
model using the corrected pseudo labels to obtain
the final model. The iLaCo framework consists
of three components: the holistic selection metric
(HSM), negative pair filter, and co-correction. We
present more details of these components in the
following sections.

2.1 Noisy Multi-Label Text Classification

In what follows, sets are in calligraphic letters (e.g.,
A), matrices are in capital bold letters(e.g., A),
vectors are in lower-case bold letters (e.g., a), and
scalars are in capital or lower-case letters (e.g. A,
a). For simplicity, let [L] = {1, ..., L}. Consider-
ing a noisy multi-label text classification (NMLTC)
problem, the input of training stage includes N in-
stances P = {(xi, ỹi)}Ni=1, each of which consists
of an input vector xi and several observed noisy la-
bels ỹi = (Ỹi,1, Ỹi,2, ..., Ỹi,L) ∈ {0, 1}L related to
the input. Here L is the total number of candidate
labels. The goal of NMLTC is to learn a function
f that maps the input instance xi and a label l to
a relevance score Ŷi,j = f(xi, j). In the testing
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Figure 2: The overall framework of iLaCo.

stage, we aim to recommend the top-k labels with
the highest relevance scores for a new instance.

We constructed the scoring function f by com-
bining a text encoder ϕ and a multi-label classi-
fier ψ. Following the approach of previous works
(Ma et al., 2021; Xu et al., 2023b), we employed
BiLSTM-based text encoders ϕ and adopted a
multi-layer MLP as our multi-label classifier ψ.
We then employed binary cross entropy (BCE)
LBCE =

∑N
i=1

∑L
l=1 Li,j as the loss function,

where

Li,j = −(Ỹi,j log(Ŷi,j)+(1− Ỹi,j) log(1− Ŷi,j)).
(1)

The notation Li,j represents the loss value associ-
ated with the j-th label for the i-th instance. It can
also be interpreted as the loss value corresponding
to the instance-label pair with the index {i, j}.

2.2 Holistic Selection Metric Design

2.2.1 Beyond Small Loss Criteria
When learning with noisy labels (LNL), it is com-
monly observed that instances with clean labels
typically have smaller loss values than those with
noisy labels (Han et al., 2018; Northcutt et al.,
2021). Such small-loss criteria have been widely
adopted for selecting confident examples (Arazo
et al., 2019; Wei et al., 2020; Xia et al., 2022). As
illustrated in Figure 3 (a), this pattern is also evi-
dent in NMLTC. Hence, we can use the loss value
Li,j in Equation 1 as a metric for identifying noise
in instance-label pair.

However, relying solely on the loss value to re-
flect whether instance-label pair is well-memorized
by the model is not comprehensive enough. This
is because the loss and the optimization goal of
MLTC are not entirely consistent (You et al., 2019).

The final prediction in MLTC depends mainly on
the ranking of the label Ŷi,j within ŷi. Therefore,
even if the loss value Li,j is large, Ŷi,j might still
be a correct prediction. By introducing instance-
specific label rank information, we can better dis-
tinguish between hard and noisy pairs For each
instance xi and its predicted label ŷi, we can ob-
tain the rank of each label using the rank function
Rank(·):

ri = Rank(ŷi), (2)

where ri = (Ri,1, Ri,2, ..., Ri,L), and Ri,j is the
rank metric for Ŷi,j . As shown in Figure 3 (b), it is
evident that rank-based metrics also possess noise
identification capabilities. A smaller rank indicates
that the label is more likely to be clean. Simulta-
neously, rank-based metrics that capture instance-
specific information complement loss-based met-
rics that reflect global information, resulting in im-
proved identification performance, as depicted in
Figure 2 and Figure 3 (c).

2.2.2 Time Consistency

Let L(t)
i,j , i ∈ [N ], j ∈ [L], t ∈ [T ] denote the

loss value corresponding to the j-th label of the
i-th instance at the t-th epoch. R(t)

i,j represents the
instance-specific rank value for the j-th label of
the i-th instance at the t-th epoch. Calculating the
selection metric directly based on the t-th epoch
might lead to unstable results because both the loss
values and ranking values exhibit large amplitudes
during the optimization process(Zhou et al., 2020;
Xia et al., 2022; Hu et al., 2022), as illustrated
in Figure 2. Therefore, we mitigate the impact
of large amplitudes by averaging over all epochs
during the training process, yielding more stable
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selection metrics:

L̄i,j =
T∑

t=1

L
(t)
i,j , R̄i,j =

T∑

t=1

R
(t)
i,j . (3)

To facilitate the integration of these two metrics,
we perform min-max normalization on them (Hu
et al., 2022), obtaining normalized results L̂i,j and
R̂i,j respectively. The linear combination of both
metrics results in a new holistic selection metric
(HSM):

Mi,j = α · L̂i,j + (1− α)R̂i,j . (4)

The combination coefficient α plays a crucial role
in determining the balance between the two met-
rics. By combining the advantages of both met-
rics, HSM not only provides a more comprehen-
sive understanding of the model’s behavior but also
exhibits consistency in its performance. This con-
sistency contributes to HSM’s superior ability to
identify noisy labels effectively (see Figure 3 (d)).

2.3 Co-Correction
Due to the characteristics of multi-label learning,
there are two types of noise associated with each
instance-label pair, namely false positive and false
negative. Next, we will employ HSM to perform
pair correction for both positive and negative noise.

2.3.1 Positive Pair Correction
Positive instance-label pair refers to the instance-
label pair associated with labels for which the ob-
served label is positive. First, we obtain the HSM
set M+ corresponding to all positive instance-label
pairs, i.e.,

M+ = {Mi,j |Ỹi,j = 1}, (5)

As illustrated in Figure 3 (d), its distribution
roughly resembles a bimodal Gaussian mixture.
Therefore, we adopt a two-component Gaussian
mixture model (GMM) to model the bi-modal dis-
tribution (Arazo et al., 2019; Li et al., 2020) of true
positive (TP) and false positive (FP) pairs. After
training, we could obtain the probability of a pair
being corrupted through the posterior probability
of HSM distributions. Accordingly, the noise rate
σ+ is estimated as:

σ+ = EMi,j∈M+ [p(µ+|Mi,j)], (6)

where µ+ is the Gaussian component with a larger
mean, since noisy pairs have typically larger HSM
values.

After obtaining the noise rate, we can proceed
with pair correction based on the noise rate and the
quantiles of M+. It is worth noting that, in multi-
class tasks, after identifying a corrupted label, the
usual approach involves sample selection or sample
reweighting (Li et al., 2023; Hu et al., 2023). How-
ever, for each instance-label pair, as it is a binary
classification problem, if the probability of being
a TP pair is very low, it is highly likely to be a FP
pair. Therefore, we can implement label correction
by applying label flipping to obtain pseudo-labels:

Y̌i,j =

{
0 Mi,j > Q1,Mi,j ∈ M+

Ỹi,j Mi,j ≤ Q1,Mi,j ∈ M+
, (7)

where Q1 = Quantile(M+, 1 − σ+) denotes the
1 − σ+ quantile of the set M+. However, since
noisy labels and clean labels are challenging to
distinguish near the decision boundary (as shown
in Figure 2 and Figure 3 (d)), compared to hard
pseudo-labels, we have employed a soft-hard com-
bined pseudo-label strategy for label correction.
For high-confidence noisy pairs (strong discrimina-
tion by HSM), we use a hard pseudo-label for cor-
rection. However, for low-confidence noisy pairs,
as they are prone to confusion with clean pairs,
we adopt a soft pseudo-label for correction. The
specific approach is as follows:

Y̌i,j =





0 Mi,j > Q2,Mi,j ∈ M+

Mi,j−Q1

Q1−Q2
Q1 < Mi,j ≤ Q2,Mi,j ∈ M+

Ỹi,j Mi,j ≤ Q1,Mi,j ∈ M+

(8)
where, Q1 = Quantile(M+, 1 − σ+), Q2 =
Quantile(M+, 1 − 1

2σ
+). The corrected pseudo-

label Y̌i,j under positive pairs is obtained. The
piecewise function is shown in Figure 2.

2.3.2 Negative Pair Filter and Correction
We also need to collect the corresponding HSM for
negative pairs in the observed labels, i.e.,

M− = {Mi,j |Ỹi,j = 0}. (9)

However, in practice, this step is intractable. Firstly,
there is an excessive number of negative pairs in
multi-label learning, significantly increasing the
storage burden. More importantly, due to the abun-
dance of TN pairs, the occurrence of FN pairs
within them is relatively rare. In such cases, the
TN pairs tend to excessively dominate the negative
pairs, making it nearly impossible to identify the
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FN pairs, as illustrated in Figure 4 (a). Fortunately,
as depicted in Figure 1, it is observed that the FN
labels are correlated with the positive labels of the
current instance. Meanwhile, TN labels mostly
lack this kind of label dependency.

Therefore, we adopt a method based on label
correlation to filter the massive amount of negative
pairs, retaining only those negative labels that have
a certain level of label correlation with the current
positive labels as our candidate set. i.e.,

M− = {Mi,j |Ỹi,j = 0, Di,j > β}, (10)

Di,j =
L∑

k=1

Ỹi,k · Ck,j , (11)

whereDi,j represents the correlation coefficient be-
tween the j-th label of the i-th sample and all posi-
tive labels of the i-th sample, and β is the threshold.
Meanwhile, Ck,j denotes the label correlation be-
tween the k-th and j-th labels. The label correlation
Ck,j can be obtained using various methods such
as label semantic similarity (Zhang et al., 2021)
or the label co-occurrence matrix (Su et al., 2022).
In our approach, to better align semantics with the
characteristics of the dataset, we opt for the latter
method to compute the label correlation matrix C.
Each element Ck,j of C is defined as:

Ck,j =
ck,j∑L
b=1 ck,b

, k, j ∈ [L]. (12)

ck,j =

{
0, k = j∑N

i=1 Ỹi,k · Ỹi,j , k ̸= j
(13)

Therefore, we have obtained a set M− composed
of high-quality negative pairs. Subsequently, based
on the HSM set M− corresponding to negative
pairs, we also estimate the noise rate σ− using
GMM (similar to Equation 6). After obtaining the
noise rate σ−, we also apply the pseudo-labeling
strategy:

Y̌i,j =





1 Mi,j > Q4,Mi,j ∈ M−
Mi,j−Q3

Q4−Q3
Q3 < Mi,j ≤ Q4,Mi,j ∈ M−

Ỹi,j Mi,j ≤ Q3,Mi,j ∈ M−

(14)

where, Q3 = Quantile(M−, 1 − σ−), Q4 =
Quantile(M−, 1− 1

2σ
−). The piecewise function

is also can be found in Figure 2.

3 Experiment

3.1 Experimental Setup

Datasets We verify the effectiveness of the pro-
posed method on three synthetic noisy MLTC
datasets, i.e. AAPD (Yang et al., 2018), RCV1
(Lewis et al., 2004) and EUR-Lex (Mencía and
Fürnkranz, 2008). These datasets are well-known
benchmark datasets in the MLTC (Xu et al., 2023b;
Ma et al., 2021; Xiao et al., 2019) and NMLTC
(Chen et al., 2023) fields. Table 1 contains the
statistics of these three benchmark datasets.

Noisy-Label Generation Following previous
works (Li et al., 2022; Chen et al., 2023), we ran-
domly flip an element Yi,j in the label vector yi

from 0 to 1 or 1 to 0 by the probability ρ−and ρ+
respectively. In some works (Chen et al., 2023;
Ghiassi et al., 2022), it was assumed that ρ− = ρ+.
However, we argue against this approach because
in MLTC, the label dimension L is usually much
larger than the average number of labels per in-
stance Lavg. Therefore, if ρ− = ρ+, the number of
FP labels would be much greater than the number
of FN labels. This situation does not accurately
reflect the challenges of NMLTC problems. Hence,
we adopt the approach proposed in Multi-T (Li
et al., 2022), setting ρ+ = ρ and ρ− =

Lavg
L−Lavg

ρ.
This configuration is designed to ensure that the
difference between the number of FP labels and
FN labels is relatively small. The noise rate ρ is set
to 0.2, 0.4, and 0.6.

Evaluation Metrics For a comprehensive and
reliable evaluation, we follow conventional settings
and report the following metrics: precision at 5
(P@5) and normalized discounted cumulative gain
at 5 (N@5). These metrics have been widely used
in literature to evaluate MLTC (Ma et al., 2021;
Xiao et al., 2021). Note that only the training set is
affected by noise, whereas the evaluation metrics
are computed on the clean testing set. The best
results are in bold, and the second-best results are
in underscore.

Baselines To verify the effectiveness of iLaCo,
we selected the nine most representative baseline
models in three groups. (1) MLTC Methods: At-
tentionXML (You et al., 2019), HTTN (Xiao et al.,
2021) and LSFA (Xu et al., 2023b). (2) Noisy multi-
label learning (NMLL) methods: GCE (Zhang and
Sabuncu, 2018), WSIC (Hu et al., 2019), Reweight-
T (Patrini et al., 2017), Multi-T (Li et al., 2022),
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Datasets Ntrn Ntst Dvocab L Lavg Navg Wtrn Wtst

AAPD 54,840 1,000 69,399 54 2.41 2444.04 163.42 171.65
RCV1 23,149 781,265 47,236 103 3.18 729.67 259.47 269.23

EUR-Lex 11,585 3,865 171,120 3,956 5.32 15.59 1225.20 1248.07

Table 1: Data statistics. Ntrn, Ntst refer to the number of documents in the training and test sets, respectively. Dvocab
is the vocabulary size of documents. L is the number of labels. Lavg is the average number of labels per documents.
Navg is the average number of documents per label. Wtrn, Wtst refer to the average number of words per document
in the training and test sets, respectively.

Noise Rate ρ = 0.2 ρ = 0.4 ρ = 0.6

Methods P@5 N@5 P@5 N@5 P@5 N@5

AttentionXML (You et al., 2019) 46.28 52.45 42.41 51.33 39.50 48.46
HTTN (Xiao et al., 2021) 45.60 52.04 42.00 50.95 37.93 46.49
LSFA (Xu et al., 2023b) 47.91 54.69 44.25 52.62 40.29 48.77

GCE (Zhang and Sabuncu, 2018) 49.32 55.82 46.08 53.94 41.90 50.49
WSIC (Hu et al., 2019) 47.32 54.57 45.32 53.84 41.32 49.75

Reweight-T (Patrini et al., 2017) 49.88 55.98 45.59 53.91 40.84 49.32
MLLSC (Ghiassi et al., 2022) 48.44 55.08 45.17 54.12 41.57 50.22

Multi-T (Li et al., 2022) 49.23 55.99 46.06 54.77 42.33 50.80
nEM (Chen et al., 2023) 49.89 56.77 46.73 54.37 41.80 50.18

iLaCo 50.74 57.59 47.92 55.96 43.33 51.71

Table 2: Performance on AAPD with different noise ratios.

and MLLSC (Ghiassi et al., 2022). (3) NMLTC
method: nEM (Chen et al., 2023). More details
about the implementation setting can be found in
Appendix A.3.

3.2 Main Results

As depicted in Tables 2-4, we have observed the
following phenomena: (1) In most cases, existing
MLTC methods tend to perform worse compared
to NMLL methods. This is primarily due to the
lack of ability to distinguish noisy labels exhib-
ited by these methods. Moreover, these methods
often overly prioritize learning head-to-tail knowl-
edge transfer, resulting in overfitting to the noisy
labels and subsequently reducing the overall gener-
alization ability of the model. (2) The advantages
of NMLL methods are not significant. Methods
based on noise transition matrix estimation, such
as Reweight-T and Multi-T, are mainly limited by
the large number of labels in the MLTC scenario,
making it more challenging to model noise transi-
tion in high-dimensional spaces. The nEM method,
based on probabilistic graphical models, lacks ex-
plicit differentiation between positive and negative
noise. The MLLSC method explicitly models both

positive and negative noise. However, it solely re-
lies on instantaneous DNN output probabilities as
a metric, disregarding the potential instability dur-
ing the training process of MLTC models. (3) In
all cases, our method shows significant improve-
ments compared to other methods. Particularly, as
the label dimension L of the dataset increases, our
method exhibits even greater enhancement. This
is mainly due to the fact that as the label dimen-
sion increases, the influence of negative pairs be-
comes more pronounced. However, our method
effectively addresses this issue by employing a neg-
ative pair filtering approach. Moreover, as the noise
ratio increases, our method demonstrates a lower
decrease in accuracy compared to other methods.
This validates the effectiveness of our approach in
accurately recognizing noise within NMLTC sce-
narios.

3.3 Ablation Study

In the following experiments, we aim to analyze the
effectiveness of each component of the proposed
iLaCo method on three datasets. To construct the
synthetic noise datasets, we use a noise ratio of 0.4.
We compare the complete iLaCo method with the
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Noise Rate ρ = 0.2 ρ = 0.4 ρ = 0.6

Methods P@5 N@5 P@5 N@5 P@5 N@5

AttentionXML (You et al., 2019) 52.11 85.53 46.30 82.00 43.16 78.28
HTTN (Xiao et al., 2021) 45.76 81.73 44.24 81.03 42.13 78.37
LSFA (Xu et al., 2023b) 50.12 84.51 45.31 81.94 42.89 79.21

GCE (Zhang and Sabuncu, 2018) 48.45 82.24 42.93 81.60 42.38 78.26
WSIC (Hu et al., 2019) 52.01 86.96 45.95 81.81 43.77 78.01

Reweight-T (Patrini et al., 2017) 52.43 86.48 47.32 80.87 41.13 77.11
MLLSC (Ghiassi et al., 2022) 51.95 86.96 47.59 81.67 42.91 77.95

Multi-T (Li et al., 2022) 52.51 87.42 47.07 82.41 43.04 78.94
nEM (Chen et al., 2023) 52.35 87.08 47.74 81.57 41.77 78.36

iLaCo 54.34 88.83 49.40 85.46 45.60 82.25

Table 3: Performance on RCV1 with different noise ratios.

Noise Rate ρ = 0.2 ρ = 0.4 ρ = 0.6

Methods P@5 N@5 P@5 N@5 P@5 N@5

AttentionXML (You et al., 2019) 50.05 57.01 44.19 51.44 38.93 47.82
HTTN (Xiao et al., 2021) 39.98 46.78 36.00 50.88 32.82 40.98
LSFA (Xu et al., 2023b) 48.96 55.53 43.35 51.50 36.67 45.25

GCE (Zhang and Sabuncu, 2018) 49.14 56.17 43.81 51.83 37.97 46.57
WSIC (Hu et al., 2019) 51.96 59.42 46.47 53.77 41.43 49.86

Reweight-T (Patrini et al., 2017) 52.30 59.49 46.25 54.43 40.72 48.57
MLLSC (Ghiassi et al., 2022) 53.27 60.96 47.40 55.23 41.80 50.16

Multi-T (Li et al., 2022) 52.96 60.49 47.13 54.70 41.23 50.09
nEM (Chen et al., 2023) 52.22 58.48 45.37 51.85 37.65 46.63

iLaCo 53.98 61.44 48.9 56.36 44.29 53.56

Table 4: Performance on EUR-Lex with different noise ratios.

following variants: (a) HSM (loss): This variant
utilizes the instantaneous loss value as the selec-
tion metric. (b) HSM (rank): This variant employs
the instantaneous rank value as the selection met-
ric. (c) HSM (cons.): This variant transforms the
instantaneous selection metric into a time consis-
tency metric. (d) Filter: This variant applies a Filter
based on label correlations to filter out a large num-
ber of negative pairs. Through these comparisons,
we aim to assess the impact and effectiveness of
each component in improving the performance of
iLaCo on the given datasets.

Component analysis According to Table 5, we
observe the following: (1) The Filter component
significantly improves the model’s performance.
This improvement is attributed to the effective re-
moval of a substantial number of irrelevant labels
from the negative pair set through the Filter compo-

nent. As a result, the identification of noisy labels
within the negative pair set becomes more manage-
able for us. (2) The different components of the
HSM metric collectively contribute to enhancing
the quality of noise identification. By incorporat-
ing instance-specific rank information, the model
gains the ability to differentiate between different
instances, enabling a more accurate distinction be-
tween clean and corrupted labels. Additionally, the
aggregation of information from multiple epochs
allows the model to obtain a more consistent se-
lection metric, further enhancing its capability to
identify noise.

Effectiveness of HSM. In Figure 3, we present
the distributions of positive pairs using HSM(loss),
HSM(rank) and HSM. Firstly, as shown in (a) and
(b), both the loss and rank metrics demonstrate
certain capabilities in identifying noise. From (c),
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AAPD RCV1 EUR-Lex

HSM (loss) HSM (rank) HSM (cons.) Filter P@5 N@5 P@5 N@5 P@5 N@5

✓ 46.82 54.79 47.46 83.72 45.41 52.7
✓ ✓ 46.89 55.23 47.74 84.13 47.2 54.85
✓ ✓ ✓ 47.86 55.76 48.7 84.98 47.55 55.38
✓ ✓ ✓ ✓ 47.92 55.96 49.4 85.46 48.9 56.36

Table 5: Components ablation study on 40% noise.

(a) HSM(loss) (b) HSM(rank) (c) HSM(loss)&HSM(rank) (d) HSM

Figure 3: The visualization of metric distribution on EUR-Lex with 40% noise.

(a) Before Filter (b) After Filter

Figure 4: Comparison of the HSM distributions under
negative pairs before and after Filter on EUR-Lex with
40% noise. Note that the presence of noise is only
visible in (a) when using a logarithmic scale.

we can observe the complementary nature of the
loss and rank metrics, which motivated us to com-
bine them into a more comprehensive metric for
improved accuracy in noise identification. Finally,
in (d), it is evident that the combination of both
metrics in HSM leads to a significantly enhanced
noise identification capability.

Effectiveness of Filter. Figure 4 showcases the
histograms of HSM for TN labels and FN labels,
both before and after applying our proposed Filter.
It can be observed that with the implementation of
the Filter, FN labels can be effectively separated.
However, without the use of the Filter, it is almost
impossible to distinguish between these two types
of labels. This demonstrates the effectiveness of
our proposed Filter in improving the separation
and identification of clean and noisy pairs under
negative pairs.

4 Related Work

Multi-Label Text Classification The most com-
mon approach for addressing multi-label text clas-
sification (MLTC) is to use the identical document
representation to train classification models (Liu
et al., 2017). Consequently, label-specific feature
learning (You et al., 2019; Xiao et al., 2019; Ma
et al., 2021), which focuses on capturing the unique
characteristics of each label, has shown promise in
enhancing label discrimination. Some works (Xiao
et al., 2021; Xu et al., 2023b) have also explored
transfer learning from head labels to tail labels to
mitigate the adverse effects of label long-tail distri-
bution. Recently, there has been growing interest
in MLTC under noisy settings (Chen et al., 2019,
2023). The nEM method (Chen et al., 2023) models
the transition process of noisy labels using latent
variable models to achieve robust MLTC. In this
paper, we extend the memorization effect (Arpit
et al., 2017) to noisy MLTC for the first time, and
propose an instance-label pair correction method.

Learning from Noisy Labels In order to miti-
gate the influence of data noise, sample selection
is an effective approach. The small-loss criterion
(Arpit et al., 2017) is the most widely used crite-
rion. MentorNet (Jiang et al., 2018) and MILD
(Hu et al., 2023) propose new metrics based on
information throughout the training process to dis-
tinguish between clean and corrupted data. Ap-
proaches such as GCE (Zhang and Sabuncu, 2018),
WISC (Hu et al., 2019), and MLLSC (Ghiassi et al.,
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2022) tackle multi-label noise learning by introduc-
ing robust loss functions or regularization methods.
Reweight-T (Patrini et al., 2017) corrects models
by estimating the noise transition matrix, while
Multi-T (Li et al., 2022) leverages label correla-
tions in multi-label learning to identify label noise,
leading to better estimation of the noise transition
matrix. Motivated by MILD, we propose a holis-
tic selection metric for noisy MLTC that integrates
global training information with instance-specific
training information.

5 Conclusions

In this paper, we propose a method for instance-
label pair correction that combines the historical
loss information and rank information from the
training process to identify and correct positive and
negative noise in noisy multi-label text classifica-
tion tasks. Our experiments yield compelling
results, highlighting the superiority of our model
compared to existing state-of-the-art (SOTA) base-
lines for multi-label text classification and noisy
multi-label classification.

6 Limitations

There are still some limitations to our work. 1) This
work utilizes the memorization effect (Arpit et al.,
2017) in deep learning for sample selection and cor-
rection, which has not been observed in other tra-
ditional machine learning methods. Therefore, the
proposed method is not applicable to such learning
methods. 2) Since our method models the training
process at the instance-label pair level, it possesses
the ability to recognize instance-dependent noise
(Chen et al., 2021). However, our work has not
been validated on instance-dependent noise yet,
which could be an area for future exploration.
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A Appendix

A.1 Datasets
We evaluate the proposed model on three bench-
mark datasets for MLTC, which are AAPD, RCV1
and EUR-Lex.

• AAPD (Yang et al., 2018) collects the abstract
and the corresponding subjects of 55840 pub-
lications in the field of computer science from
the arXiv.

• Reuters Corpus Volume I (RCV1) (Lewis
et al., 2004) comprises more than 80K news
items that have been manually sorted into 103
classes.

• EUR-Lex (Mencía and Fürnkranz, 2008) is
a collection of documents about European
Union law belonging to 3956 subjects. The
public version contains 11585 training in-
stances and 3865 testing instances.

A.2 Evaluation metrics
Following previous works (You et al., 2019; Xiao
et al., 2019; Xu et al., 2023b), we use two main
metrics which are commonly used in MLTC eval-
uations: the precision at k (P@k) and normalized
discounted cumulative gain at k (N@k).

P@k The precision of the top-k labels is defined
as:

P@k =
1

k

k∑

l=1

yrank(l) (15)

where y ∈ {0, 1}L is the ground truth label vec-
tor, and rank(l) is the index of the l-th highest
predicted label.

N@k N@k is an evaluation metric that takes into
account the return order. The value ranges from 0
to 1, and the higher the better. N@k is defined as
follows:

DCG@k =
k∑

l=1

yrank(l)

log(l + 1)
(16)

N@k =
DCG@k

∑min(k,||y||o)
l=1

1
log(l+1)

(17)

where ||y||o counts the number of relevant labels
in the ground truth label vector y. Note that N@k
is a metric for ranking, meaning that the order of
top-k prediction is considered in N@k but not in
P@k.

Most MLTC works (You et al., 2019; Ma et al.,
2021; Xiao et al., 2022, 2023; Xu et al., 2023a) do
not use Average Precision (AP), Recall, F1-Score
as evaluation metrics. This is because AP, Recall,
F1-Score metrics are more suitable for cases with
a small label space, where it is easier to directly
predict the target labels. MLTC usually involves
scenarios with a large label space, making it dif-
ficult to directly predict the target labels. In such
cases, most methods primarily focus on providing
a predicted ranking of labels, selecting the top-
k labels for prediction, rather than predicting the
number of labels. Therefore, most methods can-
not compute (or are not suitable for) AP, Recall,
F1-Score evaluation metrics.

A.3 Implementation Details
For all three datasets, we used the most frequent
words in the training set as a limited-size vocab-
ulary (below 500,000). We truncated each text
after 500 words for efficiency. All experiments are
carried out in a Linux environment with a single
Tesla V100 GPU (32G). To ensure a fair compar-
ison, we employ the same backbone as iLaCo for
all the noisy multi-label learning methods. Our
model was trained by Adam (Kingma and Ba,
2015) with the learning rate of 1e-3. We also
used stochastic weight averaging (You et al., 2019)
with a constant learning rate to enhance the per-
formance. As for the key hyper-parameters of our
proposed method: coefficient α and threshold β,
we set α = 0.7, β = 0.05 for AAPD. For RCV1
and EUR-Lex, we set α = 0.7, β = 0.05 and
α = 0.7, β = 0.001 respectively. All experiments
are run at least three times with different random
seeds, and we report the average values of results.

A.4 Variations of Training Process
As shown in the Figure 5, this illustrates the varia-
tions in two samples based on a loss-based metric
and a rank-based metric during the training pro-
cess. It can be observed that if we choose instanta-
neous selection metrics, it is not conducive to our
selection of clean samples. This also motivates our
choice of time-consistent selection metrics.

A.5 Computation Cost
Our algorithm can be divided into three steps.
Firstly, we need to train a preliminary MLTC model
to obtain the loss (and rank) information for the
instance-label pairs. Then, we use the informa-
tion to correct the original observed labels. Finally,

1457



(a) Loss-based metric (b) Rank-based metric

Figure 5: Variations of the selection metrics for noisy
pairs and clean pairs during the training process.

we retrain the model using the corrected labels.
The computational cost of the algorithm mainly
depends on the model training and retraining pro-
cesses in the first and third steps. Regarding space
complexity, our method follows existing neural net-
work architectures and does not increase the model
size additionally. As shown in the Table 6, we com-
pare the training time and model size with typical
baseline methods on EUR-Lex (40% noise). Our
experimental results indicate that the training time
and model size of our proposed method are in a
comparable range with other approaches.

Method Performance
Training Time Model Size

(hours) (GB)
AttentionXML 0.55 0.27
LSFA 1.59 0.44
MLLSC 0.51 0.29
iLaCo 0.94 0.29

Table 6: Comparison of different methods

A.6 Discussion of LLMs
The application of Large Language Models (LLMs)
to mitigate multi-label noise is a promising subject.
However, existing LLMs in the multi-label domain
are currently mainly focused on zero-shot/few-
shot scenarios(Peskine et al., 2023; Sarkar et al.,
2023). This is because the performance of LLMs
on domain-specific multi-label data is challenging
to compare with models trained on domain data.
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