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Abstract

Recent research on financial domain large lan-
guage models (LLMs) progress by applying
instruction tuning to general-domain LLMs,
which are known for their powerful reasoning
and generation capabilities. However, special-
ized domains such as finance and legal are re-
plete with arcane terminology and require spe-
cialized knowledge, resulting in a diminished
user understanding of the outputs generated by
LLMs. Therefore, it is crucial to augment user
comprehension by accompanying the model-
generated responses with detailed rationales.
Nevertheless, previous works focus primarily
on training to generate the answer, failing to
generate appropriate rationales in the financial
context. Therefore, we propose FINALE, a fi-
nancial instruction tuning dataset that includes
high-quality rationales generated through the
use of a Chain-of-Thought (CoT) prompting
and quality filtering. A model trained on FI-
NALE shows an average improvement of 9%
across nine sub-tasks compared to models
trained on other instruction tuning datasets. Ad-
ditionally, human evaluation results show that
the comprehensibility of outputs from models
trained on FINALE is rated four times higher.
Through various analytical experiments, we
demonstrate the effectiveness of FINALE and
emphasize the importance of training models
to generate high-quality rationales.

1 Introduction

Recent advancements in Large Language Models
(LLMs), such as LLaMA (Touvron et al., 2023),
GPT-4 (OpenAI et al., 2024), and Alpaca (Taori
et al., 2023), have generated significant interest
in their application across diverse domains. Re-
searchers are actively exploring how these models’
powerful generative capabilities can be leveraged to
tackle various of tasks. Notably, using instruction
tuning methodologies (Wei et al., 2022), LLMs
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are fine-tuned to perform various tasks through
domain adaptation (Bao et al., 2023; Yue et al.,
2023a). In the financial domain, downstream tasks
are defined, training data is compiled, and general-
domain LLMs are fine-tuned to enhance perfor-
mance across multiple tasks through by applying
instruction tuning (Wu et al., 2023a; Wang et al.,
2023; Xie et al., 2023).

Most tasks evaluated within the finance domain
generate short answers. However, finance docu-
ments are characterized by specialized knowledge
and rare words (Mik, 2017), making it difficult
for users to comprehend the outputs generated by
LLMs in financial tasks (Misheva and Osterrieder,
2023; Hicham Sadok and Maknouzi, 2022). There-
fore, it is essential to verify 1) whether the finan-
cial knowledge is understood and 2) whether the
answers are derived based on correct reasoning.
However, previous studies overlook these consider-
ations.

We think adding reasoning steps that serve as
rationales to short answers is a feasible alterna-
tive. In the general domain, enhancing the quality
and length of reasoning used in training data im-
proves model performance (Wang et al., 2022; Sanh
et al., 2022; Mukherjee et al., 2023). Similarly, In-
vestLM (Yang et al., 2023b) enhances performance
by utilizing long answers in its training data. How-
ever, it does not apply the concept of rationales that
consider the constructed questions and context. Ad-
ditionally, this method requires substantial human
resources because it relies on manually curated se-
lections.

In this study, we introduce FINALE, a dataset
that provides rationales for texts generated in the
finance domain. Additionally, we present a con-
struction pipeline that aims to develop high-quality
rationales with minimal human effort.

When trained with the developed FINALE, it ex-
hibits an average performance enhancement of 9%
over other instruction-tuned models. This aligns
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with findings in the general domain that training
models to generate reasoning steps improves per-
formance (Wei et al., 2023; Nye et al., 2021; Zhou
et al., 2023b; Gao et al., 2023), and marks the first
study to demonstrate its applicability in the finan-
cial domain. Figure 3 shows that models trained
on FINALE exhibit an average win rate four times
higher than the baseline model in human evaluation
comparisons of rationale quality. This demonstrates
that training with high-quality rationales enhances
user comprehension.

Additionally, Son et al. (2024); Bi et al. (2024)
report a degradation in general performance when
domain-specific LLMs are trained with instruction
tuning. Yet, models trained with FINALE exhibit
less degradation in performance compared to the
baseline model. The contributions of this research
can be summarized as follows:

• We propose FINALE, a dataset that enriches
short answers in the finance domain with high-
quality rationales.

• We provide a pipeline for constructing ratio-
nales with minimal human effort.

• Our evaluation results indicate that models
trained with FINALE demonstrate improved
performance and enhanced comprehensibility
of generated text compared to those trained
with other instruction-tuning datasets.

2 Background

2.1 Finance-Specific LLMs

Traditional financial language models have been
studied in various scenarios based on BERT (De-
vlin et al., 2019), a representative encoder-based
pre-trained model. These studies have focused on
Named Entity Recognition (Nakayama and Wan,
2017), News Sentiment Analysis (Araci, 2019),
and Text Summarization (La Quatra and Cagliero,
2020).

The advancement of LLMs such as Chat-
GPT (OpenAI, 2022), GPT-4, Alpaca, and LLaMA
has led to research applying their reasoning and
generation capabilities to the financial domain. One
of the primary methods for domain adaptation of
these LLMs is instruction tuning (Wei et al., 2022),
which involves fine-tuning LLMs using various
instructional data to achieve desired behavioral pat-
terns (Bao et al., 2023; Yue et al., 2023a). A no-
table example related to this is BloombergGPT

(Wu et al., 2023b), which proposes a 50 billion
parameter language model trained on a finance-
specific corpus. However, the non-disclosure of
the dataset poses challenges for further develop-
ment of financial LLMs. To address this issue, re-
search has focused on training on small LLMs (Son
et al., 2023) and multi-task training (Wang et al.,
2023; Xie et al., 2023) for specific financial tasks
using publicly available financial data. Specifically,
FinGPT adopts a data-centric approach and trains
using LoRA (Hu et al., 2021), providing useful re-
sources for researchers to develop their financial
LLMs. InvestLM constructs its training data by
manually collecting long answers based on results
that extended reasoning steps significantly improve
performance (Wang et al., 2022; Sanh et al., 2022;
Mukherjee et al., 2023).

Our study deviates from previous research in
the form of the target answers for finance LLMs.
Most studies train models to generate short an-
swers, which do not provide the rationales before
the final answers. We further construct rationales
suitable for the financial context. Additionally, we
enhance quality by using filtering methods rather
than manually selecting all data, minimizing hu-
man resources.

2.2 Chain-of-Thought Fine-tuning

Chain-of-Thought prompting (CoT) (Wei et al.,
2023) is a method that encourages the model to
generate reasoning steps before providing an an-
swer. This approach effectively enhances the rea-
soning capabilities of language models (Nye et al.,
2021; Zhou et al., 2023b; Gao et al., 2023). Fur-
thermore, CoT-Collection (Kim et al., 2023a) has
shown that training models to generate reasoning
steps improves both zero-shot and few-shot per-
formance in the general domain. Inspired by this,
we aim to construct an instruction tuning dataset
that includes high-quality rationales to assist the
model’s reasoning capabilities in the financial do-
main. Through this approach, we seek to enhance
both the performance of the model and the quality
of the generated rationales, improving user com-
prehension.

3 FINALE

3.1 Task Overview

Our work extensively addresses whether includ-
ing rationales for diverse forms, such as numbers
and tables, in addition to the traditional text-based

90



Step1. Creating Seed Rationale Data Step2. Dynamically Generating Rationales Step3. Quality Filtering
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Figure 1: Overview of the FINALE creation pipeline consisting of 1) Creating seed rationale data and 2) Dynamically generating
rationales and 3) Quality filtering.

Dataset Sub-Task # of Rationale (BF) # of Rationale (AF)

Sentiment Analysis

(Malo et al., 2014) Sentiment Analysis (FPB) 4836 2888 (-41%)
(Organizers) Impact Type Prediction (ESG) 790 289 (-63%)

Numerical Reasoning

(AiHUB, 2023b)
Arithmetic (Arith.) 23064 5368 (-76%)
Extraction (Extract.) 21000 11061 (-47%)
Comparison (Comp.) 23016 14844 (-35%)

Question Answering

(AiHUB, 2023a)
Multiple-Choice Question Answering (MCQA) 5265 4715 (-20%)
Extractive Question Answering (EQA) 8248 652 (-92%)
Binary Question Answering (BQA) 6368 4730 (-25%)

(AiHUB, 2023c) Table Question Answering (TQA) 50000 31886 (-36%)

Total 98681 76433 (-23%)

Table 1: An overview of the FINALE dataset. # of Rationale (BF) denotes the total number of rationales generated, # of
Rationale (AF) denotes the total number of rationales after the filtering process.

instruction tuning dataset, enhances generative ca-
pabilities in the financial domain. To this end, the
task selection criteria adhere to these principles.

Firstly, instead of selecting homogeneous tasks
to collect data, we diversify by including differ-
ent data types, such as numbers and tables. The
downstream tasks are divided into four categories,
including Numerical Reasoning (AiHUB, 2023b),
Question Answering (AiHUB, 2023a), and Table
Question Answering (AiHUB, 2023c), which re-
quire proficiency within the financial domain.

Secondly, nine sub-tasks are selected, and data
is collected to ensure coverage across diverse areas.
For example, the Sentiment Analysis task includes:
classifying the sentiment of news sentences using a
financial phrase bank and classifying risk from an
ESG perspective, considering detailed scopes. Each
sub-task comprises a dataset ranging from a mini-

mum of 790 to a maximum of 50,000 instances. For
more information about FINALE, refer to Table 1.

3.2 Dataset Creation

The objective of FINALE is to construct high-
quality rationales in addition to the existing an-
swers corresponding to contexts and questions. In-
spired by Chung et al. (2022), we generate ratio-
nales for all instances in a CoT prompt format. In
this study, the reasoning steps generated by the
model are considered as rationales for the answers.
Additionally, a three-step filtering process is ap-
plied to select high-quality rationales.

3.2.1 Creating Seed Rationale Data
Initially, the authors use GPT-4 to craft high-quality
rationales, which are later used to guide following
generations as in-context examples. Therefore, it
is necessary to select a variety of high-quality ra-



tionale types. The selection criteria adhere to two
main principles. Firstly, we select ten examples per
sub-task while ensuring diversity. For instance, in
the Arithmetic sub-task, Arithmetic is categorized
into addition, subtraction, multiplication, and di-
vision. The authors reviews whether instances fall
into these types and selects them in equal numbers.

Secondly, to ensure high-quality rationales, ra-
tionales are generated using GPT-4. We employ
answer-based filtering and manual review to fur-
ther filter for quality. If the final answer of a gen-
erated rationale differs from the gold answer, it is
considered low quality. Therefore, only those with
matching answers are selected. Furthermore, in-
correct arithmetic operations and brief rationales,
considered inadequate for explaining answers, are
removed.

As discussed in LIMA (Zhou et al., 2023a), man-
ually evaluating the quality and diversity of ratio-
nales ensures higher data quality when humans
select sentence-form data. For more information
about the prompts for generating seed rationales,
refer to Appendix A.

3.2.2 Dynamically Generating Rationales
The seed rationale data is used as an in-context
example within Gemini-Pro to generate rationales
for all instances. We opt to use Gemini-Pro due to
cost constraints. Nevertheless, it provides genera-
tive capabilities comparable to GPT-4, making it a
reasonable alternative (Team et al., 2023). When
generating rationales, we adhere to the following
protocol:

The diversity in instruction data, as evidenced by
WizardLM (Xu et al., 2023), has shown significant
performance improvements. Therefore, instead of
using fixed in-context examples, we dynamically
change the in-context examples and instructions
according to the principles of dynamic prompting
(Yang et al., 2023a). Five out of ten seed data are
randomly selected for the in-context examples, and
one out of five instructions is chosen at random.
This approach effectively prevent the monotony of
rationales within the dataset. For more information
about in-context example prompts for generating
rationales, refer to Appendix B.

3.2.3 Quality Filtering
We designed a selection process to guarantee
the selection of only high-quality rationales for
all generated instances. While manual review of
each instance is the most effective method to en-

sure fidelity and relevance, this approach is time-
consuming, costly, and inefficient. Therefore, an au-
tomatic filtering method is applied to all instances.
This filtering technique involves selecting ratio-
nales where the final answer included in the gener-
ated rationale matches the gold answer. For EQA
and TQA, we filtered by ROUGE score because
the answers were very long. Filtering by EM signif-
icantly reduced the data size. Instances are selected
only if their ROUGE scores exceed the threshold.
The criterion for choosing the threshold value was
established empirically through manual inspection,
determining that quality is assured when the value
is 0.6 or higher.

3.3 Dataset Analysis
As illustrated in Figure 2, FINALE proposed in this
paper consists of data that is, on average, longer
and has a more varied distribution compared to the
KOR-OpenOrca-Playti-V3 (KyujinHan) and CoT-
Collection-Ko (Kim et al., 2023b) datasets. Liu
et al. (2023) has demonstrated that the length of
instruction data is crucial in building better mod-
els. Table 2 compares the datasets’ total number
of instances and the count of unique words. FI-
NALE contains the highest number of instances
and unique words among these datasets. Moreover,
unlike the other two datasets that cover various
domains, FINALE includes a diverse vocabulary
within the confined domain of finance. A diverse
vocabulary can help improve performance (Choe
et al., 2023).

Dataset Instances Unique Words Rate

FINALE (Ours) 78k 96k 123%
KOR-Platypus-v31 34k 73k 213%
CoT-Collection-Ko 77k 89k 155%

Table 2: Comparison of number of instances and unique
words. unique words is the number of unique words after
tokenize the Mecab-Tokenizer (Kudo et al., 2004), and rate is
the ratio of the total number of unique tokens divided by the
total number of instances.

4 Experiments

4.1 Experimental setting
Baseline Models We utilize two open-source
models that show high performance on Korean
tasks as the foundation and baseline model, se-
lecting models with 7 billion parameters due to
resource limitations.

1KOR-OpenOrca-Playti-V3
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Models FPB ESG Arith. Ext. Comp. MCQA EQA BQA TQA Avg

Yi-6B-Ko 28.0 9.6 9.2 55.2 58.0 44.0 43.2 39.6 21.6 34.3
Ko-Platyi-6B 54.0 23.6 9.2 52.4 60.0 65.2 56.8 58.0 22.8 44.7

FINALE (OURS)

Single (per100) 56.8 15.2 10.0 52.0 60.0 70.8 41.2 85.6 15.6 45.2
Single (per400) 54.4 21.6 14.8 53.6 57.2 83.2 46.8 83.2 15.2 47.8

Single (All) 71.2 15.2 14.8 54.8 68.8 89.2 50.0 86.8 24.8 52.8
Multi (All) 76.0 19.6 15.6 55.6 68.4 83.6 50.0 87.2 24.8 53.4

∆ +22.0% -4.0% +6.4% +3.2% +8.4% +18.4% -6.8% +29.2% +2.0% +8.7%

Table 3: Performance of models with different samples of FINALE. The highest-scoring model per task is highlighted in bold,
and the second-highest is underlined. ∆ values indicate the percentage change in performance of FINALE trained with Full data,
compared to the Ko-Platyi-6B model.

0 50 100 150 200 250 300 350 400
0

5000

10000

FINALE (Ours)

0 50 100 150 200 250 300 350 400
0

5000

10000

KOR-OpenOrca-Platypus-v3

0 50 100 150 200 250 300 350 400
0

10000

CoT-Collection-Ko

Figure 2: Length distribution of different datasets. The X-axis
represents the number of tokens in each instance after tokeniza-
tion, and the Y-axis represents the number of instances.

Yi-6b-ko is a model that is further pre-
trained on Korean and English datasets using the
Yi-6B (Yue et al., 2023b). We chose this model
because it is recognized for its superior Korean lan-
guage comprehension among smaller-sized mod-
els, as confirmed by the Korean LLM Leader-
board (Park et al., 2023) and KMMLU (Son et al.,
2024).
Ko-Platyi-6B is a model that is instruction-

tuned using the KOR-OpenOrca-Playti-V3 dataset.
The KOR-OpenOrca-Playti-V3 dataset is a Korean
translation of the Open-Platypus dataset. The rea-
son for selecting Ko-Platyi-6B as the baseline is
that it is an instruction-tuned model, which allows
for an equivalent comparison. For more informa-
tion about the training method and hyperparame-
ters, see Appendix C.

Evaluation Method Given the varying sizes of
the evaluation datasets across different datasets, we
randomly sample 250 instances from the original
evaluation dataset for each sub-task. Consequently,
the evaluation dataset comprises 2250 instances

across the nine sub-tasks.
The evaluation prompt is assessed in a few-shot

setting rather than a zero-shot setting to measure
the maximum performance of the model. In the few-
shot setting, three in-context examples are used, se-
lected considering for the model’s maximum input
length. To ensure a fair comparison of model per-
formance, the same prompt is used for all models,
although the instructions are different for each task.
The details of the evaluation prompt can be found
in Appendix D.

To ensure precise performance measurement of
the model, sophisticated post-processing is applied
to each sub-task. For instance, in the Arithmetic
sub-task, the number following the "=" symbol in
expressions like "3+5=2" is extracted as the final
answer. For generated text that is not addressed by
post-processing, we apply the Cover EM method
(Rosset et al., 2021), a technique also used in the
existing financial LLM, FinGPT.

4.2 Experimental Results

4.2.1 Performance Comparison
The results in Table 3 demonstrate that the model
trained using FINALE (Multi) outperforms the
Ko-Platyi-6b in most sub-tasks, with an average
performance that is 20% higher than Yi-6B-Ko and
9% higher than Ko-Platyi-6B. This indicates that
training the model to generate rationales before
generating the final answers leads to more accurate
answer generation.

4.2.2 Rationale Quality Comparison
Methodology To demonstrate the efficacy of
FINALE, which is constructed to ensure high
quality, we measure the quality of generated text
from models trained using FINALE. We select
Ko-Platyi-6b, an instruction-tuned model, as the
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baseline. Three human annotators evaluate the an-
swer generated by both models according to the
assessment guidelines provided in Appendix E. Hu-
man annotators are composed of experts in eco-
nomics. Ten samples for each sub-task are ran-
domly selected for assessment.

Annotators are directed to determine the more
comprehensible rationale from different models. If
no rationale is deemed superior, evaluators score it
as a "Tie" (2). Ultimately, the average score calcu-
lated by the three annotators for each sub-task de-
termines the final score. The inter-annotator agree-
ment shows a high consistency rate of 83% on
average across sub-tasks.

Results Figure 3 indicates that outputs from the
model trained with FINALE average scored four
times higher than the baseline, demonstrating that
FINALE was significantly helpful. This finding
suggests that high-quality rationales improve the
model’s ability to reason correct answers and signif-
icantly enhance comprehension for the users view-
ing the generated text. Particularly in tasks like
ESG, EQA, and TQA, where quantitative perfor-
mance is low, the comprehensibility of the gener-
ated text is higher than that of the baseline. This
indicates that even if the model generates incor-
rect answers, a high-quality rationale increases the
likelihood of human understanding. Therefore, we
emphasize that in the finance domain, the ratio-
nale quality is as crucial as the correctness of the
answers generated by the model.

FPB ES
G

Arith
.

Ex
tra

ct.
Com

p.
MCQA

EQ
A

BQA
TQ

A

Sub Task
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Figure 3: Result of the human evaluation of rationales gen-
erated by the model trained on Yi-6B using FINALE and the
rationales generated by the Ko-Playti-6B.

5 Demonstrate the Effectiveness of Data
Construction

To demonstrate the effectiveness of the FINALE
construction method, we conduct additional experi-
ments.

5.1 Compare other learning methods

FPB

ESG

Arith.
Ext.

Comp.

MCQA

EQA
BQA

TQA

20

40

60

80

FINALE (Ours)
Only-Answer
Low-Quality

Figure 4: "FINALE" indicates training of the Yi-6B model
with full data. "Only-Answer" indicates the results of training
exclusively on answers, excluding rationales. "Low-Quality"
indicates the results of training solely with data that has been
removed through a filtering method.

Figure 4 compares the performance when using
the same dataset as FINALE but excluding ratio-
nales and using only answers (light blue area in
Figure 4) and when using data identified as low
quality during the filtering process (blue area in
Figure 4). The results show that FINALE signif-
icantly outperforms models trained solely on an-
swers in the binary classification tasks of FPB and
BQA. However, similar or significantly degraded
performances are observed in other sub-tasks. This
can be interpreted due to two factors.

Firstly, when the rationale length is excessively
long, there is a tendency to generate new labels not
specified in the task. For example, in the ESG sub-
task, the average rationale length is 475, which is
considerably longer than the average of around 100
in other tasks, leading to the generation of different
answers, such as "economic" and "environmental"
instead of the final gold answers like "indistinct,"
"opportunity" or "risk". The EQA sub-task, with
an average rationale length of 486, also indiscrimi-
nately generated answers that differ from the gold
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answer. This suggests that contrary to existing stud-
ies showing that reasoning steps improve model
generate capabilities (Wei et al., 2023; Nye et al.,
2021; Zhou et al., 2023b; Gao et al., 2023), ex-
cessively long rationales may hinder the model’s
ability to generate the final gold answer.

Secondly, the rationale for the second numeric
reasoning task emphasizes the need for specialized
explanations. The rationales of FINALE tend to
be short and concise, which do not sufficiently re-
flect the challenging nature of the numeric reason-
ing task. Therefore, numerical reasoning must con-
sider the specialized rationale of arithmetic opera-
tions and the characteristics of the finance domain,
suggesting that a sufficiently lengthy rationale is
needed to explain the final answer adequately.

Moreover, models trained with datasets classi-
fied as low-quality (blue area in Figure 4) show sig-
nificantly reduced performance across all sub-tasks,
as evidenced by Figure 4. Despite the minimal dif-
ference in data quantity between Low-Quality and
High-Quality datasets for most sub-tasks. In partic-
ular, in Extractive Question Answering (EQA), it
is observed that performance significantly declines
despite the notably large quantity of training data
from low-quality cases. This emphasizes that ra-
tionales containing incorrect answers can substan-
tially hinder model training. Therefore, the filtering
process has a significant impact on enhancing the
model’s performance.

5.2 Compare training data quantity
Table 3 presents a performance comparison based
on the quantity of training data. Specifically, Single
(per100) and Single (per400) represent results from
models trained with 100 and 400 randomly sampled
instances in each sub-task, respectively. Despite the
very small amount of data, these models surpass the
performance of the baseline Ko-Platyi-6B. This
indicates that the superior performance of FINALE
is more than merely due to the large data size.

Furthermore, when comparing the results of
training only on a single task (All) versus train-
ing on all tasks simultaneously multi-task (All),
it is found that training in a multi-task (All) set-
ting yields higher performance in all tasks except
MCQA and Comp. This indicates that more exten-
sive training on financial domain data simultane-
ously enhances performance across various tasks.
Especially, FPB and ESG are classification tasks
based on financial terminology. By training with
other sub-tasks, additional financial knowledge is

acquired, which consequently has been observed
to enhance performance.

5.3 Compare General Performance

Appendix F presents the effects of using the
domain-specific dataset FINALE on general perfor-
mance. Performance changes are observed using
the Korean benchmark dataset KMMLU (Son et al.,
2024), leading to the following key findings:

Models trained on Ko-Platyi-6B and FINALE
(Ours) exhibit lower performance compared to
Yi-6B-Ko. This aligns with previous studies sug-
gesting that Instruction Tuning can degrade gen-
eral performance and negatively impact knowledge-
based benchmarks (Son et al., 2024; Bi et al., 2024).
However, despite being a finance domain instruc-
tion tuning dataset, FINALE shows a less perfor-
mance decline than Ko-Platyi-6B.

This can be analyzed for two reasons. Firstly,
Ko-Platyi-6B, derived from translated English
datasets, may suffer from quality degradation due
to translation errors (Xia et al., 2019; Riley et al.,
2023; Yao et al., 2024). In contrast, FINALE is not
a translated dataset and ensures high data quality
through a filtering process that removes 54% of the
original dataset. Secondly, while Ko-Platyi-6B
focuses on generating diverse instructions and an-
swers, FINALE emphasizes training models on
high-quality rationales before the final answers.
These results underscore the importance of data
quality management and stringent filtering pro-
cesses, indicating that methodologies like instruc-
tion tuning that consider rationales are essential to
minimize declines in general performance.

6 Conclusion

In this paper, we propose FINALE, an instruction-
tuning dataset with high-quality rationales for the
financial domain. Furthermore demonstrate that
training the foundation model on FINALE en-
hances the generative capabilities of LLMs. No-
tably, the performance is approximately 9% better
than the baseline. Human comprehension of the
model-generated text is shown to be four times bet-
ter. Additionally, despite using only a very small
amount of data (100 or 400 instances), the perfor-
mance exceeded that of the baseline, with minimal
degradation in general performance. Through this
study, we anticipate an increased recognition of the
importance of rationales in the finance domain.
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Limitations This research is conducted solely
in Korean. However, our data generation method
applies to all languages, leaving research in other
languages as a future work. Additionally, we uti-
lized Gemini-Pro for rationale generation due to the
high API prices. However, by using more powerful
models such as GPT-4, the quality of the rationales
and performance can be further enhanced. Lastly,
due to the lack of specific criteria for rationale qual-
ity in the financial domain, this study utilizes an
automatic metric for filtering based on the final
answers. Consequently, we plan future research to
establish criteria for rationale quality suitable for
the finance domain.
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Nemanja Rakićević, Mostafa Dehghani, Fangyu Liu,
Sid Mittal, Junhyuk Oh, Seb Noury, Eren Sezener,
Fantine Huot, Matthew Lamm, Nicola De Cao, Char-
lie Chen, Gamaleldin Elsayed, Ed Chi, Mahdis
Mahdieh, Ian Tenney, Nan Hua, Ivan Petrychenko,
Patrick Kane, Dylan Scandinaro, Rishub Jain,
Jonathan Uesato, Romina Datta, Adam Sadovsky, Os-
kar Bunyan, Dominik Rabiej, Shimu Wu, John Zhang,
Gautam Vasudevan, Edouard Leurent, Mahmoud
Alnahlawi, Ionut Georgescu, Nan Wei, Ivy Zheng,
Betty Chan, Pam G Rabinovitch, Piotr Stanczyk,
Ye Zhang, David Steiner, Subhajit Naskar, Michael
Azzam, Matthew Johnson, Adam Paszke, Chung-
Cheng Chiu, Jaume Sanchez Elias, Afroz Mohiuddin,
Faizan Muhammad, Jin Miao, Andrew Lee, Nino
Vieillard, Sahitya Potluri, Jane Park, Elnaz Davoodi,
Jiageng Zhang, Jeff Stanway, Drew Garmon, Abhi-
jit Karmarkar, Zhe Dong, Jong Lee, Aviral Kumar,
Luowei Zhou, Jonathan Evens, William Isaac, Zhe
Chen, Johnson Jia, Anselm Levskaya, Zhenkai Zhu,
Chris Gorgolewski, Peter Grabowski, Yu Mao, Al-
berto Magni, Kaisheng Yao, Javier Snaider, Norman
Casagrande, Paul Suganthan, Evan Palmer, Geof-
frey Irving, Edward Loper, Manaal Faruqui, Isha
Arkatkar, Nanxin Chen, Izhak Shafran, Michael
Fink, Alfonso Castaño, Irene Giannoumis, Wooyeol
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A Rationale Generation Prompt

Below are examples of the prompts we used to generate a seed rationale for two sub-tasks: the sentiment
analysis task, which receives only one sentence as input, and the multiple-choice question answering task,
which receives context and a question. These prompts aim to instruct the model to generate appropriate
rationales for each sub-task.

### Instruction: Please classify the sentiment of the sentence as positive, negative, or neutral, and explain the reasons step by step
in Korean. Finish your answer in the following format. "Therefore, the answer is X."

### Input: During the past decade, POSCO has gradually divested noncore assets and bought several sports equipment makers,
including California-based Fitness Products International and Sparks, Nevada-based ATEC, a leading maker of baseball and
softball pitching machines.

### Response:

Figure 5: Sentiment Analysis Prompt used in Rationale Generation.

### Instruction: Please answer the question based on the context, and explain the reasons step by step in Korean. Finish your
answer in the following format. "Therefore, the answer is X."

### Context: During the first quarter, capital investment was surveyed to have increased slightly compared to the fourth quarter
of the previous year. The semiconductor sector saw an increase due to the import of manufacturing equipment such as EUV
(Extreme Ultraviolet) lithography equipment. Additionally, steel saw a slight increase due to facility maintenance during the Lunar
New Year holidays, and machinery and equipment due to the anticipation of economic recovery. On the other hand, automobiles,
displays, petrochemicals, and refining showed levels similar to the fourth quarter of the previous year. The monitoring results
indicate that capital investment is expected to increase slightly in the future. Semiconductors are expected to see a slight increase
due to the introduction of new production equipment, and petrochemicals and refining due to the gradual recovery in demand
for petroleum products. Meanwhile, automobiles, displays, steel, and machinery and equipment are expected to maintain levels
similar to the first quarter.

### Question: What is expected to slightly increase in capital investment due to the anticipated gradual recovery in demand for
petroleum products according to monitoring results?

### Options: A. Steel B. Petrochemicals/Refining C. Automobiles D. Displays

### Response:

Figure 6: Multi-Choice Question Answering Prompt used in Rationale Generation.
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B Rationale Generation In-Context Example Prompt

Below is the prompt for a sentiment analysis task for rationale generation. The purpose of the prompt is to
generate a high-quality rationale by providing five in-context examples.

### Instruction: Please classify the sentiment of the sentence as positive, negative, or neutral, and explain the reasons step by step
in Korean. Finish your answer in the following format. "Therefore, the answer is X."

### Input: During the past decade, POSCO has gradually divested noncore assets and bought several sports equipment makers,
including California-based Fitness Products International and Sparks, Nevada-based ATEC, a leading maker of baseball and
softball pitching machines.

### Response: This sentence describes how POSCO has disposed of non-core assets over the past decade and acquired a major
sports equipment manufacturer. These strategic actions reflect the strengthening of the company’s portfolio and focus on its
business, receiving positive evaluations. Therefore, the answer is positive.

### Input: Net sales of Finnish Sanoma Learning & Literature, of Finnish media group Sanoma, decreased by 3.6% in January-
June 2009 totalling EUR 162.8 mn, down from EUR 168.8 mn in the corresponding period in 2008.

### Response: The decrease in sales can be considered negative because it is generally interpreted as a negative indicator for
a company. A decline in sales can suggest a decrease in profitability, market share, and economic soundness, which can cause
concern among relevant stakeholders. This sentence is classified as having a negative sentiment because the decrease in sales is
perceived as an event that can negatively affect the performance of a company. Therefore, the answer is negative.

### Input: Vaisala Oyj Stock exchange release 26.03.2010 klo 09.00 1 (1) The Annual General Meeting of Vaisala Oyj decided
on March 25, 2010 to approve the Company’s annual accounts for 2009.

### Response: This sentence reports on the approval of the annual accounts for 2009 at the annual general meeting of Vaisala Oyj.
This reporting of facts is intended to convey information rather than evoke emotions. It does not explicitly contain elements that
are emotionally positive or negative, but simply provides information about the event of the company’s annual accounts approval.
Therefore, classifying this sentence as neutral is due to the content not being biased towards any specific emotion and being
faithful to the purpose of providing information. Therefore, the answer is neutral.

### Input: 26 October 2010 - Finnish environmental management company Lassila & Tikanoja Oyj (HEL: LAT1V), or L&T, said
today its net profit declined to EUR 20.9 m for the first nine months of 2010 from EUR 27.6 m for the same period a year earlier.

### Response: A decrease in net profit generally indicates a deterioration in corporate performance, so such news can lead to a
negative evaluation of the company. Therefore, the reason for the negative classification is that the decrease in net profit represents
concerns about the financial soundness of the company. Therefore, the answer is negative.

### Input: Finnish sports equipment maker Amer Sports Oyj (HEL: AMEAS) said today that its net loss narrowed to EUR 16.9
million (USD 22.3m) in the second quarter of 2010 from EUR 23.2 million in the corresponding period a year earlier.

### Response: The reason this statement is classified as having a positive sentiment is because the decrease in net loss signifies an
improvement in the company’s financial performance, which can send a positive signal to investors and the market. Therefore, the
answer is positive.

### Input: Over the course of 6 months, operating profit and net sales increased from 0.4 million euros to 3.2 million euros
compared to the same period in 2005.

### Response:

Figure 7: Sentiment Analysis Prompt used in Rationale Generation.
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C Training Method and Hyper parameters

We conducted fine-tuning on the Yi-Ko-6B model using a single A100 80GB GPU. For training, we
selected the AdamW (Loshchilov and Hutter, 2019) optimizer along with a linear learning rate scheduler,
setting the learning rate at 3e-4 and a batch size of 16 with a gradient accumulation of 4. Additionally, to
optimize the training process, LLaMA-Factory (Zheng et al., 2024) was utilized as the code base during
fine-tuning.

Hyperparameter Value

Model Yi-6B-Ko
Number of epochs 3

Devices 1 Tesla A100 GPU (80GB)
Learning rate 3e-4

Scheduler Linear
Batch size 16

Input max length 2,048
Output max length 512

Temperature 0.0

Table 4: Hyperparameters used for training and inference.
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D Evaluation In-Context Example Prompt

### Instruction: Please classify the sentiment of the sentence as positive, negative, or neutral.

### Input: Over a three-month period, both operating profit and net sales increased to 160,000 euros and 1.39 million euros
respectively, compared to the same quarter in 2006.

### Response: Positive tone: The use of the word "increased" suggests that the company’s performance is improving, which
conveys a positive meaning. Such increases imply the company’s profitability and potential for growth. Positive outcome: Increases
in operating profit and net sales generally indicate good financial performance and overall health of a company. This can elicit
positive responses from investors and market participants. Taking these factors into consideration, this sentence contains positive
content that reflects the improvement and financial growth of the company. Therefore, the answer is positive.

### Input: In Finland, sales decreased by 10.5% in January, while international sales fell by 17%.

### Response: Mention of sales decrease: The sentence states, "In Finland, sales decreased by 10.5% in January, while international
sales fell by 17%." A decrease in sales can negatively impact a company’s revenue and prospects for growth. Deterioration in
market conditions: The decrease in sales can occur due to a worsening of market conditions, increased competition, or internal
problems within the company. These factors can negatively affect the future growth and profitability of the company. Therefore,
the answer is negative.

### Input: According to Gran, while the company is growing, there are no plans to move all production to Russia.

### Response: The sentence conveys information about whether the company will relocate its production to Russia but does not
express a clear opinion or emotion. This sentence is interpreted as neutral since it lacks a positive or negative tone. Therefore, the
answer is neutral.

### Input: {sentence}

### Response:

Figure 8: Sentiment Analysis Prompt used in evaluation.

E Human annotation guideline

Read the question and the context, and choose which of the two rationales given is more helpful in reasoning the correct answer.
Your choice should not be based on whether you got the answer right but on whether the rationale helps you make an inference
even if you got the answer wrong.

Rationale 1 -> 1 in the selection box
Rationale 2 -> 2 in the selection box
Neither rationale is helpful -> 0 in the selection box

Context: {context}
Question: {question}
Answer: {answer}

Rationale 1: {modelA rationale}
Rationale 2: {modelB rationale}

Selection:

Figure 9: Human Annotation Guideline.
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F Compare Generation Performance

Models HUMSS STEM Applied Science Other Total

Yi-6B-Ko 39.76 40.49 39.51 41.62 40.33
Ko-PlatYi-6B 39.13 36.94 37.21 39.00 38.05
FINALE (Ours) 39.71 40.14 38.96 40.36 39.77

Table 5: The result of the General Performance comparison using the KMMLU dataset
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