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Abstract

In the age of large language models (LLMs)
and the widespread adoption of AI-driven con-
tent creation, the landscape of information
dissemination has witnessed a paradigm shift.
With the proliferation of both human-written
and machine-generated real and fake news, ro-
bustly and effectively discerning the veracity of
news articles has become an intricate challenge.
While substantial research has been dedicated
to fake news detection, it has either assumed
that all news articles are human-written or has
abruptly assumed that all machine-generated
news was fake. Thus, a significant gap exists in
understanding the interplay between machine-
paraphrased real news, machine-generated fake
news, human-written fake news, and human-
written real news. In this paper, we study this
gap by conducting a comprehensive evaluation
of fake news detectors trained in various sce-
narios. Our primary objectives revolve around
the following pivotal question: How can we
adapt fake news detectors to the era of LLMs?
Our experiments reveal an interesting pattern
that detectors trained exclusively on human-
written articles can indeed perform well at de-
tecting machine-generated fake news, but not
vice versa. Moreover, due to the bias of detec-
tors against machine-generated texts (Su et al.,
2023b), they should be trained on datasets with
a lower machine-generated news ratio than the
test set. Building on our findings, we provide a
practical strategy for the development of robust
fake news detectors. 1

1 Introduction

Since Brexit and the 2016 US Presidential cam-
paign, the proliferation of fake news has become a
major societal concern (Martino et al., 2020). On
the one hand, false information is easier to generate
but harder to detect (Pierri and Ceri, 2019).

1The data and the code can be found at https://
github.com/mbzuai-nlp/Fakenews-dataset

Figure 1: The three phases of transitioning from human-
written to machine-generated real news production: (Hu-
man Legacy, Transitional Coexistence, and Machine
Dominance).

On the other hand, people are often attracted to
sensational information and studies have shown
that it spreads six times faster than truthful news
(Vosoughi et al., 2018), which is a major threat to
both individuals and society.

Until recently, most online disinformation was
human-written (Vargo et al., 2018), but now a lot
of it is AI-generated (Simon et al., 2023). With
the progress in LLMs (Radford et al., 2019; Brown
et al., 2020; Chowdhery et al., 2024), AI-generated
content is becoming much harder to detect (Wang
et al., 2024a,b,c). Moreover, machine-generated
text is often perceived as more credible (Kreps
et al., 2022) and trustworthy (Zellers et al., 2019;
Spitale et al., 2023) than human-generated propa-
ganda. This raises pressing concerns about the
unprecedented scale of disinformation production
that AI models have enabled (Bommasani et al.,
2021; Buchanan et al., 2021; Kreps et al., 2022;
Augenstein et al., 2023; Goldstein et al., 2023; Pan
et al., 2023; Wang et al., 2024d).

While efforts to combat machine-generated fake
news date back to as early as 2019 (Zellers et al.,
2019), the majority of research in this field has
primarily focused on detecting machine-generated
text, rather than evaluating the factual accuracy
of machine-generated news articles (Huang et al.,
2023). In these studies, machine-generated text is
considered to be always fake news, regardless of
the factuality of its content.
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Previously, when generative AI was less preva-
lent, it was arguably reasonable to assume that most
automatically generated news articles would be
primarily used by malicious actors to craft fake
news. However, with the remarkable advancement
of generative AI in the last two years, and with
their introduction in various aspects of our lives,
these tools are now broadly adopted for legitimate
purposes such as assisting journalists in content
creation. Reputable news agencies, for instance,
use AI to draft or enhance their articles (Hanley
and Durumeric, 2023). Nevertheless, the age-old
problem of human-written fake news remains.

This diverse blend of machine-generated gen-
uine news, machine-generated fake articles, human-
written fabrications, and human-written factual arti-
cles has shifted the way of news generation and the
intricate intermingling of content sources is likely
to endure in the foreseeable future.

In order to adapt to the era of LLMs, the
next generation of fake news detectors should be
able to handle the mixed-content landscape of
human/machine-generated real/fake news. While
there exists a substantial body of research on fake
news detection, it typically focuses exclusively
on human-written fake news (Pérez-Rosas et al.,
2018; Khattar et al., 2019; Kim et al., 2018) or on
machine-generated fake news (Zellers et al., 2019;
Goldstein et al., 2023; Zhou et al., 2023), essen-
tially framing the problem as detection of machine-
generated text. However, robust fake news de-
tectors should primarily assess the authenticity of
the news articles, rather than relying on other con-
founding factors, such as whether the article was
machine-generated. Thus, there is a pressing need
to understand fake news detectors on machine-
paraphrased real news (MR), machine-generated
fake news (MF), human-written fake news (HF),
and human-written real news (HR).

Here, we bridge this gap by evaluating fake
news detectors trained with varying proportions of
machine-generated and human-written fake news.
Our experiments yield the following key insights:

(1) Fake news detectors, when trained exclu-
sively on human-written news articles (i.e., HF and
HR), have the ability to detect machine-generated
fake news. However, the reverse is not true, i.e., if
we train exclusively on machine-generated fake
news, the model is worse at detecting human-
written fake news. This observation suggests that,
when the proportion of testing data is uncertain,

it is advisable to train detectors solely on human-
written real and fake news articles. Such detectors
are still able to generalize effectively for detecting
machine-generated news.

(2) Although the overall performance is mainly
decided by the distribution of machine-generated
and human-written fake news in the test dataset,
the class-wise accuracy for our experiments sug-
gests that, in order to achieve a balanced perfor-
mance for all subclasses, we should train the detec-
tor on a dataset with a lower proportion of machine-
generated news compared to the test set.

(3) Our experiments also reveal that fake news
detectors are generally better at detecting machine-
generated fake news (MF) than at identifying
human-written fake news (HF), even when exclu-
sively trained on human-generated data (without
seeing MF during the training). This underscores
the inherent bias within fake news detectors (Su
et al., 2023b). We recommend to take these bi-
ases into consideration when training fake news
detectors.

Our main contributions can be summarized as
follows:

• We are the first to conduct comprehensive
evaluation of fake news detectors across di-
verse scenarios where news articles exhibit a
wide range of diversity, including both human-
written and machine-generated real and fake
content.

• Drawing from our experimental results, we
offer valuable insights and practical guide-
lines for deploying fake news detectors in real-
world contexts, ensuring that they remain ef-
fective amid the ever-evolving landscape of
news generation.

• Our work lays the groundwork for understand-
ing the data distribution shifts in fake news
caused by LLMs, moving beyond simple fake
news detection.

2 Related Work

Fake news detection is the task of detecting poten-
tially harmful news articles that make some false
claims (Oshikawa et al., 2020). The conventional
solution for detecting fake news is to ask profes-
sionals such as journalists to perform manual fact-
checking (Shao et al., 2016; Nakov et al., 2021),
which is expensive and time-consuming.
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To reduce the time and the efforts for detecting
fake news, researchers formulated this problem as
a classification task and proposed various solutions
for automatic fake news detection from a machine
learning perspective (Baly et al., 2018; Guo et al.,
2022; Nguyen et al., 2022).

There are two main task formulations: one only
consider human-written real vs. fake news, and
the other one formulates this as detecting machine-
generated text, thus automatically categorizing any
machine-generated news as fake news.

2.1 Human-Written Real vs. Fake News
Before 2018, fake news was predominantly manu-
ally written (Vargo et al., 2018), which motivated
early research on distinguishing human-written
fake news from human-written real news. Various
methods have been proposed based on linguistic
patterns (Rashkin et al., 2017; Pérez-Rosas et al.,
2018), analysis of the writing style (Horne and
Adali, 2017; Schuster et al., 2020), and of the con-
tent in general (Jin et al., 2016; Zhou et al., 2020;
Vargas et al., 2022). Other approaches performed
automatic verification of the claims made in news
articles (Graves and Cherubini, 2016), analyzed the
reliability of the source (Baly et al., 2020), or infor-
mation from social media (Barnabò et al., 2022).

2.2 Distinguishing Machine-Generated from
Human-Written News

With recent progress of natural language text gen-
eration (Radford et al., 2019), there have also been
rising concerns that malicious actors might gener-
ate fake news automatically using controlled gen-
eration (Zellers et al., 2019; Jawahar et al., 2020;
Huang et al., 2023; Mitchell et al., 2023). To under-
stand and to respond to neural fake news, Zellers
et al. (2019) studied the potential risk of neural
disinformation and presented a model for neural
fake news generation called GROVER, which al-
lows for controlled generation of an entire news
article. They generated fake news articles using
GROVER, and experimented with distinguishing
them from real news articles. Thus, they essen-
tially addressed the problem of detecting machine-
generated vs. human-written news articles, even
though they talked about detecting neural fake
news. Later work (Pagnoni et al., 2022) discussed
different threat scenarios from neural fake news
generated by state-of-the-art language models and
assessed the performance of the generated-text de-
tection systems under these threat scenarios.

Other work proposed more advanced fake news
generators that incorporated the use of propaganda
techniques (Huang et al., 2023).

With the recent popularity of LLMs, many worry
about malicious actors using more powerful mod-
els such as ChatGPT, GPT-3, GPT-3.5, and GPT-4
to generate fake news (Zhou et al., 2023; Hanley
and Durumeric, 2023; Su et al., 2023a). Pan et al.
(2023) studied the risk of misinformation pollu-
tion with large language models. Augenstein et al.
(2023) discussed the factuality challenges in the
era of large language models. See also (Wang et al.,
2024d) for a recent survey on the factuality of large
language models in the year 2024.

There has also been research on detecting
machine-generated content (Mitchell et al., 2023;
Su et al., 2023a; He et al., 2023), including a recent
shared task at SemEval-2024 (Wang et al., 2024b),
based on the M4 dataset (Wang et al., 2024c).

3 Methodology

As the proportion of human-written vs. machine-
generated content shifts, it is crucial to study the
impact on a model’s proficiency in differentiating
between real and fake news. Here, we consider
three distinct experimental setups, each represent-
ing different phases for news article generation due
to the evolution of LLMs, as shown in Figure 1.
We experiment with an LLM as the news generator
and we consider the news articles to contain only
pure text without other modalities, as in previous
fake news detection work (Zellers et al., 2019).

In the initial Human Legacy stage, the news
was predominantly human-written. In this setting,
we only use human-written real news articles as
training data for the real news category. Then,
in order to see how the proportion of machine-
generated fake news in the training data affects
the performance of the detector, we incrementally
introduce machine-generated fake news articles,
ranging from 0% to 100%. This setting mirrors a
past era, where humans were the primary producers
of real news.

Transitioning to the Transitional Coexistence
stage, we reflect the current situation where lan-
guage models collaboratively contribute to real
news article generation. To simplify this setting,
our training data in the real news class contain a
human-written and a machine-generated part. This
setting reflects the growing influence of LLMs in
the news landscape.
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Dataset HF MF HR MR

GossipCop++ 4,084 4,084 8,168 4,169
PolitiFact++ 97 97 194 132

Table 1: Number of news articles from each subclass in
the GossipCop++ and PolitiFact++ datasets.

Finally, in the Machine Dominance stage, we
model a future where machine-generated texts
surge for real news generation. For this, the train-
ing data for the real news class contains exclusively
machine-generated real news articles. This reflects
a future where LLMs become the primary and dom-
inant way to produce the news.

3.1 Data

Our data is based on GossipCop++ and
PolitiFact++, which were introduced in (Su
et al., 2023b). They contain human-written fake
(HF) and human-written real news (HR) from the
FakeNewsNet (Shu et al., 2020), which were fil-
tered to keep only the subset that contains a title and
a description. We first sampled 4,084 fake news and
4,084 real news from GossipCop++ and then
we randomly split these 8,168 examples into 60%
for training, 20% for validation, and 20% for test-
ing. For out-of-domain testing, we sampled 97
real and 97 fake news from PolitiFact++. We
further generated machine-paraphrased real news
(MR) and machine-generated fake news (MF) us-
ing ChatGPT and Structured Mimicry Prompting
(Su et al., 2023b) to reduce the identifiable struc-
ture of machine-generated news articles, so that
the detector can focus on the content rather than
on the source. Table 1 shows statistics about our
dataset. More analysis and details about the dataset
are given in Appendix B.

3.2 Evaluation Measures

Since we had a balanced training and testing dataset
in all our experiments, we use subclass-wise accu-
racy as our primary evaluation measure. Other mea-
sures such as F1, precision, recall, and overall accu-
racy can be directly derived from the subclass-wise
accuracy due to the balanced (sub)class setting. For
our purposes, subclass-wise accuracy offers a more
direct and insightful perspective, allowing us to
assess the results from the standpoint of each indi-
vidual subclass while considering more measures
such as the internal bias of the detector.

3.3 Experiments

In our experiments, we used transformer-based
methods, as they have demonstrated significantly
superior performance compared to other deep learn-
ing classifiers and have gained widespread accep-
tance and adoption in the field of fake news detec-
tion (Alam et al., 2021; Nguyen et al., 2022). In par-
ticular, we experimented with both large and base
models of BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019), ELECTRA (Clark et al., 2020),
ALBERT (Lan et al., 2020), and DeBERTa (He
et al., 2021).

3.4 Experimental Details

We trained all models on an A100 40G GPU with
a batch size of 25 and a learning rate of 1e-6 for 10
epochs.

4 Experimental Results

In this section, we describe our exhaustive experi-
ments and exploration of the three stages that we
described in Section 3. Specifically, we evaluate the
above-mentioned five transformer-based models of
two distinct sizes (base and large) across the three
stages. Coupled with the five different proportions
of machine-generated fake news, this results in a
total of 50 unique model configurations. We tested
each of these configurations on the above-described
in-domain test dataset GossipCop++ and on the
out-of-domain dataset PolitiFact++.

As we show in Appendix B, there are siz-
able differences between GossipCop++ and
PolitiFact++, and thus the latter can serve as
a valuable out-of-domain dataset for assessing the
robustness of fake news detectors that were trained
on the former.

4.1 Main Results

Given the sheer volume of the experiments, to main-
tain clarity and to avoid overwhelming the readers,
we relegate the complete results to Appendix A,
while focusing our analysis and discussion primar-
ily on Figure 2, which shows the performance mea-
sures obtained from training RoBERTa-large and
testing on the GossipCop++ dataset.

In order to provide a thorough understanding of
our experimental results, we first delve into each
stage independently, and then we perform a more
holistic analysis of the observed patterns across
these stages.
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Figure 2: Class-wise detection accuracy from the Human Legacy stage (left), to the Transitional Coexistence stage
(middle), to the Machine Dominance stage (right), with different fractions of machine-generated fake news in
the fake news training data, shown on the y axis. The blue- and the red-shaded areas are recommended training
strategies based on our experiments. We discuss this in detail in Section 5.

Human Legacy Setting. In this setting, the train-
ing data for the real news class is all human-written
real news. When paired with human-written fake
news as the whole training set, it can achieve a
relatively balanced and high detection accuracy for
each subclass. When the fraction of MF increases
to 33%, the fake news detection accuracy for the
MF subclass increases to around 99%; further in-
creases in the fraction of MF examples in the train-
ing data almost has no more contribution to the test
detection accuracy for the MF subclass. Moreover,
we find an abrupt drop of detection accuracy for
the MR subclass. This might be because, when
we add MF examples to the training data, since we
do not have any MR examples during training, the
detector might use a shortcut such as features that
are unique to machine-generated text as features
for fake news, and thus could classify most of the
MR examples as fake news. Similarly, when the
fraction of MF examples increases from 67% to
100%, (i.e., we only use machine-generated fake
news paired only with human-written real news as
training data), we observe an abrupt drop in ac-
curacy for the HF subclass: detectors trained in
this way categorize most of the human-written fake
news as real, since they check whether the text is
machine-generated as a key feature for detecting
fake news. Note that, even when the fraction of
MF examples is high, the accuracy for the MR sub-
class is still greater than 1− Acc(MF). This sug-
gests that the detector can still learn some features
to predict the factuality of the machine-generated
texts rather than solely using features for detecting
machine-generated text. Otherwise, we would have
had Acc(MR) ≈ 1− Acc(MF).

One key observation from this stage is when the
proportion of MF is 0%, which corresponds to a
setting where we train a detector on human-written
real and fake news articles and we then deploy it
to detect machine-generated real and fake news.
Interestingly, the resulting detector can general-
ize well to distinguishing between real and fake
machine-generated news, with a detection accu-
racy almost comparable to detecting human-written
ones. This suggests that maybe it is not essential
to train on machine-generated real and fake news
to be able to detect them. It would certainly be
helpful for the overall detection accuracy if our
training data distribution aligned well with the test-
ing data; however, in real-world deployment, due
to the distribution shift or due to our ignorance
about the distribution of the test data (for example,
we do not know how many of the news articles
are machine-generated, and more importantly, this
distribution might change over time due to model
updates and other factors (Omar et al., 2022)), the
most effective way to train the detector is to train
on human-written real and fake news articles.

Transitional Coexistence Setting. In this setting,
the training data for the real news class is composed
equally of machine-generated and human-written
articles. Notably, we observe that when the fake
news training data is exclusively human-written,
the subclass-wise accuracy for the MF subclass is
relatively low, with just 20.44%, while the HF class
is accurately detected, with 79.93% detection ac-
curacy. Conversely, when the fake news class is
entirely MF, the accuracy for the HF subclass di-
minishes to a mere 26.19%, while the MF accuracy
is high.
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Echoing our prior analysis from the Human
Legacy stage, this may be attributed to the detectors
leveraging features that are indicative of an article’s
source (machine or human) rather than of its verac-
ity. In the absence of HF examples in the training
data, the detector may use a shortcut and assume
that all fake news are machine-generated, which
results in reduced accuracy for the HF subclass. A
similar situation arises when no MF data is present
during training, potentially leading the detector to
misclassify MF articles as real news at test time.

Moreover, even with a balanced fake news class
containing half MF and half HF examples, the de-
tection accuracy for the MF subclass consistently
surpasses other subclasses, while for HR it is the
lowest. This detection accuracy is not as balanced
as training on only HF and HR (see the result for
the Human Legacy stage when there is no MF data,
the blue-shaded area). This highlights a key in-
sight: striving for perfect balance within each sub-
class during training might not yield results as good
as training solely on human-written real and fake
news. However, since training with the other three
subclasses (HR, HF, MF) yields better results than
training on human-written real and fake news only,
the overall performance might be better (depends
on the subclass distribution in the test set).

Machine Dominance Setting In this setting, the
entire training data for the real news class com-
prises MR examples only, with no exposure to HR
examples at all during training. When the fake
news class has only HF training examples (i.e.,
no MF), the detector excels in discerning HF and
MR, seemingly by identifying the origin (machine
or human) of the article rather than modeling its
factuality. Given that modeling factuality is inher-
ently more challenging than pinpointing the arti-
cle’s source, this approach compromises the detec-
tion accuracy for the MF and the HR subclasses.
Remarkably, introducing a modest 33% of MF arti-
cles to the training data triggers a dramatic surge in
MF detection accuracy, catapulting it from a mere
4.41% to an impressive 98.04%. This swift adapta-
tion suggests, in this training set, that the detector
has the capability to discern genuine from coun-
terfeit content without being misled by superficial
features classifying MF and MR categories. Such
behavior hints at the possibility that the veracity of
machine-generated articles (MF and MR) is more
discernible than that of human-generated articles
(HF and HR).
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Figure 3: Illustration of the subclass-wise detection
accuracy as a function of the fraction of MF examples
during training for the three chronological settings.

This hypothesis can be further illuminated by
comparing between the Machine Dominance set-
ting (with 100% MF) and the Human Legacy one
(with 0% MF), where detectors trained exclusively
on human-written articles exhibit commendable ac-
curacy even with machine-generated content, while,
in contrast, those trained entirely on machine-
generated articles often mistakenly classify the HF
subclass as real news.

4.2 Class-wise Accuracy as a Function of the
Fraction of MF Examples in Training

In this section, we delve into the subclass-wise ac-
curacy for each category. Our primary focus is on
understanding how accuracy trends evolve as the
proportion of MF examples increases and discern-
ing the variations in these trends across the different
stages. This analysis is illustrated in Figure 3.

Impact of Increasing the Fraction of MF Ex-
amples in the Training Data We can observe
in Figure 3 some consistent trends across all three
stages: as the fraction of MF examples in the train-
ing data increases, the accuracy for the MF and the
HR subclasses also increases, whereas the accuracy
for the HF and the MR subclasses decreases. The
improvement for the MF subclass and the decrease
for HF are to be expected given that the detectors
are exposed to a larger number of MF examples
and fewer HF examples during training. The in-
triguing aspect is the dip in MR detection accuracy
and the boost in HR accuracy as the fraction of MF
examples increases.
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Figure 4: Comparing different detectors (RoBERTa,
BERT, ELECTRA, ALBERT, DeBERTa) in the Human
Legacy setting.

Our hypothesis is that, when exposed to more
MF training examples, the model increasingly re-
lies on source-related features. Since MR shares
confounding features with MF (because they are
both machine-generated), their representations are
more alike. This similarity might cause the MR
examples to be misclassified more frequently as the
fraction of MF examples increases. Conversely, the
HR subclass, which has the least resemblance to
the MF subclass, might get improved accuracy due
to the increased presence of MF training examples.

Class-Wise Accuracy Across Stages. When ex-
amining subclass-wise detection accuracy across
stages, the Transitional Coexistence setting con-
sistently occupies a median position between the
other two stages. Specifically, the Machine Dom-
inance setting excels in detecting the HF and the
MR subclasses, but it struggles with HR and MF.

In contrast, in the Human Legacy setting the
models perform better for the HR and the MF sub-
classes, but exhibits diminished accuracy for HF
and MR. Since the Machine Dominance setting
predominantly sees machine-generated real news
during training, it might become biased towards
identifying such patterns, leading to a higher detec-
tion rate for HF and MR, but lower for HR and MF.
Also, if machine-generated articles have certain
consistent patterns, the detector trained predomi-
nantly on MR data might rely heavily on them for
classification, which affects its performance on HR,
which might lack these specific patterns. A similar
analysis holds for the Human Legacy setting.
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Figure 5: Comparing RoBERTa and ALBERT in the
Human Legacy setting: large-sized vs. base-sized.

4.3 Analysis of Different Detectors

Below, we compare different detectors: in terms of
model architecture and size.

Different Model Architectures. In Figure 4, we
compare five detectors: fine-tuned on RoBERTa,
BERT, ELECTRA, ALBERT, and DeBERTa (all
large-sized models) in the Human Legacy setting.
We can observe that no model can achieve high
detection accuracy for all four subclasses. In-
stead, there is a trade-off: a detector fine-tuned
on RoBERTa achieves the highest detection accu-
racy for HF and MF, but the lowest accuracy for
HR and MR. Meanwhile, a detector fine-tuned on
ALBERT achieves the lowest detection accuracy
for HF and MF, but the highest accuracy for HR
and MR.

Similar observations can be made about the
Transitional Coexistence and the Machine Dom-
inance settings. You can see more detail in the
Appendix 11. This might be due to internal model
biases: a detector fine-tuned on RoBERTa is more
likely to classify articles as fake news, while such
fine-tuned on ALBERT is more likely to classify
them as real news.

Impact of Model Size To assess how the model
size affects detection outcomes, we tested both the
large-sized and the base-sized versions of ALBERT
and RoBERTa, as shown in Figure 5. Interestingly,
a larger model does not always outperform the
smaller one. In some cases, the smaller model
might even mitigate the biases present in the larger
variant, yielding better detection results for certain
subclasses.
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For example, detectors trained on the large-sized
ALBERT version show diminished accuracy for the
HF subclass compared to the base-sized version.
This disparity is even more evident for RoBERTa.
Although its larger version adeptly detects HF and
MF subclasses, it falters with HR and MR. Con-
versely, the base-sized RoBERTa model overcomes
some of these biases, improving the results for HR
and MR, but sacrificing the performance for HF
and MF. Similar trends can also be observed in
Figure 12 in the Appendix for the other stages. In
summary, no single model size is universally su-
perior. While a larger model might enhance the
accuracy for certain subclasses, it might do so at
the expense of other subclasses.

4.4 Out-of-Domain Detection

In this section, we evaluate the fake news detector
on out-of-domain data. The results are shown in
Figure 6, where lines with the same color are from
a similar stage, solid lines are for in-domain, and
dashed lines are for out-of-domain testing. We can
see that the detection accuracy declines for almost
all subclasses except for MR, where better or equal
detection accuracy is achieved when testing on the
out-of-domain PolitiFact++ dataset. Also, we
notice that increasing the proportion of MF exam-
ples can help mitigate the gap in the out-of-domain
detection accuracy at the expense of the detection
accuracy for the HF and the MR subclasses.

Subgroup Training Data RoBERTa BERT ELECTRA ALBERT DeBERTa

MR All human -5.7 -1.51 -3.31 -3.88 -1.84
Mixed -3.28 -1.09 0.58 -2.89 2.9

MF All human -7.08 -8.21 -13.25 8.23 -21.51
Mixed 0.73 0.21 1.35 1.33 -0.1

HR All human -52.27 -39.77 -7.23 -4.67 -30.24
Mixed -44.46 -39.17 -18.43 -0.04 -33.68

HF All human -15.99 -18.43 -22.47 -6.66 -16.6
Mixed -5.62 -11.33 -11.85 -23.51 -4.75

Table 2: Performance degradation in out-of-domain
compared to in-domain testing when training on all
human data and on mixed data in proportion of
HF:MF:HR:MR=1:1:1:1. The gray-shaded part sug-
gests larger performance degradation when evaluated
out of domain, and thus less robustness.

5 Discussion

Below, we offer some suggestions about the train-
ing data, i.e., how we should balance the machine-
generated (MF, MR) and the human-written train-
ing data (HF, HR).

5.1 In-Domain Detection

In the in-domain setting, we found that training
with either all human-written data (see the left sub-
figure of Figure 2, where we highlighted with blue
shades) or with a mixture of all four subclasses (see
the middle subfigure in Figure 2, which are high-
lighted with red shades) can achieve a relatively
satisfying detection result for all subclasses.

However, detectors trained with all human-
written data (the blue-shaded part) seem to be a
better option since it is more balanced on each sub-
class, while detectors trained on mixtures of all
subclasses (the red shaded area) sacrifice HR accu-
racy for higher MF detection accuracy. Thus, we
recommend using only human-written real and fake
new articles for training an in-domain detector.

5.2 Out-of-Domain Detection

Figure 6 shows that when increasing the number
of MF examples, the margin between in-domain
and out-of-domain accuracy decreases. We fur-
ther calculated the difference between in-domain
and out-of-domain accuracy (namely, the class-
wise accuracy for PolitiFact++ minus the
class-wise accuracy for GossipCop++), when
trained with only human-written news articles
as well as when trained with mixed sources
(HF:MF:HR:MR=1:1:1:1). The results are shown
in Table 2. We can see that using mixed training
data yields a smaller gap in accuracy. Thus, we
recommend to train a detector by adding some MR
and MF data to improve the detectors’ generaliza-
tion ability on different domains.
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6 Limitations

One limitation of our work is that we used a coarse-
grained proportion of machine-generated articles
for training. Our objective was to offer insights and
to highlight potential adaptations in the training
strategies during in the age of LLMs, thus raising
awareness of responsible use of LLMs, and the
three stages we outlined. Note that it is easy to
extend our framework to a more fine-grained study.

The limitation in our paper as well as the ob-
servation from the experiments evoke several in-
teresting future directions to address. From the
perspective of fake news detection and misinfor-
mation research, there is a need for more nuanced
evaluation and for combining different detectors to
improve the detection accuracy for better fake news
detection. Moreover, our experiments inspire us to
generalize the study of real/fake news distribution
drift trends to macro contexts, particularly in light
of how LLMs influence data distribution shifts. We
elaborate more on this below.

More Fine-Grained Evaluation Setting. Our
experiments revealed that while training exclu-
sively on human-generated data yields balanced
and high accuracy for each subclass relative to the
mixed training approach, its robustness is limited
for out-of-domain detection. Incorporating some
machine-generated data appears to enhance this ro-
bustness without significant performance trade-offs.
Our current study focused only on the MR propor-
tions of 0%, 50%, and 100%. Further, nuanced
experiments are required to pinpoint the optimal
balance between class-specific detection accuracy
and robustness. It is particularly pertinent to ex-
plore MR proportions under 50% to better assess
performance and robustness.

Human-AI co-authorship In reality, mixed au-
thorship where the text is human-written, but en-
hanced by a machine, or written by a machine
(based on a human prompt) but edited by a human
are more likely to be the case. Instead of purely
machine-generated or human-written, the above
co-authorship is an interesting venue to explore.

Data Distribution Shift and its Consequences.
Our work delineates three temporal settings: Hu-
man Legacy, Transitional Coexistence, and Ma-
chine Dominance. These stages offer a simpli-
fied view of potential LLM-induced distribution
changes, when observed in a longer time span.

One angle to approach this data distribution
shift is via performative prediction (Perdomo et al.,
2020), suggesting that model outputs reciprocally
influence data distribution. While there is still a dis-
cernible gap between human-written and machine-
generated text distributions, the pervasive use of
large language models and their outputs might influ-
ence the human-written text distribution, and over
time, the relative proportion of machine-generated
and human-written texts would get closer to each
other and might converge to a static landscape. For
example, in Figure 9, we can observe a distinctive
discrepancy for MR and MF, while HF and HR are
quite similar. We conjecture that the distribution
of the four subclasses might evolve to convergence
given a sufficient time horizon. Thus, it would be
interesting to analyze fake news detection within
an evolving framework.

More Comprehensive Dataset Since dataset de-
sign is not the main focus of the paper, the dataset
used might not be comprehensive enough to draw
definite conclusions. Thus, a separate work that
focuses entirely on the dataset is considered as an
interesting and important future research direction.
We expect the new dataset to contain multiple fake
news generators, multiple languages, and multiple
news domains. Moreover, it would be more inter-
esting to contain some side information such as
network structures. Note that it is easier to collect
such a dataset in the near future than now as LLMs
becomes more and more commonly used by news
producers.

7 Ethics and Broader Impact

Our research delves into fake news detectors and
the dynamics of mis/disinformation, positing three
hypothetical scenarios. While these scenarios are
grounded in reason, they primarily serve to gauge
detector performance and behavior. They should
not be construed as predictions of the future land-
scape of fake and real news generation. Our aim is
to raise awareness of the potential risks that LLMs
can pose, which goes beyond mis/disinformation
and fake news detection, but to more subtle ways
of influence related to the proportion of human-
written texts online. We thus advocate for a respon-
sible use of LLMs.
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A Complete Results

The complete results for the three stages evaluated in our paper are shown in the tables below: for
the Human Legacy setting in Table 3, for the Transitional Coexistence setting in Table 4, and for the
Machine Dominance setting in Table 5. We show results when using different detectors for in-domain
(GossipCop++) and out-of-domain (PolitiFact++) experiments.

GossipCop++ PolitiFact++
Accurancy w.r.t. each group Accurancy w.r.t. each group

(Training Data)
MF portion Real Fake Real Fake

Model size Model name HR MR HF MF HR MR HF MF

0%

Large

RoBERTa 83.71 79.93 77.85 85.43 31.44 74.23 61.86 78.35
BERT 79.98 86.05 73.07 69.03 40.21 84.54 54.64 60.82

ELECTRA 82.49 83.72 69.89 76.13 75.26 80.41 47.42 62.89
ALBERT 84.57 80.17 59.24 68.05 79.90 76.29 52.58 76.29
DeBERTa 88.49 89.47 71.24 78.21 58.25 87.63 54.64 56.70

Base

RoBERTa 86.53 86.90 69.77 77.60 77.84 84.54 37.11 61.86
BERT 86.28 84.33 63.16 78.70 76.80 85.57 30.93 69.07

ELECTRA 86.83 82.86 63.53 80.66 90.72 80.41 40.21 79.38
ALBERT 84.63 87.76 67.20 57.65 65.46 88.66 57.73 56.70
DeBERTa 80.47 81.52 70.13 78.09 70.10 79.38 74.23 78.35

33%

Large

RoBERTa 77.34 21.54 80.42 99.63 39.69 28.87 69.07 100.00
BERT 78.75 54.59 72.34 99.27 44.33 50.52 60.82 97.94

ELECTRA 78.02 33.29 72.83 99.39 72.68 31.96 59.79 98.97
ALBERT 85.73 52.75 57.16 98.53 81.96 51.55 31.96 97.94
DeBERTa 87.39 34.39 72.46 99.51 72.16 42.27 64.95 100.00

Base

RoBERTa 82.98 33.66 71.24 99.51 73.71 25.77 50.52 100.00
BERT 83.71 46.14 65.97 99.39 64.95 47.42 36.08 100.00

ELECTRA 83.28 37.33 63.04 97.92 89.69 35.05 48.45 100.00
ALBERT 82.85 49.82 62.30 96.08 71.13 50.52 40.21 97.94
DeBERTa 87.08 39.29 64.63 98.65 81.96 36.08 62.89 98.97

50%

Large

RoBERTa 80.65 19.46 75.40 99.76 55.67 24.74 62.89 100.00
BERT 81.51 48.10 69.52 99.27 45.88 46.39 51.55 97.94

ELECTRA 80.40 28.76 70.01 99.51 82.99 27.84 52.58 100.00
ALBERT 90.14 55.32 52.75 98.53 91.75 53.61 27.84 98.97
DeBERTa 88.24 30.23 69.77 99.51 64.95 34.02 57.73 100.00

Base

RoBERTa 85.06 27.05 66.83 99.88 83.51 23.71 40.21 100.00
BERT 85.73 44.68 62.67 99.39 70.10 46.39 34.02 100.00

ELECTRA 85.55 33.41 61.32 99.27 91.24 30.93 42.27 100.00
ALBERT 87.26 50.43 56.06 98.41 81.96 51.55 31.96 100.00
DeBERTa 89.83 35.74 59.61 99.27 90.21 32.99 47.42 100.00

67%

Large

RoBERTa 83.53 18.12 68.79 99.76 73.71 21.65 56.70 100.00
BERT 84.63 44.68 64.87 99.39 60.31 39.18 40.21 97.94

ELECTRA 82.85 26.56 67.32 99.76 88.66 26.80 45.36 100.00
ALBERT 94.86 58.63 44.43 98.78 96.91 59.79 20.62 98.97
DeBERTa 91.73 34.76 63.89 99.76 75.26 38.14 47.42 100.00

Base

RoBERTa 89.16 25.21 62.30 99.76 90.21 23.71 29.90 100.00
BERT 87.75 44.31 55.20 99.51 78.35 45.36 26.80 100.00

ELECTRA 88.36 34.27 57.65 99.39 94.85 32.99 30.93 100.00
ALBERT 92.90 52.02 46.27 98.53 92.27 52.58 20.62 100.00
DeBERTa 92.77 29.99 47.37 99.39 97.42 28.87 35.05 100.00

100%

Large

RoBERTa 97.55 19.83 12.12 99.76 99.48 24.74 9.28 100.00
BERT 96.33 36.84 10.16 99.39 87.63 34.02 12.37 100.00

ELECTRA 96.14 19.95 13.71 99.76 99.48 25.77 6.19 100.00
ALBERT 99.20 43.70 0.98 99.14 98.97 49.48 1.03 98.97
DeBERTa 98.96 27.29 3.92 99.88 99.48 34.02 9.28 100.00

Base

RoBERTa 98.22 23.01 12.12 99.76 98.97 25.77 3.09 100.00
BERT 98.16 41.74 6.61 99.76 96.39 43.30 4.12 100.00

ELECTRA 94.67 28.52 18.97 99.76 97.42 28.87 8.25 100.00
ALBERT 99.33 45.78 2.82 99.02 100.00 48.45 4.12 100.00
DeBERTa 98.53 28.03 7.83 99.76 100.00 32.99 8.25 100.00

Table 3: Complete results for the Human Legacy setting.
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GossipCop++ PolitiFact++
Accurancy w.r.t. each group Accurancy w.r.t. each group

(Training Data)
MF portion Real Fake Real Fake

Model size Model name HR MR HF MF HR MR HF MF

0%

Large

RoBERTa 75.93 97.18 79.93 20.44 15.98 92.78 71.13 11.34
BERT 78.08 97.43 74.30 14.32 36.60 97.94 60.82 15.46

ELECTRA 81.38 97.31 72.34 27.29 30.93 94.85 68.04 6.19
ALBERT 65.52 92.53 73.68 13.34 51.55 90.72 73.20 15.46
DeBERTa 75.81 96.33 77.23 24.72 39.69 91.75 61.86 4.12

Base

RoBERTa 79.79 97.67 73.19 25.34 68.04 96.91 51.55 13.40
BERT 78.02 96.94 68.67 18.85 65.98 95.88 59.79 7.22

ELECTRA 84.75 98.04 66.10 19.09 84.54 95.88 46.39 1.03
ALBERT 66.69 94.61 74.66 17.01 36.60 93.81 73.20 9.28
DeBERTa 63.99 94.61 79.07 18.36 40.72 89.69 78.35 7.22

33%

Large

RoBERTa 67.54 91.55 84.94 98.04 24.74 87.63 77.32 98.97
BERT 62.46 86.66 82.99 95.35 18.04 84.54 72.16 95.88

ELECTRA 70.73 91.19 79.19 96.33 40.72 87.63 68.04 97.94
ALBERT 69.38 89.84 68.05 91.06 66.49 84.54 53.61 91.75
DeBERTa 69.63 93.76 80.29 97.06 47.42 92.78 81.44 95.88

Base

RoBERTa 70.12 89.84 79.93 93.15 50.52 89.69 56.70 88.66
BERT 74.59 92.04 74.05 95.47 41.75 91.75 63.92 98.97

ELECTRA 72.99 89.84 72.58 88.37 78.87 87.63 68.04 91.75
ALBERT 72.32 92.53 72.46 89.60 44.33 90.72 72.16 95.88
DeBERTa 74.83 94.12 73.68 91.19 48.97 87.63 80.41 88.66

50%

Large

RoBERTa 66.63 86.78 83.97 99.27 22.16 83.51 78.35 100.00
BERT 71.65 86.66 78.34 96.70 32.47 85.57 67.01 96.91

ELECTRA 71.52 89.11 75.76 98.65 53.09 89.69 63.92 100.00
ALBERT 79.42 91.55 57.53 93.51 79.38 88.66 34.02 94.85
DeBERTa 76.97 94.00 75.89 98.04 43.30 96.91 71.13 97.94

Base

RoBERTa 74.89 88.13 77.23 95.84 55.67 83.51 54.64 92.78
BERT 78.44 90.82 70.50 96.82 54.64 91.75 55.67 98.97

ELECTRA 77.83 87.39 67.32 93.88 85.57 90.72 58.76 94.85
ALBERT 78.81 91.06 64.38 91.92 68.04 88.66 45.36 95.88
DeBERTa 76.67 92.41 70.13 94.74 66.49 85.57 77.32 94.85

67%

Large

RoBERTa 72.14 84.46 77.36 99.51 45.36 83.51 67.01 100.00
BERT 76.06 84.70 72.71 98.65 39.18 83.51 60.82 97.94

ELECTRA 74.65 88.74 71.60 99.39 77.32 89.69 53.61 100.00
ALBERT 87.32 92.41 45.90 95.47 88.66 92.78 17.53 94.85
DeBERTa 84.63 95.10 65.97 99.14 77.32 94.85 58.76 100.00

Base

RoBERTa 76.55 84.82 73.56 98.90 75.26 82.47 40.21 98.97
BERT 84.38 90.21 63.16 97.80 72.68 90.72 37.11 98.97

ELECTRA 81.14 86.78 62.30 96.45 88.14 88.66 46.39 98.97
ALBERT 86.65 92.17 54.10 95.10 80.93 91.75 35.05 94.85
DeBERTa 85.06 89.23 53.12 95.96 92.27 88.66 44.33 97.94

100%

Large

RoBERTa 95.22 79.68 26.19 99.63 98.97 84.54 21.65 100.00
BERT 96.02 83.48 14.81 98.41 84.02 80.41 17.53 98.97

ELECTRA 95.71 86.17 21.54 99.63 96.91 84.54 16.49 100.00
ALBERT 99.27 96.08 1.96 96.57 99.48 97.94 2.06 95.88
DeBERTa 98.53 93.88 9.18 99.39 99.48 93.81 18.56 100.00

Base

RoBERTa 95.41 78.09 24.24 99.63 97.42 76.29 6.19 100.00
BERT 96.39 86.05 9.91 98.41 90.21 85.57 11.34 100.00

ELECTRA 93.75 85.31 25.21 98.29 95.88 85.57 16.49 100.00
ALBERT 98.53 95.72 5.14 96.70 97.42 96.91 3.09 96.91
DeBERTa 97.80 92.41 11.75 98.90 98.45 92.78 12.37 98.97

Table 4: Complete results for the Transitional Coexistence setting.
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GossipCop++ PolitiFact++
Accurancy w.r.t. each group Accurancy w.r.t. each group

(Training Data)
MF portion Real Fake Real Fake

Model size Model name HR MR HF MF HR MR HF MF

0%

Large

RoBERTa 29.03 94.74 92.17 4.41 16.49 91.75 84.54 4.12
BERT 38.09 93.76 89.47 3.67 23.20 93.81 82.47 7.22

ELECTRA 39.07 95.10 86.29 10.77 12.89 94.85 81.44 2.06
ALBERT 16.35 87.64 94.86 6.98 17.53 86.60 91.75 6.19
DeBERTa 24.68 96.21 93.27 7.96 13.92 95.88 90.72 3.09

Base

RoBERTa 27.62 92.66 89.11 9.67 13.40 88.66 84.54 3.09
BERT 29.94 91.43 85.68 6.73 25.77 91.75 81.44 6.19

ELECTRA 34.05 93.15 84.94 3.79 22.16 92.78 86.60 1.03
ALBERT 19.41 90.45 93.02 7.96 16.49 89.69 90.72 4.12
DeBERTa 17.33 91.80 94.49 14.20 11.34 87.63 89.69 6.19

33%

Large

RoBERTa 18.06 89.35 95.47 98.04 3.09 90.72 89.69 97.94
BERT 22.11 86.41 94.49 95.72 10.31 79.38 89.69 97.94

ELECTRA 30.25 92.41 91.31 89.35 9.28 91.75 90.72 91.75
ALBERT 15.74 83.72 94.12 91.80 15.46 82.47 90.72 92.78
DeBERTa 18.74 91.55 95.72 96.21 12.89 89.69 96.91 96.91

Base

RoBERTa 26.15 89.60 92.04 92.29 18.56 83.51 82.47 93.81
BERT 25.66 87.27 91.31 93.15 9.28 87.63 88.66 95.88

ELECTRA 23.03 87.76 91.31 87.03 12.89 86.60 92.78 90.72
ALBERT 19.17 86.90 94.74 89.60 7.22 81.44 95.88 91.75
DeBERTa 20.58 88.74 93.27 91.06 11.34 85.57 91.75 92.78

50%

Large

RoBERTa 23.33 89.60 94.00 99.14 5.67 91.75 89.69 100.00
BERT 25.41 85.31 91.55 97.31 10.82 83.51 88.66 100.00

ELECTRA 32.21 91.55 90.21 94.12 13.92 91.75 86.60 95.88
ALBERT 20.70 85.43 90.33 93.64 23.20 83.51 86.60 95.88
DeBERTa 27.86 94.00 92.41 97.67 25.26 92.78 89.69 98.97

Base

RoBERTa 29.58 88.13 90.21 94.74 22.16 81.44 83.51 95.88
BERT 31.72 86.41 89.23 96.08 9.28 86.60 86.60 97.94

ELECTRA 27.80 87.15 90.58 93.51 21.65 86.60 88.66 94.85
ALBERT 23.82 88.37 91.19 94.86 9.79 87.63 92.78 97.94
DeBERTa 22.90 85.07 90.94 89.72 24.23 87.63 90.72 94.85

67%

Large

RoBERTa 24.49 87.39 93.27 99.27 11.86 87.63 88.66 100.00
BERT 34.35 84.70 89.35 97.55 12.89 83.51 81.44 100.00

ELECTRA 39.25 91.55 85.43 97.31 24.74 90.72 80.41 96.91
ALBERT 30.92 85.56 83.11 95.59 39.18 84.54 75.26 95.88
DeBERTa 30.13 94.49 90.70 98.78 26.29 95.88 90.72 100.00

Base

RoBERTa 34.29 88.86 86.78 96.94 38.66 81.44 75.26 97.94
BERT 40.54 88.00 84.82 97.18 22.16 88.66 81.44 98.97

ELECTRA 33.19 86.41 89.11 96.33 39.18 82.47 82.47 95.88
ALBERT 34.97 87.76 85.92 94.61 21.65 86.60 83.51 95.88
DeBERTa 28.23 84.82 88.13 93.39 47.94 87.63 85.57 95.88

100%

Large

RoBERTa 85.36 85.68 43.70 99.51 89.18 88.66 36.08 100.00
BERT 90.39 90.09 26.93 98.16 69.07 89.69 28.87 98.97

ELECTRA 89.28 92.04 31.21 99.39 86.08 89.69 27.84 100.00
ALBERT 98.22 97.31 5.14 95.84 96.39 100.00 3.09 92.78
DeBERTa 91.79 93.76 23.99 99.51 83.51 92.78 39.18 98.97

Base

RoBERTa 83.28 84.33 46.88 99.63 87.11 83.51 19.59 100.00
BERT 91.18 90.94 18.36 97.92 86.08 92.78 21.65 98.97

ELECTRA 84.57 89.23 39.29 97.31 84.54 89.69 34.02 100.00
ALBERT 96.14 96.82 11.14 95.96 94.33 97.94 10.31 94.85
DeBERTa 87.32 88.98 33.17 96.70 93.81 90.72 31.96 100.00

Table 5: Complete results for the Machine dominance setting.

1487



B Detailed Dataset Analysis

Figure 8 shows the average sentence count and word count for both GossipCop++ and
PolitiFact++. We observe that HR generally consists of longer articles compared to other sub-
classes, while machine-generated news articles tend to be shorter on average, especially MF. Moreover,
the figure shows substantial variations in terms of average length across the different datasets. For instance,
when comparing GossipCop++ to PolitiFact++, the former has an average of 625 words and 25
sentences, whereas the latter is significantly longer, with 3,759 words and 191 sentences, i.e., seven
times larger. Another distinction is that in GossipCop++ the average sentence count and word count
for HF (22 sentences and 564 words) and HR are quite close to each other. In contrast, within the
PolitiFact++ dataset, HR is roughly 10 times longer than HF, with HR consisting of 17 sentences
and 459 words. Although the total number of news articles in PolitiFact++ is too small to train a
reliable fake news detector, it serves as a valuable out-of-domain dataset for assessing the robustness of
the detector, given its differences from GossipCop++.

In Figure 7, we randomly extract 4,084 articles in each subclass for GossipCop++ and 97 articles
in each subclass of PolitiFact++ to visualize the distribution of the number of sentences and the
number of words for each subclass. Because the HR class in PolitiFact++ has extremely long tails,
for the ease of representation, we restrict the range of the histogram to be [0;2000] in word count and
restrict the x axis to be [0,100] in sentence count. See also Figure 9 and Figure 10 in the Appendix. From
Figure 7, we find that the distribution of sentence counts and word counts for HF and HR are quite close
to each other, spanning a wide range of lengths. Meanwhile, the sentence counts and the word counts for
machine-generated articles, especially MF news articles, show more pronounced peaks.

(a) GossipCop++ (b) PolitiFact++

Figure 7: Sentence count and word count density histogram for GossipCop++ and PolitiFact++.

(a) GossipCop++ (b) PolitiFact++

Figure 8: Average sentence count and average word count density histogram for GossipCop++ and
PolitiFact++.

B.1 Sentence Length and Word Length
Figure 9 and Figure 10 compare the pair-wise distribution of the sentence counts and the word counts.
We can see that the distribution of sentence counts and word counts for HF and HR exhibit remarkable
similarity. This implies that human-written news articles, regardless of their authenticity, share a significant
resemblance in their structural composition. Conversely, there exists a more pronounced disparity in the
case of machine-generated news articles (MF and MR), implying that it might be easier to distinguish the
veracity of such articles based on their length distribution. Moreover, we observed a notable discrepancy
in the distribution of MR and HR subclasses, even though MR is paraphrased from real news articles with
approximately the same sentence and word counts.
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Although the dataset statistics show a distribution discrepancy between human-written and machine-
generated real and fake news, which might be a signal for the current fake news detection problem, from a
broader data distribution standpoint, if journalists increasingly adopt LLMs in their writing, over time, the
distribution of real news articles might gradually shift towards the distribution of the machine-generated
articles (MF and MR). Eventually, this shift could lead to a convergence where the distributions of real
and fake news articles once again closely resemble each other.

(a) HF vs. HR (b) MF vs. HF

(c) MF vs. MR (d) MR vs. HR

(e) MF vs. HR (f) HF vs. MR

Figure 9: Sentence length and word length density histograms for different subclasses in GossipCop++.

(a) HF vs. HR (b) MF vs. HF

(c) MF vs. MR (d) MR vs. HR

(e) MF vs. HR (f) HF vs. MR

Figure 10: Sentence length and word length density histograms for different subclasses in PolitiFact++.
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C Comparing Different Detectors in the Transitional Coexistence and the Machine
Dominance Setting.

Here, we compare different detectors in the Transitional Coexistence and the Machine Dominance setting
as supplementary experiments for Section 4.3.

C.1 Impact of the Detector Structure
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Figure 11: Comparing different detectors (RoBERTa, BERT, ELECTRA, ALBERT, DeBERTa) in the Transitional
Coexistence and the Machine Dominance settings.

C.2 Inpact of the Detector Size
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Figure 12: Comparing RoBERTa and ALBERT detectors in the Transitional Coexistence and the Machine Domi-
nance settings for models of different sizes: large vs. base models.
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