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Abstract

Ranking documents using Large Language
Models (LLMs) by directly feeding the query
and candidate documents into the prompt is
an interesting and practical problem. How-
ever, researchers have found it difficult to out-
perform fine-tuned baseline rankers on bench-
mark datasets. We analyze pointwise and list-
wise ranking prompts used by existing meth-
ods and argue that off-the-shelf LLMs do not
fully understand these challenging ranking for-
mulations. In this paper, we propose to sig-
nificantly reduce the burden on LLMs by us-
ing a new technique called Pairwise Ranking
Prompting (PRP). Our results are the first in
the literature to achieve state-of-the-art rank-
ing performance on standard benchmarks us-
ing moderate-sized open-sourced LLMs. On
TREC-DL 2019&2020, PRP based on the
Flan-UL2 model with 20B parameters per-
forms favorably with the previous best ap-
proach in the literature, which is based on the
blackbox commercial GPT-4 that has 50x (esti-
mated) model size, while outperforming other
LLM-based solutions, such as InstructGPT
which has 175B parameters, by over 10% for
all ranking metrics. By using the same prompt
template on seven BEIR tasks, PRP outper-
forms supervised baselines and outperforms
the blackbox commercial ChatGPT solution
by 4.2% and pointwise LLM-based solutions
by more than 10% on average NDCG@10.
Furthermore, we propose several variants of
PRP to improve efficiency and show that it
is possible to achieve competitive results even
with linear complexity.

1 Introduction

Large Language Model (LLMs) such as GPT-
3 (Brown et al., 2020) and PaLM (Chowdhery et al.,
2022) have demonstrated impressive performance
on a wide range of natural language tasks, achiev-
ing comparable or better performance when com-
pared with their supervised counterparts that are

potentially trained with millions of labeled exam-
ples, even in the zero-shot setting (Kojima et al.,
2022; Agrawal et al., 2022; Huang et al., 2022; Hou
et al., 2023).

However, there is limited success for the im-
portant text ranking problem using off-the-shelf
LLMs (Ma et al., 2023). Existing results usually
significantly underperform well-trained baseline
rankers (e.g., Nogueira et al. (2020); Zhuang et al.
(2023)). The only exception is a recent approach
proposed by Sun et al. (2023b), which depends on
the blackbox commercial GPT-4 system. Besides
the technical concerns such as sensitivity to input
order (ranking metrics can drop by more than 50%
when the input document order changes), we ar-
gue that relying on such blackbox systems is not
ideal for academic researchers due to significant
cost constraints and access limitations to these sys-
tems, though we do acknowledge the value of such
explorations in showing the capabilities of LLMs
for ranking tasks.

In this work, we first discuss why it is difficult for
LLMs to perform ranking tasks with existing meth-
ods, specifically, the pointwise and listwise formu-
lations. For pointwise approaches, ranking requires
LLMs to output calibrated prediction probabilities
before sorting, which is known to be very diffi-
cult and is not even supported by the generation-
only LLM APIs (such as GPT-4). For listwise
approaches, even with instructions that look very
clear to humans, LLMs can frequently generate
conflicting or useless outputs, which happens es-
pecially often for moderate-sized LLMs that are
used in our experiments. Such observations show
that existing popular LLMs do not fully understand
ranking tasks, potentially due to the lack of ranking
awareness during their pre-training and (instruc-
tion) fine-tuning procedures.

We propose the Pairwise Ranking Prompting
(PRP) paradigm, which uses the query and a pair of
documents in the prompt for LLMs to perform rank-
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ing tasks, with the motivation to significantly re-
duce the task complexity for LLMs and resolve the
calibration issue. PRP is based on simple prompt
design and naturally supports both generation and
scoring LLMs APIs. We describe several variants
of PRP to address efficiency concerns. PRP results
are the first in the literature that can achieve state-
of-the-art ranking performance by using moderate-
sized, open-sourced LLMs on standard benchmark
datasets. On TREC-DL2020, PRP based on the
FLAN-UL2 model with 20B parameters outper-
forms the previous best approach in the literature,
based on the blackbox commercial GPT-4 that has
(an estimated) 50X model size, by over 5% at
NDCG@1. On TREC-DL2019, PRP is only in-
ferior to the GPT-4 solution on the NDCG@5 and
NDCG@10 metrics, but can outperform existing
solutions, such as InstructGPT which has 175B
parameters, by over 10% for nearly all ranking met-
rics. We also show competitive results using FLAN-
T5 models with 3B and 13B parameters, demon-
strating the power and generality of PRP. The ob-
servations are further validated on seven BEIR
datasets covering various domains, where PRP per-
forms competitively with supervised rankers and
outperforms other LLM based approaches by a
large margin. We further discuss other benefits of
PRP, such as being insensitive to input ordering.

We note that "pairwise" paradigm is in itself
a very general and classic idea that impacted a
wide range of areas. The novelty of our work lies
in the important scenario where the technique is
introduced, the adaptations to make it practical,
the effectiveness it enables, as well as potential
changes and insights it inspires. In summary, the
contributions of this paper are three-fold:

• We for the first time in published literature
show pairwise ranking prompting effective-
ness for ranking with LLMs. It is able to pro-
duce state-of-the-art ranking performance on
a wide range of datasets with simple prompt-
ing and scoring mechanism.

• Our results are based on moderate-sized, open-
sourced LLMs, comparing with existing so-
lutions that use blackbox, commercial, and
larger models. The finding will facilitate fu-
ture research in this direction.

• We study several efficiency improvements and
show promising empirical performance.

(a)

Passage: {passage}
Query: {query}
Does the passage
answer the query?

LLM

Yes / No

(b)

The following are
passages related to
query {query}
[1] {passage_1}
[2] {passage_2}
...

Rank these passages
based on their rele-
vance to the query.

LLM

[5]>[1]>[2]>. . .

Figure 1: Two existing prompting methods for ranking:
(a) the pointwise relevance generation approach and (b)
the listwise permutation approach.

2 Difficulties of ranking tasks for LLMs

As discussed in Section 1, to date there is limited
evidence showing off-the-shelf LLM-based rankers
can outperform fine-tuned smaller rankers. We dis-
cuss why this is the case by overviewing and ana-
lyzing existing methods, which can be categorized
into pointwise or listwise approaches.

2.1 Pointwise approaches
Pointwise approaches are the major methods prior
to very recent listwise approaches discussed in Sec-
tion 2.2. There are two popular methods, relevance
generation (Liang et al., 2022) and query gener-
ation (Sachan et al., 2022; Drozdov et al., 2023).
Figure 1 (a) shows the prompt used for relevance
generation. The relevance score si is defined as:

si =

{
1 + p(Yes), if output Yes
1− p(No), if output No

(1)

where p(Yes) and p(No) denote the probabilities
of LLMs generating ‘Yes’ and ‘No’ respectively.
Meanwhile query generation approach asks LLMs
to generate a query based on the document ("Please
write a question based on this passage. Passage:
{{passage}} Question:"), and measures the proba-
bility of generating the actual query. Readers can
refer to Sachan et al. (2022) for more details.

There are two major issues with pointwise ap-
proaches. First, pointwise relevance prediction re-
quires the model to output calibrated pointwise pre-
dictions so that they can be used for comparisons
in sorting. This is not only very difficult to achieve
across prompts (Desai and Durrett, 2020), but also
unnecessary for ranking, which only requires rela-
tive ordering, a major focus of the learning to rank
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field (Liu, 2009). Also, pointwise methods will not
work for generation API, which is common, such
as GPT-4, since it requires the log probability of
the desired predictions to perform sorting.

2.2 Listwise approaches
Very recently, two parallel works (Sun et al., 2023b;
Ma et al., 2023) explore listwise approaches, by di-
rectly inserting the query and a list of documents
into a prompt. Both methods feed a partial list
of 10 or 20 documents every time and perform a
sliding window approach due to the prompt length
constraints. Figure 1 (b) shows a simplified version
of the listwise ranking prompt. Both works ex-
plored text-davinci-003, i.e., InstructGPT (Ouyang
et al., 2022) with 175B parameters, showing signif-
icantly worse performance than fine-tuned baseline
rankers. Sun et al. (2023b) were able to further
explore gpt-3.5-turbo (the model behind ChatGPT)
and GPT-4. Only the GPT-4 based approach could
achieve competitive results, which is based on the
blackbox, commercial, and giant (1T estimated pa-
rameters (VanBuskirk, 2023; Baktash and Dawodi,
2023)) system, without academic publication dis-
cussing technical details (OpenAI (2023) mainly
focused on evaluations).

The issues are again due to the difficulty of the
listwise ranking task for LLMs. Sun et al. (2023b)
show that there are frequent prediction failures with
the following patterns:

• Missing: When LLMs only outputs a partial
list of the input documents.

• Rejection: LLMs refuse to perform the rank-
ing task and produce irrelevant outputs.

• Repetition: LLMs output the same document
more than once.

• Inconsistency: The same list of documents
have different output rankings when they are
fed in with different order or context.

In fact, we tried the same prompt from (Sun et al.,
2023b) on the FLAN-UL2 model with 20B parame-
ters, and found very few of the outputs to be usable.
The model will either just output few documents
(e.g., "[1]"), an ordered list based on id (e.g. "[3] >
[2] > [1] ..."), or text which is not parseable.

Different from pointwise approaches, listwise
approaches can only use the generation API – get-
ting the log probability of all listwise permutations
is prohibitively expensive. In other words, there
is no easy solution if the generation API does not
output desired results, which is common. These
methods will fall back to the initial ranking, and

Given a query {query}, which of
the following two passages is more
relevant to the query?

Passage A: {passage_a}

Passage B: {passage_b}

Output Passage A or Passage B:

LLM

Generated text:

"Passage A"

"Passage A": −0.0012

"Passage B": −6.9116

generation modescoring mode

Figure 2: An illustration of pairwise ranking prompting.
The scores in scoring mode represent the log-likelihood
of the model generating the target text given the prompt.
See the exact prompt template in Appendix E

due to the high failure rate, the results are highly
sensitive to input ordering.

These observations are not entirely surprising.
Existing popular LLMs are generally not specifi-
cally pre-trained or fine-tuned against ranking tasks.
However, we show that LLMs do have a sense of
pairwise relative comparisons, which is much sim-
pler than requiring a calibrated pointwise relevance
estimation or outputting a permutation for a list of
documents.

3 Pairwise ranking prompting

We propose Pairwise Ranking Prompting (PRP) for
ranking with LLMs. We describe the basic pairwise
prompting unit, how it supports both generation
and scoring APIs, and propose several variants of
PRP with different ranking strategies and efficiency
properties.

3.1 Prompting design

Our pairwise ranking prompt is simple and intu-
itive, as shown in Figure 2. The exact prompt
template is shown in Appendix F. This pairwise
prompting will serve the basic computation unit in
all PRP variants, which we denote as u(q, d1, d2)
for a query q and two documents d1 and d2.

PRP naturally supports both generation API and
scoring API. The latter is made possible since we
only have two expected outputs ("Passage A" and
"Passage B") for LLM inquiries. Since using scor-
ing mode can mitigate potential issues when the
generation API generates irrelevant outputs, our
main results are based on the scoring mode, though
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we show there are very few prediction failures and
provide comparisons between these two modes in
Section 6.

Since it is known that LLMs can be sensitive
to text orders in the prompt (Lu et al., 2022; Liu
et al., 2023a), for each pair of documents, we
will inquire the LLM twice by swapping their or-
der: u(q, d1, d2) and u(q, d2, d1). Such simple de-
biasing method is difficult for listwise methods due
to their combinatorial nature.

The output of the pairwise ranking prompting
is a local ordering of d1 > d2 or d2 > d1 if both
promptings make consistent decisions, and d1 = d2
otherwise. Next we discuss three variants of PRP
using the output of pairwise ranking prompting
as the computation unit. We note that pairwise
comparison can serve as the basic computation unit
of many algorithms (e.g., selection algorithm) and
leave other alternatives for future work.

3.2 All pair comparisons
We enumerate all pairs and perform a global ag-
gregation to generate a score si for each document
di. We call this approach PRP-Allpair. Specifically,
we have:

si = 1 ·
∑

j 6=i

Idi>dj + 0.5 ·
∑

j 6=i

Idi=dj . (2)

Intuitively, if the LLM consistently prefers di over
another document dj , di gets one point. When
LLM is not sure by producing conflicting or irrel-
evant results (for the generation API), each docu-
ment gets half a point. There might be ties for the
aggregated scores, in which case we fall back to ini-
tial ranking. In this work, we use equation 2 which
works for both scoring and generation APIs, and
note there could be other ways to weight the scoring
function, such as leveraging prediction probabili-
ties in scoring mode.

PRP-Allpair favors simple implementation (all
LLM API calls can be executed in parallel), and
is highly insensitive to input ordering. It es-
sentially ranks documents with win ratio, which
has strong theoretical guarantees (Shah and Wain-
wright, 2018). The clear drawback is its costly
O(N2) calls to LLM APIs, where N is the number
of documents to be ranked for each query.

3.3 Sorting-based
We note that efficient sorting algorithms, such as
Quicksort and Heapsort, depend on pairwise com-
parisons. We can use the pairwise preferences from

B C · · · D E AInitial ranking:

B C · · · D E A

B C · · · D A E

B C · · · A D E

B A · · · C D E

A B · · · C D EFinal ranking:

Figure 3: An illustration of one pass of our sliding win-
dow approach. Starting from right to left, we compare
each document pair and swap it if the LLM output dis-
agrees with the initial ranking. K such passes will en-
sure a high-performing top-K ranking.

LLMs as the comparator for sorting algorithms.
We use Heapsort in this paper due to its guaranteed
O(N logN) computation complexity. We call this
approach PRP-Sorting.

PRP-Sorting favors lower computation complex-
ity than PRP-Allpair while also being large insensi-
tive to input orders. Even though pairwise compar-
isons are not guaranteed to be transitive, we show
robust empirical performance in the experiments,
and leave applying methods with theoretical guar-
antees (Ailon et al., 2008; Bai and Coester, 2023)
for future work.

3.4 Sliding window

We introduce a sliding window approach that is
able to further bring down the computation com-
plexity. One sliding window pass is similar to one
pass in the Bubble Sort algorithm: Given an initial
ranking, we start from the bottom of the list, com-
pare and swap document pairs with a stride of 1
on-the-fly based on LLM outputs. One pass only
requires O(N) time complexity. See Figure 3 for
an illustration.

By noticing that ranking usually only cares about
Top-K ranking metrics, we can perform K passes,
where K is small, even if thousands of documents
are ranked (Zhuang et al., 2023). We call this ap-
proach PRP-Sliding-K.

PRP-Sliding-K has favorable time complexity
but may have high dependency on input order. In
experiments we show surprisingly good results
with PRP-Sliding-10, without being very sensitive
to input ordering empirically in Section 6).
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Table 1: Comparison of pointwise, listwise, and pairwise approaches. N is the number of documents to be ranked
for each query. O(N) for listwise approach is based on sliding window since other options are not practical. See
discussion on "Require Calibration" in Section 2.1.

Method # of LLM API Calls Generation API Scoring API Require Calibration

Pointwise O(N) No Yes Yes
Listwise O(N) Yes No No
Pairwise O(N2), O(N logN), O(N) Yes Yes No

3.5 Remarks

In this work, we focus on open-sourced LLMs that
are easily accessible to academic researchers, and
do not require inquiry of commercial LLM APIs,
alleviating some monetary constraints. Also, the
LLMs do not need to be finetuned in the prompting-
based setting. We briefly summarize the proper-
ties of pointwise, pairwise, and listwise ranking
promptings in Table 1, showing pairwise ranking
prompting has several favorable properties.

4 Experiments on TREC DL datasets

4.1 Datasets and Metrics

TREC is a widely used benchmark dataset in infor-
mation retrieval research. We use the test sets of
the 2019 and 2020 competitions: TREC-DL2019
and TREC-DL2020, which provide dense human
relevance annotations for each of their 43 and 54
queries. Both use the MS MARCO v1 passage
corpus, which contains 8.8 million passages. All
comparisons are based on the reranking of top 100
passages retrieved by BM25 (Lin et al., 2021) for
each query. This is the same setting as existing
work (Sun et al., 2023b; Ma et al., 2023).

4.2 Methods

We evaluate PRP variants based on open-
sourced LLMs, including FLAN-T5-XL, FLAN-
T5-XXL (Chung et al., 2022), and FLAN-UL2 (Tay
et al., 2022a), which have significantly smaller
model sizes (3B, 11B, 20B) than alternatives, and
are easily accessible to academic researchers. We
report PRP variants including PRP-Allpair, PRP-
Sorting, and PRP-Sliding-K.

We consider the following supervised baselines,
all trained on the in-domain MS MARCO dataset:

• monoBERT (Nogueira and Cho, 2019): A
cross-encoder re-ranker based on BERT-large.

• monoT5 (Nogueira et al., 2020): A sequence-
to-sequence re-ranker that uses T5 to calculate
the relevance score with pointwise ranking
loss.

• RankT5 (Zhuang et al., 2023): A re-ranker
that uses T5 and listwise ranking loss.

We also consider the following unsupervised
LLM-based baselines:

• Unsupervied Passage Re-ranker
(UPR) (Sachan et al., 2022): The pointwise
approach based on query generation, see
Section 2.1.

• Relevance Generation (RG) (Liang et al.,
2022): The pointwise approach based on rele-
vance generation, see Section 2.1.

• RankGPT (Sun et al., 2023b): The listwise
prompting based approach using various GPT
based LLMs. As discussed in Section 2.2, we
tried the listwise prompt on FLAN-T5 and
FLAN-UL2 models and the outputs are not
usable, so we only report results with large
blackbox LLMs.

• Listwise Reranker with a Large language
model (LRL) (Ma et al., 2023): A similar
approach to RankGPT with slightly different
prompt design.

4.3 Main Results

Our main results are shown in Table 2. Overall we
are able to achieve very encouraging results using
PRP. We have the following observations:

• PRP variants based on FLAN-UL2 with 20B
parameters can achieve best results on all
metrics on TREC-DL2020, and are only sec-
ond to the blackbox, commercial gpt-4 based
solution on NDCG@5 and NDCG@10 on
TREC-DL2019, which has an estimated 50X
larger model size. Our best methods out-
perform RankGPT based on text-davinci-003
with 175B parameters by over 10% on all rank-
ing metrics, and are competitive to supervised
methods on all ranking metrics.

• Results on FLAN-T5-XL and FLAN-T5-XXL
are also competitive, showing that PRP gen-
eralizes to smaller LLMs due to the signifi-
cant simplicity of the pairwise ranking com-
parisons. They generally work even better
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Table 2: Results on TREC-DL2019 and TREC-DL2020 datasets by reranking top 100 documents retrieved by
BM25. Best overall model is in boldface, best and second best unsupervised LLM method are underlined and
italicized respectively, for each metric. All unsupervised LLM methods use BM25 to resolve prediction conflicts
or failures. *OpenAI has not publicly released the model parameters and the numbers are based on public esti-
mates (VanBuskirk, 2023; Baktash and Dawodi, 2023)

Method LLM Size TREC-DL2019 TREC-DL2020
NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10

BM25 NA NA 54.26 52.78 50.58 57.72 50.67 47.96
Supervised Methods

monoBERT BERT 340M 79.07 73.25 70.50 78.70 70.74 67.28
monoT5 T5 220M 79.84 73.77 71.48 77.47 69.40 66.99
monoT5 T5 3B 79.07 73.74 71.83 80.25 72.32 68.89
RankT5 T5 3B 79.07 75.66 72.95 80.86 73.05 69.63

Unsupervised LLM Methods
LRL text-davinci-003 175B - - 65.80 - - 62.24
RankGPT gpt-3 175B 50.78 50.77 49.76 50.00 48.36 48.73
RankGPT text-davinci-003 175B 69.77 64.73 61.50 69.75 58.76 57.05
RankGPT gpt-3.5-turbo 154B* 82.17 71.15 65.80 79.32 66.76 62.91
RankGPT gpt-4 1T* 82.56 79.16 75.59 78.40 74.11 70.56
UPR FLAN-T5-XXL 11B 62.79 62.07 62.00 64.20 62.05 60.34
RG FLAN-T5-XXL 11B 67.05 65.41 64.48 65.74 66.40 62.58
UPR FLAN-UL2 20B 53.10 57.68 58.95 64.81 61.50 60.02
RG FLAN-UL2 20B 70.93 66.81 64.61 75.62 66.85 65.39
PRP-Allpair FLAN-T5-XL 3B 74.03 71.73 69.75 79.01 72.22 68.12
PRP-Sorting FLAN-T5-XL 3B 77.52 71.88 69.28 74.38 69.44 65.87
PRP-Sliding-10 FLAN-T5-XL 3B 75.58 71.23 68.66 75.62 69.00 66.59
PRP-Allpair FLAN-T5-XXL 11B 72.09 71.28 69.87 82.41 74.16 69.85
PRP-Sorting FLAN-T5-XXL 11B 74.42 69.62 67.81 72.53 71.28 67.77
PRP-Sliding-10 FLAN-T5-XXL 11B 64.73 69.49 67.00 75.00 70.76 67.35
PRP-Allpair FLAN-UL2 20B 73.64 74.77 72.42 85.19 74.73 70.68
PRP-Sorting FLAN-UL2 20B 74.42 73.60 71.88 84.57 72.52 69.43
PRP-Sliding-10 FLAN-UL2 20B 78.29 75.49 72.65 85.80 75.35 70.46

than the gpt-3.5.turbo based solution (10X -
50X in size) on the more stable NDCG@5
and NDCG@10 metrics, and outperforms text-
davinci-003 based solution on all ranking met-
rics.

• It is encouraging to see good results from ef-
ficient PRP variants. For example, the slid-
ing window variants generally get very robust
ranking performance and we get some of the
best metrics from this variant. This obser-
vation alleviates some efficiency concerns of
pairwise ranking approaches.

5 Experiments on BEIR datasets

5.1 Datasets and metrics

BEIR (Thakur et al., 2021) consists of diverse re-
trieval tasks and domains. Following (Sun et al.,
2023b) we choose the test sets of Covid, Touche,
DBPedia, SciFact, Signal, News, and Robust04.
Following the convention of related research, we
report NDCG@10 for each dataset and the average
NDCG@10.

5.2 Methods

We use the same prompt template from TREC
datasets for all BEIR datasets, which is consistent
for all compared unsupervised LLM-based base-
lines. This is in contrast to methods such as (Dai
et al., 2022) that require prior knowledge to de-
sign different prompts for different datasets, which
may be difficult in practice and will lead to unfair
comparisons.

For supervised methods, in addition to the base-
lines in Section 4.2, we add TART (Asai et al.,
2023), a supervised instruction-tuned passage re-
ranker trained on 37 datasets, including over 5
million instances. The model is initialized from
FLAN-T5-XL.

For unsupervised LLM methods, we also re-
port RG and UPR as in Section 4.2. We include
RankGPT with gpt-3.5-turbo. We do not include
the GPT-4 numbers reported in (Sun et al., 2023b),
which used GPT-4 to rerank top results from gpt-
3.5-turbo due to the significant cost. It essentially
performed an ensemble of two re-ranking models,
which is unfair and impractical. We also do not in-
clude LRL since it was not evaluated on the BEIR
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collection. See more discussions of baselines in
Appendix D.

5.3 Main Results
The main results are shown in Table 3. Overall we
are able to achieve encouraging results using PRP,
validating its robustness across different domains.
We have the following observations:

• PRP variants based on FLAN-UL2 with 20B
parameters can achieve best overall results on
the collection.

• PRP variants generate the best ranking met-
rics on all datasets among unsupervised LLM
methods. PRP outperforms the blackbox
commercial RankGPT solution by 4.2%, and
pointwise LLM-based solutions by over 10%
in general. Noticably, PRP-Sliding-10 with
FLAN-UL2 outperforms RankGPT on all 7
datasets, showing its strong generalization.

• PRP performs favorably with supervised
methods. PRP-Sliding-10 with FLAN-UL2
can slightly outperform the state-of-the-art
RankT5 ranker on average, and outperform
RankT5 on 5 out of 7 datasets.

• Results on FLAN-T5-XL and FLAN-T5-XXL
are again competitive, some variants can even
outperform RankGPT.

6 Ablation studies

We perform several ablative studies to gain a deeper
understanding of the PRP framework in terms of
its robustness and generality.

Robustness to input ordering. We show the ro-
bustness of PRP to input ordering. One issue of
listwise ranking prompting approaches is their sen-
sitivity to input ordering. This is because the rank-
ing will fall back to the initial order when LLM
prediction fails, which is very common for the dif-
ficult listwise formulation. In Table 4 we show
results of different methods by inverting the initial
order from BM25.

As expected, PRP-Allpair is quite robust to ini-
tial ordering, and PRP-Sliding-1 will suffer for met-
rics other than NDCG@1. PRP-Sliding-10 is quite
robust since it focuses on Top-K ranking metrics.

Comparison of scoring mode and generation
mode. Our results above are all based on the scor-
ing mode, since PRP only need to get scores for
two candidate outputs ("Passage A" and "Passage
B") and it is easy to get probabilities from open-
sourced LLMs. Here we compare against PRP

performance using scoring vs generation mode in
Table 5, which will shed light on how PRP works
on generation-only LLM APIs.

We can see that PRP is extremely robust to scor-
ing vs generation API, even for smaller LLMs,
showing its applicability to different LLMs sys-
tems. The results are intuitive - LLMs make few
generation mistakes due to the simplicity of PRP.
We found that there are only about 0.02% predic-
tions that do not follow the desired format, which is
neglectable and in stark contrast to the the listwise
approaches.

Study on sliding window. We further provide
more study on the sliding window approach in Ap-
pendix A, including different number of passes and
the performance of forward (instead of backward)
pass.

7 Discussion

Extendability. The design of PRP in this paper
biases towards simplicity and generality. For exam-
ple, we decribe the algorithm and report results
based on generation API, so PRP is applicable
to both commercial black-box LLMs and open-
sourced white-box LLMs. The performance may
further improve via more sophisticated prompt de-
sign, and leveraging extra information such as the
score values from the scoring API, which is usually
available for white-box LLMs. We provide some re-
sults of PRP on a commercial LLMs in Appendix B
where performance can be further improved.

Reproducibility. We used the same prompt tem-
plate for all 9 datasets evaluated in the paper, show-
ing the generality and power of pairwise ranking
prompting in text ranking. As we focus on open-
sourced LLMs, and only use standard aggregation
methods (win counting, sorting, and sliding win-
dow), our experimental results are easy to repro-
duce. Still, we plan to release pairwise inference re-
sults on all 9 datasets and the 3 open-source LLMs
to facilitate future research. In specific, we will
release the data in json format, which includes
query/document information for each pair (includ-
ing ids, text, label, retrieval rank and scores), to-
gether with the actual prompt, the generated text,
and its score. The specific prompt template and a
data sample can be found at Appendix E

Cost and Efficiency. We discussed different effi-
cient variants of PRP. Also, our results are based on
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Table 3: Results (NDCG@10) on BEIR datasets. All models re-rank the same BM25 top-100 passages. Best over-
all model is in boldface, best and second best unsupervised LLM method are underlined and italicized respectively,
for each metric. All unsupervised LLM methods use BM25 to resolve prediction conflicts or failures.

Method LLM Size Covid Touche DBPedia SciFact Signal News Robust04 Avg
BM25 NA NA 59.47 44.22 31.80 67.89 33.05 39.52 40.70 45.23

Supervised Methods
monoBERT BERT 340M 70.01 31.75 41.87 71.36 31.44 44.62 49.35 48.63
monoT5 T5 220M 78.34 30.82 42.42 73.40 31.67 46.83 51.72 50.74
monoT5 T5 3B 80.71 32.41 44.45 76.57 32.55 48.49 56.71 53.13
RankT5 T5 3B 82.00 37.62 44.19 76.86 31.80 48.15 52.76 53.34
TART-Rerank T5 3B 75.10 27.46 42.53 74.84 25.84 40.01 50.75 48.08

Unsupervised LLM Methods
UPR FLAN-T5-XXL 11B 72.64 21.56 35.14 73.54 30.81 42.99 47.85 46.36
RG FLAN-T5-XXL 11B 70.31 22.10 31.32 63.43 26.89 37.34 51.56 43.28
UPR FLAN-UL2 20B 70.69 23.68 34.64 71.09 30.33 41.78 47.52 45.68
RG FLAN-UL2 20B 70.22 24.67 30.56 64.74 29.68 43.78 53.00 45.24
RankGPT gpt-3.5-turbo 154B 76.67 36.18 44.47 70.43 32.12 48.85 50.62 51.33
PRP-Allpair FLAN-T5-XL 3B 81.86 26.93 44.63 73.25 32.08 46.52 54.02 51.33
PRP-Sorting FLAN-T5-XL 3B 80.41 28.23 42.84 67.94 30.95 42.95 50.07 49.06
PRP-Sliding-10 FLAN-T5-XL 3B 77.58 40.48 44.77 73.43 35.62 46.45 50.74 52.72
PRP-Allpair FLAN-T5-XXL 11B 79.62 29.81 41.41 74.23 32.22 47.68 56.76 51.67
PRP-Sorting FLAN-T5-XXL 11B 78.75 29.61 39.23 70.10 31.28 44.68 53.01 49.52
PRP-Sliding-10 FLAN-T5-XXL 11B 74.39 41.60 42.19 72.46 35.12 47.26 52.38 52.20
PRP-Allpair FLAN-UL2 20B 82.30 29.71 45.94 75.70 32.26 48.04 55.49 52.78
PRP-Sorting FLAN-UL2 20B 82.29 25.80 44.53 67.07 32.04 45.37 51.45 49.79
PRP-Sliding-10 FLAN-UL2 20B 79.45 37.89 46.47 73.33 35.20 49.11 53.43 53.55

Table 4: Input order sensitivity results on the TREC-DL2019 dataset.

Method LLM Init Order NDCG@1 NDCG@5 NDCG@10

RankGPT gpt-3.5-turbo BM25 82.17 71.15 65.80
RankGPT gpt-3.5-turbo Inverse BM25 36.43 31.79 32.77

PRP-Allpair FLAN-UL2-20B BM25 73.64 74.77 72.42
PRP-Allpair FLAN-UL2-20B Inverse BM25 74.42 74.48 72.40

PRP-Sliding-1 FLAN-UL2-20B BM25 78.29 62.15 57.58
PRP-Sliding-1 FLAN-UL2-20B Inverse BM25 71.32 32.72 26.04

PRP-Sliding-10 FLAN-UL2-20B BM25 78.29 75.49 72.65
PRP-Sliding-10 FLAN-UL2-20B Inverse BM25 71.32 67.91 64.84

LLMs that are easily approachable for academic re-
searchers (Taori et al., 2023), alleviating the need to
call commercial APIs. However, further reducing
the number of calls to LLMs is still an interesting
research direction, such as leveraging active learn-
ing techniques. The distillation of LLM rankers to
servable models in large-scale systems is also an
important future direction (Sun et al., 2023a; Qin
et al., 2023).

Data Leakage from LLMs. We note there is
minimal label leakage issues as we leverage open-
sourced LLMs with clear documentations, while it
is not clear for blackbox commercial LLMs. The
comparisons with existing pointwise and listwise
approaches on the same LLMs are also fair. Please
see a more comprehensive examination on data
leakage in Appendix C.

8 Related Work

We did a detailed review and analysis of the most
relevant existing efforts for ranking with LLMs,
including pointwise and listwise approaches in Sec-
tion 2. These works and ours focus on the challeng-
ing unsupervised text ranking setting with LLMs
without providing any demonstrations, conduct-
ing any fine-tuning, or training of an additional
model. Prior to the recent efforts on ranking with
LLMs, most work focus on the supervised learning
to rank problem (Liu, 2009; Qin et al., 2021) by
fine-tuning Pre-trained Language Models (PLMs)
such as T5 (Nogueira et al., 2020; Zhuang et al.,
2023) or BERT (Nogueira and Cho, 2019; Zhuang
et al., 2021), which serve as very strong baselines.
Very recently some work fine-tunes LLMs or dis-
tills from black-box LLMs (Pradeep et al., 2023),
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Table 5: Results on TREC-DL2019 and TREC-DL2020 datasets using scoring vs generation mode for PRP.

Method LLM Mode TREC-DL2019 TREC-DL2020
NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10

PRP-Allpair FLAN-T5-XL Scoring 74.03 71.73 69.75 79.01 72.22 68.12
PRP-Allpair FLAN-T5-XL Generation 74.03 71.68 69.59 79.01 71.54 67.75
PRP-Allpair FLAN-T5-XXL Scoring 72.09 71.28 69.87 82.41 74.16 69.85
PRP-Allpair FLAN-T5-XXL Generation 72.09 71.61 69.94 80.56 73.69 69.53
PRP-Allpair FLAN-UL2 Scoring 73.64 74.77 72.42 85.19 74.73 70.68
PRP-Allpair FLAN-UL2 Generation 73.64 74.84 72.37 85.19 74.74 70.69

which is different from our setting.
There has been a strong recent interest in ex-

ploring information retrieval in general with LLMs
based approaches (Zhu et al., 2023), due to the im-
portance of the applications and the power of LLMs
to understand textual queries and documents (Dai
et al., 2022; Tay et al., 2022b; Wang et al., 2023;
Jagerman et al., 2023; Bonifacio et al., 2022). Sev-
eral works leverage the generation power of LLMs
to generate training data to train an additional down-
stream retrieval or ranking model, typically in the
few-shot setting (Dai et al., 2022), which is a very
different setting from ours. Recent methods in this
family of methods such as Inpars (Bonifacio et al.,
2022) still significantly underperforms fine-tuned
baselines. ExaRanker (Ferraretto et al., 2023) uses
LLMs to generate explanations for ranking deci-
sions, and uses such explanations in ranking model
fine-tuning, showing limited ranking performance
benefits (the major benefit was on data efficiency).
HyDE (Gao et al., 2022) uses LLMs to augment
queries by generating hypothetical documents for
unsupervised retrieval. These works do not directly
explore the retrieval or ranking capability of LLMs,
but mainly use LLMs as auxiliary tools to comple-
ment traditional paradigms, possibly limiting the
benefits that LLMs can provide. New paradigms
such as Differentiable Search Index (DSI) (Tay
et al., 2022b; Wang et al., 2022) directly use Trans-
former memory to index documents for retrieval.

Using pairwise comparisons with LLMs is a gen-
eral paradigm, such as reward modeling using pair-
wise preferences (Christiano et al., 2017; Rafailov
et al., 2024; Liu et al., 2024). LLMs are used
as evaluators to compare generative outputs (such
as text summary) (Liu et al., 2023b; Liusie et al.,
2024). SC (Yan et al., 2023) performs structured
comparative reasoning to predict text preferences
in various applications. 1SL (MacAvaney and Sol-
daini, 2023) estimates relevance with reference to
an anchor positive query-document pair per query,
even for the test set, so the setting may not be practi-
cal and is very different from our standard text rank-

ing setting. A concurrent work (Dai et al., 2023)
studied pairwise prompting in recommender sys-
tems, which is a substantially different application
and their method still largely fall behind state-of-
the-art models with sufficient data. The novelty of
our work lies in leveraging the general and simple
pairwise prompting paradigm to the important text
ranking task, granting LLMs capabilities that no
prior work can, by performing competitively with
state-of-the-art fine-tuned models and methods that
only work with giant blackbox LLMs.

9 Conclusion

In this paper, we propose to use pairwise prompting
with LLMs for text ranking tasks. To the best of
our knowledge, these are the first published results
demonstrating very competitive ranking perfor-
mance using moderate-sized, open-sourced LLMs.
The key insights are the observation of the difficul-
ties of LLMs handling ranking tasks in the existing
pointwise and listwise formulations. Our proposed
Pairwise Ranking Prompting (PRP) is effective in
reducing the burden of LLMs and shows robust per-
formance on 9 datasets. We also discuss efficiency
concerns and ways to mitigate them, and several
benefits of PRP, such as insensitivity to input or-
dering and support for both generation and scoring
LLM APIs.

10 Limitations

We do not use GPT models (though we compare
with them using results from other papers) in this
work due to various constraints and the focus on
open-sourced LLMs. Testing the performance of
our methods on such models is meaningful bench-
marking effort. Also, this work mainly focused on
empirical ranking results, while more theoretically
grounded methods exist, such as those for sorting
from noisy comparisons (Bai and Coester, 2023),
which may be explored in the future. Last but not
least, we discuss the potential data leakage issue
(for all LLM-based methods) in Appendix C.
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A More results on PRP-Sliding-K

We show more results on PRP-Sliding-K variants to better understand the behaviors, including multiple
backward passes and a forward pass variant1. The results are shown in Table 6 and Table 7 on TREC-
DL2019 and TREC-DL2020 with consistent behaviors.

Table 6: Sliding window results on the TREC-DL2019 dataset.

Method LLM Strategy NDCG@1 NDCG@5 NDCG@10

PRP-Sliding FLAN-UL2-20B 1 Forward 63.95 57.31 54.10
PRP-Sliding FLAN-UL2-20B 1 Backward 78.29 62.15 57.58
PRP-Sliding FLAN-UL2-20B 2 Backward 78.29 67.01 61.52
PRP-Sliding FLAN-UL2-20B 3 Backward 78.29 70.72 64.60
PRP-Sliding FLAN-UL2-20B 10 Backward 78.29 75.49 72.65

Table 7: Sliding window results on the TREC-DL2020 dataset.

Method LLM Strategy NDCG@1 NDCG@5 NDCG@10

PRP-Sliding FLAN-UL2-20B 1 Forward 65.74 54.72 51.21
PRP-Sliding FLAN-UL2-20B 1 Backward 85.80 61.60 57.06
PRP-Sliding FLAN-UL2-20B 2 Backward 85.80 66.51 61.11
PRP-Sliding FLAN-UL2-20B 3 Backward 85.80 71.06 63.45
PRP-Sliding FLAN-UL2-20B 10 Backward 85.80 75.35 70.46

The results are easy to interpret:
• The behavior is similar to BubbleSort: Strong NDCG@1 can already be achieved with one backward

pass. As we conduct more passes, other Top-K ranking metrics get better.
• Forward pass does not work well, which is intuitive, since it mainly performs demotion and is much

less efficient in bringing good results to the top.

B Result of PRP on commercial LLMs

Though the focus on the work is to show the power of PRP on moderate-sized LLMs, we further
perform evaluation on two datasets with a black-box commercial LLM, text-bison, from Google
(https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/text), which should be compa-
rable to gpt-3.5-turbo. The results can be further improved when compared with our main results on
open-sourced LLMs, showing the generality of PRP. Further evaluation on more powerful LLMs such as
gpt-4 is meaningful future work.

Table 8: Results on PRP-Allpair with the text-bison model on TREC-DL2019 and TREC-DL2020.

Method LLM NDCG@10 DL19 NDCG@10 DL20

RankGPT gpt-3.5-turbo 65.80 62.91
RankGPT gpt-4 75.59 70.56

PRP-Allpair FLAN-UL2-20B 72.42 70.68
PRP-Allpair text-bison 73.81 71.66

C More discussion on limitations and future work

Domain adaptation. The datasets used in this paper are for the standard and important relevance-based
text ranking. How LLMs can be adapted to non-standard ranking datasets, such as counter arguments in
the ArguAna dataset (Wachsmuth et al., 2018), need more investigation. Our work can facilitate such
explorations by providing approachable baselines.

1Backward pass indicates starting from the bottom result with the lowest BM25 score, and vice versa.
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Data leakage. We mainly use open-sourced FLAN models (Wei et al., 2021) with clear documentations,
which neither observed ranking supervision from any of the datasets we evaluated upon, nor was instruction
fine-tuned on any ranking tasks. Also, the labels in the datasets are dense human annotations for each
query against many documents, which are not used in the open-sourced LLMs and are very different
from the potential usage of document corpus during pre-training. These are in contrast to methods based
blackbox LLMs such as ChatGPT or GPT-4 (Sun et al., 2023b) where the tuning details are unclear. We
do note that FLAN models have a question answering task based on MSMARCO, which is not ranking
specific, and is different from TREC-DL datasets in terms of queries and annotations, and is different
from BEIR collection in all aspects. On the other hand, whether blackbox LLMs directly use TREC-DL
datasets or BEIR datasets is unclear. Furthermore, the comparisons between different methods using
the same LLM are fair - PRP always outperforms pointwise baselines by a large margin, and listwise
prompting almost always fails on moderate LLMs. Avoiding data leakage in the era of LLM is generally
challenging and more rigorous protocols may be needed. In this work, we avoided to use phrases such as
“zero-shot” to try to avoid over-claims.

D More discussion on baseline and dataset selection

For the BEIR evaluation, we choose not to include the Promptagator++ ranker (Dai et al., 2022) since 1)
It uses different prompts and fine-tuned models for each task, different from all other LLM methods. 2)
The method was evaluated on a different set of BEIR tasks. Even for the shared tasks, it reranks top 200
results from a stronger retriever than BM25 so the numbers are not comparable. Nevertheless, zero-shot
Promptagator++ performed significantly worse than the monoT5 baseline in the paper (to be fair, the
paper’s focus was mainly on few-shot scenarios), while PRP compares favorably with monoT5.

The only dataset we did not include, but (Sun et al., 2023b) included, from the BEIR collection, is the
NFCorpus dataset. This is because the metrics using BM25 reported in (Sun et al., 2023b) on NFCorpus
does not match ours and the public consensus numbers (while the numbers match for all selected datasets),
so we exclude NFCorpus to avoid unfair comparisons possibly due to errors during their evaluation.

E Reproducibility

E.1 Pairwise Ranking Prompting Template
We note that we used the same prompt template for all 9 datasets evaluated in the paper, showing the
generality and power of pairwise ranking prompting in text ranking. Below is the prompt template:

Given a query {query}, which of the following two passages is more relevant to the query?

Passage A: {document1}

Passage B: {document2}

Output Passage A or Passage B:

E.2 Code and Data Release
As we focus on open-sourced LLMs, and only use standard aggregation methods (win counting, sorting,
and sliding window), our experimental results are easy to reproduce. We plan to release pairwise inference
results on all 9 datasets and the 3 open-source LLMs to facilitate future research. In specific, we will
release the data in the following json format, which includes query/document information for each pair
(including ids, text, label, retrieval rank and scores), together with the actual prompt, the generated text,
and its score. Below is an example on the Trec-DL2020 dataset with Flan-UL2:
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"document_pair": [{"document_id": "8512412", "retriever_rank": "50", "retriever_score":
"8.984600", "document": "When in Doubt, Take a Cab. Taxis might be expensive in Puerto Rico,
but they are safe and available. At night, it’s definitely the best way to get around. Look for the
white taxis with the distinctive garita, or sentry box, icon painted on them.They are usually found
at designated taxi stands.hen in Doubt, Take a Cab. Taxis might be expensive in Puerto Rico,
but they are safe and available. At night, it’s definitely the best way to get around. Look for the
white taxis with the distinctive garita, or sentry box, icon painted on them.", "relevance": -1},
{"document_id": "6623205", "retriever_rank": "66", "retriever_score": "8.812100", "document":
"Thankfully, there are a couple of ways to prevent your whites from turning yellow: 1 Never bleach
white clothing that is polyester or a polyester/cotton blend. 2 The chemical reaction between the
bleach and the polyester almost always yields a yellowed result. 3 Consider a water softener if you
have well-water.hankfully, there are a couple of ways to prevent your whites from turning yellow:
1 Never bleach white clothing that is polyester or a polyester/cotton blend. 2 Consider a water
softener if you have well-water. 3 Minimize your use of bleach altogether.", "relevance": 1.0}],

"query_id": "1108651",

"query": "what the best way to get clothes white",

"prompt": "Given a query “what the best way to get clothes white”, which of the following two
passages is more relevant to the query?

Passage A: When in Doubt, Take a Cab. Taxis might be expensive in Puerto Rico, but they are safe
and available. At night, it’s definitely the best way to get around. Look for the white taxis with the
distinctive garita, or sentry box, icon painted on them.They are usually found at designated taxi
stands.hen in Doubt, Take a Cab. Taxis might be expensive in Puerto Rico, but they are safe and
available. At night, it’s definitely the best way to get around. Look for the white taxis with the
distinctive garita, or sentry box, icon painted on them.

Passage B: Thankfully, there are a couple of ways to prevent your whites from turning yellow:
1 Never bleach white clothing that is polyester or a polyester/cotton blend. 2 The chemical
reaction between the bleach and the polyester almost always yields a yellowed result. 3 Consider
a water softener if you have well-water.hankfully, there are a couple of ways to prevent your
whites from turning yellow: 1 Never bleach white clothing that is polyester or a polyester/cotton
blend. 2 Consider a water softener if you have well-water. 3 Minimize your use of bleach altogether.

Output Passage A or Passage B:",

"generated_text": "Passage B",

"prediction_score": -0.0025123630184680223
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