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Abstract

Federated Multilingual Modeling (FMM) plays
a crucial role in the applications of natural lan-
guage processing due to the increasing diver-
sity of languages and the growing demand for
data privacy. However, FMM faces limitations
stemming from (1) the substantial communica-
tion costs in networking and (2) the conflicts
arising from parameter interference between
different languages. To address these chal-
lenges, we introduce a communication-efficient
federated learning framework with low-rank
adaptation and language family clustering for
Multilingual Modeling (MM). In this frame-
work, we maintain the weights of the base
model, exclusively updating the lightweight
Low-rank adaptation (LoRA) parameters to
minimize communication costs. Additionally,
we mitigate parameter conflicts by grouping
languages based on their language family af-
filiations, as opposed to aggregating all LoRA
parameters. Experiments demonstrate that our
proposed model not only surpasses the baseline
models in performance but also reduces the
communication overhead. Our code is avail-
able at https://github.com/zhihan-guo/FedLFC.

1 Introduction
Multilingual modeling is increasingly important in
natural language processing (NLP) as a result of the
growing diversity of languages used online (Lim-
isiewicz et al., 2023; Guo et al., 2024). However,
gathering multilingual data can prove prohibitively
expensive due to its distributed nature and data pri-
vacy concerns (Wang et al., 2022; Gala et al., 2023).
To address this challenge, Federated Learning (FL)
is employed to train a multilingual model across
various institutions and data sources (Chen et al.,
2023; Zhang et al., 2023b; Fu and King, 2023).
The fundamental concept of FL revolves around
the exchange of model parameters rather than the
transmission of sensitive data, thereby preserving
data privacy (Zhang et al., 2023c; Xu et al., 2023).

Figure 1: Traditional Federated Learning (FL) encoun-
ters two primary challenges in the context of Federated
Multilingual Modeling (FMM): huge communication
cost and parameter conflicts.

Nevertheless, traditional FL frameworks en-
counter two primary challenges in the context of
Federated Multilingual Modeling (FMM), as illus-
trated in Figure 1: (1) Huge communication cost:
The acquisition of multilingual knowledge necessi-
tates the expansion of pre-trained language models
(PLMs), substantially increasing communication
costs due to the extensive model parameters re-
quired to be transferred across clients (Kim et al.,
2023). (2) Parameter conflicts: FMM naturally
encounters non-IID (Non-Independently and Iden-
tically Distributed) issues (Zhang et al., 2023a),
exemplified by significant distribution shifts be-
tween languages with diverse linguistic systems
and cultures, such as English and Chinese. Em-
ploying a single model for multiple language tasks
can negatively affect performance (Xu et al., 2022)
due to conflicting optimizations (Liu et al., 2023;
Chronopoulou et al., 2023).

To address the aforementioned challenges, we in-
troduce FedLFC, a communication-efficient frame-
work for FMM that incorporates Low-Rank Adap-
tation (LoRA) and language family clustering

1519



(LFC), as depicted in Figure 2.
Federated Fine-tuning with Low-Rank Adap-
tion: Inspired by the success of parameter-efficient
fine-tuning (PEFT) (Houlsby et al., 2019; Ruder
et al., 2022; Sung et al., 2022; Hu et al., 2023),
FedLFC leverages LoRA to fine-tune a concise
set of parameters, thereby preserving the major-
ity of original PLMs’ parameters unchanged. This
strategy significantly reduces the communication
overhead of FL, marking, to our knowledge, the
first application of LoRA within the FL context.
Language Family Clustering: To alleviate the in-
terference between different languages, we employ
Language Family Clustering (LFC), grouping lan-
guages based on their familial ties, as shown in
Figure 3. This strategy involves both clients and
servers in maintaining and separately optimizing a
set of LoRA parameters for each language cluster.

Extensive evaluations across three language
tasks, i.e. language modeling, machine translation,
and text classification, demonstrate that FedLFC
not only outperforms a variety of baseline methods
in performance but also achieves a significant re-
duction in communication overhead, e.g., reducing
training parameters by a factor of 100 compared to
traditional full-finetuning approaches.

2 Related Work

2.1 Federated Learning in NLP

Federated learning (FL) (McMahan et al., 2017;
Konečný et al., 2016) is a decentralized machine
learning paradigm including a central server and
multiple clients. Due to data privacy issues, the raw
data of each client is stored respectively. During
the model training process, instead of data, parame-
ters are exchanged among clients (Lin et al., 2022).
The performance of FL has been impeded by the
not Independently and Identically Distributed (non-
IID) nature of data distribution, which causes in-
accuracies in comparison to centralized training
(Kairouz et al., 2021). In recent years, there has
been an increasing number of federated multilin-
gual models used in various multilingual language
modeling tasks, including medical transcript analy-
sis (Manoel et al., 2023), knowledge composition
for multilingual natural language understanding
(Wang et al., 2022), pre-trained models for mul-
tilingual federated learning (Weller et al., 2022),
multilingual emoji prediction (Gamal et al., 2023),
and machine translation (Liu et al., 2023). How-
ever, the large amount of information exchanged

between the server and clients during the model
training process reduces training efficiency. Ex-
isting solutions based on adapter tuning introduce
inference latency. In this paper, we inject LoRA
(Hu et al., 2022), a parameter-efficient fine-tuning
method to reduce the number of trainable param-
eters by a factor of 100 and the GPU memory re-
quirement by a factor of 3.

2.2 Parameter-efficient Fine-tuning

Parameter-efficient Fine-tuning (PEFT) aims to
freeze most of the parameters in pre-train language
models (PLMs) and fine-tune only a lightweight
subset of the parameters or a fraction of the param-
eters for downstream tasks (Zhang et al., 2023d;
Houlsby et al., 2019; Li and Liang, 2021; Hu et al.,
2022; Ben Zaken et al., 2022). The existing PEFT
methods can be categorized into three distinct
groups (Ding et al., 2022). Firstly, addition-based
methods add extra trainable parameters that do not
exist in the original model. However, adapters
(Houlsby et al., 2019; Hu et al., 2023) introduce
inference latency; and prefix-tuning (Li and Liang,
2021) cannot take long input sequences. Sec-
ondly, specification-based methods, including Bit-
Fit (Ben Zaken et al., 2022) and diff pruning (Guo
et al., 2021), involve the designation of specific
parameters within the original model or process
as trainable, while keeping others frozen. Thirdly,
reparameterization-based methods, such as LoRA
(Hu et al., 2022), transform existing parameters into
a more parameter-efficient form through reparame-
terization techniques. Nevertheless, as reported by
Zhang et al. (2023d), the incorporation of PEFT
models has been found to diminish the performance
of language models. Our experimental results also
corroborate this observation. The issue arises due
to parameter conflicts between different languages.

2.3 Connection to Prior Works

Our methodology incorporates elements previously
seen in research but applies them innovatively to
the demanding task of Federated Multilingual Mod-
eling (FMM). We are among the first to utilize Low-
Rank Adaptation (LoRA) and language clustering
in this context. Distinctly, our work diverges from
concurrent research like (Babakniya et al., 2023),
which examines Parameter-Efficient Fine-Tuning
(PEFT) in Federated Learning (FL) for language
tasks not targeting multilingual challenges, high-
lighting the novelty of applying LoRA in multilin-
gual settings — a largely unexplored area. Contrary
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to (Zhang et al., 2023d), which lacks consideration
for the FMM framework and clustering strategies,
our study not only addresses FMM but also demon-
strates the efficacy of combining LoRA with clus-
tering, showcasing a 50% reduction in trainable
parameters compared to the Adapter method. Fur-
thermore, while (Liu et al., 2023) employs a simi-
lar clustering approach with Adapter, our findings
reveal LoRA’s superior performance, halving the
training parameters required to 2.5 million. Our
comprehensive investigation spans language mod-
eling, machine translation, and text classification
tasks, offering significant insights into FMM. Al-
though we leverage pre-trained models and datasets
from (Weller et al., 2022) for evaluation, our pri-
mary contributions lie in the novel application and
effectiveness of LoRA and clustering strategies
within the FMM domain.

3 Methodology
3.1 Federated Multilingual Modeling
We begin by introducing the formulation of Feder-
ated Multilingual Modeling (FMM) (Weller et al.,
2022). Given N language datasets {Dj}Ni=1, the
goal of FMM is to collaboratively train a multilin-
gual FL model that achieves high performance in
the downstream tasks. Specifically, in the setting
of FMM, we assume there are N client {Ci}Ni=1.
Each client Ci owns only one language Di and the
different client has different languages. Let Θi

be the trainable parameters of the local model in
Ci. At each training round l, the clients train the
local FL model with parameter Θ(l) on their own
dataset Di and then send parameters to the server
S. The server S then aggregates these parameters
to generate the global parameters Θ(l+1) and sends
Θ(l+1) to all clients for the subsequent training
round. FedAvg is employed for aggregation by de-
fault (McMahan et al., 2017) and is computed as
follows:

Θ(l+1) =

N∑

i=1

1

N
Θ

(l)
i . (1)

3.2 Federated Efficient Fine Tuning with
Low-Rank Adaption

In FMM, training the entire FL model incurs sub-
stantial communication costs as it involves com-
puting/exchanging a large number of parameters
through the networks. The success of fine-tuning
on pre-trained language models (PLMs) motivates
us to explore adjustment of the small portion of
parameters in the FMM.

Figure 2: The overall framework of FedLFC. FedLFC
is a communication-efficient framework designed for
Federated Multi-lingual Learning, comprising two key
designs: federated low-rank fine-tuning and LFC ap-
proach.

FMM with Low-Rank Adaption. It has been
shown that PLMs exhibit a low “intrinsic dimen-
sion" when adapting to specific tasks (Aghajanyan
et al., 2021) and can still learn efficiently despite a
random projection to a smaller subspace. Inspired
by this, in FMM, we hypothesize the local updates
to the weights Θ for each client also have such
low “intrinsic rank” during training. Therefore we
employ the Low-Rank Adapter (LoRA) for effi-
cient FMM fine tuning. Specifically, instead of
training and exchanging Θ for each client, we only
adjust the parameters of adapter ∆Θ in propaga-
tion. Specifically, the forward process for the linear
layer in the FMM model is computed as follows:

h = Θx+∆Θx = BAx, (2)

where x represents the output of the previous layer,
h is the hidden state. Note that Θ ∈ Rd×k is param-
eters of the PLM used in the local model, which
is frozen. ∆Θ is the parameters of the adapter,
which is updated during training rounds. ∆Θ
can be factorize into two matrix B ∈ Rd×r and
A ∈ Rr×k As the intrinsic rank r ≪ min(d, k) is
small, ∆Θ = BA has fewer parameters to com-
municate.
Federated Parameter-Efficient Fine Tuning. Our
approach involves freezing a pre-trained model and
solely training adapters, which is more parameter-
efficient. For each client Ci, we add a LoRA mod-
ule with trainable parameter ∆Θi in parallel to the
PLMs parameter Θi. In each training round l, we
freeze the parameters of the PLM, Θ(l)

i and only
update LoRA parameters ∆Θ

(l)
i . At the end of

each training round, clients transfer their updated
LoRA parameters to the server. When the server
receives the parameters of all clients, it aggregates
LoRA parameters as

∆Θ(l+1) =
N∑

i=1

1

N
∆Θ

(l)
i . (3)
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3.3 Updating LoRA Parameters with
Language Family Clustering

The presence of languages from different sources
in diverse distributions introduces a non-i.i.d. (non-
independent and identically distributed) nature,
which leads to conflicts when aggregating param-
eters trained on different datasets, denoted as Di.
The update of the parameter Θi from one client
may have an adversarial effect on the others, yield-
ing suboptimal performance.
Language Family Clustering (LFC). To alleviate
PC in FMM, we introduce LFC. Research related
to FL has shown that clustering a subset of clients
that share a similar distribution strategy can reduce
the PC (Vahidian et al., 2023; Ruan and Joe-Wong,
2022; Liu et al., 2023). Typical methods employ
heuristic prior knowledge to determine the group
of parameter aggregation. In language modeling,
languages can be categorized together based on
linguistic information, forming language families.
Following the language family clustering in (Paul
et al., 2009). We aggregate LoRA parameters using
language family clusters as shown in Figure 3, i.e.,
Germanic (including English and German), Italic
(including Spanish, French, and Portuguese), Balto-
Slavic (including Russia, Polish, Czech and Lithua-
nian), Sino-Tibetan (including Chinese), Uralic (in-
cluding Finnish), Afro-Asiatic (including Arabic),
and Japonic (including Japanese).

Let {Gm}Mm=1, (M ≤ N) denotes the set of fam-
ily in taxonomy. Each Gm contains a set of index i
indicating the i-th clients with datasets Di belong
to the m-th language family. The aggregation in
Equation 3 then change to

∆Θm,(l+1) =
∑

i∈Gm

1

|Gm|∆Θ
(l)
i . (4)

Note that we have M LoRA adapters associated
with different language families Gm. We use corre-
sponding ∆Θm,(l+1) for inference in downstream
tasks with specific language. The overall algorithm
is shown in Algorihtm 1.

4 Experiment
Tasks and Datasets. We evaluate our model in
three takes i.e., Language Modeling (LM), Ma-
chine Translation (MT), and Text Classification
(TC) using four datasets i.e., Europarl, MTNT, UN
Corpus, and News Classification. The statistics of
each dataset are shown in Table 4. We detail the
description of each dataset in Appendix 4.

Language Families

Indo-European

Germanic
English (En)

German (De)

Italic

Spanish (Es)

French (Fr)

Portuguese (Pt)

Balto-Slavic

Russia (Ru)

Polish (Pl)

Czech (Cs)

Lithuanian (Lt)

Sino-Tibetan Chinese (Zh)

Uralic Finnish (Fi)

Afro-Asiatic Arabic (Ar)

Japonic Japanese (Ja)

Figure 3: Language families form (Paul et al., 2009).

Evaluation Metric. For the language modeling
task, we use perplexity (PPL) as the evaluation
metric (Weller et al., 2022). For neural machine
translation task, we use BLEU as evaluation met-
rics, using ScareBLEU package (Post, 2018). For
the text classification task, we use accuracy as an
evaluation metric.
Experiment Settings. We use different pre-trained
models for different tasks i.e., mBERT1 (Sanh et al.,
2019; Devlin et al., 2019) for language modeling,
M2M1002 (Fan et al., 2021) for machine transla-
tion, and XLM-RoBERTa3 (Conneau et al., 2019)
for text classification. A detailed setting including
system and hyperparameters is in Appendix A.2.
Baselines. We perform the experiment on three
different settings i.e., Centralized Model, FedAvg,
and Standalone. The centralized model employs
centralized training (Weller et al., 2022), where all
data is collected in one place. FedAvg employs
Federated Averaging (McMahan et al., 2017) train-
ing within the federated learning framework, di-
viding data across different clients. Both of them
train a conventional multilingual model with all
parameters. Standalone setting trains data exclu-
sively in one language and tests its performance
across all languages, demonstrating a scenario
where a model is trained using data from a single
client (Weller et al., 2022). To show the superi-
ority of LFC and LoRA, we further freeze param-
eters of PLMs in the setting of Centralized and
FedAvg. We train LoRA (Hu et al., 2022) and typi-
cal Adapter (Houlsby et al., 2019) without LFC.

4.1 Main Results
In this section, we discuss the results and observa-
tions in Table 1, 2, and 3 respectively. Overall, our

1https://huggingface.co/distilbert-base-multilingual-
cased

2https://huggingface.co/facebook/m2m100_418M
3https://huggingface.co/FacebookAI/xlm-roberta-base
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Table 1: Results for FL experiments on the LM task. The standard deviation (std) is reported Table 5, 6.

# TP ↓ UN ↓ Europarl ↓
Method En Es Zh Ru Ar Fr Avg En Cs Lt Es Pl Fi Pt De Avg

Centralized - 7.4 4.8 6.9 3.9 5.2 4.6 5.6 9.8 3.8 4.8 6.0 3.9 5.8 9.2 8.4 5.9
+ Adapter - 10.4 6.2 9.0 4.7 7.2 5.9 7.0 10.6 7.1 8.2 7.3 5.8 7.6 7.6 7.9 7.7
+ LoRA - 11.3 6.7 9.7 5.0 7.6 6.4 7.5 10.7 6.9 8.0 7.3 5.7 7.4 7.5 8.0 7.6

Standalone - 33.0 16.1 43.0 10.3 10.8 14.0 25.4 9.4 2.8 2.6 4.3 2.8 3.0 3.7 3.5 4.0

FedAvg 135.4M 8.7 4.2 5.4 4.1 4.2 5.1 5.1 10.4 6.4 9.2 5.9 5.9 7.8 7.5 7.9 7.7
+ Adapter 2.5M 22.8 14.9 17.0 9.9 17.2 14.3 15.5 12.0 10.6 14.2 8.3 7.5 10.7 9.4 9.2 10.1
+ LoRA 1.2M 10.8 6.6 9.3 5.0 8.1 6.3 7.5 11.4 8.8 11.3 7.8 6.6 9.3 8.5 8.8 8.9

FedLFC 1.2M 9.4 5.6 8.0 4.0 6.1 5.1 6.4 10.4 6.1 6.3 7.1 5.4 6.4 7.2 7.7 7.1

Table 2: Results for FL experiments on the machine translation task.
# TP ↓ MTNT ↑ UN ↑

Method En-Fr En-Ja Avg En-Fr Ar-Es Ru-Zh Avg
Centralized - 32.2±0.5 32.3±0.2 32.1±0.7 39.3±0.6 37.5±0.9 24.0±0.2 33.8±0.6
+ Adapter - 31.9±0.5 30.4±0.3 31.7±0.1 36.9±0.9 34.0±0.6 20.3±0.2 30.4±0.3
+ LoRA - 32.3±0.6 32.5±0.2 32.2±0.6 37.6±0.3 34.9±0.3 20.2±0.2 31.3±0.6

Standalone - 27.1±0.5 28.1±0.7 27.6±0.6 34.6±0.5 33.8±0.5 18.5±0.6 29.0±0.4

FedAvg 483.9M 32.9±0.2 33.3±0.8 32.9±0.6 38.2±0.4 35.9±0.3 21.1±0.1 31.1±0.7
+ Adapter 12.7M 32.6±0.4 33.0±0.2 32.6±0.6 35.8±0.9 31.9±0.6 19.2±0.8 29.2±0.4
+ LoRA 9.4M 33.3±0.6 32.5±0.5 33.2±0.8 36.3±0.6 32.7±0.5 19.8±0.7 29.5±0.7

FedLFC 9.4M 34.0±0.2 33.6±0.1 33.8±0.4 38.7±0.7 37.9±0.5 22.1±0.2 32.9±0.1

Table 3: Results for FL experiments on the text classification task.
Method # TP ↓ En ↑ Es ↑ Fr ↑ De ↑ Ru ↑ Avg ↑
Centralized - 93.5±0.7 86.3±0.5 82.9±0.3 89.6±0.1 88.5±0.4 88.1±0.2
+ Adapter - 92.7±0.4 86.7±0.6 81.7±0.1 88.5±1.0 87.4±0.5 87.4±0.3
+ LoRA - 91.8±0.4 83.7±0.3 80.4±0.5 86.4±0.4 85.3±0.1 85.5±0.1

Standalone - 22.8±1.2 40.8±0.7 40.8±0.1 40.8±0.5 77.1±0.2 44.5±0.3

FedAvg 278.1M 90.7±0.4 84.3±0.2 80.5±0.3 87.6±0.1 83.4±0.5 85.3±0.2
+ Adapter 5.4M 91.5±0.5 85.7±0.7 79.1±0.2 86.9±0.7 81.3±0.8 84.9±0.7
+ LoRA 2.5M 93.8±0.3 85.8±0.6 80.7±0.3 89.4±0.7 86.7±0.3 87.3±0.2

FedLFC 2.5M 93.5±0.1 86.6±0.1 82.7±0.5 90.1±0.1 91.0±0.1 88.7±0.1

approach demonstrates superior performance com-
pared to other FL methods in most tasks. Following
are several key observations.
FMM Model Outperform Standalone. The stan-
dalone model serves as the lower performance
bound for each task. Our experimental results
demonstrate that a majority of FedAvg models
outperform the standalone model. This observa-
tion highlights the necessity of FMM for language
model training in real-world scenarios, as it enables
the using the training data without data barriers.
Parameters Efficient FT vs. Full-Parameters FT.
Our method employing LoRA not only matches
but in specific tasks, notably text classification (Ta-
ble 3), outperforms the full fine-tuning models. A
potential reason for this phenomenon is the inherent
over-fitting risks associated with full fine-tuning.
Lower Communication Costs. By introducing
LoRA, FedLFC consistently reduce the number
of trainable parameters by a remarkable factor of
100 compared to full fine-tuning FedAvg meth-
ods. Compared to Adapter-based PEFT methods,
FedLFC successfully halves the number of training
parameters, underscoring its superior efficiency in
federated settings.

Clustering Strategy Improves Performance. By
incorporating an LFC strategy, the performance
improvement varies significantly across different
languages. Notably, the clustering strategy proves
to be more beneficial for languages with limited
resources. In Table 1, we observe that compared
to other languages, Ar (8.1→6.1), Cs (8.8→6.1),
Lt (11.3→6.3), and Fi (9.3→6.4) exhibit a greater
decrease in perplexity (PPL). These languages are
typically associated with medium or low-resource
datasets in real-world scenarios, which inherently
provide less training data for pre-training language
models. This confirms that LFC is more effective
in low-source languages.

5 Conclusion
In the paper, we propose, FedLFC, a communica-
tion efficient federated learning framework for Mul-
tilingual Modeling. Two crucial techniques, i.e.,
Federated Efficient-Finetning with LoRA and Lan-
guage Family Clustering are introduced to solve
the problem of communication overhead and pa-
rameter conflict caused by language interference.
Experiments show that our proposed model is both
efficient and effective.
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Limitations

In this paper, we only test the approach on Bert,
M2M100 and XLM-RoBERTa PLMs. In the future,
we will conduct research on applying the approach
to Large Language Models (LLM). Secondly, we
only use the same number of data in each language
for fine-tuning. The data partition is different from
the real-world. We will validate the effectiveness
of the model on datasets with varying quantities of
different languages. Thirdly, there are other kinds
of clustering strategy, such as gradients clustering,
random clustering. Following Liu et al. (2023),
we only choose language family clustering strategy.
We will test other clustering strategy.
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2023. Tokenization impacts multilingual language
modeling: Assessing vocabulary allocation and over-
lap across languages. In Findings of the Association
for Computational Linguistics: ACL 2023, pages
5661–5681, Toronto, Canada. Association for Com-
putational Linguistics.

Bill Yuchen Lin, Chaoyang He, Zihang Ze, Hulin
Wang, Yufen Hua, Christophe Dupuy, Rahul Gupta,
Mahdi Soltanolkotabi, Xiang Ren, and Salman Aves-
timehr. 2022. FedNLP: Benchmarking federated
learning methods for natural language processing
tasks. In Findings of the Association for Compu-
tational Linguistics: NAACL 2022, pages 157–175,
Seattle, United States. Association for Computational
Linguistics.

Yi Liu, Xiaohan Bi, Lei Li, Sishuo Chen, Wenkai Yang,
and Xu Sun. 2023. Communication efficient feder-
ated learning for multilingual neural machine trans-
lation with adapter. In Findings of the Association
for Computational Linguistics: ACL 2023, pages
5315–5328, Toronto, Canada. Association for Com-
putational Linguistics.

Andrea Manoel, Mirian del Carmen Hipolito Garcia,
Tal Baumel, Shize Su, Jialei Chen, Robert Sim, Dan
Miller, Danny Karmon, and Dimitrios Dimitriadis.
2023. Federated multilingual models for medical
transcript analysis. In Proceedings of the Conference
on Health, Inference, and Learning, volume 209 of
Proceedings of Machine Learning Research, pages
147–162. PMLR.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-Efficient Learning of Deep Net-
works from Decentralized Data. In Proceedings of
the 20th International Conference on Artificial In-
telligence and Statistics, volume 54 of Proceedings
of Machine Learning Research, pages 1273–1282.
PMLR.

Paul Michel and Graham Neubig. 2018. MTNT: A
testbed for machine translation of noisy text. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing.

Lewis M Paul, Gary F Simons, Charles D Fennig, et al.
2009. Ethnologue: Languages of the world. Dal-
las, TX: SIL International. Available online at www.
ethnologue. com/. Retrieved June, 19:2011.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers.

1525

https://doi.org/10.1145/3589335.3651933
https://doi.org/10.1145/3589335.3651933
https://doi.org/10.1145/3589335.3651933
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
http://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1610.05492
https://doi.org/10.18653/v1/2023.findings-acl.350
https://doi.org/10.18653/v1/2023.findings-acl.350
https://doi.org/10.18653/v1/2023.findings-acl.350
https://doi.org/10.18653/v1/2022.findings-naacl.13
https://doi.org/10.18653/v1/2022.findings-naacl.13
https://doi.org/10.18653/v1/2022.findings-naacl.13
https://aclanthology.org/2023.findings-acl.327
https://aclanthology.org/2023.findings-acl.327
https://aclanthology.org/2023.findings-acl.327
https://proceedings.mlr.press/v209/manoel23a.html
https://proceedings.mlr.press/v209/manoel23a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html


Yichen Ruan and Carlee Joe-Wong. 2022. Fedsoft: Soft
clustered federated learning with proximal local up-
dating. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 8124–8131.

Sebastian Ruder, Jonas Pfeiffer, and Ivan Vulić. 2022.
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Algorithm 1: Cluster Aggregation
Input: The clusters set G;

Initial LoRA parameters Θ0;
Clients set {Ci}Ni=1;
The clients id list in each cluster g;
Training round L.

Output: LoRA Parameters {ΘL
i }Ni=1.

1 for i from 1 to N do
2 Initialize Θ0

i with Θ0;

3 for l from 1 to L do
4 for i from 1 to N do

// local update of client i

5 update Θl−1
i with local data;

// cluster aggregation of LoRA
parameters

6 foreach g in G do
7 Θl

g =
∑

id∈g
1
|g|Θ

l−1
id ;

8 foreach id in g do
9 Θl

id = Θl
g;

Table 4: Datasets related to three tasks.

Task Dataset # Train # Dev # Test Metric

LM Europarl 160,000 40,000 40,000 PPL
UN 300,000 30,000 30,000 PPL

MT MTNT 11,210 1,798 2,019 sacreBleu
UN 30,000 15,000 15,000 sacreBleu

TC NC 40,000 5,000 5,000 Accuracy

A Appendix

A.1 Description of Datasets
Below is a detailed description of three datasets:
News Classification. The News Classification
(NC) dataset from the XGLUE benchmark (Liang
et al., 2020) is utilized for the text classification
(TC) task. This dataset includes five languages:
English, Spanish, French, German, and Russian.
Our objective is to predict the 10 kinds of article
categories based on the article title and body, such
as finance, sports, or travel. We sample 8,000 in-
stances for training and 1,000 for evaluation or
testing.
MTNT. The Machine Translation of Noisy Text
(MTNT) dataset (Michel and Neubig, 2018) is one
of widely adopted datasets. It consists of noisy
comments on Reddit and professionally sourced
translations. <English, French> and <English,
Japanese> language pairs are utilized in our experi-
ments. Previous research has utilized this dataset to
assess the robustness of machine translation (MT)
systems against domain shifts (Li et al., 2019).
Given that FL inherently deals with client data that

exhibits inherent shifts from centralized data, our
study is well-suited to leverage this dataset.
UN Corpus. The UN Corpus (Ziemski et al., 2016)
is the initial parallel corpus comprised of United
Nations documents provided by the original cre-
ator. It consists of UN documents manually trans-
lated over the past 25 years (1990 to 2014) and
encompasses the six official UN languages: Arabic,
Chinese, English, French, Russian, and Spanish.
We make use of this dataset for language modeling
(LM) and machine translation (MT) tasks. In the
LM task, we employ 50,000 instances per language
for training data and allocate 5,000 instances for
validation or testing. As for the MT task, we have
three language pairs: <English, French>, <Ara-
bic, Spanish>, and <Russian, Chinese>. During
training, we sample 10,000 instances, while 5,000
instances are set aside for evaluation purposes.
Europarl. We utilize the Europarl corpus (Koehn,
2005), which comprises transcripts from European
Union meetings, as our data source. The dataset
comprises parallel text in 11 languages, from which
we gather data samples for the language modeling
(LM) task. Specifically, we collect data samples
from 8 languages: English, Spanish, Portuguese,
French, German, Finnish, Polish, Lithuanian, and
Czech. To facilitate training, we extract 20,000
instances, while reserving 5,000 instances for vali-
dation or testing.

A.2 Training Details
We have employed FedLab 4 (Zeng et al., 2023) as
our federated framework. The training method-
ology outlined in (Weller et al., 2022) was fol-
lowed. The maximum sequence length was set
to 512. These experiments were conducted on a
4 GPU cluster comprising A100 GPUs, with each
GPU having 80GB of memory. The AdamW opti-
mizer was employed. Each client completed a full
epoch of local learning before synchronizing with
the server. To enhance performance, four different
learning rates (1e-4, 5e-4, 1e-3, 5e-3) were utilized,
with 5e-4 yielding the best results. The model was
trained for 20 epochs for the language modeling
task, 25 epochs for the machine translation task,
and 30 epochs for the text classification task. In
FL training, FedAvg was used as the learning al-
gorithm. The adapter bottleneck was set to 128.
Within the LoRA module, the rank was set to 64,
alpha to 32, and dropout to 0.1.

4https://github.com/SMILELab-FL/FedLab/
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Table 5: Results for LM experiments on the UN Corpus.
Method # TP ↓ En ↓ Es ↓ Zh ↓ Ru ↓ Ar ↓ Fr ↓ Avg ↓
Standalone - 33.0±0.8 16.1±1.2 43.0±1.5 10.3±0.8 10.8±0.2 14.0±0.3 25.4±0.9

Centralized - 7.4±0.2 4.8±0.4 6.9±0.2 3.9±0.1 5.2±0.3 4.6±0.3 5.6±0.3
+ Adapter - 10.4±0.6 6.2±0.5 9.0±0.2 4.7±0.5 7.2±0.4 5.9±0.2 7.0±0.3
+ LoRA - 11.3±0.5 6.7±.7 9.7±1.0 5.0±0.5 7.6±0.3 6.4±0.1 7.5±0.6

FedAvg 135.4M 8.7±0.2 4.2±0.5 5.4±0.1 4.1±0.2 4.2±0.7 5.1±0.5 5.1±0.6
+ Adapter 2.5M 22.8±0.5 14.9±0.5 17.0±0.4 9.9±0.5 17.2±0.1 14.3±0.7 15.5±0.6
+ LoRA 1.2M 10.8±0.9 6.6±0.3 9.3±0.5 5.0±0.6 8.1±0.5 6.3±0.6 7.5±0.8

FedLFC 1.2M 9.4±0.3 5.6±0.2 8.0±0.4 4.0±0.1 6.1±0.2 5.1±0.1 6.4±0.2

Table 6: Results for LM experiments on the Europarl.
Method # TP ↓ En Cs Lt Es Pl Fi Pt De Avg
Standalone - 9.4±0.9 2.8±0.4 2.6±1.2 4.3±0.6 2.8±0.5 3.0±0.2 3.7±0.6 3.5±0.8 4.0±0.2

Centralized - 9.8±0.5 3.8±0.6 4.8±0.1 6.0±0.2 3.9±0.8 5.8±0.4 9.2±0.6 8.4±0.5 5.9±0.5
+ Adapter - 10.6±0.6 7.1±0.5 8.2±0.5 7.3±0.2 5.8±0.8 7.6±0.8 7.6±0.5 7.9±0.5 7.7±0.2
+ LoRA - 10.7±0.8 6.9±0.9 8.0±0.2 7.3±0.2 5.7±0.6 7.4±0.4 7.5±0.5 8.0±0.8 7.6±0.6

FedAvg 135.4M 10.4±0.6 6.4±0.5 9.2±0.2 5.9±0.1 5.9±0.3 7.8±0.6 7.5±0.5 7.9±0.8 7.7±0.6
+ Adapter 2.5M 12.0±0.8 10.6±0.2 14.2±0.6 8.3±0.4 7.5±0.8 10.7±0.2 9.4±0.4 9.2±0.6 10.1±0.5
+ LoRA 1.2M 11.4±0.8 8.8±0.6 11.3±0.4 7.8±0.5 6.6±0.2 9.3±0.5 8.5±0.8 8.8±0.6 8.9±0.4

FedLFC 1.2M 10.4±0.3 6.1±0.4 6.3±0.2 7.1±0.1 5.4±0.5 6.4±0.2 7.2±0.7 7.7±0.5 7.1±0.4
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Figure 4: Benchmark Result on Text Classification Task.

A.3 Extra Observation in the Experiment.
FL Methods Outperforms Centralized methods.
In general, centralized models are considered as

the upper bound of each task. However, Weller
et al. (2022) show that FedNLP, FedAvg-model
outperforms centralized-model. We hypothesize
that the phenomenon is a result by parameter con-
flict. While there are shared commonalities, dif-
ferent languages also have distinct characteristics.
Consequently, the aggregation of parameters from
all languages can potentially interfere with the spe-
cific parameters of a particular language (Bari et al.,
2021), resulting in a negative impact on transfer
performance. The phenomenon is also observed in
three tasks of our experiments.
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