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Introduction

Welcome to the 1st Workshop on the Future of Event Detection (FuturED), held as part of the 2024
Conference on Empirical Methods in Natural Language Processing (EMNLP). Our one-day event takes
place on November 15, 2024, in a hybrid format, allowing for both virtual and in-person participation in
Miami, Florida.

With the exponential growth of digital data, Event Detection (ED) has become a critical challenge in
Natural Language Processing and Data Mining, with key applications in areas such as early warning sy-
stems, emergency response, situational awareness, public health monitoring, and understanding societal
trends. Despite recent advances in Large Language Models (LLMs) and Generative AI, ED remains a
challenging problem, especially when applied across diverse domains, low-resource languages, different
data modalities, finer granularities, and extensive integrations. FuturED aims to serve as a forum for
discussing the latest advancements in ED research and applications, and exploring how this field will
evolve over the next twenty years. The workshop emphasizes bringing together researchers from interdi-
sciplinary fields who have approached ED from various angles, both in theory and in practice, to foster
a comprehensive vision of ED’s future.

We accepted seven papers to the workshop, as well as two EMNLP Findings papers, covering a wide
range of topics—from specialized ED methods to broader discussions about the field’s progress, from
text-only data to multimodal approaches, and from static learning scenarios to dynamic social network
data streams. These papers highlight the scope and depth of ongoing research, while also shedding li-
ght on the challenges and potential future directions for ED. Along with the oral presentations, FuturED
features two keynote talks from Professor Heng Ji of the University of Illinois Urbana-Champaign and
Dr. Lise St. Denis of the University of Colorado Boulder. Their talks will address key challenges and
innovations in ED while offering a forward-looking perspective on its future, particularly in the era of
LLMs and their applications across various domains.

The FuturED Organizing Committee would like to extend our sincere thanks to our keynote speakers
for their inspiring talks, the authors for their valuable contributions, and the Program Committee mem-
bers for their hard work. We are also grateful to the EMNLP 2024 Workshop Chairs for their support. We
hope this workshop and the discussions that arise will provide valuable insights for future ED research
and pave the way for further advancements in the field.

FuturED 2024 Organizers
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Joel Tetreault, Dataminr Inc.
Thien Huu Nguyen, University of Oregon
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Amanda Lee Hughes, Brigham Young University
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Keynote Talk
Event Detection: Something Olde and Something New

Heng Ji
University of Illinois at Urbana Champaign (UIUC)

2024-11-15 09:15:00 – Room: Room 1

Abstract: When the first event detection shared task was launched at the Message Understanding Con-
ference (MUC-5) in 1993, building a system to detect just one event type in one language took a month
of development. Thirty years later, we’ve seen remarkable progress: modern event detection systems can
identify over 3,000 event types across hundreds of languages and multiple data modalities—including
text, speech, images, and video. These systems now offer much higher accuracy, coverage, and por-
tability, all at a fraction of the original cost, pushing the boundaries of what’s possible in areas like
disaster management, business analytics, decision support, and beyond. While these advancements are
impressive, the exciting potential lies ahead.
In this talk, I will not only revisit the key techniques that have driven event detection forward but also
explore what the next decades could hold in the era of large language models (LLMs). I will propose
several PhD dissertation-worthy research directions that could shape the future of event detection, such
as never-ending event knowledge base construction, event-based LLM knowledge updating, corpus-level
complex event detection and analysis, multimodal event detection and knowledge integration, and emer-
ging applications in situation understanding, hypothesis generation, simulation, and predictive analytics.

Bio: Heng Ji is a professor at Siebel School of Computing and Data Science, and an affiliated faculty
member at Electrical and Computer Engineering Department, Coordinated Science Laboratory, and Carl
R. Woese Institute for Genomic Biology of University of Illinois Urbana-Champaign. She is an Amazon
Scholar. She is the Founding Director of Amazon-Illinois Center on AI for Interactive Conversational
Experiences (AICE). She received her B.A. and M. A. in Computational Linguistics from Tsinghua Uni-
versity, and her M.S. and Ph.D. in Computer Science from New York University. Her research interests
focus on Natural Language Processing, especially on Multimedia Multilingual Information Extraction,
Knowledge-enhanced Large Language Models and Vision-Language Models, and AI for Science. The
awards she received include Outstanding Paper Award at ACL2024, two Outstanding Paper Awards at
NAACL2024, “Young Scientist” by the World Laureates Association in 2023 and 2024, “Young Scien-
tist” and a member of the Global Future Council on the Future of Computing by the World Economic
Forum in 2016 and 2017, “Women Leaders of Conversational AI” (Class of 2023) by Project Voice,
“AI’s 10 to Watch” Award by IEEE Intelligent Systems in 2013, NSF CAREER award in 2009, “Best
of ICDM2013” paper award, “Best of SDM2013” paper award, ACL2020 Best Demo Paper Award,
NAACL2021 Best Demo Paper Award, Google Research Award in 2009 and 2014, IBM Watson Faculty
Award in 2012 and 2014 and Bosch Research Award in2014-2018. She was invited to testify to the U.S.
House Cybersecurity, Data Analytics, & IT Committee as an AI expert in 2023. She was invited by the
Secretary of the U.S. Air Force and AFRL to join Air Force Data Analytics Expert Panel to inform the
Air Force Strategy 2030, and invited to speak at the Federal Information Integrity R&D Interagency Wo-
rking Group (IIRD IWG) briefing in 2023. She is the lead of many multi-institution projects and tasks,
including the U.S. ARL projects on information fusion and knowledge networks construction, DARPA
ECOLE MIRACLE team, DARPA KAIROS RESIN team and DARPA DEFT Tinker Bell team. She
has coordinated the NIST TAC Knowledge Base Population task 2010-2020. She served as the associate
editor for IEEE/ACM Transaction on Audio, Speech, and Language Processing, and the Program Com-
mittee Co-Chair of many conferences including NAACL-HLT2018 and AACL-IJCNLP2022. She was
elected as the North American Chapter of the Association for Computational Linguistics (NAACL) se-
cretary 2020-2023. Her research has been widely supported by the U.S. government agencies (DARPA,
NSF, DoE, ARL, IARPA, AFRL, DHS) and industry (Amazon, Google, Bosch, IBM, Disney).
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Keynote Talk
Detecting pivotal shifts during complex wildfires: hazards,

incident response, community impacts and community
response

Lise St. Dennis
University of Colorado Boulder

2024-11-15 14:15:00 – Room: Room 2

Abstract: The impacts of wildfires are intensifying in the United States due to a combination of a war-
ming climate, policies and practices contributing to a long-term buildup of fuels on the landscape and
housing practices that continue to put more people in harm’s way. Teasing apart and making sense of
these contributing factors poses numerous challenges for researchers, land managers, and incident ma-
nagement organizations struggling to assess both our current situation and viable paths forward. Recent
advances in natural language and data synthesis techniques are a critical component of making sense
of this critical moment in time. In this talk I will present current research as part of the CU Earth Lab
Wildfire Research Team and collaboration with the USDA Forest Service Wildfire Risk Management
Science Team, Human Dimensions Lab to make progress in some of the most critical areas.

Bio: Lise is a research scientist at Earth Lab responsible for the Global Social Sensing Project, a research
initiative to develop datasets Earth scale related to the societal impact and societal disruption of natural
hazard events for use in Earth Sciences, natural hazards research, and for real-time response applications.
Lise has a multidisciplinary background in computer science, data science, human-centered design, crisis
informatics, emergency response, and natural hazards research. She holds degrees in Computer Scien-
ce, Human-centered computing and brings over a decade of industry software design and development
experience to her academic research role. Her doctoral research focused on the challenges of integra-
ting social media into formal emergency response and as part of this research participated in over forty
emergency response activations with the Virtual Operational Support Team (VOST) community. Her
current research extends that knowledge into the Earth Analytics domain, finding new methods for cap-
turing information related to emergency response and societal impacts at scale for use in Earth sciences
and natural hazards research. Related work includes development of the ICS-209-PLUS dataset: a geo-
spatial, research grade dataset combining daily snapshots of incident response, hazard characteristics and
societal impacts. Design of a neural net classifier for organizing social media for emergency response
and natural hazards research. In her free time, Lise loves using her art and design skills, spending time
with family and hiking in Boulder County open space with her dogs. She is still an active member of the
VOST community and co-lead for the PNWVOST Team.
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Abstract

Detecting and tracking emerging trends and
weak signals in large, evolving text corpora is
vital for applications such as monitoring sci-
entific literature, managing brand reputation,
surveilling critical infrastructure and more gen-
erally to any kind of text-based event detec-
tion. Existing solutions often fail to capture the
nuanced context or dynamically track evolv-
ing patterns over time. BERTrend, a novel
method, addresses these limitations using neu-
ral topic modeling in an online setting. It intro-
duces a new metric to quantify topic popularity
over time by considering both the number of
documents and update frequency. This metric
classifies topics as noise, weak, or strong sig-
nals, flagging emerging, rapidly growing top-
ics for further investigation. Experimentation
on two large real-world datasets demonstrates
BERTrend’s ability to accurately detect and
track meaningful weak signals while filtering
out noise, offering a comprehensive solution
for monitoring emerging trends in large-scale,
evolving text corpora. The method can also be
used for retrospective analysis of past events.
In addition, the use of Large Language Models
together with BERTrend offers efficient means
for the interpretability of trends of events.

1 Introduction

The concept of weak signals, introduced by An-
soff (1975), refers to early indicators of emerg-
ing trends that can have significant implications
across various domains. These include events like
shifts in public opinion in social trends, early dis-
ruptive technologies in innovation, changes in ac-
tivist groups and public sentiment in politics, and
potential disease outbreaks in healthcare. Monitor-
ing and analyzing weak signals offers valuable in-
sights for organizations, researchers, and decision-
makers, aiding in informed decision-making.

Key data sources for identifying these trends in-
clude large text corpora such as news, social media,

research and technology journals or reports. The
challenges are: distinguishing meaningful weak
signals from irrelevant noise, dealing with context
ambiguity, and tracking the extended period over
which weak signals may gain significance.

With advances in NLP and AI, researchers
have developed various techniques to detect weak
signals across different fields,including statistics-
based methods, graph theory, machine learning,
semantic-based approaches, and expert knowledge.
However, most solutions fall short in fully address-
ing the challenge of detecting emerging trends
(Rousseau et al., 2021), either by relying solely on
keyword-based analysis, which misses contextual
nuances, or by being static and unable to dynami-
cally track evolving weak signals.

In this work, we introduce BERTrend, a novel
framework for detecting and monitoring emerging
trends and weak signals in large, evolving text cor-
pora. BERTrend leverages neural topic modeling,
specifically BERTopic, in an online learning set-
ting to identify and track topic evolution over time.
Its key contribution lies in dynamically classify-
ing topics as noise, weak signals, or strong signals
based on their popularity trends. The proposed
metric quantifies topic popularity over time by con-
sidering both the number of documents within the
topic and its update frequency, incorporating an
exponentially growing decay if no updates occur
for an extended period. By combining neural topic
modeling with a dynamic popularity metric and
adaptive classification thresholds, BERTrend pro-
vides a comprehensive solution for detecting and
monitoring emerging trends in large-scale, evolv-
ing text corpora. We discuss the qualitative results
on two comprehensive datasets, including the over-
all evolution of trends and specific case studies.
Combined with Large Language Models (LLMs),
the method an efficient way of interpreting the de-
tected trends of events through various dimensions
indicating how they evolve over time.
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2 Background

Among past works about weak signals detection,
many are keyword-based. Thus, portfolio maps,
pioneered by Yoon (2012), involves constructing
keyword emergence maps (KEM) and keyword is-
sue maps (KIM) based on two key metrics: degree
of visibility (DoV) that quantifies the frequency
of a keyword within a document set; and degree
of diffusion (DoD) that measures the document
frequency of each keyword. Weak signals are iden-
tified as keywords with low frequency but high
growth potential. Numerous studies, such as Park
and Cho (2017), Donnelly et al. (2019), Lee and
Park (2018), Roh and Choi (2020), Yoo and Won
(2018), Griol-Barres et al. (2020), have extended
and refined this approach with multi-word analysis,
signal transformation analysis, and domain-specific
applications. However KEMs and KIMs present
two major drawbacks: by focusing on keywords
only, they can miss the context surrounding a weak
signal ; and the output is a single snapshot, which
does not gives clear clues of evolution over time.

Topic modeling has emerged as a promising ap-
proach for weak signal detection, particularly in
large textual datasets. Unlike general topic evo-
lution or drift analysis, which focus on tracking
changes in established topics over time, our task
aims to identify early indicators of emerging trends.
It emphasizes the temporal behavior and growth of
small, nascent topics rather than specific content
changes within established ones. Thus, Krigsholm
and Riekkinen (2019) and Kim et al. (2019) apply
text mining and Latent Dirichlet Allocation (LDA)
(Blei et al., 2003), to identify future signals in the
domain of land administration and policy research
databases. Maitre et al. (2019) integrates LDA and
Word2Vec to detect weak signals in weakly struc-
tured data. El Akrouchi et al. (2021) introduce
furthermore two functions for deep filtering: Weak-
ness, which measures the significance, similarity,
and evolution of topics using coherence, closeness
centrality, and autocorrelation metrics; and Poten-
tial Warning, which further filters the terms of the
previously filtered topics to identify potential weak
signals.

While traditional topic modeling methods like
LDA have been useful for weak signal detection,
they have notable limitations: it heavily relies on
pre-set topic numbers and fails to benefit from the
sophisticated, contextual embeddings provided by
modern pre-trained models, resulting in less nu-

anced analysis. Additionally, it operates on a static
basis, overlooking the crucial temporal dynamics
of weak signals. RollingLDA (Rieger et al., 2021,
2022) uses a rolling window for the identification
of gradual topic shifts comparing topic distribu-
tions across consecutive windows, RollingLDA can
detect changes in the prominence of topics over
time. The fixed number of topics is a drawback. It
is rather used for long-term evolution monitoring
rather than detecting weak signals; interpretability
of shifts is limited to keyword comparison.

In contrast, our approach leverages dynamic,
high-quality contextual embeddings from pre-
trained models. Our embedding-based technique
provides a richer, more adaptive analysis that
does not require preset topic counts. This shift
from static, keyword-based methods to dynamic,
embedding-based analysis allows for a more gran-
ular and accurate tracking of the evolution and sig-
nificance of weak signals over time.

3 BERTrend

In this section, we describe BERTrend (Figure 1),
a method for identifying and tracking weak sig-
nals in large, evolving text corpora. It focuses on
identifying emerging signals at a given moment,
rather than tracking long-term topic evolution. It
leverages the power of BERTopic (Grootendorst,
2022), a state-of-the-art topic model, and wraps
it in an online learning framework. In this set-
ting, new data arrives on a regular basis, allowing
BERTrend to capture the dynamic evolution of top-
ics over time. The method employs a set of metrics
to characterize these topics as noise, weak signals,
or strong signals based on their popularity trends.
By combining the strengths of neural topic model-
ing with a dynamic, incremental learning approach,
BERTrend enables the real-time monitoring and
analysis of emerging trends and weak signals in
vast, continuously growing text datasets.

BERTopic leverages pre-trained large embed-
ding models to generate high-quality contextual
embeddings of documents, enabling the discov-
ery of meaningful and coherent topics. It utilizes
HDBSCAN (McInnes et al., 2017), a hierarchical
density-based clustering algorithm, which is robust
to outliers and does not require the number of top-
ics to be specified in advance, allowing the model
to automatically determine the optimal number of
topics based on the inherent structure of the data.

One of the key advantages of BERTopic is its

2
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Figure 1: The BERTrend Framework processes data in time-sliced batches, undergoing preprocessing that includes
unicode normalization and paragraph segmentation for very long documents. It applies a BERTopic model to extract
topics for each batch, which are merged with prior batches using a similarity threshold to form a cumulative topic
set. This data helps track topic popularity over time, identifying strong and weak signals based on dynamically
chosen thresholds. Additionally, the framework includes a zero-shot detection feature for targeted topic monitoring,
providing more fine-grained results due to document-level matching with topics defined by the expert.

ability to simulate online learning through model
merging. Different BERTopic models can be fitted
on documents from non-overlapping time periods
and then merged together based on the pairwise co-
sine similarity between topics of consecutive mod-
els, enabling a form of dynamic topic modeling in
an online learning setting.

3.1 Data Preprocessing and Time-based
Document Slicing

To accommodate the maximum token lengths rec-
ommended by pretrained embedding models and
avoid input truncation, lengthy documents are seg-
mented into paragraphs. Each paragraph is treated
as an individual document, with a mapping to its
original long document source. This ensures accu-
rate calculation of a topic’s popularity over time
by considering the original number of documents
rather than the inflated number of paragraphs.We
filter out documents that don’t contain at least 100
Latin characters. This threshold was determined by
analyzing the corpus of NYT and arXiv after split-
ting by paragraphs. Documents below this thresh-
old often represent noise (e.g., article endings, in-
complete sentences, social media references).

After preprocessing, the entire text corpus D,

consisting of N documents, is divided into docu-
ment slices based on a selected time granularity
(e.g., daily, weekly, monthly). A document slice
Dt is defined as a subset of documents from D
that fall within a specific time interval [t, t+∆t),
where t ∈ {t1, t2, . . . , tM}, ∆t is the chosen time
granularity, and M is the total number of docu-
ment slices. This slicing is crucial for analyzing
the temporal dynamics of topics within the corpus.

3.2 Topic Extraction using BERTopic

For each document slice Dt, BERTopic extracts a
set of topics Tt = {τ1t , τ2t , . . . , τKt

t }, where Kt is
the number of topics in Dt. The process involves:

1. Document Embedding: Each document d ∈
Dt is transformed into a dense vector ed ∈ Rh

using a pre-trained sentence transformer model
(Reimers and Gurevych, 2019), where h is the em-
bedding dimension. A topic τ jt is described as a set
of words W

τ jt
= {wj,1

t , wj,2
t , . . . , w

j,Mj

t }, where
Mj is the number of words representing the topic.

2. Dimensionality Reduction: The embeddings
are reduced to a lower-dimensional space using
UMAP (McInnes et al., 2018), resulting in reduced
embeddings e′d ∈ Rr, where r < h.

3. Document Clustering: The reduced embed-

3



dings are clustered using HDBSCAN (McInnes
et al., 2017), to group semantically similar docu-
ments into clusters. Each cluster Cjt ∈ Ct is asso-
ciated with a centroid embedding cjt ∈ Rr. These
clusters represent preliminary groupings of docu-
ments that will later be labeled as topics.

4. Cluster Labeling: BERTopic assigns labels to
clusters to form topics using class-based TF-IDF (c-
TF-IDF), considering the frequency and specificity
of words within each cluster. Various methods, in-
cluding LLMs, KeyBERT, and Maximal Marginal
Relevance (MMR), can be used to refine the repre-
sentation of topics. In our work, we maintained the
default c-TF-IDF representation without employ-
ing additional refinement methods. After labeling,
each cluster (Cjt ) becomes a topic (τ jt ).

Algorithm 1: BERTrend Algorithm
Input: Text corpus D, retrospective window size W ,

time granularity G, similarity threshold τ ,
decay factor λ

Output: Topics T , popularity p, signal categories S
1 Initialize T = ∅, p = ∅, S = ∅;
2 tnow = current time;
3 tstart = tnow −W ;
4 time slices = slice data(D, tstart, tnow, G);
5 for Dt ∈ time slices do
6 Tt = BERTopic(Dt);
7 for τ j

t ∈ Tt do
8 simmax = maxτk

t ∈T Similaritycos(c
j
t , c

k
t );

9 if simmax ≥ τ then
10 k∗ = argmaxk Similaritycos(c

j
t , c

k
t );

11 Dk∗
t = Dk∗

t ∪Dj
t ;

12 pk
∗

t = pk
∗

t−1 + |Dj
t |;

13 else
14 T = T ∪ {τ j

t };
15 pjt = |Dj

t |;
16 for τk

t ∈ T do
17 if τk

t /∈ Tt then
18 pkt = pkt−1 · e−λ∆t2 ;
19 Pall =

⋃
τk∈T {pkj | j ∈ [t−W + 1, t]};

20 Pall = sort(Pall);
21 P10 = Pall[⌊0.1 · |Pall|⌋];
22 P50 = Pall[⌊0.5 · |Pall|⌋];
23 for τk

t ∈ T do
24 if pkt < P10 then
25 Sk

t = "noise";
26 else
27 if P10 ≤ pkt ≤ P50 then
28 if slope({pkj | j ∈

[t−W + 1, t]}) > 0 then
29 Sk

t = "weak";
30 else
31 Sk

t = "noise";
32 else
33 Sk

t = "strong";

3.3 Topic Merging

BERTrend merges topics across document slices
to capture their evolution. The topic merging pro-
cess is formalized in Algorithm 1 (lines 10-12).
For each time-based document slice Dt+1, the ex-
tracted topics Tt+1 are compared with the topics
from the previous slice Tt as follows:
1. Similarity Calculation: Compute the cosine sim-

ilarity between each topic embedding cj(t+1) ∈
Tt+1 and all topic embeddings ckt ∈ Tt.

2. Topic Matching: If the maximum similarity be-
tween cj(t+1) and any ckt exceeds a threshold α
(e.g., α = 0.7), merge the topics and add the
documents associated with τ j(t+1) to τkt .

3. New Topic Creation: If the maximum similarity
is below α, consider τ j(t+1) as a new topic and
add it to Tt.
To maintain topic embedding stability, the em-

bedding of the first occurrence of a topic is retained,
preventing drift and over-generalization.

3.4 Popularity Estimation

BERTrend estimates topic popularity over time and
classifies them into signal categories based on pop-
ularity dynamics. The popularity of topic τkt for
document slice Dt is denoted as pkt and calculated
as follows:
1. Initial Popularity: For a new topic τkt of docu-

ment slice Dt, its initial popularity is set to the
number of associated documents: pkt = |Dk

t |,
where Dk

t is the set of documents associated
with τkt at time t.

2. Popularity Update: For subsequent document
slices Dt′ (t′ > t):
• If τkt is merged with a topic in Tt′ , its popu-

larity is incremented by the number of new
documents: pkt′ = pkt′−1 + |Dk

t′ |.
• If τkt is not merged with any topic in Tt′ , its

popularity decays exponentially: pkt′ = pkt′−1 ·
e−λ∆t2 , where λ is a constant decay factor
(e.g., λ = 0.01) and ∆t is the number of days
since τk last received an update.

3.5 Trend Classification

To classify topics into signal categories, BERTrend
calculates percentiles of popularity values over a
rolling window of size W . For each document slice
Dt, two empirical thresholds - the 10th percentile
(P10) and the 50th percentile (P50) of popularity
values within the window [t − W, t] - are com-
puted. Trend classification is performed based on

4



the topic’s popularity pkt and its recent popularity
trend:
• If pkt < P10, τkt is classified as a "noise" signal.
• If P10 ≤ pkt ≤ P50:

– If the topic’s popularity has been increasing
over the past few days, as determined by a pos-
itive slope of the linear regression line fitted
to the topic’s popularity values within the win-
dow [t − W, t], τkt is classified as a "weak"
signal.

– If the topic’s popularity has been decreasing,
as determined by a negative slope of the linear
regression line, τkt is classified as a "noise" sig-
nal, as it likely represents a previously popular
topic that is losing relevance.

• If pkt > P50, τkt is classified as a "strong" signal.
BERTrend combines popularity trends with

thresholds to identify emerging trends, distinguish-
ing them from declining popular topics. This helps
filter out fading "weak signals" that are actually
strong but declining trends.

Using percentiles calculated dynamically over a
sliding window offers several advantages:
1. Adaptability to datasets: The retrospective pa-

rameter allows the method to adapt to the input
data’s velocity and production frequency.

2. Forget gate mechanism: The sliding window
avoids the influence of outdated signals on cur-
rent threshold calculations.

3. Robustness to outliers: Calculating thresholds
based on the popularity distribution reduces
sensitivity to outlier popularities and prevents
thresholds from approaching zero when many
signals have faded away.

3.6 Targeted Zero-shot Topic Monitoring
BERTrend includes an optional zero-shot detection
feature that allows domain experts to define a set
of topics Z = {z1, z2, . . . , zL}, each represented
by a textual description. The embeddings of these
topics and the documents in each slice Dt are cal-
culated using the same embedding model. For each
document d ∈ Dt, the cosine similarity between its
embedding ed and the embedding of each defined
topic zl is computed. Documents with a similarity
score above a predefined low threshold β (typically
0.4-0.6) for any of the defined topics are consid-
ered relevant and included in the corresponding
topic’s document set Dzl

t . The low threshold ac-
counts for the presumed vagueness and generality
of the expert-defined topics, as they have incom-
plete knowledge that would be supplemented by

new emerging information. Finally, the popularity
and trend classification for the zero-shot topics are
performed in the same manner as for the automati-
cally extracted topics, using the document sets Dzl

t

instead of Dk
t .

4 Experimental Setup

4.1 Datasets

We selected two diverse datasets for our evalua-
tion: the arXiv dataset, comprising scientific pa-
per abstracts from the computer science category
(cs.*) (Cornell-University, 2023), and the New
York Times (NYT) news dataset (Tumanov, 2023).
Our choice aligns with recommendations from
Rousseau et al. (2021) and Yoon (2012), who ad-
vocate for the use of scientific articles and news
sources in weak signal detection due to their rich,
evolving content. The arXiv dataset spans from
January 2017 to December 2023, encompassing
367,248 abstracts, while the NYT dataset covers
the period from January 2019 to January 2023, in-
cluding 184,811 articles. These corpora offer a
wealth of interpretable topics, facilitating qualita-
tive analysis and interpretation. Moreover, the NYT
dataset has been previously employed in weak sig-
nal detection research (El Akrouchi et al., 2021),
further substantiating its relevance to our study.
These datasets were chosen for their diverse con-
tent and potential to contain topics that could be
considered weak signals, such as early warnings
about the COVID-19 pandemic.

4.2 Algorithm parameters

In our experiments, we used the BERTopic frame-
work with carefully selected hyperparameters to
optimize weak signal detection performance. We
chose the "all-mpnet-base-v2" 1 sentence trans-
former for document embedding because of its
strong performance on various natural language un-
derstanding tasks (Reimers and Gurevych, 2019).

In the UMAP dimensionality reduction step, the
number of components is set to 5 (default value),
and the number of neighbors to 15, which allows
UMAP to balance local and global structure in the
data, as lower values focus more on local structure
while higher values emphasize broader patterns
(McInnes et al., 2018). In the HDBSCAN clus-
tering step, we set the minimum cluster size to 2,
the smallest possible value, to detect fine-grained

1https://huggingface.co/sentence-transformers/
all-mpnet-base-v2
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clusters. The minimum sample size was set to 1,
the smallest possible value, to reduce the likeli-
hood of points being declared as noise, as the high
number of clusters obtained reduces the need for
conservative clustering (McInnes et al., 2017).

Topics were represented by top unigrams and
bigrams based on their c-TF-IDF scores. To deter-
mine the optimal minimum similarity threshold for
merging topics across time slices, we conducted
an ablation study varying the threshold from 0.5 to
0.95. We observed that lower thresholds (0.5-0.6)
led to overly broad signals and unstable behavior,
characterized by a phenomenon we term "thresh-
old collapse." In this scenario, the disproportionate
merging of topics results in a few dominant sig-
nals that skew the distribution of popularity values.
Consequently, the dynamically determined classi-
fication thresholds (Q1 and Q3) become volatile,
potentially shifting dramatically between consecu-
tive timestamps. This instability compromises the
reliability of signal categorization.

Conversely, higher thresholds (0.8-0.95) resulted
in an overabundance of micro-signals, hindering
the detection of meaningful trends. A threshold
of 0.7 was found to provide a balanced approach,
ensuring coherence and consistency of detected top-
ics while allowing for semantic evolution without
inducing threshold instability.

We also investigated the effect of the retrospec-
tive window size, varying it from 2 to 30 days. We
found that its impact on BERTrend’s performance
was minimal when using an appropriate merge sim-
ilarity threshold. The choice of window size pri-
marily depends on the desired amount of historical
data to incorporate in threshold calculations, with
larger windows providing more stable, but poten-
tially less responsive, threshold determinations.

For the granularity of the time slices, we chose
2 and 7 days for the NYT News and arXiv datasets
respectively, based on our analysis of topic evo-
lution rates in these datasets. This selection ac-
commodates the rapidly evolving nature of news
compared to the slower pace of research papers,
while maintaining a balance between signal detec-
tion sensitivity and computational efficiency.

It is important to note that these parameter
choices have been fine-tuned based on the char-
acteristics of the datasets used in this study. For
datasets with significantly different topic evolution
dynamics and update frequencies, these parameters
may require adjustment to achieve optimal perfor-
mance.

In the zero-shot example (subsection 5.4), we
used a lower similarity threshold of 0.45 for merg-
ing topics to accommodate the vague and incom-
plete nature of the user-defined topics, allowing for
a more flexible merging process. This approach
maximizes the recall in detecting potentially rele-
vant documents of weak signals.

5 Results

Quantitative results about weak signal analysis are
very challenging to obtain due to the lack of es-
tablished metrics and methodology as detailed in
section 9.3. Therefore, as in many past works in
this research area (e.g. (El Akrouchi et al., 2021),
we focus on a qualitative analysis, including retro-
spective analysis of known outcomes, to highlight
its effectiveness and potential applications.

5.1 Overall results

Figure 2 illustrates the evolution of signal type
counts and topic counts in the NYT News dataset
and the arXiv cs.* papers dataset We observe strik-
ing differences in the signal type distributions be-
tween these datasets, which can be attributed to the
very nature of their respective domains.

In the NYT News dataset, the number of weak
signals remains relatively stable over time, with
a manageable quantity of 10 to 20 signals every
2 days. This is well-suited for real-time monitor-
ing and trend detection in fast-paced news cycles,
where emerging signals quickly evolve into hot top-
ics of discussion. The occasional spikes in strong
signals likely correspond to major events or trend-
ing news stories that capture significant attention.

Conversely, the arXiv cs.* papers dataset ex-
hibits a consistently higher number of weak signals,
reflecting the diverse range of emerging research
topics in the computer science domain. The num-
ber of strong signals is comparatively lower, as
only a subset of novel ideas and approaches even-
tually gain traction and become widely adopted.
This aligns with the nature of scientific research,
where numerous proposals emerge, but only a few
ultimately make a significant impact.

Interestingly, while the number of topics per time
slice in the NYT News dataset fluctuates but re-
mains overall stable, the arXiv cs.* papers dataset
shows an increasing trend in the number of topics
detected per 7-day interval. This can be attributed
to the exponential growth of research papers in re-
cent years, leading to a more diverse and rapidly
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Figure 2: Evolution of Signal Types and Topic Counts in the NYT News and arXiv cs.* Datasets

evolving research landscape. The total number of
topics after merging (blue line) steadily increases
over time in both datasets, reflecting the accumula-
tion of new topics as the datasets grow.

5.2 Case study

In this section, we conduct a qualitative analysis
of the results. We focus on a subset of illustrative
topics and zoom into key periods to observe their
behavior more closely. The examples are selected
for their ease for interpretation.

Figure 3a focuses on the period from 01/2020 to
02/2020, when news media began reporting on the
COVID-19 outbreak. We observe the appearance
of a new topic (blue signal), due to its dissimilarity
with pre-existing topics. Initially, the blue signal
is classified as weak because of the low number of
articles discussing it. Shortly after, it gains trac-
tion, transitioning from a weak to a strong signal
within a matter of days, as evidenced by its expo-
nential rise in popularity on the log-scaled y-axis.
Concurrently, other strong signals during this pe-
riod include topics related to the impeachment trial
of President Trump (orange signal) and the Taal
Volcano eruption (Philippines) in Jan 2020 (green
signal), while a topic discussing American football
teams (red signal) is classified as noise.

In Figure 3b, we showcase the evolution of three
selected topics from the arXiv cs.* papers dataset
from 06/2017 to 10/2019. The blue signal, rep-
resenting attention models, was initially a weak
signal before June 2017, as attention methods were
being used in conjunction with recurrent networks.
However, the introduction of the transformer archi-
tecture (Vaswani et al., 2017) in June 2017 marked
a turning point, after which the topic quickly gained
traction, transitioning into a strong signal and even-
tually becoming a mega-trend. This rise of trans-

formers largely replaced RNNs (Rumelhart et al.,
1986) and LSTMs (Hochreiter and Schmidhuber,
1997) (green signal) in NLP tasks, leading to a de-
cline in the popularity of the green signal. In con-
trast, papers related to computer vision, especially
those mentioning ImageNet (Deng et al., 2009), a
widely-used dataset in computer vision, were clas-
sified as strong signals in June 2017 and continued
to exhibit growth. This analysis demonstrates our
method’s ability to identify potentially impactful
research topics early on, track their evolution, and
capture the dynamics between related topics.

5.3 Impact of zero-shot Topic Modeling

Figure 4 illustrates the impact of incorporating zero-
shot topic modeling in the BERTrend algorithm. In
this approach, an expert defines a general topic of
interest, and each document from a slice is com-
pared against this topic using embedding similarity.
Documents that surpass a certain similarity thresh-
old are captured, allowing for targeted weak signal
detection. This method enables experts to focus
on specific topics of interest while offering higher
precision and sensitivity in weak signal detection.
By performing document-level comparisons using
embeddings, the zero-shot approach minimizes the
risk of missing relevant documents during the topic
modeling pipeline.

In the provided example, we chose the
generic zero-shot topic "Diseases, Outbreaks,
Illnesses, Viruses," to detect the COVID-19
signal, simulating a scenario where an expert has
a general idea of what to monitor but lacks pre-
cise knowledge of an impending outbreak. Re-
markably, the zero-shot method identified the ear-
liest article in the dataset mentioning the coron-
avirus pandemic on January 6th, 2020, referring
to it as a "pneumonia-like mysterious virus" along-
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Figure 4: Comparison of COVID-19 Signal Detection
with and without zero-shot Topic Modeling

side "coronavirus". This detection occurred 12
days before the automatic BERTrend usage with-
out zero-shot. Furthermore, the zero-shot approach
captured potential weak signals even earlier, such
as a November 2019 article reporting school clo-
sures in Colorado due to a virus outbreak. While
these signals may or may not be directly related to
the pandemic, they demonstrate the method’s abil-
ity to identify potentially relevant events. The con-
sistency of the signal’s growth is also notable. The
automatically detected signal (blue) by BERTrend
starts to decrease and becomes less stable around
March 2020, not due to a loss in popularity, but
because other signals discussing slightly different
aspects of the pandemic begin to emerge.

6 Interpretation of trends with LLMs

Topic modeling methods often output topics as sets
of keywords, which can be difficult to interpret and
may not fully capture the semantic meaning of the
topic (Rijcken et al., 2023; Rüdiger et al., 2022).

LLMs can be leveraged to enhance the interpre-
tation of signals detected by BERTrend and of their
evolution over time. Although this field of topic
analysis through LLMs is new, it is quite promising
(Kirilenko and Stepchenkova, 2024).

In this work, we go several steps further by using
LLMs not only for having human-readable descrip-
tions of topics, but also useful insights about their
evolution between two timestamps, such a sum-
mary of the key developments of the event signal
since previous timestamp, as well as novelty about
the signal w.r.t. previous time period. In addition,
we use the LLM to obtain an in-depth analysis of
the signal, including: (1) impact, i.e. potential ef-
fects of this signal on various sectors, industries,
and societal aspects, with both short-term and long-
term implications; (2) evolution scenarios - both
optimistic and pessimistic scenarios; (3) potential
interactions /conflicts with other current trends; (4)
drivers and inhibitors (factors/barriers related to the
development of the signal. The associated prompt
templates are provided in section A.2.

In the example of Figure 5, we use the GPT-4o
model 2 with a temperature of 0.1 to generate in-
sightful summaries and highlight new information
at each timestamp for a weak signal related to the
new Bluetongue viral disease (Catarrhal fever) af-
fecting ruminants that appeared in France in July
2024. This example was selected for its recency to
ensure it lies beyond the LLM’s training data, min-
imizing the risk of analysis bias from the model’s

2https://platform.openai.com/docs/models/
gpt-4o
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BERTrend Output 

Evolving Topic : Bluetongue disease in France 
Weak Signal at July 31 2024, Aug 1 2024 and Aug 2 2024

As an elite strategic foresight analyst, I've evaluated the potential signal of the Bluetongue Virus Outbreak in France. Here's a comprehensive analysis of its impact and 
evolution:

1. Potential Impact Analysis:
a) Short-term implications: Economic losses in agricultural sector (sheep deaths, movement restrictions, treatment costs); trade disruptions with Spain; increased 
government spending on vaccines and enforcement; strain on veterinary services.
b) Long-term consequences: Potential farm closures and rural unemployment; shift to stricter biosecurity and livestock management; increased R&D investment in FCO 
vaccines; new livestock movement and vaccination protocols; possible meat and dairy shortages.
c) Ripple effects: Supply chain disruptions (feed, transport, processing); increased consumer prices for sheep products; cross-border containment disputes; altered grazing 
patterns affecting ecosystems; rural unrest and urban migration.

2. Evolution Scenarios:
a) Optimistic: Swift containment measures limit spread; rapid development of affordable vaccines for all serotypes; government and international aid mitigate farmer losses; 
improved biosecurity enhances future resilience.
b) Pessimistic: Uncontrolled spread causes significant economic losses; vaccine shortages and logistical issues hinder efforts; widespread farm closures; public 
misinformation leads to non-compliance; inadequate cross-border cooperation causes international conflicts.

3. Interconnections and Synergies:
a) Interactions with trends: Climate change affects midge distribution and virus spread; increased global trade facilitates cross-border transmission; technological 
innovations improve disease detection and prevention.
b) Synergies/conflicts: Enhanced biosecurity protocols benefit overall animal health; potential conflicts between farmer support and containment measures; integrated 
approaches to zoonotic disease management.

4. Drivers and Inhibitors:
a) Accelerators: Proactive government measures and financial support; innovations in vaccine development and distribution; international cooperation; public awareness 
and education.
b) Barriers: Economic constraints hindering vaccination efforts; logistical challenges in vaccine distribution and restriction enforcement; public resistance and mistrust; lack 
of harmonized cross-border policies impeding regional control.

1

As an elite strategic foresight analyst, evaluate this potential signal:

[Insert evolving topic summary here]

Provide a comprehensive analysis of the signal's impact and evolution:

1. Potential Impact Analysis:
a) Short-term implications (e.g., immediate economic effects, sector 
disruptions). 
b) Long-term consequences (e.g., policy changes, industry 
transformations). 
c) Ripple effects and second-order impacts across various domains.

2. Evolution Scenarios:
a) Describe optimistic and pessimistic future developments. 
b) Consider influencing factors on the signal's trajectory.

3. Interconnections and Synergies:
a) Interactions with current trends or emerging phenomena. 
b) Potential synergies or conflicts with existing systems.

4. Drivers and Inhibitors:
a) Factors that could accelerate or amplify the signal. 
b) Potential barriers or resistances to its development.

Please provide a summary for the evolution of the following topic 
based on the information provided:

- Representation at timestamp 2024-07-31: farmers, serotype, 
already, ruminant, infected, recent, FCO, defense groups, 
midges, indifferent
-  Context: [Document 1], [Document 2] ...
-  // Repeat for 2024-08-01 and 2024-08-02

For each timestamp:
-  Generate a concise title based on the topic representation and 
the context documents
-  Provide a brief summary of key developments
-  For each timestamp except the first, include a "What's New?"  
section highlighting changes and new information compared to 
the previous timestamp

Format the output as follows:

[Generated title] | [Timestamp]
-  [Bullet point of key development]
-  ...
What's New? (except for the first timestamp):
-  [Bullet point of new information]
-  ...

4

2 3

France Prepares for New Bluetongue Virus Serotype | 2024-07-31
- France prepares for a new serotype of ovine bluetongue virus (FCO) causing sheep 
deaths.

- Ministry of Agriculture creates a regulated zone from Pas de Calais to Moselle, restricting 
ruminant movement.

FCO Serotype 3 Spreads Across Europe | 2024-08-01
-  Ministry focuses on slowing the spread of FCO serotype 3, transmitted by biting insects. 
-  Spain only accepts vaccinated animals for import.

What's New?
- FCO serotype 3 emerged in Europe in late 2023, now spreading across several countries.
- Confédération Paysanne reports severe impacts of serotype 8 on high-altitude summer 
pastures in the Pyrénées.

FCO Outbreak Escalates, Affecting Nearly 100 Farms | 2024-08-02
-  FCO confirmed as a viral disease affecting ruminants, primarily sheep, not transmissible to 
humans. 
-  Movement restrictions in place for animals in regulated zones to prevent FCO spread.

What's New?
- Detailed description of FCO symptoms: fever, respiratory issues, and facial edema.
- Nearly a hundred farms affected in the Pyrénées, indicating escalation.

Figure 5: Enhancing Signal Interpretation and Analysis using LLMs

pre-existing knowledge..
By emphasizing new information at each times-

tamp through a multi-faceted description, the LLM
helps to pinpoint key developments and changes
within the topic. It provides a comprehensive sum-
mary of the signal’s evolution, which can then be
reintroduced to the LLM for further analysis, as-
sessing its potential impact and possible outcomes.

7 Conclusion

In this paper, we introduced BERTrend, a novel
framework for detecting and monitoring weak sig-
nals in large, evolving text corpora. BERTrend
models the trends of topics over time and classifies
them as weak signals, strong signals, or noise based
on their popularity metric. The classification is per-
formed using empirically chosen thresholds based
on the distribution of topic popularities over a slid-
ing window. The other contributions of this work
include: (1) an extensive evaluation on two real-

world datasets that demonstrate the effectiveness
of our approach; (2) proposals to leverage LLMs
to enhance the interpretation of topic evolution.

We are currently exploring LLM-generated
evolving knowledge graphs as a structured method
for interpreting signals. These graphs monitor topic
evolution by tracking the appearance and disap-
pearance of entities and relationships. Future work
will involve exploring new datasets, integrating live
data, and developing metrics to compare weak sig-
nal detection methods.

8 Software availability

In order to foster collaboration and advancement
in weak signal detection, the code of BERTrend
(and associated tools for visualization and LLM-
based interpretation) has been open-sourced. It is
available at the following URL:
https://github.com/rte-france/BERTrend.
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9 Limitations

9.1 Hyperparameter Sensitivity

BERTrend’s performance is sensitive to various
hyperparameters, including BERTopic parameters,
merge threshold, granularity, and retrospective pe-
riod. We chose BERTopic hyperparameters to pro-
duce the most fine-grained topics since larger topics
will hinder the early detection process, and weak
signals will get lost as the documents that should
form them are assigned either to noise topics or
other large, more generalized topics. To mitigate
the variability of topic embeddings due to the small
number of documents per topic, we selected a low
merge threshold (0.6-0.7). Granularity depends on
the amount of data available per time unit and the
frequency of new documents. The retrospective
period affects the influence of past signals on cur-
rent thresholds; we found that a period of a week
to a month doesn’t change thresholds significantly,
but bigger changes can affect classification results.
Empirically fixed thresholds (10th percentile and
median) balance precision and recall.

9.2 Distinguishing Between Weak Signals and
Noise

There remains the challenge of distinguishing be-
tween what’s considered a weak signal and what’s
considered noise. Relying on temporal popular-
ity fluctuations alone isn’t ideal, as both weak and
noise signals behave very similarly. There’s also
the issue of characterizing what would be a "weak
signal," since that changes from one person to an-
other, one domain to another, etc. This is why
we added the zero-shot detection to help an expert
guide the detection process. We envision explor-
ing the effect of using named entity recognition for
better filtering in future work.

9.3 Evaluation Challenges

Evaluating the effectiveness of our weak signal de-
tection method is challenging due to many factors:
• the subjective nature of what constitutes a weak

signal, since it depends on the context, the do-
main, and the specific goals of the analysis, mak-
ing it difficult to raise a consensus even among
domain experts.

• the lack of ground truth data: unlike many other
natural language processing tasks, there are no
widely accepted benchmark datasets or ground
truth annotations specifically designed for eval-
uating weak signal detection. This lack of stan-

dardized benchmarks hinders the ability to objec-
tively compare different approaches and quantify
their performance.

• dynamics over time: weak signals are often tran-
sient and can grow or dissipate over time. This
dynamic nature complicates the evaluation pro-
cess, as the ground truth itself may change, re-
quiring continuous monitoring and updating of
the evaluation data.

To the best of our knowledge, there are currently
no established metrics for comparing weak signal
detection performance within large volumes of data.
Traditional metrics used in evaluating topic models,
such as topic coherence topic diversity, and per-
plexity, are not suitable for assessing weak signal
detection. These metrics measure the quality and
interpretability of topics over time, but they cannot
determine whether a detected signal is truly a weak
signal of emerging importance. Given this context,
comparing BERTrend with dynamic topic models
or other embedding techniques (as described in
Balepur et al. (2023), Churchill and Singh (2022),
Rudolph and Blei (2018), Yao et al. (2018), Meng
et al. (2020), or Xu et al. (2023)) using these met-
rics would not provide meaningful insights into the
nature of the weak signals detected. These methods
and their evaluation metrics are designed for dif-
ferent objectives, primarily assessing topic quality
and evolution over extended periods of time.

Comparing BERTrend with existing keyword-
based approaches (e.g., Park and Cho (2017); Don-
nelly et al. (2019); Griol-Barres et al. (2020)) is not
feasible due to fundamental differences in method-
ology and output: (1) These methods primarily
use Degree of Visibility and Degree of Diffusion
metrics on keyword emergence maps and keyword
issue maps. Their output is a set of words in-
dicating the presence of a weak signal, whereas
BERTrend produces topic sequences over time. (2)
BERTrend’s dynamic, embedding-based approach
captures contextual nuances that keyword-based
methods often miss. As noted by Rousseau et al.
(2021), "the use of a single keyword may lead to a
loss of objectivity" and "the lack of relations and
context over the keywords limit the information."

To address the evaluation challenge, our future
work will center on a large-scale user study in-
volving domain experts. These experts will review
BERTrend’s outputs at specific time instants, iden-
tifying potential weak signals in their fields.
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A Software

A.1 Some screenshots
We present in this section some screenshots
(Figures 6–12) of our prototype which utilizes
BERTrend to explore trends and categorize them

into different types of signals, as well as using a
LLM to interpret and analyze certain signals. The
UI is built using Streamlit3, and all the visualiza-
tions are done using the Plotly library4.

A.2 Prompt examples for topic evolution
analysis

This section gives some examples of the prompts
we are using with a LLM (GPT-4o) to obtain de-
tailed insights of topic evolution between two times-
tamps.

A.2.1 Prompt for evolving topic summary at a
given timestamp

As an expert analyst specializing in trend analysis
and strategic foresight, your task is to provide a
comprehensive evolution summary of Topic
{topic_number}. Use only the information provided
below:

{content_summary}

Structure your analysis as follows:

For the first timestamp:

## [Concise yet impactful title capturing the
essence of the topic at this point]
### Date: [Relevant date or time frame]
### Key Developments
- [Bullet point summarizing a major development
or trend]
- [Additional bullet points as needed]

### Analysis
[2-3 sentences providing deeper insights into the
developments, their potential implications, and
their significance in the broader context of the
topic's evolution]

For all subsequent timestamps:

## [Concise yet impactful title capturing the
essence of the topic at this point]
### Date: [Relevant date or time frame]
### Key Developments
- [Bullet point summarizing a major development
or trend]
- [Additional bullet points as needed]

### Analysis
[2-3 sentences providing deeper insights into the
developments, their potential implications, and
their significance in the broader context of the
topic's evolution]

### What's New
[1-2 sentences highlighting how this period differs
from the previous one, focusing on new elements or
significant changes]

Provide your analysis using only this format, based
solely on the information given. Do not include any

3https://streamlit.io/
4https://plotly.com/

12

https://doi.org/10.13140/RG.2.2.20808.24327/1
https://doi.org/10.13140/RG.2.2.20808.24327/1
https://doi.org/10.13140/RG.2.2.20808.24327/1
https://doi.org/10.1145/3178876.3185999
https://doi.org/10.1145/3178876.3185999
https://www.kaggle.com/datasets/tumanovalexander/nyt-articles-data
https://www.kaggle.com/datasets/tumanovalexander/nyt-articles-data
https://api.semanticscholar.org/CorpusID:264439324
https://api.semanticscholar.org/CorpusID:264439324
https://doi.org/10.1145/3159652.3159703
https://doi.org/10.1145/3159652.3159703
https://streamlit.io/
https://plotly.com/


Figure 6: The BERTrend main interface allows users to configure various hyperparameters, including those for
BERTopic components and merging thresholds. Users can load and filter data, split text into paragraphs, select

specific timeframes, and randomly sample the data. The interface also facilitates the embedding of documents for
further analysis.

additional summary or overview sections beyond what
is specified in this structure.

A.2.2 Prompt for signal analysis
As an elite strategic foresight analyst with
extensive expertise across multiple domains and
industries, your task is to conduct a comprehensive
evaluation of a potential signal derived from the
following topic summary:

{summary_from_first_prompt}

Leverage your knowledge and analytical skills to
provide an in-depth analysis of this signal's
potential impact and evolution:

1. Potential Impact Analysis:
- Examine the potential effects of this signal
on various sectors, industries, and societal
aspects.
- Consider both short-term and long-term
implications.
- Analyze possible ripple effects and
second-order consequences.

2. Evolution Scenarios:
- Describe potential ways this signal could
develop or manifest in the future.
- Consider various factors that could influence
its trajectory.
- Explore both optimistic and pessimistic
scenarios.

3. Interconnections and Synergies:
- Identify how this signal might interact with
other current trends or emerging phenomena.
- Discuss potential synergies or conflicts with

existing systems or paradigms.

4. Drivers and Inhibitors:
- Analyze factors that could accelerate or amplify
this signal.
- Examine potential barriers or resistances that
might hinder its development.

Your analysis should be thorough and nuanced, going
beyond surface-level observations. Draw upon your
expertise to provide insights that capture the
complexity and potential significance of this signal.
Don't hesitate to make well-reasoned predictions
about its potential trajectory and impact.

Focus on providing a clear, insightful, and
actionable analysis that can inform strategic
decision-making and future planning.
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Figure 7: The model training interface enables the creation and merging of multiple BERTopic models based on the
selected granularity and merging thresholds. Users can also define zero-shot topics for detection at each timestamp,

providing a flexible approach to model training.
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Figure 8: The results page showcases zero-shot topics, allowing experts to visually inspect them with ease. A
searchable dataframe accompanies the visualization, enabling users to explore documents related to defined

zero-shot topics across various timestamps.

Figure 9: The core functionality of BERTrend: users can define a retrospective period and select specific dates to
investigate historical data, determining what was classified as noise, weak signals, or strong signals during that

timeframe.
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Figure 10: For each selected date, corresponding dataframes classify topics based on their popularity, categorizing
them as noise, weak signals, or strong signals. Users can easily retrieve and further analyze a topic by its identifier,

as demonstrated with topic number 108.

Figure 11: Upon selecting a topic identifier, an LLM generates a comprehensive analysis of the topic’s evolution
and its various aspects, presented in a detailed report for further examination.
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Figure 12: The topic merging process is visualized using a Sankey Diagram, providing a clear and intuitive
representation of how topics were combined over time.
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Abstract

Event detection in text streams is a crucial task
for the analysis of online media and social net-
works. One of the current challenges in this
field is establishing a performance standard
while maintaining an acceptable level of com-
putational complexity. In our study, we use
an incremental clustering algorithm combined
with recent advancements in sentence embed-
dings. Our objective is to compare our findings
with previous studies, specifically those by Cao
et al. (2024) and Mazoyer et al. (2020). Our
results demonstrate significant improvements
and could serve as a relevant baseline for future
research in this area.

1 Introduction

With the development of social media, the abil-
ity to recognize events in streams of short
texts—particularly tweets—has become increas-
ingly important. This process, called event recog-
nition, involves identifying significant occurrences
within large volumes of data, posing various chal-
lenges. A key component of this task is defining
a clear and operational concept of what qualifies
as an event. In this paper, we will use a working
definition of event, as proposed by McMinn et al.
(2013). The authors propose in fact a double def-
inition: “Definition 1: An event is a significant
thing that happens at some specific time and place”.
This needs to be completed by the definition of
what ‘significant’ means, so they add: “Definition
2: Something is significant if it may be discussed
in the media. For example you may read a news
article or watch a news report about it”. Because
this definition has been used to build other corpora,
it can be considered functional. As a result, corpora
created with this definition should be comparable,
with different annotators likely producing similar
outcomes.

One of the main challenges in event recogni-
tion is then being able to cluster different texts

that refer to the same event. This difficulty arises
from the wide range of expressions used to de-
scribe similar events. Different sources and users
may refer to the same event using different expres-
sions, making it essential for recognition systems
to account for synonymy, paraphrasing, and other
linguistic variations. Moreover, the temporal di-
mension is also a critical parameter in event recog-
nition. The timing of events and the sequence in
which they are reported can significantly impact
the interpretation and relevance of the information
extracted. Another challenge in event detection on
social networks is the sheer volume of messages
posted on these platforms: an effective algorithm
must be capable of processing millions of tweets
within a reasonable time frame. Many studies pro-
pose computationally intensive methodologies that
are impractical for many real-world applications.
Therefore, research in this field needs to establish
baselines on publicly accessible datasets that are
both performant and time-efficient.

The primary objective of this paper is thus to es-
tablish a performance standard for event detection
while maintaining an acceptable level of computa-
tional complexity. Our approach involves the use
of an incremental clustering algorithm enhanced
by recent advancements in sentence embeddings.
Specifically, we build upon the incremental cluster-
ing algorithm introduced by Mazoyer et al. (2020)
in their dataset publication. While effective at the
time, their approach relied on lexical descriptions
that may now be outdated due to the development
of new word embedding techniques, particularly
those stemming from recent large language mod-
els based on the transformer architecture (Vaswani
et al., 2017). In our study, we utilize Sentence-
BERT (Reimers and Gurevych, 2019), a model that
is especially noteworthy for its ability to encode
entire sentences from individual word encodings.

The structure of the paper is as follows: First,
we will review recent work in the domain. Next,
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we will detail our method and experiments. Finally,
we will present and discuss our results, concluding
with a broader discussion. We conduct experiments
on two large public Twitter datasets to demonstrate
the state of the art performance, efficiency, and
robustness of this method (note that our code is
publicly accessible1). We then aim to compare our
results with previous studies in the field, specifi-
cally those by Cao et al. (2024) and Mazoyer et al.
(2020). By leveraging these advanced sentence em-
beddings, we demonstrate that our implementation
surpasses more recent and complex approaches in
both time-efficiency and the quality of detected
events. These short-text representations provide a
sophisticated understanding of language and con-
text, allowing for more accurate and nuanced event
recognition.

2 Related Work

Hasan et al. (2018) conducted a comprehensive re-
view of event detection techniques on Twitter. Like
these authors, we identify three main categories of
methods: ‘term-interestingness-based’ approaches,
topic modeling, and incremental clustering. How-
ever, we expand upon their typology by adding a
fourth category: graph-based approaches.

“Term-Interestingness-Based” Approaches.
These methods involve monitoring terms that are
probably associated with an event, often identified
by a sudden increase in the frequency of certain
terms. Typically, they return the top trending
events on Twitter. These approaches generally do
not allow the detection of low-bursty events.

Topic Modelling. Topic models are widely used
techniques derived from Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003) to uncover the the-
matic structure within a collection of textual doc-
uments. Several works have been interested in
adapting this method to make topics evolve over
time, and to adapt to the short format of tweets by
restricting the number of topics associated with a
document. Likhitha et al. (2019) propose a survey
of topic modeling methods adapted to short texts.

Incremental Clustering. This family of meth-
ods derives from the Topic Detection and Tracking
(TDT) initiative (Allan et al., 1998), aimed at identi-
fying and following events in a stream of broadcast
news stories. The task of detecting new events

1https://github.com/medialab/twitter-incremental-
clustering/

(First Story Detection) involves representing doc-
uments as vectors in a semantic space. Each new
document is compared to existing ones (or to a set
of past documents within a time-window) and if its
similarity to the closest document (or centroid) falls
below a defined threshold, it is identified as a new
story. This methodology was then adapted to event
detection on Twitter (Petrovic et al., 2010; McMinn
and Jose, 2015) with tf-idf (Sparck Jones, 1972)
as a vector representation of tweets. More recent
works (Mazoyer et al., 2020; Qiu et al., 2021; Prad-
han et al., 2024) use BERT (Devlin et al., 2019)
or Sentence Transformers (Reimers and Gurevych,
2019) to produce a vector representation of tweets.

Graph-Based Approaches. These methods
(Peng et al., 2022; Ren et al., 2022; Cao et al.,
2024) leverage the semantic structure of social
media, using anchors such as hashtags, user
mentions, hyperlinks and named entities. They
construct message graphs that include all candidate
messages, linking those that share common
attributes. The event detection task is then framed
as a graph-partitioning problem.

3 Methodology

When working with social media data, one needs
to consider both the textual similarity of the docu-
ments and their temporal proximity to avoid group-
ing together tweets posted at significantly different
times. Since the number of events is not known
in advance, the chosen algorithm does not require
the number of events given a priori. Following
the method by Mazoyer et al. (2020), we use an
incremental clustering algorithm derived from the
Topic Detection and Tracking (Allan et al., 1998)
initiative.

Algorithm. This mini-batch First Story Detec-
tion (FSD) algorithm works as follows: documents
are vectorized (we develop embedding methods
in the subsequent section), sorted chronologically,
and processed in batches of b documents. Each new
batch is compared to a window of w previous doc-
uments in terms of cosine distance. For each batch
document, if the distance to its nearest neighbor is
smaller than a threshold t, it joins the same cluster
as its nearest neighbor. Otherwise, the document
joins a new cluster. The procedure is detailed in
Algorithm 1, where δ denotes the cosine distance.

Short-Text Embeddings. In the work published
by Mazoyer et al. (2020), the best performing
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Algorithm 1: “mini-batch" FSD
input: threshold t, window size w, batch size b, corpus C = {d0 . . . dn−1} of n documents in

chronological order
output :a list T of cluster ids for each document

1 T ← [] ; i← 0; j ← 0;
2 while i < n− b do
3 batch = {di, . . . di+b−1};
4 do in parallel
5 for document d in batch do
6 if T is empty then
7 cluster_id(d)← j;
8 j ← j + 1;
9 else

10 dnearest ← nearest neighbor of d in T ;
11 if δ(d, dnearest) < t then
12 cluster_id(d)← cluster_id(dnearest);
13 else
14 cluster_id(d)← j;
15 j ← j + 1;
16 if |T | ≥ w;
17 then
18 remove first document from T
19 add d to T ;
20 i← i+ b;

embedding method is a tf-idf score where the df
(document-frequency) is computed over the entire
tweet dataset (millions of tweets). Over the past
five years, numerous models have emerged, partic-
ularly large language models (LLMs), which are es-
pecially suited for this task as they encode both lin-
guistic and world knowledge, making them highly
effective in capturing the nuances and complexities
of event detection. We use Sentence Transform-
ers, also known as SBERT (Reimers and Gurevych,
2019), a BERT/RoBERTa (Devlin et al., 2019; Liu
et al., 2019) fine-tuning architecture using Siamese
networks. This model ensures that the resulting
sentence embeddings are both semantically mean-
ingful and comparable, using cosine distance.

Time Complexity. The time complexity of the
FSD algorithm is O(nw) (with n the number of
documents in the collection and w the number of
documents in the time window), since each docu-
ment in the corpus is compared only with the last
w documents in chronological order. In practice,
when using the "mini-batch" FSD, computation
time is inversely proportional to batch size, as illus-
trated in Figure 1.
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Figure 1: Evolution of execution time and adjusted mu-
tual information (AMI) of the "mini-batch" FSD algo-
rithm depending on batch size b on the entire Event2012
corpus (68,841 documents).

4 Experiments

Baselines. We compare our results (FSD-
SBERT) with HISEvent2 (HE), the most recent pa-
per on event detection: Cao et al.’s (2024) work on
the partition of a graphical neural network represen-
tation of tweets using structural entropy minimiza-
tion. We also evaluate the performance improve-
ment achieved by using Sentence Transformers in

2https://github.com/SELGroup/HISEvent
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comparison to the tf-idf vectors used in (TW)3 by
Mazoyer et al. (2020).

Datasets. We conducted experiments using two
extensive, publicly accessible tweets datasets:
Event2012 (McMinn et al., 2013) and Event2018
(Mazoyer et al., 2020). The Event2012 dataset
contains 150,000 English tweet IDs related to 506
distinct events over a four-week period. In con-
trast, Event2018 comprises 96,000 French tweet
IDs corresponding to 257 unique events, all posted
within a span of 23 days. For a fair comparison
with baseline methods, we limit our analysis to
the subset of the dataset used by Cao et al. (2024).
Indeed, these authors downloaded the tweets re-
cently after many were deleted. Their dataset, there-
fore, contains 68,841 tweets related to 503 events
for Event2012 and 64,516 tweets related to 257
events for Event2018. We do not use the distinc-
tion adopted by Cao et al. (2024) between open-set
(day-by-day detection) and closed-set (detection
across the entire corpus), as we argue that events
should be allowed to span multiple consecutive
days. Therefore, we only evaluate our method on
the complete corpus.

Short-Text Embeddings. We use Sentence
Transformers (SBERT) models pre-trained on En-
glish and French corpora to compute vectors
from tweets. Specifically, we use all-mpnet-
base-v24 for the English dataset and Sentence-
CamemBERT-Large5 (Martin et al., 2020) for
the French dataset.

Parameters. The mini-batch FSD algorithm
takes three input parameters: the cosine distance
threshold (t), the time-window size (w) and the
batch-size (b). Consistently with Mazoyer et al.
(2020), we set w to the average number of docu-
ments per day in each dataset, and the batch size
to 8 documents. The threshold t depends on the
type of text-embedding. It was optimized using
grid-search and set to 0.5 for English and 0.55 for
French.

Evaluation Metrics. We use the scikit-learn (Pe-
dregosa et al., 2011) implementation of adjusted
mutual information (AMI) (Vinh et al., 2009) and
adjusted rand index (ARI) (Rand, 1971), which

3https://github.com/ina-foss/twembeddings
4https://huggingface.co/sentence-transformers/all-mpnet-

base-v2
5https://huggingface.co/dangvantuan/sentence-

camembert-large

FSD-SBERT HE TW
dataset

2012 ARI 0.63 0.50 0.39
AMI 0.86 0.81 0.82

2018 ARI 0.55 0.44 0.25
AMI 0.81 0.66 0.72

Table 1: ARI and AMI scores on two datasets:
Event2012 (in English) and Event2018 (in French).

ARI AMI

0.17

0.73

0.5

0.81

0.6

0.84

0.68

0.86

a. Event2012 (dataset in English)

KMeans+all-MiniLM-L6-v2
HISEvent
FSD+all-mpnet-base-v2
FSD+all-MiniLM-L6-v2

ARI AMI

0.11

0.62

0.44

0.66

0.39

0.74

0.55

0.81

b. Event2018 (dataset in French)

KMeans+distiluse-base-multilingual-cased-v1
HISEvent
FSD+distiluse-base-multilingual-cased-v1
FSD+sentence-camembert-large

Figure 2: ARI and AMI scores with different SBERT
models and different clustering algorithms. All FSD
tests ran with b = 8 and t = 0.55.

are widely employed in event detection evaluation
(Cao et al., 2024).

5 Results and Discussion

Performance. Table 1 compares the performance
of our method (FSD-SBERT) with HE and TW.
We observe that Mazoyer et al.’s (2020) mini-batch
FSD algorithm combined with Sentence Transform-
ers pre-trained on large text corpora consistently
outperforms the baselines on both datasets. The
comparison between HISEvent (HE) and twembed-
dings (TW) seems to indicate that the mini-batch
First Story Detection algorithm, even used with
a simple tf-idf representation of tweets, is still a
strong baseline, since its performance is compara-
ble (and even superior on the French dataset) to
HISEvent when using AMI as the indicator, though
it is inferior when evaluated with ARI.

It is important to note that Cao et al. (2024) also
use Sentence Transformers as a baseline in their
article, with a different clustering algorithm (K-
means). Their results are represented as the first
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column in Figure 2, with the exact SBERT mod-
els they have used ("all-MiniLM-L6-v2"6 for En-
glish and "distiluse-base-multilingual-cased-v1"7

for French). Our experiments show that the type
of SBERT model has an effect on performance: as
shown on Figure 2 b, the "multilingual" model is
less efficient for French than the language-specific
"CamemBERT" model. Nevertheless, regardless of
the model used, the FSD algorithm (see the last two
columns) is much more efficient than the K-means
for both datasets. This gap is explained by the fact
that the FSD algorithm is able to take into account
the temporality of tweets (by applying a sliding
time window when searching for nearest neigh-
bors) unlike the K-means. Moreover, FSD seems
to be robust to changes in SBERT models without
the need to adapt the parameters: on Figure 2, when
using FSD, the same threshold t = 0.55 is used
for all SBERT models. This common threshold
explains the small difference between the values
in Table 1 and Figure 2 for the all-mpnet-base-v2
model, since the threshold is set to 0.5 in Table 1
and to 0.55 in Figure 2.

Time efficiency. Increasing the batch size is a
way to increase the computation speed with min-
imal loss in clustering performance: as shown in
Figure 1, doubling the batch size only decreases the
performance (measured by AMI) by 0.5%. This is
why our experiments were all run with a batch size
(b) set to 8 documents. With these parameters, our
algorithm processes the Event2012 corpus, consist-
ing of 68,841 documents (with a window size w
of 2,368 documents), in 72 seconds. In contrast,
HISEvent requires 1 hour and 45 minutes to pro-
cess a block of 8,722 documents, and over 5 days
to handle the entire corpus.

The experiments shown on Figure 1 were run
on a notebook PC with 32GB of RAM and and 8
2.4GHz CPUs. Note that these tests do not take into
account the encoding of the tweets using Sentence
Transformers, since we computed the embeddings
only once on a GPU server and then stored them
to be re-used for further experiments on a note-
book computer without GPU. It took 65 seconds
using a NVIDIA RTX A4500 GPU to encode the
Event2012 corpus, and 240 seconds to encode the
Event2018 corpus.

6https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2

7https://huggingface.co/sentence-transformers/distiluse-
base-multilingual-cased-v1

Resources. We observed that executing HISEv-
ent on the entire Event2012 dataset required sub-
stantial memory resources, exceeding 62 GB of
RAM. In contrast, FSD operates with significantly
lower memory requirements (less than 32GB of
RAM).

Limitations. Twitter has been an invaluable re-
source for research on social media and real-time
data streams. However, this is no longer possible
due to the platform’s API restrictions. Nevertheless,
we believe this study remains relevant, as other data
streams and social networks continue to produce
valuable data, and event recognition continues to
be a crucial task.

Another limitation related to the mini-batch FSD
algorithm is the need to pre-determine the hyper-
parameter t. However, the consistency of the re-
sults with the same t value across several SBERT
models (see Figure 2) suggests that this threshold
(t = 0.55) could be appliced to other Sentence
Transformers models pre-trained on corpora in dif-
ferent languages.

Finally, a potential improvement for this method
would be to better account for the nested nature of
events in public discourse: for instance, a major
political event might consist of numerous smaller
sub-events, such as speeches, protests, and negotia-
tions (for example the Yellow Vest protest in France
lasted several months, with protests every week,
discussions with the government, thousands of dec-
larations, actors and reactions (Wagner-Egger et al.,
2022). Each of these sub-events can be reported
separately (or not) in different messages. This lay-
ered structure would ideally necessitate more so-
phisticated models capable of capturing and in-
tegrating these various components to provide a
coherent and comprehensive understanding of the
overall event.

6 Conclusion

In this study, we aimed to investigate the perfor-
mance of incremental clustering combined with
Sentence Transformers models for automatically
detecting events in a stream of tweets. Our results
demonstrated that applying the mini-batch FSD
algorithm to SBERT representations significantly
improves event detection performance on Twitter.
We suggest that future research in this area should
adopt this straightforward approach as a baseline
for deploying more complex algorithms.

22

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1
https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1


Acknowledgements

This work was funded in part by the Agence Na-
tionale de la Recherche, as part of the ANR Medi-
alex Project (AAPG 2021). Thierry Poibeau is also
funded by the “Investissements d’avenir" program,
reference ANR-19-P3IA-0001 (PRAIRIE 3IA In-
stitute).

References
James Allan, Jaime Carbonell, George Doddington,

Jonathan Yamron, and Yiming Yang. 1998. Topic de-
tection and tracking pilot study final report. Carnegie
Mellon University.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022.

Yuwei Cao, Hao Peng, Zhengtao Yu, and Philip S. Yu.
2024. Hierarchical and incremental structural en-
tropy minimization for unsupervised social event de-
tection. Proceedings of the AAAI Conference on
Artificial Intelligence, 38(8):8255–8264. Number: 8.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Mahmud Hasan, Mehmet A Orgun, and Rolf Schwitter.
2018. A survey on real-time event detection from the
twitter data stream. Journal of Information Science,
44(4):443–463.

S Likhitha, BS Harish, and HM Keerthi Kumar. 2019. A
detailed survey on topic modeling for document and
short text data. International Journal of Computer
Applications, 178(39):1–9.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz
Suárez, Yoann Dupont, Laurent Romary, Éric Ville-
monte de la Clergerie, Djamé Seddah, and Benoît
Sagot. 2020. Camembert: a tasty french language
model. Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics.

Béatrice Mazoyer, Julia Cagé, Nicolas Hervé, and Cé-
line Hudelot. 2020. A french corpus for event detec-
tion on twitter. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, page
6220. European Language Resources Association
(ELRA).

Andrew J McMinn and Joemon M Jose. 2015. Real-
time entity-based event detection for twitter. In Ex-
perimental IR Meets Multilinguality, Multimodality,
and Interaction: 6th International Conference of
the CLEF Association, CLEF’15, Toulouse, France,
September 8-11, 2015, Proceedings 6, pages 65–77.
Springer.

Andrew J. McMinn, Yashar Moshfeghi, and Joemon M.
Jose. 2013. Building a large-scale corpus for evaluat-
ing event detection on twitter. In Proceedings of the
22nd ACM international conference on Information
& Knowledge Management, pages 409–418. ACM
Press.

Fabian Pedregosa, Gael Varoquaux, Alexandre Gram-
fort, Vincent Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay. 2011. Scikit-learn: Machine
learning in Python. Journal of Machine Learning
Research, 12:2825–2830.

Hao Peng, Ruitong Zhang, Shaoning Li, Yuwei Cao,
Shirui Pan, and S Yu Philip. 2022. Reinforced, incre-
mental and cross-lingual event detection from social
messages. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(1):980–998.

Sasa Petrovic, Miles Osborne, and Victor Lavrenko.
2010. Streaming first story detection with applica-
tion to twitter. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics (HLT’10), pages 181–189. Association for
Computational Linguistics.

Abhaya Kumar Pradhan, Hrushikesha Mohanty, and Ra-
jendra Prasad Lal. 2024. EDTBERT: Event detection
and tracking in twitter using graph clustering and pre-
trained language model. Procedia Computer Science,
233:481–491.

Xingfa Qiu, Qiaosha Zou, and C. J. Richard Shi. 2021.
Single-pass on-line event detection in twitter streams.
In 2021 13th International Conference on Machine
Learning and Computing, pages 522–529. ACM.

William M Rand. 1971. Objective criteria for the evalu-
ation of clustering methods. Journal of the American
Statistical association, 66(336):846–850.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing.

Jiaqian Ren, Lei Jiang, Hao Peng, Yuwei Cao, Jia Wu,
Philip S Yu, and Lifang He. 2022. From known to un-
known: Quality-aware self-improving graph neural
network for open set social event detection. In Pro-
ceedings of the 31st ACM International Conference
on Information & Knowledge Management, pages
1696–1705.

23

https://doi.org/10.1609/aaai.v38i8.28666
https://doi.org/10.1609/aaai.v38i8.28666
https://doi.org/10.1609/aaai.v38i8.28666
https://doi.org/10.1177/0165551517698564
https://doi.org/10.1177/0165551517698564
https://sciencespo.hal.science/hal-03947820
https://sciencespo.hal.science/hal-03947820
https://doi.org/10.1145/2505515.2505695
https://doi.org/10.1145/2505515.2505695
https://doi.org/10.1016/j.procs.2024.03.238
https://doi.org/10.1016/j.procs.2024.03.238
https://doi.org/10.1016/j.procs.2024.03.238
https://doi.org/10.1145/3457682.3457762


Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of documentation, 28(1):11–21.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Nguyen Xuan Vinh, Julien Epps, and James Bailey.
2009. Information theoretic measures for clusterings
comparison: is a correction for chance necessary? In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 1073–1080.

Pascal Wagner-Egger, Pascal Adam-Troian, Laurent
Cordonier, Florian Cafiero, and Gérald Bronner.
2022. The Yellow Vests in France: Psychosocial
Determinants and Consequences of the Adherence
to a Social Movement in a Representative Sample of
the Population. International review of social psy-
chology, 35(1).

24

https://doi.org/10.5334/irsp.556
https://doi.org/10.5334/irsp.556
https://doi.org/10.5334/irsp.556
https://doi.org/10.5334/irsp.556


Proceedings of the Workshop on the Future of Event Detection (FuturED), pages 25–31
November 15, 2024 ©2024 Association for Computational Linguistics

DEGREE2: Efficient Extraction of Multiple Events Using Language Models

Philip Blair1,2 and Kfir Bar1

1Babel Street, Reston, VA, USA*

2Blair Software, Amsterdam, The Netherlands
{pblair,kbar}@babelstreet.com

Abstract

Language models (LMs) show exceptional
promise in the area of few-shot event extrac-
tion, but they suffer from certain limitations. In
particular, DEGREE (Hsu et al., 2022) is an
LM-based event extraction model that has re-
cently been supplanted by other large language
model-based state-of-the-art systems, but it suf-
fers from an inability to cope with multiple
events in the same region of an input document.
In this work, we present a simple method for
extending this system with the ability to grace-
fully handle different densities of events within
documents, thereby rendering it competitive
with the state-of-the-art once more, and addi-
tionally explore a novel evaluation metric that
can be used to qualitatively compare the outputs
of different event extraction systems. Finally,
we show that our extension allows models to
break apart documents into less small pieces
during processing without sacrificing accuracy.

1 Introduction

In the domain of information extraction (IE), event
extraction is a task consisting of identifying spe-
cific occurrences of things which happen involving
participants (LDC, 2005). This task poses a num-
ber of unique challenges for information extraction
systems, as proper detection of events typically re-
quires an in-depth understanding of the semantics
of input sentences, as opposed to simple lexical
information. For example, the sentence “John went
to San Antonio” denotes a Movement:Transport-
type event, whereas the sentence “The first point
went to San Antonio” does not.

The bulk of the literature on event extraction
descends from the original ACE2005 information
extraction dataset published by the Linguistic Data
Consortium (LDC, 2005). Notably, this decom-
poses the event extraction task into two subtasks:
event detection (also known as trigger extraction)

*Research conducted at Babel Street.

John met with Alice and then Steve.
[...template...]
Event trigger is met.
John and Alice met at some place.

(a) Sample ACE2005 Contact:Meet completed prompt from
DEGREE.

John met with Alice and then Steve.
[...template...]
<EVENTSEP>Event trigger is met.
John and Alice met at some place.
<EVENTSEP>Event trigger is met.
John and Steve met at some place.

(b) Our version of the equivalent completed prompt.

Figure 1: Fine-tuning prompts used in our work com-
pared to DEGREE (Hsu et al., 2022). Text in blue
denotes the input text to perform the event detection
on. [...template...] represents the input template
(Section 3), with the following text being the expected
generation of the Large Language Model (LLM). Text
in violet denotes the trigger phrase, teal the event partic-
ipants, and magenta the event location. Finally, orange
text denotes special tokens added to the model vocab-
ulary. At inference time, the LLM generates text after
the input source portion.

and argument extraction. For example, in the sen-
tence “John met with Alice”, “met” is the trigger
(the phrase which clearly expresses the occurrence
of the event), while “John” and “Alice” are the
arguments of the event. Arguments can have a
number of different event-specific types, such as
meeting participants, locations, and relevant actors
(e.g. the victim of a crime).

Supervised machine learning is a natural choice
for modeling this problem, but the drawback of
these approaches is that such training generally re-
quires a large quantity of annotated data due to
the need to understand the semantic nuances of
text when performing this task. Anecdotally, this
can be prohibitive in a number of real-world ap-
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plications of event extraction systems, due to the
fact that downstream users often (a) require a di-
verse set of event types and (b) these event types
are many times unique to their use case (prevent-
ing useful sharing of annotated datasets between
different users).

With the advent of powerful language models
and Large Language Models (LLMs) (Brown et al.,
2020; OpenAI, 2024), a number of novel low-
resource and zero-shot methods have been devel-
oped which leverage these models’ abilities to be
fine-tuned to new tasks with relatively little data.
One such model, known as DEGREE (Hsu et al.,
2022), was until recently considered the state of
the art in few-shot event extraction until being sup-
planted by the EE-LCE (Yu et al., 2024) model.
While this would suggest a superior method for
fine-tuning LLMs for event extraction, we find that
this performance gap can be explained away by con-
trolling for a specific limitation of the DEGREE
model: its inability to extract more than one event
from the same region of text.

In summary, our contributions are as follows:

1. We present a simple extension of the DE-
GREE event extraction system which allows it
to extract multiple events from the same piece
of text.

2. We demonstrate that this extension makes DE-
GREE competitive with the state-of-the-art
generative event extraction model.

3. We describe a novel E2E event extraction eval-
uation metric which can be used to qualita-
tively compare model performance irrespec-
tive of whether they handle multiple events.

2 Related Work

The bulk of research into event extraction focuses
on high-resource scenarios, with models based
on traditional supervised machine learning tech-
niques. Examples of this include techniques based
on decision trees (Ahn, 2006), support vector ma-
chines (Hong et al., 2011), convolutional neural
networks (Nguyen and Grishman, 2015), recur-
rent neural networks (Nguyen et al., 2016), and
graph convolutional neural networks (Nguyen and
Grishman, 2018). Broadly speaking, all of these
approaches are based on the idea of training a ma-
chine learning algorithm from scratch to recognize
event triggers and arguments using features which

are either hand-crafted or, in the case of the neural
network-based algorithms, automatically learned.

More recent approaches to event extraction lever-
age language models. The basic idea of these tech-
niques is to leverage the natural language modeling
capacity of pretrained language models in order to
reduce training data requirements via posing event
extraction as a text-based natural language gener-
ation task. Consequently, these techniques focus
more on few-shot and zero-shot learning scenarios.
The state-of-the-art in this space is EE-LCE (Yu
et al., 2024), which is an extension of InstructUIE
(Wang et al., 2023). These flan-t5-xxl-based
(Chung et al., 2022) models are trained via a multi-
task learning algorithm designed to cover a large
number of information extraction tasks. Their re-
sults slightly beat out the previous state-of-the-art,
known as DEGREE (Hsu et al., 2022), which is the
inspiration for our work.

For a more detailed history of event extraction
datasets and systems, see Lai (2022).

3 Methodology

Before describing our extension to the model, we
first provide a brief overview of the design of DE-
GREE (Hsu et al., 2022). The system frames the
event extraction task in terms of a natural language
generation task, with the generated text being
rigidly structured in order to be machine-parsable.
Consider the sentence, “John met with Alice.” DE-
GREE might query this input for Contact:Meet
events with the following input:

John met with Alice.
contact event, meet sub-type
The event is related people meeting.
Similar triggers such as meet, met.
The event’s trigger word is <Trigger>.
some people met at somewhere.

The final two lines serve as a “prototype” tem-
plate that should appear in the output. In this in-
stance, we expect the fine-tuned model to produce
the following completion:

Event trigger is met.
John and Alice met somewhere.

For inputs where no event is found, the comple-
tion Event trigger is <Trigger> is generated.

DEGREE is trained by fine-tuning a base LLM
to complete patterns such as the above. Once
trained, the LLM is able to extract not only the
event types which it was trained on, but also, to
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Figure 2: ACE2005 MUC-style (Chinchor and Sundheim, 1993) F1 scores for different system configurations.
Horizontal lines represent the median scores of baseline systems. The box plots represent all of the scores from the
events and arguments related to the five event types we analyze (Section 3), with the lines in the center of each box
denoting the median score. The detailed scores can be found in Appendix B

some extent, new event types in a zero-shot fash-
ion. These completions are easily parsable into
structured formats, and the generated strings can
be searched for in the original input in order to
function as a text annotation algorithm.

As shown above, DEGREE is able to extract
zero or one events from a given piece of text. How
can entire documents then be handled? DEGREE
addresses this by chunking input documents into
pieces consisting of three sentences1. All of a doc-
ument’s chunks are processed separately (once per
event type) in order to perform event extraction
across the full input.

One remaining limitation is the handling of mul-
tiple events of the same type in the same chunk.
DEGREE does not address this situation, so we
propose an update to the fine-tuning template struc-
ture which allows this type of scenario to be han-
dled. Our proposed template is shown in Figure 1b.
The key modification is the introduction of the
<EVENTSEP> special token, which separates each
event in the output. While a rather minor change,
we show below that this is enough to close the gap
between DEGREE and the state of the art.

4 Experimental Results

We evaluate our system on a variety of configura-
tions using the ACE2005 dataset (LDC, 2005)’s
English data. To determine sentence boundaries,
we use the Babel Street Analytics text analysis
framework.

Our models are based on t5-large (Raffel et al.,

1This choice of three was not explained in DEGREE’s
paper, but our results in Section 4 agree with this choice.

2020), as we empirically found this to be a bet-
ter choice than DEGREE’s base model of BART
(Lewis et al., 2020). For different numbers of sen-
tences used to chunk apart input documents, we
train two versions of each model: one with multi-
events turned off (i.e. the same algorithm as DE-
GREE, with our base model and template, limited
to a single event per chunk), and one with multiple
events per input chunk. Additional training details
can be found in Appendix A.

Additionally, we compare against three base-
lines: DEGREE, InstructUIE (Wang et al., 2023),
and EE-LCE (Yu et al., 2024). For DEGREE and
InstructUIE, we use the models published by the
authors. For EE-LCE, we use the provided training
code to create a model.

To focus on the most pertinent subset of the
dataset, we limit our analysis to the five event
types with the highest support in the test data: Con-
flict:Attack, Contact:Meet, Movement:Transport,
Personnel:End-Position, and Transaction:Transfer-
Ownership. Finally, since we feel that it is more
representative of performance on argument extrac-
tion, we opt to use a MUC-style (Chinchor and
Sundheim, 1993) formula for calculating F1. This
is identical to the traditional formula, except partial
matches are counted as 50% correct (rather than
completely incorrect).

When interpreting the data in Figure 2, we find
that extending DEGREE to support multiple events
causes two changes in the behavior of the model.
First, the event detection performance becomes
very similar to the state-of-the-art EE-LCE system,
despite being based on a model with 750MM pa-
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rameters (in contrast to EE-LCE’s 11B). Second,
model is able to process more sentences at once
without sacrificing accuracy. Because DEGREE
requires num_chunks×num_event_types invoca-
tions in order to process a document broken apart
into num_chunks pieces, this means that we can
effectively halve (or more) the number of model
invocations required to process a document.

5 Relaxed F1: Co-Arity-Invariant
Comparison of Event Extraction
Algorithms

Our exploration into the impact of this single-event
limitation of DEGREE on its comparative perfor-
mance led us to consider whether there was a way
to compare the qualitative performance of these
algorithms in a mathematical way. For example,
suppose that there is a dataset where each sentence
contains one Conflict:Attack event, and we run
algorithms A and B on chunks of two sentences.
Algorithm A is limited to zero or one outputs per
sentence, but it detects an attack event in each pair
of sentences. In contrast, algorithm B can output
an arbitrary number of events, and it detects both
attack events in each pair.

Which is better? In an absolute sense, algorithm
B outperforms, since we calculate precision and
recall metrics with respect to the number of events
contained in the document. For certain applications,
however, we may be more interested in knowing
which of the two qualitatively performs better. In a
certain sense, these algorithms are equivalent, since
within the scope of its limitations, A and B both
extract attack events as much as is possible.

To address this shortcoming, we present a new
metric for event detection, which we call relaxed F1
scores. The formula for this score is derived from
the partial-match-aware MUC formulae (Chinchor
and Sundheim, 1993) and defined by the following
formula for “relaxed” recall:

Rrelaxed =
correct + (0.5× partial)− extra

possible− impossible

In this equation, “correct” and “partial” de-
note the number of correctly-extracted, partially-
extracted (extractions of the correct type but only
a partial overlap with the correct location) events
or arguments, “possible” the number of events or
arguments in the gold annotation. “impossible” de-
notes the number of events greater than one in each

Figure 3: ACE2005 relaxed F1 scores across all system
configurations. For further details, see Appendix B.

chunk (i.e. for a chunk with five events, “impos-
sible” would be four). Finally, the “extra” term is
needed for algorithms which can extract multiple
events, in order to make the result comparable with
ones which cannot. For these algorithms, “extra”
denotes the number of correct (or weighted partial)
predictions which were made that would have been
impossible if multiple events could not be extracted.
In sum, this means that, effectively, for each chunk
of text produced during processing, the calculation
of relaxed recall becomes binary.

From this relaxed recall value, relaxed F1 is com-
puted by using the standard formula alongside the
standard precision P :

F relaxed
1 =

2× P ×Rrelaxed

P +Rrelaxed

We use this metric to determine whether our
multiple event extraction extension qualitatively
decreases the event detection performance of DE-
GREE, with the results shown in Figure 3. This
graph shoes a roughly linear correlation between
the two values, meaning that our extension does
not meaningfully degrade DEGREE’s qualitative
performance.

6 Discussion

We demonstrate that a simple extension to DE-
GREE is sufficient to close the gap between it and
state-of-the-art systems. This suggests that differ-
ent generative approaches to event extraction are
potentially much more competitive with one an-
other than previously thought.

Furthermore, we present an F1-style event de-
tection metric which can give some insight into
the qualitative performance of these algorithms.
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We hope that this motivates further research into
ways of analyzing these systems’ performance in
more fine-grained detail. Future work could in-
clude a metric that allows for assessing argument
extraction performance without depending on event
detection accuracy.

7 Limitations

The systems described in this paper are trained on
annotated event datasets. While they have some
capacity to generalize to new event types in a zero-
shot fashion, users should be cautious when using
them with event types not found in the training data,
as they may produce unexpected predictions.

The analysis presented here focuses on the
English-language ACE2005 data. Some of the con-
clusions presented here may not hold for certain
other languages, and the systems described here
may not function correctly on non-English input
text.
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Model # Sentences Multi-Events Enabled Event Detection Argument Extraction
InstructUIE 1 N/A 0.441 ± 0.076 0.266 ± 0.158
EE-LCE 1 N/A 0.602 ± 0.111 0.234 ± 0.112
DEGREE (BART) 3 N/A 0.617 ± 0.089 0.377 ± 0.115
DEGREE (T5) 1 Yes 0.488 ± 0.033 0.402 ± 0.112
DEGREE (T5) 1 No 0.487 ± 0.039 0.396 ± 0.109
DEGREE (T5) 2 Yes 0.581 ± 0.042 0.398 ± 0.170
DEGREE (T5) 2 No 0.557 ± 0.073 0.391 ± 0.158
DEGREE (T5) 3 Yes 0.650 ± 0.034 0.463 ± 0.135
DEGREE (T5) 3 No 0.585 ± 0.040 0.403 ± 0.122
DEGREE (T5) 4 Yes 0.597 ± 0.074 0.415 ± 0.153
DEGREE (T5) 4 No 0.506 ± 0.072 0.361 ± 0.143
DEGREE (T5) 6 Yes 0.657 ± 0.028 0.421 ± 0.159
DEGREE (T5) 6 No 0.548 ± 0.047 0.389 ± 0.149
DEGREE (T5) 8 Yes 0.658 ± 0.024 0.420 ± 0.149
DEGREE (T5) 8 No 0.502 ± 0.031 0.348 ± 0.127

Table 1: Mean and sample standard deviations of the MUC-Style F1 scores for the five event types we analyze. Our
configurations and the best scores are in bold.

Model # Sentences Multi-Events Enabled Event Detection
InstructUIE 1 N/A 0.457 ± 0.074
EE-LCE 1 N/A 0.615 ± 0.110
DEGREE (BART) 3 N/A 0.650 ± 0.068
DEGREE (T5) 1 Yes 0.488 ± 0.033
DEGREE (T5) 1 No 0.499 ± 0.037
DEGREE (T5) 2 Yes 0.574 ± 0.052
DEGREE (T5) 2 No 0.598 ± 0.078
DEGREE (T5) 3 Yes 0.655 ± 0.038
DEGREE (T5) 3 No 0.658 ± 0.047
DEGREE (T5) 4 Yes 0.593 ± 0.083
DEGREE (T5) 4 No 0.596 ± 0.094
DEGREE (T5) 6 Yes 0.667 ± 0.046
DEGREE (T5) 6 No 0.672 ± 0.057
DEGREE (T5) 8 Yes 0.648 ± 0.032
DEGREE (T5) 8 No 0.653 ± 0.060

Table 2: Mean and sample standard deviations of the relaxed F1 scores for the five event types we analyze. Our
configurations and the best scores (for each value of “# Sentences”) is in bold.
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Abstract

Information extraction has led the way for event
detection from text for many years. Recent ad-
vances in neural models, such as Large Lan-
guage Models (LLMs) and Vision-Language
Models (VLMs), have enabled the integration
of multiple modalities, providing richer sources
of information about events. Concurrently, the
development of schema graphs and 3D recon-
struction methods has enhanced our ability to
visualize and annotate complex events. Build-
ing on these innovations, we introduce the MU-
MOSA (MUlti-MOdal Situation Awareness)
interactive dashboard that brings these diverse
resources together. MUMOSA aims to provide
a comprehensive platform for event situational
awareness, offering users a powerful tool for
understanding and analyzing complex scenar-
ios across modalities.

1 Introduction

After a significant incident or crisis, how do inves-
tigators determine and assess what happened when
in order to produce a report with clear evidence
from the sequence of events in detailing lessons
learned? How do communities prepare their re-
sponders to handle similarly complex, critical situ-
ations that may come their way in the future? Some
crisis response procedures are well-established for
specific situations, e.g., an initial fire suppression
response to a wildfire1, so responders can be con-
sistently trained in advance and investigators know
what to look for afterwards. But other times, the
crisis is so sudden and unexpected that established
lines of communication struggle to convey up-to-
date information. Following these unforeseen cir-
cumstances, both groups, investigators and respon-
ders, have a shared need to understand the various
types of information about events in the evidence
collected and analyzed for post-crisis reports.

1https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/
fsm9_039213.pdf

The field of information extraction (IE) within
computational linguistics has led the way since the
late 1980’s applying symbolic, then statistical, and
most recently neural methods to natural language
texts to identify the types of essential elements of
information needed for such reports, including enti-
ties, relations, and events (Grishman, 2019). Most
recently, with neural models such as LLMs and
VLMs that can bring together multiple modalities
to provide additional sources of information about
events, there is now the opportunity to leverage
various combinations of multimodal event informa-
tion to support investigators in combing through
text and photographic evidence for report writing
and to train responders in preparing to handle such
information in the future. Furthermore, the recent
development of schema graphs with access to over
3K event types (Zhan et al., 2023) and 3D recon-
struction methods for scenario simulation from as
little as 24 images, e.g., Kerbl et al. (2023), users
can now have hands-on access to interfaces to visu-
alize and annotate complex events online, as they
learn from available evidence and documentation
what has happened over the course of those events.

In this paper, we introduce our approach to bring-
ing together these various resources in an inter-
active, MUlti-MOdal Situation Awareness (MU-
MOSA) dashboard for complex event understand-
ing, ultimately in support of users’ real-time event
situational awareness (SA) and decision-making
during a crisis. For a specific role, such as a first
responder onsite or incident coordinator at an emer-
gency operations center, the specifics of their SA
will be determined by tasks and decisions for their
job. However in all cases, their SA will entail
“the perception of the elements in the environment
within a volume of time and space, the comprehen-
sion of their meaning and the projection of their
status in the near future.” (Endsley, 1995, 2015)2

2Perception, comprehension, and projection have been
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Figure 1: Users engage with the MUMOSA dashboard through (A) Interactive Multi-Modal Q/A, selecting the
incident with source date and entering questions or directed requests in natural language. They may then choose
to examine the source data for the system response via panels in (B) Textual and Visual Evidence, or continue
engaging the dashboard via Q/A. The selected incident can also be explored in its entirety across events via panels
in (C) Schemas and Simulation Evidence.

The MUMOSA dashboard’s panels are intended
to provide for user perception of essential elements
of information (SA level 1) about the complex
event they select in the form of multi-modal ev-
idence. The workflow design enables users to ex-
plore and compare information across evidence
panels, as well as edit and annotate the content of
the complex schema graphs and scenario simula-
tion. This aims to support them in interpreting and
retaining the panel content with multiple elements
of information, and in building their own narrative
of the complex event (level 2).

Users engage in interactive multi-modal
question-answering (Q/A) and exploration of
events and simulated environments. The user
initializes the dashboard for the complex event
of interest and time frame. After inputting a
question, they receive a text answer and access
to supporting evidence from text documents and
photographic visuals. They may simultaneously

designated as progressive levels 1, 2, and 3 of SA.

explore the event in its entirely through schema
graph structures and 3D simulations. Each of these
modalities of evidence pertaining to the incident
appears in a separate interactive panel, as shown in
Figure 1.

In this paper, we select one unexpected crisis
to focus on—the Ohio 2023 train derailment—as
we describe the design and capabilities of the dash-
board for the following applications:

1. to assemble crisis documentation for those
writing ’lessons learned’ investigative reports

2. to create training resources for those respon-
sible in the future for handling crises

For background, Section 2 describes existing re-
sources we build on in constructing the dashboard,
and basic facts about the Ohio derailment. Sec-
tions 3 and 4 cover the dashboard implementation
and workflow (SA levels 1 and 2 respectively) for
the crisis documentation and training resources.
Section 5 envisions the dashboard of the future sup-
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porting real-time crisis response, akin to the needs
of SA level 3. We briefly overview related research
that differs from our approach in Section 6 and
conclude in Section 7.3

2 Background

We briefly overview here existing resources that we
build on in four panels of our dashboard.

Textual evidence. To show textual evidence,
we leverage text-based Q/A and Frequently Asked
Questions (FAQs), where a set of common user
questions pertaining to a particular topic are com-
piled into an accessible list where the user may look
up answers if their query is common (Tekumalla,
2020). Prior work has shown how to find these
matches in a dialogue Q/A. By using statistical text
classifiers, Leuski and Traum (2011) compared a
user question in real-time against a distributions
of common user questions paired with responses.
After successfully matching the input question to
the pre-processed question set, the paired answer
was returned. The same statistical classifier was
leveraged in human-robot dialogue extending be-
yond the constraint of a ‘question,’ allowing for
different types of frequently issued robot-directed
commands (Lukin et al., 2018; Gervits et al., 2021).
The matching was re-implemented in Lukin et al.
(2024) using sentence embeddings and cosine sim-
ilarity to find close matches between vectorized
input and pre-stored questions, and showed signifi-
cant improvement in accuracy over the statistical
approach in the same domain of human-robot dia-
logue. Section 3.1.1 covers our work incorporating
a modified version of this approach with LLMs in
responding to user input.

Visual evidence. Prior to VLMs, comprehen-
sive text generation from images required several
different tools: OCR for text recognition, object
recognition and segmentation for object annota-
tion, visual-question-answering models for short
answers to specific questions about the image, and
captioners to generate a one sentence description of
the image. Now, VLMs are able to accomplish all
of these tasks (with the present exception of produc-
ing segmentation and bounding boxes) in a unified,
context-sensitive way. To show visual evidence in
answering a text question, Section 3.1.2 describes
our use of Idefics3 (Laurençon et al., 2024) to gen-
erate text descriptions of images that we can match

3We plan to release the dashboard as an artifact of our
research towards enabling higher levels of SA following sys-
tematic evaluation in future work.

on in a similar way as carried out for textual evi-
dence. Idefics3 was developed by Huggingface and
builds off of Google’s SigLIP (Zhai et al., 2023)
and Meta’s Llama 3.1 (AI@Meta, 2024).

Schema evidence. Schemas provide structured
representations of real-world occurrences. They
are event-centric, and as such, serve as abstract
templates for understanding and analyzing complex
sets of events. Event schemas typically consist of:

• Events: High-level (e.g., “transport accident”)
and granular sub-events (e.g., “damage,” “in-
vestigation.”)

• Entities: Actors or objects involved in events
(e.g., “train,” “residents,” “authorities.”)

• Relations: Connections between entities or
events, often temporal or causal in nature.

Schema visualizers allow for complex events to be
viewed in an intuitive way via a graph-like struc-
ture of nodes with directed edges. Schemas may be
compared against source documents to find when
an event mentioned matches an event node. Sec-
tion 3.2.1 describes the RESIN pipeline are used to
extract and match events to the schema (Du et al.,
2022; Wen et al., 2021) and the RESIN visualizer
(Nguyen et al., 2023) to view and edit them within
our dashboard.

Simulation evidence. Reconstructing scenes
from a set of images is an emerging research area
in 3D computer vision, enabling novel view syn-
thesis and embodied scene understanding, both of
which could be crucial for crisis response. Ad-
vancements in Neural Radiance Fields (NeRF) and
3D Gaussian Splatting (3DGS) have resulted in 3D
models that achieve state-of-the-art in rendering ap-
pearance, rendering speed, and training efficiency.
Section 3.2.2 covers the use of 3DGS (Kerbl et al.,
2023). A 3DGS scene is represented as a set G of
discrete Gaussian primitives each with parameters
(µ, o, s, r, SH) where µ ∈ R3 is for the spatial cen-
ter, o ∈ R for opacity, s ∈ R3 for scale, r ∈ R4 for
quaternion rotation, and SH for spherical harmon-
ics coefficients which represent view-dependent
colors. We extend this formulation with additional
parameters to capture language features from 2D
foundation models (Kirillov et al., 2023; Bowser
and Lukin, 2024).

Scenario: Ohio Train Derailment. On Febru-
ary 3, 2023, in East Palestine, Ohio, USA, about
50 train cars derailed from a 150 Norfolk Southern
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freight train.4 Eleven of the derailed cars were car-
rying hazardous materials including vinyl chloride,
ethylene glycol, ethylhexyl acrylate, butyl acrylate
and isobutylene. Some cars caught fire, and others
spilled hundred thousand gallons of hazardous ma-
terials into a stream that eventually empties into the
Ohio River. A number of federal and state govern-
ment agencies were immediately mobilized. Clean-
up efforts included real-time testing of air, soil, and
water. A controlled burn of remaining chemicals
was ordered on February 6, 2023 to prevent further
explosions. However, after extensive investigation
of the incident, this course of action was assessed
over a year later to have been unnecessary. We
select this real-world incident since news articles,
government reports, photos, and other data about it
are openly available for populating our dashboard
panels and assessing ways these varied informa-
tion sources may help immediate responders more
reliably gain SA in novel and unexpected events.

3 MUMOSA Dashboard Evidence Panels

The user starts their interactions with the MU-
MOSA dashboard by initializing it for a partic-
ular incident and date of interest. They can then
proceed by posing questions about events in the
incident and exploring the source data evidence
provided with the system responses along with full
incident visualizations in the dashboard panels. We
focus here and in Section 4 on interactions specifi-
cally for forensic use cases of the dashboard with
pre-processed data for investigators and first re-
sponders. We postpone till Section 5 discussion of
future dashboard research for real-time conditions
with dynamic changes to both data availability and
user information needs.

The intent for the dashboard panels is to provide
users with essential elements of information (SA
level 1). User workflow across panels for build-
ing their understanding of the sequences of events
within the incident (SA level 2) will be addressed
in the section that follows.

3.1 Interactive Multi-Modal Q/A
During the multi-modal Q/A interaction, the user
enters questions or makes directed requests using
natural language, and the dashboard responds, as
information is available, with both a text answer
(Figure 1A) and panels populated with supportive
evidence from source texts and visuals (Figure 1B).

4EPA website on derailment: https://www.epa.gov/east-
palestine-oh-train-derailment/operational-updates

The system provides next-search alternatives to
Q/A interactions for the users within the panels,
enabling them to look for other evidence deeper
within the reply stack or browse the source docu-
ment collection.

3.1.1 Textual Evidence Panel

Textual evidence is shown in its own panel with
the system answer (the text returned to the user in
response to their question in the Q/A interaction)
highlighted, and surrounding context and source
information provided for further exploration. In ad-
vance of the user’s question, the dashboard contains
a collection of texts. For our case study scenario,
we gathered news articles from different sources
published on different days following the derail-
ment. The text from these articles was scraped
from the websites and segmented into sentences.
Next, we created Q/A pairs, where the questions
had answers contained in the sentences. We ran dif-
ferent large language models (ChatGPT and Llama
3.1) to generate numerous questions from the sen-
tences, and then with manual review, as feasible for
this forensic use case, we validated or adjusted each
generated question as reasonable for inclusion in
our stored Q/A pairs. For subsequent run-time com-
parison with user questions, all the stored questions
were also vectorized through sentence embeddings
using SBERT (Reimers, 2019).

After the input of the user’s question, we run a
semantic sentence matching, as described in Lukin
et al. (2024). The user question is vectorized with
SBERT and compared against every pre-stored vec-
torized question using cosine similarity. The stored
questions are ranked in descending order, and the
answer, found in the pair with the top question, is
displayed to the user in the answer box immedi-
ately below the user question. The answer also ap-
pears contextualized within the Textual Evidence
Panel containing: the source document passage
with answer highlighted, the document title, link to
the source document, and two buttons for further
exploration. The “Show other evidence” button en-
ables users to examine other lower-ranked answers
retrieved in response to their request. The “Browse
collection” button gives users access to the sys-
tem’s text document collection for more extensive
investigation of source materials. Table 1 shows
the user question “What time did the derailment in
East Palestine happen?” as matched against the
top-3 answers, corresponding to a request to show
other evidence in Figure 1B.
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Table 1: Ranked answers to user question: “What time
did the derailment in East Palestine happen?”

Score Answer

0.82 About 50 cars derailed in East Palestine at about
9 p.m. EST Friday...

0.71 The 50-car Norfolk Southern train derailed
around 9 p.m. Friday night.

0.53 East Palestine officials said 68 agencies from
three states and a number of counties responded
to the derailment...

3.1.2 Visual Evidence Panel
Visual evidence is shown in its own dashboard
panel in response to the user’s question. In ad-
vance of the user’s question, the dashboard requires
a collection of images paired with natural language
text. This text may come from different sources,
including:

• human-written captions or alt-texts associated
with the image, if retrieved from a document;

• machine-generated captions or descriptions as
generated by a VLM;

• annotated labels or bounding boxes associated
with objects in an image as annotated by a
computer vision object detection model;

• texts within an image generated by OCR.
For our forensic use case in the case study, we man-
ually gathered photographs from different sources
showing the derailment. We then extracted the rel-
evant text sources (i.e., the caption, alt-text, OCR)
and generated text descriptions using Idefics3-8B-
Llama3.

After the input of the user’s question, we fol-
low a paired-vector comparison process, similar to
the one described for textual evidence: the user’s
question is vectorized using SBERT and compared
against pre-stored, vectorized image texts. The pair
with the highest match is selected, the matched
image text is returned to the user as the answer to
their question, and the associated image is shown
in the Visual Evidence Panel alongside the image
texts. For example, a different user question in-
quiring into the aftermath of the derailment might
be, “How does the wastewater get cleaned?” This
question might have a high match to the human-
authored text caption “This centrifuge separates
solid waste from liquid wastewater in holding bins
to determine whether the waste is hazardous and
then disposed properly” that is associated with an
image of a centrifuge. This caption is returned to
the user as the answer, and the retrieved image will

appear together with its text caption in the Visual
Evidence Panel (Figure 2). The user may follow up
with two button choices, asking the system to show
other visual evidence found, or browsing the source
collection of images to inspire new questions.

Figure 2: Visual Evidence Panel following the user
question “How does the wastewater get cleaned?”

In cases where the user’s question yields a high
match from both the collection of documents and
images, the dashboard will inform the user through
the Q/A interface to inspect both Textual and Visual
Evidence Panels.

3.2 Interactive Multi-Modal Event
Exploration

In addition to asking questions or making directed
requests, the user can explore the event as a whole
using two representations of the incident: a schema
panel view showing a graph of event nodes and
either hierarchical or temporal event-event relations
as edges, and a 3D simulated panel view showing
a visualization of event itself. The Schema and
Simulation Evidence Panels are not extrinsically
tied to the user’s question. At any point during
the user’s interaction with the dashboard, they may
choose to explore these panels.

3.2.1 Schema Evidence Panel
The Schema Evidence Panel provides the user with
an event-centric exploration of the incident. First,
documents are preprocessed to identify events
using the information extraction module of the
RESIN pipeline (Du et al., 2022; Wen et al., 2021).
The resulting extractions are then matched to events
in incident schemas by executing the matching
module in the RESIN pipeline. Finally, a sep-
arate program consumes the matching module’s
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output for visualizing the schema graph in the evi-
dence panel where the user can explore and edit it
(Nguyen et al., 2023).

The schema the user sees is based on their se-
lection of the incident and timeframe at the top
of the dashboard. Figure 1C shows a screenshot
of the transport accident schema5, and so the vi-
sualized graph displays events within this type of
incident. Blue diamonds represent complex events
in the schema that typically happen or could happen
within this incident. Clicking a blue diamond, e.g.,
damage, expands the graph with its subevents con-
taining different color and shaped nodes. Circles
are primitive events, as leaf nodes (no subevents).
A red circle indicates actual evidence was extracted
from the source material that matched the primi-
tive event type, whereas events not included in the
original schema appear as yellow (see Figure 4 in
Appendix A).

Clicking a red circle, e.g., damage, expands the
panel with further information about the event, in-
cluding the matched phrase in the source material,
and the participants and their roles in the event (i.e.,
A0 agent causer, A1 patient entity damaged, and
location). The user has hands-on access to explore
all events within the schema, opening nodes to see
where matches occurred in event fields from doc-
ument content reported during the selected time-
frame.

3.2.2 Simulation Evidence Panel

The Simulation Evidence Panel provides the user
with an interactive 3D model that has been recon-
structed from photographs of the incident, resulting
in a bird’s-eye view of the scene. The user can nav-
igate the scene through the first-person perspective
using a mouse and keyboard.

The simulation is constructed using a 3D Gaus-
sian Splatting point cloud structure (Kerbl et al.,
2023). Figure 1C shows a snapshot from our simu-
lation after scene reconstruction from the angle the
user selected by moving their cursor. This simula-
tion was created using only 24 references images
that were captured by an aerial drone flying over-
head of the derailment incident,6 thus the recon-
struction shows the user novel views unavailable
from the original source. Figure 7 in Appendix B

5The transport accident schema was independently curated
by RESIN team on DARPA KAIROS.

6Source video from Youtube: “National Transportation
Safety Board B-Roll: Train Derailment in East Palestine, OH”
https://www.youtube.com/watch?v=7AyXTVkVBT4

shows the full flattened view of the 3D simulation
from which the view in Figure 1C was taken. The
geometry and visual appearance of the simulation
is improved as more images are added.

The simulation can be annotated using user-
specified keypoints and image segmentation masks
which are unprojected onto the underlying model
for 3D segmentation. Sections of the 3D map can
then be highlighted with unique colors and icons.

4 User Workflow

The MUMOSA dashboard represents a powerful
tool for users to query events by enabling Q/A over
multi-modal data sources where the modalities of-
fer complementary supporting evidence. While the
evidence in the individual panels provides users
with essential elements of information (SA level
1), the MUMOSA dashboard itself provides for
an easy-access workflow to detect and compare
events across panels and modalities. By using all
the panels together, the dashboard provides unique
opportunities for users to iterate in their informa-
tion foraging and annotate the underlying data to
enhance their understanding of the sequence of
events (SA level 2).

In our forensic use of this case study, a user may
want to understand the initial response of the derail-
ment by asking the question, “What time did the
derailment in East Palestine happen?” to which
the answer was “about 9 p.m. EST Friday” with
the textual evidence showing an article published
on February 4, 2023. This answer may prompt the
user towards several lines of inquiry, one of which
may be to ask “Was it hard to see at night during
the initial incident response?” This might return
a photograph of the nighttime scene in the Visual
Evidence Panel, which may in turn inspire another
question that could be answered by the Textual Ev-
idence Panel, e.g., “What challenges did the first
responders face in the dark?”

We also readily imagine that the open-ended
workflow with schema and simulation panels will
elicit follow-up questions. When exploring the
schema view, users can navigate the hierarchical
structure of events related to the train derailment.
For example, they might explore sub-events under
investigation, as seen Figure 6 in Appendix A. This
exploration may prompt a user to follow-up with

“What criminal charges are being reported?” The
response in the schema evidence would highlight
the node of interest within the schema, and search
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stored documents for supportive textual evidence.
Giving users access to the simulation affords

them greater situational awareness to ask questions
pertaining to accessibility and route planning, ob-
stacle and target identification, and scene overview.
Examination of the simulation might prompt not
only new questions, but the ability to display an-
swers within the simulation using annotations. The
user may ask the question “Where is the immediate
danger?” and the simulation would highlight the
clusters of train cars in orange and red, as seen
in Figure 3. This may be followed up by “What
buildings are in immediate danger?” and would
highlight the buildings in green (also Figure 3). In
this way, the simulation view displays portions of
visual evidence to the user without constraining
their viewpoint to the original camera pose.

Figure 3: Simulation evidence augmented with semantic
segmentation masks as a result of user questions

5 Discussion: Toward Real-Time Event
Tracking

The MUMOSA dashboard currently aims to serve
as an interactive forensic resource, providing sup-
port to post-crisis incident investigations and train-
ing exercises for first responders at SA levels 1 and
2. The questions we have included above show-
case how users may search for information looking
back at events within an incident across modalities.
The evidence supplied in one modality may inspire
new questions or may lead to further insights in
conjunction with evidence from another modality.
With this groundwork in place, we now shift our
discussion to how we envision the dashboard will
support real-time crisis responses.

5.1 Dynamic Timeframes

The MUMOSA dashboard is designed to show
grounded evidence for the incident and timeframe
the user selects at the start of a session to build
their own understanding of time-stamped incident

events. It remains an open design research ques-
tion how we might modify the dashboard to auto-
matically visualize incident changes for the user
in real-time, without also cognitively overloading
them by viewing too much information across the
multiple modalities. One UI/UX design opportu-
nity is augmenting the dashboard with a timeline
and adjustable slider for the user to control the se-
quenced, connected display of photos, news report
summaries, 3D reconstructions and schema graphs.
Photographs from news reports of ongoing events
could be presented along a timeline to show the
progression of events together with generated text
summaries based on and time-aligned to those re-
ports for augmenting a Situation Report, such as
SmartBook (Reddy et al., 2024). The 3DGS sim-
ulation within the Simulation Evidence panel, in
conjunction with an adjustable slider on the time-
line, could display changes to the simulation by
adjusting the opacity of Gaussians belonging to dy-
namic objects (Shen et al., 2024; Wu et al., 2024).
Similarly, the slider could be connected to the graph
display in the Schema Evidence panel, enabling the
user to move through the progression of photos on
the timeline in conjunction with visible changes
to the schema, displaying automated detection of
events in red graph nodes (Appendix A shows dif-
ferent timescales of schema evidence).

Additional modalities may extend to time series
data collected at the incident site from sensors de-
ployed that are constantly recording and storing
measurements. In particular, we are exploring how
time series data from the air7, water8, and soil sam-
ple measurements9 can be incorporated into the
dashboard to allow a user to examine quantitative
data changes over time and location and further
query these new modalities through the Q/A inter-
action.

5.2 Scalability for Responding to Rapidly
Evolving Incidents

In order for the dashboard to be responsive to real-
time event tracking, the back-end storage and pro-
cessing requirements must be scalable to support
streaming data, as well as filter the incoming data
for content, such as for misinformation. Though
these issues fall beyond the scope of this paper, they

7https://www.epa.gov/east-palestine-oh-train-
derailment/air-sampling-data

8https://www.orsanco.org/east-palestine-train-derailment-
spill-response/

9https://www.epa.gov/east-palestine-oh-train-
derailment/soil-and-sediment-sampling-data
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help sharpen the criteria and distinctions to keep in
mind as we are in the process of selecting metrics
and designing an evaluation of the current MU-
MOSA dashboard with its strictly forensic goals.
For example, the intended end-users of the forensic
MUMOSA dashboard will not be subject to the
time pressure, cognitive distractions, and levels of
noise in an emergency operations center or an in-
cident command post that end-users of a real-time
dashboard would be. The speed of processing (ve-
locity), the amount of data (volume), the range of
data modalities (variety), the timeliness and accu-
racy of the data content (value and veracity)—all
well-known “V”s of information overload—will
differ along with stakeholder and user expectations
and requirements of a dashboard, depending on
whether it will serve forensic or real-time goals.
These all need to be understood in advance of any
dashboard evaluation.

5.3 Evaluating User Priorities
Ultimately, our goal is to support end-users of a
real-time dashboard at SA levels 1, 2, and 3, that
includes scenario planning and “what-if” analysis
using all available modalities. In determining how
effective the dashboard can be for investigators and
responders at SA levels 1 and 2, we have begun
to assess the accuracy of the technology in each
evidence panel. Before we can measure how well
the dashboard can support different user needs, as
we are not subject matter experts for their tasks,
we need to design and conduct interviews with
individuals in the relevant communities.

Investigators, who examine past events with par-
ticular questions in mind, will benefit from train-
ing on the dashboard before any evaluation, with
guided learning of panel workflows and in-depth
searches that support chronological reconstruction
(such as browsing the document collection and
schema visualization over time). This already sug-
gests additional value to prioritizing the develop-
ment of the timeline mentioned above for a real-
time dashboard. Furthermore, a future dashboard
that provides automated detection and highlight-
ing of discrepancies between conflicting event re-
ports would also help expedite the investigator’s
work. For now, we plan to task participants in-
volved in our investigator evaluation with manually
constructing a timeline of events and their trusted
sources, to assess the ease with which they can
make use of the current dashboard.

Responders, who are in training to deal with

crisis events, will benefit from learning to view
the 3D simulations and annotations that document
immediate dangers in physical environments, for
discerning what constitutes sufficient information
for rapid decision-making. Thus, a future dash-
board that provides for automatic detection and
highlighting of key crisis regions in the physical
environment as the incident unfolds, would help
expedite the responder processing of incoming in-
formation. For now, we are designing a pilot study
for participants in the responder evaluation where
their task will be to create a situation report with
summaries of levels of danger at different locations,
as more information becomes known over time.

5.4 Event Tracking with a Dialogue Agent
The dashboard as presented thus far relies on the
user to “pull” information by typing and submitting
their own questions as inspired by their viewing
of the different evidence panels. We envision a
future iteration where the dashboard becomes more
like an agent that can also “push” information to
the end-user, taking an active role in the interac-
tion. The agent could engage in a dialogue with
the user by supporting a fact-seeking conversation,
requesting clarifications to the user’s question, and
making suggestions of follow-up questions. The
agent may be designed to recognize changes to a
situation as time progresses, and alert the user so
they may further inquire.

Additionally, we expect to extend the dashboard
beyond text input only to support various modality
input, where the user could submit text questions
about particular image(s) previously retrieved as
visual evidence. We envision an additional interac-
tion mode within the dashboard that can reference
prior images and engage in a new dialogue session
about them. This further would support new im-
ages to be uploaded as incidents unfold in real-time.
In these cases of unlabeled data, human-authored
captions may not be available, and instead, automat-
ically generated descriptions can be used for Q/A
matching. Table 2 shows both the human-authored
descriptions about the image in Figure 2, as well
as automatically generated ones, which provide
extensive detail and attempted analysis.

6 Related Work

Text-based search methods, begun in the 1950’s,
have been central to modern information retrieval
systems (Sanderson and Croft, 2012). Most re-
cently, generative AI has been leading a new
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Human-written caption “This centrifuge separates solid waste from liquid wastewater in holding bins to determine
whether the waste is hazardous and then disposed properly.”

Alt-text “Huge machine called a centrifuge separates the solid waste.”

Text in image “STRAD” and “SB162”

Generated description
from Idefics3-8B-
Llama3 (Prompt:
“Describe this image”)

“The object is most likely a type of pump station designed for heavy-duty use, probably utilized
in industries like construction, mining, or wastewater management due to its robust build and
extensive piping setup. Pumps labeled with identifiers like SB168 often denote standardized
models within these sectors, known for their reliability and durability. Given the context
clues provided by the surrounding environment (industrial equipment, trees), we infer that this
equipment plays a critical role in managing fluid flow efficiently across different sites where
liquid transfer is necessary.” (See Appendix C for the full generated output)

Table 2: Texts associated with the photograph retrieved in Figure 2

wave of search-related technologies (Najork, 2023).
Nonetheless, it is quite striking that reports suggest
half of all web searches are not answered.10 Thus,
for complex tasks such as those build situational
awareness, there remain significant opportunities
to develop, deploy, and assess interactive systems
for the impact of providing multiple modalities of
information to dashboard users for their detection
and understanding of events over time.

We know of no other research that combines
information for user access across modalities as
we have within an interactive dashboard. MU-
MOSA provides an interactive, multi-modal inter-
face where users can iteratively forage for answers
about complex events to meet their information re-
quirements. Our approach, by retaining a dialogue
history with text and visual evidence for document-
ing user searches, paves the way to building an AI
agent-based system (White, 2024).

Event detection has recently been expanded by
novel methods of embedding and extracting events
across modalities from multimedia sources. For
example, by constructing shared semantic vector
spaces for texts and images (Radford et al., 2021;
Jia et al., 2021), systems can generate text descrip-
tions of events detected in images where only ob-
jects have been identified (Li et al., 2020a). Image
retrieval has seen advances by using global fea-
tures (Shao et al., 2023), augmenting query or im-
age vectors (Zhu et al., 2023), and general purpose
VLMs (Wang et al., 2022). Our FAQ approach on
documents and images is intended to achieve high
accuracy to support our investigator users looking
forensically at data, and serve as a strong feasibility
test in bringing together the evidence panels. We
also give users access to the document and image
collections using the semantic search ranking to

10https://blogs.microsoft.com/blog/2023/02/07/reinventing-
search-with-a-new-ai-powered-microsoft-bing-and-edge-
your-copilot-for-the-web

enable users to forage in a less constrained way by
exposing the evidence directly to the user.

The automated construction of regular patterns
of events from news reports, where the task of event
schema induction applies, continues to challenge
researchers (Devare et al., 2023; Li et al., 2023).
The innovation of building path language mod-
els by connecting shared arguments across events
within instance graphs has provided for more com-
plete schema induction (Li et al., 2020b).

Recent advances in 3DGS for 3D reconstruction
have begun to support natural language querying of
a scene (Shi et al., 2024), however these approaches
presently only highlight segmentation masks based
on keywords, e.g., ‘train cars.’ There is no frame-
work in place to support interactive querying of the
3D reconstruction from natural language questions.
In order to understand that the question we pose

“Where is the immediate danger?” refers to the train
cars requires greater understanding of ‘danger’ in
the context of the simulation.

7 Conclusion

Our MUMOSA dashboard aims to provide a user
with level 1 and 2 situational awareness for un-
derstanding essential elements of information and
complex events by uniting complimentary modali-
ties and interactions. We further envision how the
dashboard will support real-time crisis response
(SA level 3). By integrating document-based Q/A,
visual evidence retrieval, event schema visualiza-
tion, and 3D scene simulation, our dashboard offers
a comprehensive solution for complex event under-
standing. This multifaceted approach not only sup-
ports various levels of situational awareness, from
initial perception to comprehensive understanding,
but also provides a flexible, future-ready frame-
work that can evolve with advancements in AI and
data processing technologies.
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A Appendix: Schema Visualization and
Sources

This section lists the four article sources used to
create the different schema timeframes.

Article 1:

• Title: 50-car train derailment causes big fire,
evacuations in Ohio

• Date Published: February 4, 2023

• Source: Associated Press (AP)

• https://apnews.com/article/pennsylvania-
ohio-evacuations-fires-
5d399dc745f51ef746e22828083d8591

Article 2:

• Title: East Palestine under mandatory evacu-
ation, possible explosion warning after toxic
train derailment

• Date Published: February 5, 2023

• Source: Ideastream Public Media

• https://www.ideastream.org/community/2023-
02-05/east-palestine-under-mandatory-
evacuation-possible-explosion-warning-
after-toxic-train-derailment

Article 3:

• Title: Ohio crews conduct a ’controlled re-
lease’ of toxic chemicals from derailed train
cars

• Date Published: February 6, 2023

• Source: National Public Radio (NPR)

• https://www.npr.org/2023/02/06/1154760911/
ohio-train-derailment

Article 4:

• Title: Is the Ohio River contaminated? East
Palestine train derailment sparks concerns
over water

• Date Published: February 14, 2023

• Source: The Columbus Dispatch

• https://www.dispatch.com/story/news/local/
2023/02/14/is-the-ohio-river-contaminated-
east-palestine-train-derailment-sparks-
concerns-over-water/69900528007/

Figure 4: Schema Evidence Panel using the transport
accident schema, matched on events in news reports
over 10 days. Selecting ‘injury’ (red) node and matched
text “No injuries” in role filler, opens panel below with
that text highlighted in source context.

As more documents are analysed over time, ad-
ditional extracted events are incorporated into MU-
MOSA. Some event nodes may be newly matched
(previously blue, turn red), such as “injury”, while
newly extracted events not included in the original
schema may appear (yellow), such as “estimate”,
as shown in Figure 4. Selecting the linked filler in
the panel of a matched node opens another window
containing the matched phrase in the context of the
source material.

Figure 5 presents two schemas side by side,
to make evident the contrast between earlier and
later date information within same schema. Both
schemas match and visualize on the “damage”
event, first with extracted information from just the
earliest document (Article 1), and then from all four
articles over ten days. Figure 6 similarly presents
two schemas corresponds to the schema matching
and visualization on “investigation” events, first
with extracted information from just the earliest
document (Article 1), and then from all four arti-
cles over ten days.

B Appendix: Simulation Space

Figure 7 displays a flattened view of the 3D simu-
lation modeled using 3D Gaussian Splatting from
the source video: “National Transportation Safety
Board B-Roll: Train Derailment in East Palestine,
OH” 11

11https://www.youtube.com/watch?v=7AyXTVkVBT4
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C Appendix: Full Image Description
Output

Table 2 abbreviated the generated output by
defics3-8B-Llama3 with the input image in
Figure 2 using the prompt “Describe this image”.
Below is the full output from the model, verbatim
(** indicates bold formatting):

The image depicts a piece of industrial equipment
situated outdoors, likely in an area designated for
construction or maintenance work. This apparatus
appears to be part of a larger system used for
pumping liquids or slurries, given the presence of
hoses and pipes connected to it

**Description of Objects Present in the Image:**

1. **Main Equipment**:
- A large machine with multiple components:
- It has a rectangular base that supports several
vertical elements.
- There is a prominent horizontal pipe extending
from one side of the main structure, which seems
to have black corrugated tubing attached to its end.
This suggests that the device might be involved
in transferring fluids or materials through pipelines.

2. **Safety Features**:
- Yellow guardrails are installed around the
top section of the machinery, indicating safety
measures to prevent falls during operation.
- Additional yellow handrail sections can also
be seen on other parts of the structure, ensuring
operator protection while working at height.

3. **Identification Markings**:
- "STR" is prominently displayed on the front
panel of the machine, possibly denoting the
manufacturer’s name or model identifier.
- Below "STR," there’s another label reading
“SB168,” which could represent a specific product
line or serial number associated with the equip-
ment.

4. **Covered Section**:
- At the bottom right corner of the image, there is a
covered portion of the equipment. The cover bears
white text that reads "SB168." This indicates either
a storage compartment or a protective casing over
sensitive internal mechanisms.

5. **Surrounding Environment**:
- In the background, various pieces of industrial
equipment and containers are visible, suggesting a
typical setting such as a warehouse, factory yard,
or construction site.
- Trees and greenery indicate that the location
may not be entirely urban but rather semi-rural or
suburban.

6. **Sky Conditions**:
- Above, the sky is mostly clear with scattered
clouds, implying fair weather conditions suitable
for outdoor operations.

### Analysis:
The described object is most likely a type of pump
station designed for heavy-duty use, probably uti-
lized in industries like construction, mining, or
wastewater management due to its robust build and
extensive piping setup. Pumps labeled with iden-
tifiers like SB168 often denote standardized mod-
els within these sectors, known for their reliability
and durability. Given the context clues provided by
the surrounding environment (industrial equipment,
trees), we infer that this equipment plays a critical
role in managing fluid flow efficiently across differ-
ent sites where liquid transfer is necessary.
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Figure 5: Same“transport accident” schema with “damage” events extracted from earliest date information and then
with additional extracted information up to 10 days later

45



Figure 6: Same“transport accident” schema with “investigation” events extracted from earliest date information and
then with additional extracted information up to 10 days later
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Figure 7: Flattened view of the 3D simulation
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Abstract

Language models (LMs) trained on web-scale
datasets are largely successful due to their abil-
ity to memorize large amounts of training data,
even if only present in a few examples. These
capabilities are often desirable in evaluation on
tasks such as question answering but raise ques-
tions about whether these models can exhibit
genuine reasoning or succeed only at mimick-
ing patterns from the training data. This distinc-
tion is particularly salient in forecasting tasks,
where the answer is not present in the train-
ing data, and the model must reason to make
logical deductions. We present Reasoning and
Tools for Forecasting (RTF), a framework of
reasoning-and-acting (ReAct) agents that can
dynamically retrieve updated information and
run numerical simulation with equipped tools.
We evaluate our model with questions from
competitive forecasting platforms and demon-
strate that our method is competitive with and
can outperform human predictions. This sug-
gests that LMs, with the right tools, can indeed
think and adapt like humans, offering valuable
insights for real-world decision-making.

1 Introduction

Forecasting is an essential tool today, playing a
critical role in government, corporate, and personal
decision-making. Weather forecasting provides es-
sential information for agriculture, natural disaster
preparedness for governments, and travel plans for
individuals. During the COVID-19 pandemic, lock-
down policies were largely determined by forecasts,
which were required to be sufficiently accurate due
to their global impact (Dubé et al., 2020).

Forecasting methodologies fall into two main
categories (Webby and O’Connor, 1996): statistical
and judgmental. Statistical forecasting leverages
time-series modeling and excels with abundant data
under stable conditions. Conversely, judgmental

*Authors contributed equally to this work.

Question
Will MSTR close above $1525 on April 30, 2024?

We need to evaluate a range of 
factors, including historical 

stock price data, recent trends,

We need to evaluate a range of 
factors, including historical 

stock price data, recent trends,

LM reasoning

Do I need a tool? 
Yes.

Thought

Python_REPL

Actioncurrent_price = 1200 
time_horizon = 0.5  # 6 months

volatility = 0.60 
daily_volatility = volatility /   

  (252 ** 0.5)

expected_price = current_price 

  * (1 + daily_volatility * 

  (time_horizon * 252) ** 0.5)  


Observation

Low-level execution

High-level ReAct planner

Aggregate Final forecast

Figure 1: RTF: High-level ReAct agent oversees low-
level agents, each equipped with distinct toolkits and
data/document stores to accomplish various tasks, in-
cluding Google API calling and Python simulation.

forecasting, which we refer to simply as “forecast-
ing,” typically relies on human expertise, integrat-
ing historical data, domain knowledge, and intu-
ition to make predictions, and is particularly useful
when data are sparse or conditions are volatile.

By nature, forecasting requires not only accu-
racy but also the ability to continuously adapt to
dynamic data streams. This is where traditional
LMs often struggle: timely data updates may cause
predictions to change considerably and past data to
be irrelevant.

2 Related Work

Information retrieval Reliable and accurate pre-
dictions are largely dependent on the information
available to the predictor. This is especially the
case of LMs, which are trained on data preced-
ing a knowledge cutoff and have been shown to
perform better with information retrieval (Shuster
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et al., 2021).
Language models model the likelihood

pθ(yi|x, y<i) for input sequences x and target
sequences y. Retrieval-augmented generation
(RAG) (Lewis et al., 2021) proposes augmenting
this approach with non-parametric memory, i.e.
retrieving the top-k text documents z via pη(z|x)
and conditioning the generator on the retrieved
passages, pθ(yi|x, z, y<i). In a forecasting context,
RAG enables us to search for relevant documents
z that may contain timely information about the
forecasting task x not present in the training data.

Prior approaches to LLM forecasting (Zou
et al., 2022a) propose using neural networks to
automate prediction in prediction markets. While
language models can be trained to improve their
performance on forecasting tasks, their accuracy re-
mains significantly below those of human experts.

Current methods aim to improve the accuracy
of LLM forecasting by fine-tuning and scratchpad
prompting (Nye et al., 2021; Halawi et al., 2024;
Yan et al., 2024) or ensembling (Bassamboo et al.,
2018; Schoenegger et al., 2024) to first approach
human-level forecasting. Concurrent work (Pratt
et al., 2024) benchmarks LLMs’ forecasting capa-
bilities using the GleanGen prediction market, an
internal tool at Google. However, this approach did
not accurately reflect real human crowd prediction
distributions, and it relied on PaLM2 (Anil et al.,
2023), which was suboptimal than GPT models.

We propose a zero-shot tool-usage LLM frame-
work without costly fine-tuning and laborious te-
dious scratchpad format prompting.

Ensembles Leveraging multiple LLM agents has
demonstrated strong performance on a variety of
tasks, and improve performance beyond that of a
single agent (Talebirad and Nadiri, 2023; Liu et al.,
2023). Recent work in tool learning has imple-
mented task planning and execution with separate
agents (Song et al., 2023; Shi et al., 2024). LLM
forecasting in particular has relied on the wisdom
of crowds effect, and has shown that taking ensem-
ble sizes up to 36 outperforms any individual fore-
casting agent (Bassamboo et al., 2018; Schoeneg-
ger et al., 2024).

We propose bridging this gap with a hierarchical
structure to facilitate cooperation between high-
level reasoning and low-level execution agents,
and demonstrate that a small ensemble suffices for
human-level performance.

3 Reasoning and Tools for Forecasting

Forecasting is a complex task solving environment,
for which we would like to leverage a frozen LM pθ
as reasoning. Successful forecasting agents rely on
the most up-to-date information, and accordingly
operate as agents that collect observations ot ∈ O
and take actions at ∈ A. The observation space O
is natural language, as collected from the prompt
itself or information on the internet. The agent’s
actions are distributed according to at ∼ π(at|ct),
where ct = (o1,a1, . . . ,ot−1,at−1) is the context
to the agent.

Our proposed approach π satisfies the following
criteria:

(i) It is simple, scalable, and time-invariant. As
we consider different datasets of forecasting
questions or language models at least as capa-
ble as the current state-of-the-art, we would
like our approach to work at least as well.

(ii) It can produce comprehensive responses
through zero-shot prompting from factual in-
formation, which can be used to reliably sup-
port decision-making in downstream scenar-
ios.

(iii) These responses should be consistent, i.e.
they should correctly synthesize the up-to-
date information the model collects.

(Yao et al., 2023) shows that CoT prompting,
even with in-context examples, can iteratively hal-
lucinate to produce incorrect responses on complex
tasks. CoT satisfies (i) but neither (ii) nor (iii). We
find that CoT’s lack of interaction with the environ-
ment (i.e. sole reliance on its training data) limits its
reasoning abilities and over-emphasizes irrelevant
information.

(Yao et al., 2023) proposes ReAct for this setting:
A = {search, lookup, finish}, and observations
ot from search and lookup are collected from
O ⊆Wikipedia web API. The context is then aug-
mented a thought ât ∼ pθ(ât|ct) that composes in-
formation about the existing context. This method
has shown to significantly enhance the model’s abil-
ity to refine its responses continuously, reducing
the likelihood of erroneous outputs due to lacking
critical context information. Vanilla ReAct satisfies
(i); as part of our framework, we show that it can
additionally satisfy (ii) and (iii).
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Hierarchical planning We define π by an aggre-
gate of a collection of hierarchical ReAct agents
with tools for real-time data retrieval and simula-
tion, expanding π’s observations ot collected from
O ⊆ Google Search API and Python interpreter.

We propose hierarchical ReAct planning, where
a LM agent acts as a high-level planner for handling
abstract logic and forecasting principles based on
the outputs collected from the low-level agents (Fig-
ure 1). When LLMs handle API directly with in-
dividual agents, it can consume a large portion of
the context window. We delegate the reasoning
and API calling to specialized agents to enhances
efficiency, conserves tokens, and allows for more
complex operations. The high-level agent interacts
with the low-level agent by invoking it as a tool. We
wrap API tools with another ReAct agent to form
the low-level agent, which significantly increases
API call success rates due to its self-correction
mechanism (Yao et al., 2023). Both classes of
agents are implemented with GPT-4o backbones.

Ensemble Motivated by (Schoenegger et al.,
2024), we use GPT-4o as the sole backbone for our
method, and aggregate outputs from just 3 agents.
Despite our small ensemble, our approach of en-
sembling highly calibrated agents shows robust
performance (Section 4.2).

4 Experiments

4.1 Setup

Models and data (Jin et al., 2021; Zou et al.,
2022b) have proposed forecasting benchmarks to
assess models’ forecasting abilities, simulating
forecasting by leveraging that models are only
trained up to a cutoff date. However, these bench-
marks, consisting of questions that resolved in
2022, are now outdated for evaluating the perfor-
mance of models such as GPT-4o due to answer
leakage in training data (knowledge cutoff October
2023; see Appendix A.1).

We curated the dataset on April 15, 2024, when
we scraped the platform for questions resolving
within the next two weeks and corresponding hu-
man crowd predictions. We then filtered out vague
questions through an LLM with an filtering sys-
tem prompt, and ran every prediction method on
these questions, enabling a fair comparison be-
tween each method and the human crowd. A exam-
ple of a vague question filtered was "Is AP Chem-
istry harder than AP Physics 1?" since no objective

answer could be given (see Appendix D.1). To pre-
vent answer leakage from the Google API, we set
the search range to prior to this date.

None of our baselines have direct access to pre-
diction market data, and empirically we found that
this information was never scraped via Google
search. That is, the prediction given by the ensem-
ble of agents relies on only the agents themselves,
with no human crowd influence. (By contrast, if
deployed in the real world, this approach could ben-
efit from incorporating the current human crowd
performance as an input to the prediction due to
the wisdom-of-crowds effect. Indeed, we observe
in our experiments that human crowds are fairly
well-calibrated.) For the model details, we set the
high-level agent using GPT-4-0 with a temperature
of 0.1, and the low-level agent using GPT-4-0 with
a temperature of 0.

Performance metrics Our n forecasting ques-
tions have true outcomes oi ∈ {0, 1} and
probabilistic forecasts fi ∈ [0, 1]. We eval-
uate our forecasts using Brier scores (Brier,
1950), i.e. 1

n

∑n
i=1(fi − oi)

2, and accuracy, i.e.
1
n

∑n
i=1 1{1{fi > 0.5} = oi}.12 In case LMs

decline to give numerical answers, the question is
dropped over all methods when evaluating scores.

Table 1: Performance of different models with the same
prompt on forecasting questions. “Base LM” refers to
{GPT-4o, 4, 3.5, Llama 3}. “Acc” is accuracy, and “Std”
is ensemble standard deviation.

Method Brier ↓ Acc % ↑ Std ↓
Crowd 0.172 73.8

RTF Median of 3 0.169 72.4 0.092
RTF Mean of 3 0.170 73.9 0.092
RTF Sampled 0.180 71.6

Halawi et al. (2024) GPT-4o 0.177 68.7

GPT-4o 0.210 65.5
Base LM Mean 0.218 62.9 0.150
Base LM Median 0.228 61.3 0.150
Llama 3 0.256 56.2
GPT-3.5 0.261 53.5
GPT-4 0.265 54.8

Baselines In Table 1, we compare RTF ensemble
to multiple baselines: (a) crowd scores given by
the current traded values on Manifold Markets (see

1The optimal strategy to minimize Brier scores is to fore-
cast fi = P(oi = 1), so this scoring metric is unbiased. It is
typical to compare Brier scores to 0.25, which can be achieved
by fi = 0.5 for all i.

2Accuracy denotes whether fi and oi are on the same side
of 0.5.
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Appendix A.2), (b) scratchpad prompting, ensem-
ble, and fine-tuning (Halawi et al., 2024), and (c)
base models from different providers.

4.2 Results and Observations
Table 1 demonstrates that RTF significantly im-
proves over CoT and scratchpad with fine-tuning.
We also achieve comparable Brier score (0.169 vs.
0.172) and superior accuracy (73.9% vs. 73.8%)
compared to human predictors using the median
and mean of our ensemble, respectively.

We also demonstrate that ensembles for RTF
yield better performance than individual agents
(Brier 0.169 vs. 0.180). However, this is not the
case for base LMs (Brier 0.218 vs. 0.210 for GPT-
4o). Base LMs tend to produce higher-variance
outputs (standard deviation in ensemble size 4 of
0.150) compared to our better-calibrated ReAct
agents (standard deviation in ensemble size 3 of
0.092), which satisfied (iii) as defined in Section 3.

Ensembles only contribute to the final perfor-
mance if each ensemble member is already suffi-
ciently calibrated. Indeed, Brier scores given by
randomly sampling our ReAct ensemble outputs,
“React Sampled” in the table, achieved a score of
0.180, far better than was achieved by any of the
base methods (which, aside from GPT-4o, perform
worse than guessing 0.5 every time by Brier score).

Ablation study To demonstrate the effectiveness
of our introduced components, we conduct the ab-
lation study. We showed each component is neces-
sary for the fully functioning RTF framework.

• ReAct: RTF itself without adequate guidance
from ReAct struggles to properly use the tools
provided by our low-level agents, which leads
to misguided lines of reasoning that cascade
downstream. This is consistent with the obser-
vation (B) in (Yao et al., 2023), where ground-
edness and trustworthiness come at the cost
of higher reasoning error rates.

• Hierarchical Planning: Empirically, without
the cooperation of high- and low-level agents,
a single agent fails to call APIs and perform
necessary reasoning, as it exhausted available
tokens on API schemas. In our experiments,
the single-agent approach frequently encoun-
tered time-out errors or exceeded rate limits
when handling complex queries.

Qualitative analysis While the baselines system-
atically evaluate multiple considerations, they do

not consider interactions between these considera-
tions. Empirically, we find in our samples that the
prompting style we present is useful in generating
a wide variety of arguments and providing reason-
able estimates for how to weight each of those
arguments. On the other hand, we see that this
same prompt GPT-4o directly does this calibration
in a sequential manner to update its final estimate,
which may result in over- or under-estimate based
on the recency of its considerations. In general, we
find that RTF yield human-like reasoning trajecto-
ries, showing the robustness of interactive decision
making, supporting goal (ii) from Section 3 (see
Appendix D).

Calibration index In Table 2, we evaluate our
methods by calibration index, which compares
binned forecast probabilities to observed outcomes.
A well-calibrated model means that if a forecast
predicts an event with a certain probability, the
event should occur approximately that fraction of
the time over many predictions.

We calculate the calibration index as

CI = 1
N

∑K
k=1Nk(fk − ok)

2,

where N is the total number of forecasts, Nk is
the number of forecasts in bin k, fk is the mean
forecast probability in bin k, and ok is the observed
probability with which events occur in bin k. We
select bins as the K-quantiles of the forecasts.

Comparing GPT-4o and React Mean, we see a
significant decrease in calibration index (0.0194 vs.
0.0129), which shows that ensembling with ReAct
not only increases forecasting accuracy, but also
more accurately measures the specific magnitudes
with which events occur.

Table 2: Calibration index with K = 5

Method Calibration Index ↓
Crowd 0.0101

ReAct Mean 0.0129
ReAct Median 0.0137
ReAct 0.0164
GPT-4o 0.0194
GPT-4 0.0290
GPT-3.5 0.0298
Llama 3 0.0301

5 Conclusion

We present Reasoning and Tools for Forecasting,
a framework to leverage LMs’ reasoning capabil-
ities by interacting with the latest information. It
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is competitive with the predictive capabilities of
human forecasters on forecasting platforms. The
RTF synthesizes information through a structured
decision-making process, ensuring that the predic-
tions are both current and relevant. Additionally,
while previous work has shown that ensembling
can improve prediction accuracy, a carefully cal-
ibrated smaller set of models is often more cost-
effective than larger ensembles.

By advancing LMs’ abilities to reason and dy-
namically interact with new data, RTF offers a ro-
bust tool for real-world decision-making for tasks
like forecasting.

Limitations The evaluation dataset is based on
prediction market data and popular questions rather
than domain-specific questions. This facilitates a
comparison with crowd prediction performance,
but may not fully capture the nuances of more spe-
cialized domains. In addition, our work focused on
predicting binary rather than numerical outcomes.
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A Models and Knowledge Accuracy

A.1 Models

Table 3: Models we evaluated

Model Knowledge Cutoff Evaluation Cost

GPT-4o Oct 2023 $0.005/1K tokens
GPT-4-Turbo Apr 2023 $0.01/1K tokens
GPT-3.5-Turbo Sep 2021 $0.0005/1K tokens
Llama-3-7B Mar 2023 One GPU

We list the details of models we evaluated in
Table 3, where the cutoffs have been retrieved from
the model cards. For GPT models, we run them
via the OpenAI API. We host Llama-3-7B on a
single NVIDIA TITAN RTX 24GB via Ollama for
roughly 0.5 GPU-hours. All other approaches are
run through the OpenAI API, for roughly 1 hour per
naive baseline, 6 hours for our reproduction of (Ha-
lawi et al., 2024), and 2.5 hours for our proposed
method. For GPT models, we use temperature 0.5
for all the experiments.

(Halawi et al., 2024) finds that GPT-3.5 and GPT-
4 do not have leakage due to post-training. We
find that the same is true of GPT-4o and Llama-
3-7B: prompting with “Answer this question with-
out searching the web: Who was appointed to the
Governor-General of Australia in 2024?” yielded a
statement about its cutoff date, whereas the correct
answer was given when prompted for the answer
in 2019.

A.2 Crowd Predictions

On Manifold Markets, players make bets on the out-
come of various events where the prices of bets are
determined by a current aggregate of crowd predic-
tions, which are prices in [0, 1]. As bets are made,
the prices are adjusted by their automated market-
makers (Markets, 2022). As shown in (Metaculus,
2023), the crowd prediction is a strong baseline
and consistently outperform top forecaster in the
prediction market.

B Dataset

B.1 Questions

Our final dataset consisted of 201 questions from
Manifold Markets. These question were all re-
solved after April 15, 2024, which was the knowl-
edge cutoff date for our low-level agent supporting
the Google Search API. We include a subset of the
dataset for reference.

Table 4: 5 example questions from dataset

1. Will Congress pass bill banning Tiktok by April 30?
2. 2024-04-30: Will ETH close above $3700?
3. Will “Challengers” (2024) receive a CinemaScore of B+

or above?
4. Will >10 NYU student pro-Palestinian protesters be

arrested by the end of April?
5. Will Adeel Mangi be confirmed by the U.S. Senate before

May 1st?

From Manifold Markets, we initially filtered for
questions that resolve between April 16, 2024 and
May 15, 2024, inclusive. Then, to improve the
quality of our questions, we filtered the question
as described in Appendix D.1. Finally, after the
markets have resolved, we re-collect data using
the API to extract the answers and compute Brier
scores and accuracies. In the future, researchers
can use our questions data for forecasting using
LMs and information retrieval tools with cutoff
dates before April 15, 2024 (see Section 4.1).

B.2 Knowledge Evaluation by Category

Table 5: Category frequencies

Count Category

Economics & Business 68
Politics & Governance 34
Science & Tech 29
Arts & Recreation 29
Sports 16
Security & Defense 13
Healthcare & Biology 5
Environment & Energy 4
Social Sciences 3

Total 201

We show the diversity of our dataset in Table
5, with categories determined by GPT-3.5. Due
to the popularity of Economics & Business and
Politics & Governance questions on the forecasting
platform, we have higher proportions of data in
those categories.

C Forecasting Principles Guidance

Our system prompt requested that the output satisfy
elementary forecasting principles. Due to its length,
the full prompt will be released along with the
codebase and dataset. The forecasting principles
are as follows:

- You may find relevant time series data online. If the
data is recent, you can use zeroth-order or first-
order approximations (but for longer time horizons,
recall that these may break down due to saturation
effects).
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- Don’t ignore base rates for low-probability events that
haven’t happened, but rather attempt to estimate
those probabilities to inform your estimate.

- Attempt to approximate the same quantity in multiple
different ways. You are welcome to split your
reasoning into multiple sections, where in each
section you describe how you reached an estimate
independently. If your estimates in these sections
are very far off, reason through why the estimates
are so different, potentially update those estimates,
and theorize how confident you are in each estimate.
Then, combine those forecasts using a weighted or

trimmed mean or median.

- Some data can be modeled well using a common
distribution, e.g., normal, log-normal, power law,
or Poisson distribution (but this is by no means a
guarantee). If there’s a good reason to believe this
is the case, you should use information about those
distributions.

D Prompts and Workflows

Due to length, we have only included one full sam-
ple below. In general, we observe that RTF yields
more robust CoT-style outputs, whereas base LMs
use more linear reasoning that may result in out-
puts unnecessarily biased towards specific consid-
erations.

D.1 Question Filtering
By inspection, we observed that many questions on
forecasting markets like Manifold are overly spe-
cific or too vague. We filter these questions with
the following data wrangling prompt, which con-
tains a mix of flagged and unflagged examples. The
prompt aims to restrict the data to reasonably fore-
castable questions, and empirically in Section B
we see that the unflagged questions are suitably
diverse. The prompt was run with a temperature of
0.1.
I’m trying to assess the quality of an old forecasting dataset.

Here is a forecasting question from the dataset: {question}.

Please flag questions that (i) don’t sound like binary
forecasting questions or (ii) involve people you couldn’
t know about (e.g. any instance of "I" without further
qualification) by outputting "flag".

If it sounds like a reasonable question, output "ok".

Examples of strings that should be flagged:
"Will I finish my homework tonight?"
"Metaculus party 2023"
"Will Hell freeze over?"
"Will this video reach 100k views by the EOD?"
"Will Michael Huang’s first declared MIT major be Course 3 (

Material Science)?"
"When I flip a coin in 10 minutes, will it land on heads?"
"Will my prediction streak end (or will I lose a streak freeze

) while I touch grass this weekend?"
"Am I tied for 7th place on TST?"

Examples of strings that should not be flagged:
"Will Megan Markle and Prince Harry have a baby by the end of

the year?"
"Will the Brain Preservation Foundation’s Large Mammal

preservation prize be won by Feb 9th, 2017?"
"Will there be more novel new drugs approved by the FDA in

2016 than in 2015?"

Your response should take the following structure:

Insert thinking:
{{ insert your concise thoughts here }}
Classification:
{{ insert "flag" or "ok"}}

D.2 Sample Question

Will ETH close above $3700?
Background: None
Resolution criteria: None
Closure time: April 30, 2024

For reference, this prompt resolved as NO (0).

D.3 RTF Output

[Entering new AgentExecutor chain...]
To forecast the probability that ETH (Ethereum) will close

above $3700 on April 30, 2024, I’ll follow a structured
approach:

1. **Reference Classes and Base Rates**:
- Historical price trends of Ethereum.
- Historical performance of similar cryptocurrencies.
- General market conditions and trends in the

cryptocurrency market.

2. **Recent News and Distinctive Features**:
- Recent developments in Ethereum technology.
- Regulatory news affecting cryptocurrencies.
- Broader economic conditions impacting the cryptocurrency

market.

3. **Statistical Modeling**:
- Use historical price data to model potential future price

movements.
- Consider volatility and distribution patterns typical for

Ethereum.

### Step-by-Step Analysis

#### 1. Reference Classes and Base Rates
First, let’s look at the historical price data of Ethereum. We

want to understand how often Ethereum has closed above
$3700 in the past and under what conditions it has done
so.

Thought: Do I need to use a tool? Yes
Action: Google Search Snippets
Action Input: "historical price data of Ethereum"
To forecast the probability that ETH (Ethereum) will close

above $3700 on April 30, 2024, I’ll follow a structured
approach:

1. **Reference Classes and Base Rates**:
- Historical price trends of Ethereum.
- Historical performance of similar cryptocurrencies.
- General market conditions and trends in the

cryptocurrency market.

2. **Recent News and Distinctive Features**:
- Recent developments in Ethereum technology.
- Regulatory news affecting cryptocurrencies.
- Broader economic conditions impacting the cryptocurrency

market.

3. **Statistical Modeling**:
- Use historical price data to model potential future price

movements.
- Consider volatility and distribution patterns typical for

Ethereum.

### Step-by-Step Analysis

#### 1. Reference Classes and Base Rates
First, let’s look at the historical price data of Ethereum. We

want to understand how often Ethereum has closed above
$3700 in the past and under what conditions it has done
so.

Thought: Do I need to use a tool? Yes
Action: Google Search Snippets
Action Input: "historical price data of Ethereum"
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Ethereum Price History. Daily. Weekly. Monthly. 3/28 ...
Historical Data. Frequently Asked Questions (FAQs) ...
What Does Ethereum’s Market Cap History Reveal About...
Jan 8, 2023 ... Price history of ETH: On August 7, 2015,
the first Ethereum transaction was carried out using

the transaction hash of block 46147. Since its...
Ethereum’s (ETH) highest price in late 2021 was much
higher than any other price seen in a chart that looks
at the previous 5 years as well as 2023. Track the
latest Ethereum price, market cap, trading volume, news
and more with CoinGecko’s live ETH price chart and
popular... Features real-time (live) charts, ethereum
blockchain, news and videos. Learn about ETH, the
current hashrate, crypto trading and more. Dec 18, 2016
... There is no canonical ETH or BTC price, each
exchange has its own. Exchange may or may not collect
historical data, and granularity of such data... Sep 1,
2017 ... Ethereum price history API? I am working on a
personal project to develop graphs of the 7 day, 1 month,
3 month, etc. price history of ethereum. Jan 30, 2022

... ... ethereum-get ... ETH price as an integer on an
IoT device like the ESP8266 3 Read all historical price
data of a Chainlink price feed in... Mar 21, 2023 ...
Historical tick and granular OHLC price data for
Ethereum tokens based on DEX swaps. Low resolution (can
only get hourly or daily price data... Ethereum Price
History. Crypto prices are volatile in the sense that
they can explode to the upside or blow up your life
savings. Since its launch, ETH has made...]The search
results indicate that there are multiple sources for
historical Ethereum price data. For a thorough analysis,
we’ll need to pull specific historical data points. Let’

s proceed by gathering detailed historical price data
for Ethereum.

#### 1. Reference Classes and Base Rates (Continued)
To get a sense of the base rate, we need to know how often

Ethereum has closed above $3700 in the past and under
what conditions.

Thought: Do I need to use a tool? Yes
Action: Google Search Snippets
Action Input: "Ethereum historical price data 2021 2022 2023"
The search results indicate that there are multiple sources

for historical Ethereum price data. For a thorough
analysis, we’ll need to pull specific historical data
points. Let’s proceed by gathering detailed historical
price data for Ethereum.

#### 1. Reference Classes and Base Rates (Continued)
To get a sense of the base rate, we need to know how often

Ethereum has closed above $3700 in the past and under
what conditions.

Thought: Do I need to use a tool? Yes
Action: Google Search Snippets
Action Input: "Ethereum historical price data 2021 2022 2023"
Ethereum’s (ETH) highest price in late 2021 was much higher

than any other price seen in a chart that looks at the
previous 5 years as well as 2023. Jan 8, 2023 ...
Ethereum was first conceptualized in 2013. Ether (ETH)
is the native cryptocurrency of Ethereum. On November 9,
2021, Ethereum briefly attained... Frequently Asked

Questions (FAQs). How Has Ethereum’s Price History
Influenced the Cryptocurrency Market? Nov 18, 2022 ...
As one of the more innovative crypto projects, Ethereum
has seen a historic low of about 42 cents and a high of
about $4800 in November 2021... Jan 9, 2022 ... A friend
of mine recently asked me about finding historical open,
high, low, and close (OHLC) data for cryptocurrency

pairs. Jul 27, 2023 ... Source: https://coinmarketcap.
com/currencies/ethereum/historical-data/ ... Over the
past two years (July 9, 2021 to July 9, 2023) ... 2022,
when ETH... ETH Historical Price ; $3,747.13 minus $3
,875.64. $3,664.40 minus $3,959.28. $4,878.26 22.8%. Nov
10, 2021 (over 2 years). $0.433 869871.6%. Oct 20...

Historical annualised electricity consumption ... 2021
2022 2023 2024 0 40 80 120 160 200 240 280 ... The
electricity cost parameter plays a crucial role in...
2021 to 2023. Bitcoin took less than a month in 2021 to
smash its 2020 price record, surpassing $40,000 by Jan.
7, 2021. By mid-April, Bitcoin prices reached... May 29,
2023, 20.80, 20.97, 20.30, 20.59, 20.59, 228,295,637.

Related Tickers. BTC-USD Bitcoin USD. 68,466.40. -1.09%.
ETH-USD Ethereum USD. 3,843.49. -0.85%.]The search

results indicate that Ethereum reached its all-time high
in November 2021, with prices briefly surpassing $4800.

For a thorough analysis, we need to look at historical
data points from 2021, 2022, and 2023 to understand the
frequency and conditions under which Ethereum has closed
above $3700.

### Historical Price Data Analysis

#### 1. Reference Classes and Base Rates (Continued)
Let’s consider the following data points:
- **All-Time High (ATH)**: Ethereum reached an ATH of

approximately $4800 in November 2021.
- **2021**: Ethereum frequently traded above $3700 during the

latter part of the year, especially around its ATH.
- **2022**: The cryptocurrency market experienced significant

volatility, and Ethereum’s price dropped below $3700 for
a considerable period.

- **2023**: The price of Ethereum has been fluctuating, with
occasional spikes but generally trading below $3700.

Based on this historical data, we can establish a base rate
for Ethereum closing above $3700. However, we need to
adjust for recent trends and market conditions.

#### 2. Recent News and Distinctive Features
- **Technological Developments**: Ethereum’s transition to

Ethereum 2.0 and the implementation of Proof of Stake (
PoS) could influence its price positively.

- **Regulatory Environment**: Increased regulation of
cryptocurrencies could introduce uncertainty and affect
market sentiment.

- **Macroeconomic Conditions**: Broader economic factors, such
as inflation and interest rates, can impact investment

in cryptocurrencies.

#### 3. Statistical Modeling
To model Ethereum’s potential future price movements, we need

to consider its historical volatility and distribution
patterns. Cryptocurrencies often exhibit high volatility,
and their price movements can be modeled using

distributions like log-normal or power law.

### Combining Estimates
Let’s combine our estimates from different approaches:

1. **Base Rate Estimate**:
- During the peak of the 2021 bull market, Ethereum

frequently traded above $3700. Assuming a 30% chance
based on historical data.

2. **Recent Trends and News**:
- Positive technological developments and potential

regulatory impacts. Adjusting the base rate slightly
upwards to 35%.

3. **Statistical Modeling**:
- Considering the high volatility and potential for

significant price movements, we can use a log-normal
distribution to model future prices. However, without
precise modeling tools, we estimate a 40% chance based
on volatility patterns.

### Final Probability Estimate
Let’s combine these estimates using a weighted average

approach:
- Base Rate: 30%
- Recent Trends and News: 35%
- Statistical Modeling: 40%

Weighted Average Calculation:
\[
\text{Final Probability} = \frac{30\% + 35\% + 40\%}{3} = 35\%
\]

Thought: Do I need to use a tool? No
Final Answer: 0.35The search results indicate that Ethereum

reached its all-time high in November 2021, with prices
briefly surpassing $4800. For a thorough analysis, we
need to look at historical data points from 2021, 2022,
and 2023 to understand the frequency and conditions
under which Ethereum has closed above $3700.

### Historical Price Data Analysis

#### 1. Reference Classes and Base Rates (Continued)
Let’s consider the following data points:
- **All-Time High (ATH)**: Ethereum reached an ATH of

approximately $4800 in November 2021.
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- **2021**: Ethereum frequently traded above $3700 during the
latter part of the year, especially around its ATH.

- **2022**: The cryptocurrency market experienced significant
volatility, and Ethereum’s price dropped below $3700 for
a considerable period.

- **2023**: The price of Ethereum has been fluctuating, with
occasional spikes but generally trading below $3700.

Based on this historical data, we can establish a base rate
for Ethereum closing above $3700. However, we need to
adjust for recent trends and market conditions.

#### 2. Recent News and Distinctive Features
- **Technological Developments**: Ethereum’s transition to

Ethereum 2.0 and the implementation of Proof of Stake (
PoS) could influence its price positively.

- **Regulatory Environment**: Increased regulation of
cryptocurrencies could introduce uncertainty and affect
market sentiment.

- **Macroeconomic Conditions**: Broader economic factors, such
as inflation and interest rates, can impact investment

in cryptocurrencies.

#### 3. Statistical Modeling
To model Ethereum’s potential future price movements, we need

to consider its historical volatility and distribution
patterns. Cryptocurrencies often exhibit high volatility,
and their price movements can be modeled using

distributions like log-normal or power law.

### Combining Estimates
Let’s combine our estimates from different approaches:

1. **Base Rate Estimate**:
- During the peak of the 2021 bull market, Ethereum

frequently traded above $3700. Assuming a 30% chance
based on historical data.

2. **Recent Trends and News**:
- Positive technological developments and potential

regulatory impacts. Adjusting the base rate slightly
upwards to 35%.

3. **Statistical Modeling**:
- Considering the high volatility and potential for

significant price movements, we can use a log-normal
distribution to model future prices. However, without
precise modeling tools, we estimate a 40% chance based
on volatility patterns.

### Final Probability Estimate
Let’s combine these estimates using a weighted average

approach:
- Base Rate: 30%
- Recent Trends and News: 35%
- Statistical Modeling: 40%

Weighted Average Calculation:
\[
\text{Final Probability} = \frac{30\% + 35\% + 40\%}{3} = 35\%
\]

Thought: Do I need to use a tool? No
Final Answer: 0.35]

[Finished chain.]
prompt: 2024-04-30: Will ETH close above $3700?
response: 0.35, index: 6

D.4 GPT-4o Output

To forecast whether ETH (Ethereum) will close above $3700 by
April 30, 2024, we need to consider several factors,
including historical price data, market trends, and
current events that could influence the price. Let’s
break down the analysis step-by-step.

### Step 1: Historical Data and Base Rates

First, we need to look at the historical price data for ETH to
understand its past performance and volatility. We can

use this data to establish a base rate for how often ETH
has closed above $3700 in the past.

#### Historical Price Data

- ETH has been highly volatile, with significant price swings
over the past few years.

- ETH reached an all-time high of around $4800 in November
2021.

- Since then, the price has fluctuated, with periods of both
significant gains and losses. Let’s assume we have the
following historical data for ETH closing prices over
the past few years: - 2021: ETH closed above $3700 on
50 days.

- 2022: ETH closed above $3700 on 20 days.
- 2023 (up to October): ETH closed above $3700 on 10 days.

Given this data, we can calculate the base rate for ETH
closing above $3700.

#### Base Rate Calculation Total number of days in the dataset:
365 (2021) + 365 (2022) + 273 (2023 up to October) =

1003 days Total number of days ETH closed above $3700:
50 (2021) + 20 (2022) + 10 (2023) = 80 days Base rate =
80 / 1003 approximate to 0.08 (8%)

### Step 2: Current Market Trends and News

Next, we need to consider the current market trends and any
recent news that could impact the price of ETH.

#### Market Trends

- The cryptocurrency market has been experiencing increased
institutional interest and adoption.

- Regulatory developments could either positively or
negatively impact the market.

- Macroeconomic factors, such as inflation and interest rates,
could influence investor sentiment. #### Recent News -
Ethereum’s transition to a proof-of-stake (PoS)

consensus mechanism (Ethereum 2.0) could have a
significant impact on its price.

- Any major security breaches or technological advancements
could also affect the price. ### Step 3: Adjusting the
Base Rate Based on the current market trends and recent
news, we need to adjust our base rate. #### Positive

Factors
- Increased institutional interest and adoption could drive

the price higher.
- The successful implementation of Ethereum 2.0 could boost

investor confidence.

#### Negative Factors
- Regulatory crackdowns could negatively impact the price.
- Macroeconomic factors such as rising interest rates could

lead to reduced investment in riskier assets like
cryptocurrencies.

### Step 4: Combining Estimates

We can combine our base rate with adjustments for current
trends and news to arrive at a final probability
estimate.

#### Adjusted Probability

- Base rate: 8%
- Positive adjustment: +5% (for increased adoption and

Ethereum 2.0)
- Negative adjustment: -3% (for potential regulatory and

macroeconomic risks)
Final adjusted probability = 8% + 5% - 3% = 10%

### Step 5: Final Probability Estimate

After considering all factors, my best prediction for the
probability of ETH closing above $3700 by April 30, 2024,
is: **0.10 (10%)**

This estimate balances the historical base rate with current
market trends and potential risks, aiming to minimize
the Brier score by being well-calibrated and resolved.
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Abstract
Document-level information extraction (doc-
IE) plays a pivotal role in the realm of nat-
ural language processing (NLP). This paper
embarks on a comprehensive review and dis-
cussion of contemporary literature related to
doc-IE. In addition, we conduct a thorough er-
ror analysis using state-of-the-art algorithms,
shedding light on their limitations and remain-
ing challenges for tackling the task of doc-IE.
Our findings demonstrate that issues like entity
coreference resolution and the lack of robust
reasoning significantly hinder the effectiveness
of document-level information extraction (doc-
IE). Additionally, we uncover new challenges,
including labeling noise and relation transitiv-
ity. The overarching objective of this survey
paper is to provide valuable insights that can
empower NLP researchers to further advance
the performance of doc-IE.

1 Introduction

Natural language processing (NLP) triggers the
present wave of artificial intelligence (Dosovitskiy
et al., 2021; Liu et al., 2021; Zhang et al., 2021a;
Zhang and Eskandarian, 2022). Information Ex-
traction (IE) plays a vital role in all aspects of NLP
by extracting structured information from unstruc-
tured texts (Lin et al., 2020; Wang et al., 2022).
Document-level information extraction (doc-IE)
has achieved significant progress, benefiting from
the enormous data resources created by NLP re-
searchers and the rapidly growing computational
power resources (Yao et al., 2019; Xu et al., 2021b).
However, several challenges persist within the
realm of doc-IE research, such as entity corefer-
ence resolution, reasoning across long-span con-
texts, and lack of commonsense reasoning as shown
in Figure 1. Furthermore, current doc-IE research
predominantly focuses on restricted domains and
languages (Zheng et al., 2019a; Yang et al., 2018;
Tong et al., 2022; Li et al., 2021), which poses dif-
ficulties in fairly conducting model comparisons
and hampers the generalizability of findings.

To gain a profound understanding of the cur-
rent literature on doc-IE, we conduct a compre-

hensive survey of recent models and datasets for
document-level relation extraction (doc-RE) and
document-level event extraction (doc-EE), focus-
ing on those published in top NLP conferences
such as ACL, EMNLP, and so on. These works
span various languages and domains, providing a
broad overview of advancements in the field. We
also thoroughly analyze the errors of several state-
of-the-art approaches and summarize several key
remaining challenges and future research directions
of doc-IE. The contributions of this survey paper
include:

• To the best of our knowledge, we are the first
to systematically review the literature on doc-
IE, including both doc-EE and doc-RE.

• We conduct a thorough error analysis with
the current state-of-the-art (SOTA) algorithms
for doc-EE and doc-RE, and summarize sev-
eral key remaining challenges that serve as a
foundation for future advancements in doc-IE
research and encourage researchers to further
innovate and improve upon the various exist-
ing methodologies.

2 Task Definition

Event Extraction Event extraction (Grishman,
1997; Chinchor and Marsh, 1998; Ahn, 2006) is
a task to identify and classify event triggers and
relevant participants from natural language text.
Formally, given a document consisting of a set
of sentences where each sentence consists of a
sequence of words, the objective of this task is
to identify and extract the following components
from a given document: Event Mention, which
refers to the phrases or sentences denoting an event;
Event Trigger, typically in the form of a verb that
signals the occurrence of an event; Event Type,
indicating the predefined type of event specified
by the dataset, such as Conflict-Attack; Argument
Mention, comprising entity mentions that provide
additional details on the event, such as who, what,
when, where, and how the event occurred; and fi-
nally, Argument Role, representing the role or
type of argument associated with the entity.
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Document : wiki_drone_strikes_0_news_1
…
[S6]: That figure does not include [deaths] in active battlefields including Afghanistan – 
where US air [attacks] have shot up since Obama withdrew the majority of his troops at 
the end of 2014 . The country has since come under frequent US [bombardment] , in an 
unreported war that saw 1 , 337 weapons dropped last year alone – a 40 % rise on 2015. 

Argument Role
Target
Place

Attacker
Explosive Device

Event: Detonate Explode
Role Argument

Attacker US
Target country

Explosive Device weapons

Document : Skai TV
[S1]: Skai TV <ORG> is a Greek <LOC> free - to - air television network based in Piraeus <LOC>.
…
[S3]: It was relaunched in its present form on 1st of April 2006 <TIME> in the Athens <LOC> 
metropolitan area , and gradually spread its coverage nationwide.
…
[S5]: Skai TV <ORG> is also a member of Digea <ORG> , a consortium of private television 
networks introducing digital terrestrial transmission in Greece <LOC>.

Relation
Athens <LOC> & Greece <LOC> : country

Evidence: [S1, S3, S5]

Doc-EE task example (WikiEvents)

Doc-RE task example (DocRED)

Figure 1: Examples of Document-Level Event Extraction (doc-EE) and Relation Extraction (doc-RE).

Relation Extraction Given a document D with
a set of sentences, we assume that D also con-
tains a set of entities V = {ei}Ni=1, which refer
to units such as People, Geographic Entity, Loca-
tion, Organization, Date, and Number. For each
entity ei, it might contain multiple entity mentions
ei = {mj}Mj=1, while each Entity Mention refers
to a phrase within a text that identifies a specific
entity. For instance, “NYC” and “the big apple” are
both entity mentions for “New York City”. The doc-
RE task is to predict the relation types between an
entity pair (ei, ej)i,j∈{1,··· ,N},i ̸=j , where ei stands
for the subject and ej denotes the object. It is pos-
sible for an entity pair to have multiple relations,
thereby rendering the task a multi-label classifica-
tion problem. Intra-sentence Relation describes
the relationship between entities within a single
sentence, and the features within are often referred
to as local features. Inter-sentence Relation refers
to the relationship between entities across multiple
sentences, and the features within are often referred
to as global features.

3 Datasets

Doc-EE Datasets Existing doc-EE datasets are
mainly collected from the news and financial do-
main. News is a large-scale accessible source of
events like social emergencies and human life in-
cidents, thus many datasets are created focusing
on news events. Meanwhile, exploding volumes
of digital financial documents, as a byproduct of
continuous economic growth, have been created.
Many datasets are created to help extract valuable
structured information to detect financial risks or
profitable opportunities. Statistics of the datasets
for doc-EE are summarized in Table 1.

For news domain, ACE-20051 is a sentence-

1https://catalog.ldc.upenn.edu/LDC2006T06

level event extraction (SEE) (Wang et al., 2022,
2023d) dataset but has been frequently used for
evaluation in doc-EE. Unlike ACE-2005 which
contains 5 groups of events covering justice, life,
business events, etc, MUC-4 (muc, 1992) focuses
on one specific event type, attack events, contain-
ing 1,700 human-annotated news reports of ter-
rorist attacks in Latin America collected by Fed-
eral Broadcast Information Services. MUC-4 in-
cludes six fine-grained incident types: attack, kid-
napping, bombing, arson, robbery, and forced
work stoppage, and four argument roles, includ-
ing individual perpetrator, organization perpetra-
tor, physical target, and human target. Roles
Across Multiple Sentences (RAMS) (Ebner et al.,
2020) is a crowd-sourced dataset with 9,124 event
annotations on news articles from Reddit follow-
ing the AIDA ontology2. WikiEvents (Li et al.,
2021) follows the RAMS ontology containing 67
event types in a three-level hierarchy. Researchers
used the BRAT interface for online annotation
of event mentions (triggers and arguments) and
event coreference separately. CMNEE (Zhu et al.,
2024a) is a large-scale, open-source Chinese Mil-
itary News Event Extraction dataset derived from
the sentence-level military event detection dataset
MNEE(Huang et al., 2022) and is manually an-
notated by human experts. DocEE (Tong et al.,
2022) is the largest Doc-EE dataset to date. Do-
cEE uses historical events and timeline events from
Wikipedia as the candidate source to define 59
event types and 356 event argument roles. This
dataset includes 27,485 document-level events and
180,528 event arguments that are manually labeled
by humans.

For the financial domain, ChFinAnn (Zheng
et al., 2019b) contains official disclosures such as

2https://aida.kmi.open.ac.uk/
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Dataset # Docs # Events # Event types # Roles # Arguments Ratio

ACE-20051 599 4,202 33 35 9,590 -
MUC-4 (muc, 1992) 1,700 1,514 4 5 2,641 13:2:2
RAMS (Ebner et al., 2020) 9,124 8,823 139 65 21,237 8:1:1
WikiEvents (Li et al., 2021) 246 3,951 67 59 5,536 10:1:1
DocEE (Tong et al., 2022) 27,485 27,485 59 356 180,520 -
CMNEE (Zhu et al., 2024a) 17,000 29,223 8 11 93,708 12:2:3

ChFinAnn (Zheng et al., 2019b) 32,040 47,824 5 35 289,871 8:1:1
DCFEE (Yang et al., 2018) 2,976 3,044 4 35 - 8:1:1
DuEE-Fin (Zheng et al., 2019b) 11,699 15,850 13 92 81,632 6:1:3

Table 1: Statistics of Doc-EE datasets. Ratio denotes training split ratio.

annual reports and earnings estimates, obtained
from the Chinese Financial Announcement (CFA).
The dataset has five event types: Equity Freeze,
Equity Repurchase, Equity Underweight, Equity
Overweight and Equity Pledge, with 35 different
argument roles in total. In contrast to Doc-EE
with one event in each document, 29.0% of the
documents in ChFinAnn contain multiple events.
DCFEE (Yang et al., 2018) comes from companies’
official finance announcements and focuses on four
event types: Equity Freeze, Equity Pledge, Equity
Repurchase, and Equity Overweight. Data labeling
was done through distant supervision. DuEE-Fin
(Zheng et al., 2019b) is the largest human-labeled
Chinese financial dataset. It is collected from real-
world Chinese financial news and annotated with
13 event types. 29.2% of the documents contain
multiple events and 16.8% of events consist of mul-
tiple arguments.

Several doc-RE datasets are from the biomed-
ical domain. Drug-gene-mutation (DGM) (Jia
et al., 2019) contains 4,606 PubMed articles, which
are automatically labeled via distant supervision.
DGM annotations include three entity types: drugs,
genes, and mutations, and three relation types, in-
cluding drug-gene-mutation, drug-mutation, and
gene-mutation relations. GDA (Wu et al., 2019)
gene-disease association corpus contains 30,192
titles and abstracts from PubMed articles that have
been automatically labeled for genes, diseases, and
gene-disease associations via distant supervision.
CDR (Luan et al., 2018) is manually annotated
for chemicals, diseases, and chemical-induced dis-
ease (CID) relations by domain experts. It con-
tains the titles and abstracts of 1,500 PubMed arti-
cles and is split into training, validation, and test
sets equally. BioRED (Luo et al., 2022) builds on
previous biomedical datasets by including entity
types such as gene/protein, disease, and chemical,
along with gene-disease and chemical–chemical
relations.

Additionally, doc-RE has been explored in other
domains or languages. DocRED (Yao et al., 2019)
is a human-annotated Doc-RE dataset, that includes
132,375 entities and 56,354 relational facts anno-
tated on 5,053 Wikipedia documents. Doc-RED is
generated by mapping Wikidata triples, originating
from a comprehensive knowledge base closely in-
tertwined with Wikipedia, onto complete English
Wikipedia documents to get entity annotations. RE-
DocRED (Tan et al., 2022b) refines 4,053 docu-
ments in the DocRED dataset targeting on resolv-
ing the problem of false negative samples. RE-
DocRED increased the relation triples from 50,503
to 120,664 and decreased the no_relation samples
by 3.1% by adding the missing relation triples back
to the original DocRED. Moreover, DocRED-FE
(Wang et al., 2023b) focus on fine-grained entity
types; DocRED-IE (Bouziani et al., 2024) expands
with five additional subtasks: Mention Detection,
Entity Typing, Entity Disambiguation, Coreference
Resolution, and their combinations, Named En-
tity Recognition (NER) and Entity Linking as in
DWIE (Zaporojets et al., 2021). KnowledgeNet
(Mesquita et al., 2019) offers links to a reference
knowledge base (KB) for entity and relation anno-
tations. SciREX (Jain et al., 2020) is a document-
level relation extraction dataset that contains mul-
tiple IE tasks, such as Binary and N-ary relation
classification. It consists of both automatic and
human-annotated articles in the field of computer
science. HacRED (Cheng et al., 2021) is a Chi-
nese Doc-RE dataset collected from CN-DBpedia
(Xu et al., 2017) that focuses on hard cases, such
as long text and long distance between argument
pairs, containing distractors or multiple homoge-
neous entity mentions. Statistics of the datasets for
doc-RE are summarized in Table 2.

4 Methods

The fundamental challenge in doc-EE and doc-RE
is to express document content in a concise and
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Dataset Annotation # Types # Facts % Inter-rel # Train # Dev #Test

DGM (Jia et al., 2019) Distant Supervision 3 - 64.5% 32,040 - -
CDR (Luan et al., 2018) Human-annotated 1 - 29.8% 1,500 500 500
GDA (Wu et al., 2019) Distant Supervision 1 - 15.6% 30,192 5,839 1,000
BioRED (Luo et al., 2022) Combined 2 - - 4,178 1,162 1,163

KnowledgeNet (Mesquita et al., 2019) Human-annotated 15 13,000 - - - -
DocRED (Yao et al., 2019) Distant Supervision 96 50,345 12.5% 3,053 1,000 1,000
Re-DocRED (Tan et al., 2022b) Combined 96 120,664 12.5% 3,053 500 500
DocRED-FE (Wang et al., 2023b) Combined 96 32,366 - 2,596 1,000 -
DocRED-IE (Bouziani et al., 2024) Automated 96 37,486 - 3,008 300 700
SciREX (Jain et al., 2020) Human-annotated 2 - 99.0% 438 131 131
HacRED (Cheng et al., 2021) Combined 26 65,225 25.4% 9,231 1,500 1,500
DWIE (Zaporojets et al., 2021) Distant Supervision 65 21,749 - 700 - 100

Table 2: Statistics of Doc-RE datasets.

Task Main Category Sub Category Approaches

Doc-EE

Multi-granularity-based Sentence→ Paragraph→ Document Yang et al. (2018), Huang and Jia (2021), Wang et al. (2023a)

Graph-based Heterogeneous graph Zheng et al. (2019b), Xu et al. (2021d), Zhu et al. (2022), Xu
et al. (2022), Zhang et al. (2024)

Task-specific Attention\Transformer Yang et al. (2021), Liang et al. (2022), Liu et al. (2024)

Other Networks Huang and Peng (2021)

Generation-based - Li et al. (2021), Zeng et al. (2022), Huang et al. (2023)

Memory-based - Du et al. (2022), Cui et al. (2022)

LLM-based - Gatto et al. (2024), Zhou et al. (2024), Uddin et al. (2024)

Doc-RE

Multi-granularity-based Sentence→ Paragraph→ Document Tang et al. (2020)

Mention→ Entity Jia et al. (2019)

Graph-based
Heterogeneous graph

Quirk and Poon (2017), Peng et al. (2017), Song et al. (2018),
Guo et al. (2019), Sahu et al. (2019), Christopoulou et al. (2019),
Wang et al. (2020), Xu et al. (2021d), Zeng et al. (2020), Li et al.
(2020), Zhang et al. (2020), Xu et al. (2023), Xu et al. (2021c),
Zhu et al. (2024b), Mao et al. (2024)

Homogeneous graph Nan et al. (2020)

Task-specific
Attention\Transformer Zhou et al. (2021), Tan et al. (2022a)

Other Networks Xu et al. (2021a), Zhang et al. (2021b), Bouziani et al. (2024),
Wang et al. (2023c), Ma et al. (2023)

Evidence-based Path reasoning Huang et al. (2021)

Evidence retrieval Xie et al. (2022), Xiao et al. (2022)

Table 3: Typology of Doc-IE methods.

effective way such that key information is main-
tained. A typology of existing doc-EE and doc-RE
approaches categorized by model design is shown
in Table 3.

4.1 Doc-EE Approaches

Multi-granularity-based Models Multi-
granularity-based designs employ two strategies:
either addressing intermediate tasks using various
models or utilizing the same model in a hierarchi-
cally ordered manner to independently tackle each
subtask of information extraction, such as from
sentence level to document level. The standard
procedure involves concatenating features from
each level to complete the IE tasks. DCFEE (Yang
et al., 2018) first uses a sequence tagging model
to automatically extract sentence-level events,
and then proposes a key-event detection model
based on a convolutional neural network (CNN) to

predict document-level key event. SCDEE (Huang
and Jia, 2021) uses graph attention network (GAT)
to transform document-level features to event
communities in order to detect event types at
the sentence level. Wang et al. (2023a) collect
sentence-level and document-level embeddings
by various probing techniques to help probe event
mentions in documents. Multi-granularity-based
approaches improve the utilization of information
across different granularities and the aggregation
of global context, but they lose precision in
co-reference resolution and capturing long-span
dependencies.
Graph-based Models Graph-based models gen-
erally construct a graph with words, mentions, en-
tities, arguments, or sentences as nodes and define
different types of edges across the entire document,
further predicting the relations by reasoning on the
graph. Doc2EDAG (Zheng et al., 2019b) treats the
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doc-EE task as an event table-filling task by gen-
erating an entity-based directed acyclic graph. It
decides which entity node to expand until the graph
is fully recovered. GIT (Xu et al., 2021d) propose
a heterogeneous graph to extract corresponding ar-
guments by expanding a constrained event type
tree while tracking and storing records in global
memory. PTPCG (Zhu et al., 2022) prune the com-
plete graph by deciding whether entity pairs retain
an edge based on semantic similarity between en-
tities. TSAR (Xu et al., 2022) prune the Abstract
Meaning Representation (AMR) graph with span
information and surrounding events, and treat event
argument extraction (EAE) as a link prediction task.
However, while dependency graphs contain rich
structural information, the pruning strategy may
not always preserve relevant details. GAM (Zhang
et al., 2024) builds a semantic mention graph cap-
turing co-existence, co-reference, and co-type re-
lations. Graph-based models enhance document
representation by allowing the model to learn in
an aggregated format, but they may struggle to
identify the same event across multiple events and
establish their relationships.
Generation-based Models Bart-Gen (Li et al.,
2021) ask a PLM to fill in the blank in the Doc-
EE templates. EA2E (Zeng et al., 2022) focuses
on event-aware argument extraction by labeling ar-
guments from nearby events in the document to
enhance context and extracting event iteratively
during generation. S2C (Huang et al., 2023) gen-
erates all possible arguments and predict the corre-
sponding event arguments in a simple to complex
order. A typical challenge that generation-based
approaches face is in identifying precise spans.
Memory-based Models Du et al. (2022) stores
gold-standard and previously generated events in
memory, allowing the decoder to dynamically re-
trieve event knowledge and decode arguments
based on event dependencies. HRE (Cui et al.,
2022) mimics human reading with a two-stage pro-
cess: rough reading detects event types, and elabo-
rate reading extracts complete event records with
arguments, updating memory with event type and
argument information. Memory-based models re-
quire additional storage capacity, which can be
challenging for large datasets, but they enable the
model to retain event and argument dependencies
effectively.

LLM-based Models LLM-based models lever-
age the extensive prior knowledge of large lan-

guage models like LLAMA2 (Touvron et al., 2023)
and GPT-4(OpenAI, 2024) for in-context learning.
Gatto et al. (2024) investigates two data augmen-
tation strategies for synthesizing document-level
EAE samples and utilizes LLMs for slot-filling
to address EAE tasks. Zhou et al. (2024) intro-
duces the Link-of-Analogy Prompting technique,
which guides LLMs in generating analogies to facil-
itate retrieval, mapping, and evaluation processes
in a cross-event context. Uddin et al. (2024) pro-
vides several question-generation strategies such as
prompting using GPT-4 to ask questions about the
arguments of an event and inputs those questions to
BART-based models for EAE. LLM-based models
don’t require additional training or fine-tuning, but
their limitations lie in their computational demands
and difficulty in tuning and optimizing prompts.

Models with task-specific designs Models with
task-specific designs mostly rely on attention-based
architectures or other NN-based (neural networks),
which replicate complex interactions among argu-
ments by implicitly capturing long-distance de-
pendencies. DE-PPN (Yang et al., 2021) uses
an encoder-decoder structure where the document
encoder captures document-aware sentence and
argument embeddings, while the decoder simul-
taneously decodes events, arguments, and roles.
ReDEE (Liang et al., 2022) is the first to use en-
tity relation information for doc-EE tasks, which
utilizes SSAN (Xu et al., 2021a) to extract relation
triples as input and calculates the attention between
entities and candidate arguments to gain depen-
dency. DEED (Huang and Peng, 2021) is an end-
to-end model that utilizes Deep Value Networks
(DVN), a structured prediction algorithm that ef-
fectively bridges the disparity between ground
truth and prediction. This model directly incor-
porates event trigger prediction into DVN, thereby
efficiently capturing cross-event dependencies for
document-level event extraction. DEEIA (Liu
et al., 2024) proposes a multi-event argument ex-
traction method using a dependency-guided encod-
ing module to enhance the correlation between
prompts and contexts, and an event-specific in-
formation aggregation module to provide event-
specific information for better contextual under-
standing. These task-oriented approaches effec-
tively capture long-span dependencies but may
overlook sentence-level information and often re-
quire long input lengths.
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4.2 Doc-RE Approaches

Multi-granularity-based Models The first work
on doc-RE using a multi-granularity method is by
Jia et al. (2019), employing multiscale representa-
tion learning to aggregate mention representations
and ensemble sub-relations. The HIN (Hierarchi-
cal Inference Network) (Tang et al., 2020) uses
Bi-LSTMs at the token, sentence, and document
levels to extract features as sequences and weighs
the overall features with the attention mechanism
to obtain both local and global information.

Graph-based Models DISCREX (Quirk and
Poon, 2017) constructs a document graph with
word-based nodes and edges representing intra-
and inter-sentence level relations including depen-
dency, adjacency, and discourse relations. Peng
et al. (2017) contributes a Graph-LSTM model
with a Bi-LSTM to encode the document graph
to two directed acyclic graphs (DAG). Song et al.
(2018) compares bidirectional graph LSTM with
bidirectional DAG LSTM and concludes that the
former, which retains the original graph structure,
performs better. AGGCNs (Guo et al., 2019) pro-
poses an end-to-end graph convolutional network
(GCN) that encodes the entire graph using multi-
head self-attention to learn edge weights and uses
densely connected layers to extract global infor-
mation. Sahu et al. (2019) designates words as
individual nodes and establishes five types of edges
to represent inter- and intra-sentence dependency.
The model then uses an edge-oriented GCN to re-
tain aggregated node representations.

EoG (Christopoulou et al., 2019) is a pioneer-
ing graph-based model. It uses entities as nodes
and forms unique edge representations through the
paths between nodes to better capture the paired
relations. To predict relations between entity pairs,
EoG makes iterative inferences on the path between
the entities and aggregates every edge to a direct
entity-entity edge. Many papers adapted from EoG
can be divided into two main categories: homo-
geneous and heterogeneous graphs. LSR (Nan
et al., 2020) uses graph structure as a latent vari-
able to form a homogeneous graph. Unlike EoG
which uses a human-constructed graph, LSR learns
structured attention to refine the graph dynami-
cally and constructs latent structures based on the
previous refinement. For heterogeneous graphs,
different types of edges are defined, representing
unique features, functions, and even dual graphs.
GLRE (Wang et al., 2020) utilizes a multi-layer re-

lational GCN to learn global entity representations
as queries in self-attention, while using sentence-
level information as keys to learn local entity rep-
resentations. HeterGSAN (Xu et al., 2021d) con-
structs a heterogeneous graph based on EoG and en-
codes it using a GAT. HeterGSAN improves the per-
formance of relation classification by reconstruct-
ing a dependency-based path between each pair of
entities. POR (Xu et al., 2023) builds upon Het-
erGSAN using a path-retrieving method on paired
entities to extract path features through an LSTM.

Dual graphs are normally used to capture hier-
archical information. GAIN (Zeng et al., 2020)
utilizes a heterogeneous mention-level graph to
model interactions between the document and all
mentions. GEDA (Li et al., 2020) optimizes en-
tity representations with two attention layers and a
heterogeneous GCN layer. DHG (Zhang et al.,
2020) propose a framework with two heteroge-
neous graphs: a structure modeling graph using
words and sentences as nodes to better capture doc-
ument structure information and a relation reason-
ing graph using mentions and entities as nodes to
perform multi-hop relation reasoning. DRN (Xu
et al., 2021c) passes encoded sentences and entities
as a heterogeneous graph to a multi-layer GCN and
meanwhile uses a self-attention mechanism to learn
better contextual document-level representations.

Models with task-specific designs Models with
task-specific designs focus on capturing contexts
and entity information through tailored designs
for document-level tasks, utilizing either adequate
neural network structures or novel loss functions.
SSAN (Xu et al., 2021a) integrates structural de-
pendencies within and throughout the encoding
stage of the network, not only enabling simultane-
ous context reasoning and structure reasoning but
also efficiently modeling these dependencies in all
network layers. ATLOP (Zhou et al., 2021) lever-
ages pre-trained attention weights for localized con-
text pooling and adopts an adaptive thresholding
loss (ATL) to ensure that each entity maintains the
same representation and balances the logits of pos-
itive and negative labels. DocuNet (Zhang et al.,
2021b) divides model construction into three parts
leveraging a u-shaped semantic segmentation net-
work to refine entity feature extraction. KD (Tan
et al., 2022a) calculates self-attention in the ver-
tical and horizontal directions of a paired entity
table as the axial attention to enhance entity pair
representations. The authors propose an adaptive
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focal loss (AFL) where the logits of entity relations
are balanced with thresholds to address long-tailed
classes.
Path (Evidence)-based Models Path-based mod-
els construct evidence paths and make relational
decisions by reasoning on crucial information be-
tween entity pairs or sentences, instead of extract-
ing features from the complete document. THREE
(Huang et al., 2021) presents three kinds of paths
to find the supporting sentences: consecutive paths,
multi-hop paths, and default paths for entity pairs.
EIDER (Xie et al., 2022) defines “evidence sen-
tences”, as a minimal number of sentences needed
to predict the relations between certain pairs of
entities in a document. SAIS (Xiao et al., 2022)
utilizes two intermediary phases to obtain evidence
information: pooled evidence retrieval, which dis-
tinguishes entity pairs with and without support-
ing sentences, and fine-grained evidence retrieval,
which produces more interpretable evidence spe-
cific to each relation of an entity pair. Those ap-
proaches typically utilize supporting sentences to
serve as evidence from existing datasets such as
DocRED. The path-based approaches exhibit ex-
traordinary performance because they align human
perception and intuition in the doc-RE task, where
we read through the whole document and evaluate
sentences that are important for the task.

5 Discussion

To understand the limitations and remaining chal-
lenges of the current document-level IE approaches,
we evaluate three state-of-the-art Doc-RE meth-
ods, KD (Tan et al., 2022a), DRN (Xu et al.,
2021c), and SAIS (Xiao et al., 2022), on the
DocRED and Re-DocRED datasets.Similarly, we
also evaluate two state-of-the-art Doc-EE methods,
graph-based model TSAR (Xu et al., 2022) and
generative model EA2E (Zeng et al., 2022), on
the WikiEvents dataset, and another two Doc-EE
methods, graph-based model PTPCG (Zhu et al.,
2022) and task-specific model ReDEE (Liang et al.,
2022), on ChFinAnn dataset. For each work, we
randomly select 50 errors and examine the cause
of them. We finally conclude seven major types of
errors for document-level information extraction.
Figure 2, 3, 4 show the distribution of the seven
types of errors on each dataset and Table 4 show
several error examples.

Entity coreference resolution Document-level
texts contain a large number of recognized entities
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Figure 2: Doc-RE error distribution in DocRED and
Re-DocRED
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Figure 3: Doc-EE error distribution in ChFinAnn
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Figure 4: Doc-EE error distribution in WikiEvents

along with coreferential words such as them, he,
which, etc. Entity coreference resolution errors
happen when the model fails to resolve all mentions
in a document that refer to the same entity.

Reasoning error This type of error mainly re-
lates to multi-hop logical reasoning. Document-
level texts contain considerable amounts of infor-
mation, so models may fail to give correct logical
inferences based on the given information. Infer-
ring from multi-hop information requires a model
to have a high level of natural language understand-
ing ability.
Long-span Document contains multiple sen-
tences in a long span. This error happens when
the model fails to capture the full context of a doc-
ument or uses global information for inference.
Commonsense knowledge The error occurs
when models fail to correctly extract relations or
events or assume the wrong semantics due to a
lack of commonsense and background knowledge,
which humans are able to learn or understand in-
stinctively. Many datasets are specific to some do-
mains, and in the absence of relevant background
and domain-specific knowledge, models may inac-
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Error Type Text GT Pred

ECR The game retains some common elements from previous Zelda<MISC>

installments, such as the presence of Gorons<PER>, while introducing Kin-
stones <PER> and other new gameplay features.

The Legend of Zelda
<MISC>, Gorons <PER> :
characters

N/A

Multi-hop
reasoning

Parvathy<PER> married film actor Jayaram <PER> who was her co-star
in many films on... She has two <NUM> children, Kalidas Jayaram<PER>

and Malavika Jayaram<PER>.

Jayaram<PER>, Kalidas Ja-
yaram <PER>: child

N/A

Commonsense Olympic Gold <MISC> is the official video game of the XXV Olympic
Summer Games <MISC>, hosted by Barcelona <LOC>, Spain <LOC> in
1992 <TIME>.

XXV Olympic Summer
Games <MISC> , Spain
<LOC> : country

N/A

Over predic-
tion

The Link River <LOC> is a short river connecting Upper Klamath Lake
<LOC> to Lake Ewauna <LOC> in the city of Klamath Falls <LOC> in
the U.S.<LOC> state of Oregon <LOC>.

N/A Lake Ewauna <LOC>, Ore-
gon <LOC> : located in the
administrative territorial en-
tity

Learned prior Ngoako Ramatlhodi <PER>, a senior member of the African National
Congress <ORG> , was South Africa <LOC> ’s Minister

N/A African National Congress
<ORG>, South Africa
<LOC> : country

Relation tran-
sitivity

At the 2007 <TIME> European Indoor Athletics Championships <MISC>

he won a silver medal in the 4 x 400 metres <NUM> relay , with teammates
Ivan Buzolin <PER> , Maksim Dyldin <PER> and Artem Sergeyenkov
<PER>

Artem Sergeyenkov <PER>,
European Indoor Athletics
Championships <MISC> :
participant of

N/A

Table 4: Examples of Doc-RE errors: the column of GT shows the ground truth event annotations while the column
of Pred shows the predicted event mentions.

curately reason or misinterpret information.
Relation transitivity error Documents tend to
have many entities appearing in the same sentence
or across sentences. Relation transitivity errors
occur when a model fails to correctly infer a rela-
tion between two entities based on their individual
relations with a third entity. Additionally, not all
relations are transitive, thus the model should cor-
rectly recognize when transitivity applies.
Over prediction error This error type refers to
the spurious error (as we presented in Table 4)
where there is no ground truth relation between two
entities but the model predicts a relation, and can be
caused by a number of reasons. For instance, when
using large pre-trained language models to encode
the documents, learned prior can cause models to
make overconfident predictions.

In addition to shared error types with Doc-RE,
we observe two more types of errors based on the
WikiEvents and ChFinAnn datasets.
Multi-events error In Doc-EE tasks, documents
contain multiple events that overlap or occur simul-
taneously, which requires the model to have suffi-
cient training or advanced techniques to learn the in-
herent complexity of multi-event documents. In an
event-trigger-annotated dataset such as WikiEvents,
the model can fail at assigning arguments to the
correct events or matching roles to arguments. In a
trigger-not-annotated dataset like ChFinAnn, event
detection errors may occur when models try to
identify and differentiate distinct events within the
document due to the complex contextual structure
of each event, as shown in the example of Figure 5.

Span errors Models face span error types mainly
associated with previous tasks like entity recogni-
tion or caused by the different linguistic features
and complexities of datasets. For example, nominal
mention recognition and argument span mismatch
errors are common in many works, particularly in
generative methods.
Noisy data This issue comprises natural lan-
guage noises and labeling noises. Real-world doc-
uments contain noisy, unstructured, or poorly for-
matted content, causing difficulties in identifying
entities and extracting relations. See further discus-
sion in Section C of the Appendix.

6 Remaining Challenges

Current difficulties can be broadly categorized into
three areas: information spread out, multiple men-
tions and multiple entity pairs throughout the entire
document, some information must be deduced from
several sentences or transferred by other relations
in order to be discovered. The first two issues have
been addressed by existing approaches using at-
tention mechanisms and graph networks, though
multiple-step reasoning is less widely focused. Ex-
isting methods rely on LLMs to learn syntactic
features while neglecting the relation transitivity
between entity pairs and the evidence trace of rea-
soning. Progressively, more methods try to use
evidence sentences or evidence paths to infer com-
plicated relations. Models continue to struggle with
capturing commonsense and knowledge-based in-
formation as it is difficult to from the training data.
Previous works have tried adaptive losses for bal-
ancing the positive and negative examples to allevi-
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成都三泰控股集团股份有限公司（以下简称“公司”）于2018年12月28日接到贺晓静女士、
宋华梅女士、朱光辉先生通知，其均已完成股份增持计划。... 基于对公司持续稳健发展的
信心及公司股票价值的认可，朱江先生、贺晓静女士、宋华梅女士、朱光辉先生（以下简称
“增持主体”）计划自2018年7月5日起6个月内通过深圳证券交易所证券交易系统增持公司
股份，其中朱江先生拟增持公司股份700000股至1000000股，贺晓静女士、宋华梅女士、
朱光辉先生拟分别增持公司股份200000股至300000股。

GT 
Argument 
Event 1
Event 2

Event: EquityOverweight
Role Evt1-pred Evt2-pred

EquityHolder 朱江 朱江
TradedShares Missing Missing

EndDate 2018年12月28日 Missing

Explanation: When predicting the arguments for the EquityHolder role of event 1 and event 2, the model gets distracted by event 0 
and predicts Zhu Jiang. December 28, 2018 and 200,000 are shared arguments of the two events. 

(English translation): Chengdu Santai Holding Group Co., Ltd. (Company) received a notification on December 28, 2018, from 
Ms. He Xiaojing, Ms. Song Huamei, and Mr. Zhu Guanghui, stating that they have all completed their share increase plans. 
Based on their confidence in the company's continuous and steady development, and acknowledgment of the value of the 
company's stock, Mr. Zhu Jiang, Ms. He Xiaojing, Ms. Song Huamei, and Mr. Zhu Guanghui (Increase Holders) plan to increase 
their holdings of the company's shares through the Shenzhen Stock Exchange trading system within 6 months from July 5, 2018. 
Specifically, Mr. Zhu Jiang intends to increase his holdings by 700,000 to 1,000,000 shares, while Ms. He Xiaojing, Ms. Song 
Huamei, and Mr. Zhu Guanghui each plan to increase their holdings by 200,000 to 300,000 shares.

邦讯技术股份有限公司 (以下简称“公司”)获悉公司股东戴芙蓉女士所持本公司股份 15653000股
(evt1-arg)于2018年8月21日被司法冻结，... 北京市海淀区人民法院 (evt1-arg)于2018年8月21日(evt1-arg)对
戴芙蓉女士质押在信达证券的本公司股份进行了司法冻结。... 广东省深圳市福田区人民法院
(evt2-arg)于2018年4月12日(evt2-arg)对张庆文先生及戴芙蓉女士所持本公司股份合 计3274000股进行
了司法冻结。截至本公告日，戴芙蓉 (evt1-arg)女士持有本公司股份共计55193000股(evt1-arg)，占公司总
股本17.2457%(evt1-arg)，其处于司法冻结状态的股份数量为18593000股，占其持有公司股份总数的
33.6872%，占公司总股本的5.8096%。截至本公告日，戴芙蓉女士的一致行 动人张庆文(evt2-arg)先生
直接持有本公司股份共计113820410股，占公司总股本的35.5644%，其处于司法冻结状态的股份
数量为334000股(evt2-arg)，占其直接持有公司股份总数的0.2934%，占公司总股本的0.1044%。

Event: EquityFreeze
Role Evt1-pred Evt2-pred

EquityHolder 戴芙蓉 张庆文
FrozeShares 15653000股 15653000股

LegalInstitution 北京市海淀区人
民法院

广东省深圳
市福田区人

民法院
TotalHoldingShares Missing /
TotalHoldingRatio 17.2457% /

StartDate 2018年8月21日 Missing

Figure 5: Multi-event error example in ChFinAnn: The colors in the sentence highlight the gold standard event
annotations ( Event_0 , Event_1 , Event_2 ). The predicted event mentions and arguments are shown in the table.
When predicting the arguments, e.g., EquityHolder role of Event_1 and Event_2, the model gets distracted by
Event_0 and predicts Zhu Jiang. December 28, 2018 and 200,000 are shared arguments of Event_1 and Event_2.

ate class imbalance problems. Existing works still
struggle with long-tailed, ambiguous, and compli-
cated classes, and have a hard time differentiating
similar classes. Dataset-wise, creating annotated
datasets for this task is time-consuming and expen-
sive, which limits the amount of data available for
training and evaluation. Domain-specific datasets
differ from general datasets but are necessary for
identifying relations that are specific to certain do-
mains, understanding domain-specific terminology,
and handling the high variability of language used
in different domains.

There are several promising future directions.
First, it is beneficial to incorporate entity corefer-
ence systems into doc-IE models, which we believe
will play an important role in resolving ECR and
multi-hop reasoning errors. Second, more investi-
gations are needed to design a model with multi-
hop reasoning capability. Finally, doc-EE and doc-
RE can be supplementary tasks to each other. The
information produced by these two tasks can pro-
vide a more complete picture of the information
given in the document.

7 Conclusion

We conducted a thorough error analysis of cur-
rent state-of-the-art algorithms, highlighting the
limitations of existing approaches and identifying
key challenges in document-level IE. Our analy-
sis revealed that issues such as entity coreference
resolution, insufficient reasoning capabilities, la-
beling noise, and relation transitivity significantly
impact the performance of current models, provid-
ing insights for future research. Despite notable
progress in the field, we conclude that persistent
challenges within both datasets and models hin-
der the development of robust and generalizable
solutions. Overcoming these obstacles will be es-
sential for advancing document-level IE models in

the future.

Limitations

Due to the constraint that some state-of-the-art
models had not released their code at the time we
conducted the error analysis, we carefully selected
iconic models featuring key designs and unique
characteristics for evaluation. The current datasets
include only Chinese and English data in the news,
finance, biomedical, and Wikipedia domains; there-
fore, our analysis primarily focuses on studies us-
ing English and Chinese datasets within these do-
mains. Nevertheless, we believe that our conclu-
sions will generalize to other domains, languages,
and future datasets. The limitations identified in
this survey are expected to provide valuable in-
sights and may reflect similar challenges in unex-
plored areas.

This survey focuses exclusively on text-only
document-level information extraction (IE) due to
the lack of research and datasets available for multi-
modal document-level IE. However, the challenges
identified in this survey are expected to be critical
and may serve as motivation for future research
efforts in this area.
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A Evaluation Metrics

In document-level information extraction (IE), the
primary evaluation metrics are Precision (P), Recall
(R), and Macro-F1 score (Kowsari et al., 2019).
Additionally, for doc-RE, Ign F1 is also used as an
evaluation metric (Yao et al., 2019) which refers to
the F1 score that excludes relational facts shared
by the training and dev/test sets. This metric is
important for evaluating the generalizability of the
model, as it disregards triples that have already
been included in the annotated training dataset.

B Performance of Existing Methods

Performance of Doc-RE Existing Methods are
shown in Table 8, Table 5, and Table 6. Perfor-
mance of Doc-EE Existing Methods are shown in
Table 9 and Table 7.

Model F1

SAISO
RE+CR+ET -SciBERT (Xiao et al., 2022) 87.10

DocuNet-SciBERT-base (Zhang et al., 2021b) 85.30
Eider(Rule)-SciBERT-base (Xie et al., 2022) 84.54
ATLOP-SciBERT-base (Zhou et al., 2021) 83.90
SSAN-SciBERT (Xu et al., 2021a) 83.70

Table 5: Doc-RE GDA rank

Model F1

SAISO
RE+CR+ET -SciBERT (Xiao et al., 2022) 79.00

DocuNet-SciBERT-base (Zhang et al., 2021b) 76.30
Eider(Rule)-SciBERT-base (Xie et al., 2022) 70.63
ATLOP-SciBERT-base (Zhou et al., 2021) 69.40
SSAN-SciBERT (Xu et al., 2021a) 68.70

Table 6: Doc-RE CDR rank

Model F1

ReDEE (Liang et al., 2022) 81.90
Git (Xu et al., 2021d) 80.30
PTPCG (Zhu et al., 2022) 79.40
SCDEE (Huang and Jia, 2021) 78.90
DE-PPN (Yang et al., 2021) 77.90
HRE (Cui et al., 2022) 76.80
Doc2EDAG (Zheng et al., 2019b) 76.30

Table 7: Doc-EE ChFinAnn rank

C Additional error analysis

Noisy data Natural language can be ambiguous
or vague, leading to uncertainty in model inference.
To overcome the limitations of the cost of creating
annotated datasets, researchers commonly apply
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Model F1 Ign-F1

KD-Rb-l (Tan et al., 2022a) 67.28 65.24
SSAN-RoBERTa-large+Adaptation (Xu et al., 2021a) 65.92 63.78
SAIS-RoBERTa-large (Xiao et al., 2022) 65.11 63.44
Eider-RoBERTa-large (Xie et al., 2022) 64.79 62.85
DocuNet-RoBERTa-large (Zhang et al., 2021b) 64.55 62.40
ATLOP-RoBERTa-large (Zhou et al., 2021) 63.40 61.39

Table 8: Doc-RE DocRED rank

Model
Arg Identification Arg Classification

Head F1 Coref F1 Head F1 Coref F1

TSARlarge (Xu et al., 2022) 76.62 75.52 69.70 68.79
EA2E (Zeng et al., 2022) 74.62 75.77 68.61 69.70
BART-Gen(Li et al., 2021) 71.75 72.29 64.57 65.11
OneIE(Li et al., 2021) 61.88 63.63 57.61 59.17
BERT-QA(Du and Cardie, 2020) 61.05 64.59 56.16 59.36

Table 9: Doc-EE WikiEvent rank

automatic labeling strategies like distant supervi-
sion to generate large-scale training data. However,
this leads to several minor problems due to noise
and bias: nested entities (i.e., some entities can
be embedded within other entities), false negative
labels (i.e., entity pairs not known to be related but
getting labeled as such in the dataset), and missing
ground truth labels.

Note that Doc-EE errors vary between ChFi-
nAnn and WikiEvents. There could be a number
of factors behind the different Doc-EE error distri-
bution between ChFinAnn and WikiEvents. One
crucial factor is the diversity in underlying statis-
tics between datasets due to their distinct domains
and languages. Compared to the news dataset
WikiEvents, the Chinese financial dataset ChFi-
nAnn requires less commonsense comprehension.
Each dataset contains unique linguistic features
and complexities. WikiEvents has annotated trig-
ger words, and arguments tend to be near the trigger
words, whereas ChFinAnn can have events spread
across the entire document and is more likely to in-
terfere with other events. Therefore, long-span and
multi-events are major error types in ChFinAnn.
Moreover, various model designs and approaches
usually aim to address specific challenges and opti-
mize performance on the respective dataset.
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Abstract

This paper aims to map out the current land-
scape of generative approaches to the task of
event extraction. In surveying the emerging
literature on the topic, we identify the distinc-
tive properties of existing studies and catalogue
them to build a comprehensive view of the var-
ious techniques employed. Finally, looking
ahead, we argue for a new generative formula-
tion of event extraction, allowing for a better
fit between methodology and task – a proposal
that could also pertain to many other traditional
NLP tasks currently based on annotations of
text-spans.

1 Introduction

Event extraction is one of the core applications
in Natural Language Processing (NLP), aiming
to create structured representations of events de-
scribed in unstructured text. The task revolves
around the identification and categorisation of pre-
defined types of events within texts. This is typi-
cally broken down into identifying and categorising
so-called event triggers and their respective argu-
ments, along with their relevant properties and rela-
tionships, such as time, location, and participants.

Recently, generative language models have seen
widespread uptake across many subfields of NLP,
and event extraction is no exception. Generative
approaches to event extraction sometimes deviate
from the traditional way of identifying and cate-
gorising events and their arguments, introducing
new opportunities and challenges with respect to
both training and evaluation.

This paper provides an overview of the current
landscape of generative approaches to event extrac-
tion by focusing on a representative set of tech-
niques across different dimensions. We survey how
the task of event extraction is approached across
the range of decoder-only and encoder–decoder

*Equal contribution.
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Figure 1: The two subtasks of event extraction on a
sample from ACE. The event type is shown in blue over
the trigger highlighted in orange. The event arguments
are highlighted in green with their role specified under
each argument.

models with regards to generating the extracted
event fields as natural language – as opposed to the
traditional sequence labelling or boundary identifi-
cation approaches. For readers seeking a broader
overview of event extraction approaches, the sur-
veys by Xiang and Wang (2019), Liu et al. (2021)
and Li et al. (2022) can be explored.

Event extraction (EE) is traditionally approached
as a sequence labelling problem. The annotations
identify specific text spans that highlight event trig-
gers with their associated arguments. This leads to
the task being broken up into two parts as shown in
Figure 1: (1) event detection (ED) where event trig-
gers are identified and the event is categorised into
a type. An event trigger typically corresponds to
the word(s) in the text that most clearly describes an
event. In the example of Figure 1, “leave” evokes
an “End-Position”-type event. (2) event argu-
ment extraction (EAE) where event arguments are
identified along with their role. The role is the se-
mantic relationship of the argument to the event. In
the example of Figure 1, “Swenson” is identified as
relevant to the End-Position event as the Person
leaving. When two distinct models are used to
tackle each subtask, the approach is referred to as a
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pipeline, while approaching both subtasks together
is denoted a joint approach. Only a third of the
models we survey perform ED. The two subtasks
are also evaluated separately. However, the argu-
ment extraction scores are not always comparable
as some models use a pipeline setup where the gold
trigger is used in the evaluation of argument extrac-
tion, while other models only work in a joint setup
where the arguments can only be extracted together
with the trigger (Peng et al., 2023). We therefore
elect to not include reported results as comparison
can be misleading. Before we dive into the descrip-
tion of the different modelling approaches, we start
by discussing some of the most prominent event
extraction datasets.

2 Datasets

In this section, we discuss the event datasets most
commonly used across the different generative ap-
proaches we assess in Section 3. While some of the
datasets cover multiple languages, most primarily
focus on English language sources.

The highly influential Automatic Content Ex-
traction (ACE) program released manual event an-
notations for text spans at the sentence-level, also
including rich information about entities, temporal
expressions, and relations between entities. The
event annotation in the ACE tradition has become
a de facto standard for the evaluation of event ex-
traction systems in the field of NLP. The 5th itera-
tion of the dataset, ACE 2005 (Doddington et al.,
2004), consists of broadcast transcripts in addition
to newswire and newspaper texts. It provides man-
ual annotation for entities, relations, and events for
joint evaluation of multiple information extraction
tasks in multiple languages (Arabic, Chinese, and
English) at the sentence level. The ACE dataset
is annotated for 8 general event types (e.g. Life,
Conflict, Transaction), along with 33 subtypes
(e.g. Conflict.Attack), and 22 argument roles
(e.g. Attacker, Agent, and Recipient). The En-
glish version of the dataset comprises 599 docu-
ments. Depending on the pre-processing approach,
ACE features two main variants, where ACE covers
only events with single-token triggers, and ACE+
keeps all events with either single- or multi-token
triggers. Four F1 scores are usually reported on
ACE: the trigger identification, the trigger classifi-
cation into an event type, the argument identifica-
tion, and the argument classification into a role.

The evaluation of ACE and similar datasets is

structured primarily for sequence labelling models.
It typically involves comparing the predicted posi-
tion offsets (specific locations of event mentions
in the text) with the corresponding correct offsets.
Consequently, if a name appears multiple times
within a sentence, only one of those occurrences
is considered correct.1 Since generative models
only extract and generate out-of-context surface
forms without incorporating position offsets, eval-
uating them on datasets like ACE may give these
approaches an unfair advantage. The current best
practice for generative approaches is to search for
the text generated by the model in the input text,
transform the output to offsets to simulate a se-
quence labelling model, and subsequently evaluate
it as such.

More recently, the ERE annotation effort (Enti-
ties, Relations, and Events, Song et al., 2015) has
contributed both data and annotation guidelines
for event extraction purposes. The ERE effort has
evolved from the Light ERE to Rich ERE datasets,
advancing from simple ACE-based annotations to
more complex handling of entities and events, ulti-
mately enabling document-level event co-reference.
The ERE effort covers English, Spanish and Chi-
nese documents from discussion forums, newswire,
and proxy sources. The Rich ERE extends the anno-
tation scheme of ACE, covering 9 main event types
and 38 event subtypes. In Light ERE, only asserted
events are annotated (events that have occurred),
with each event trigger linked to a single event. In
contrast, Rich ERE allows for event triggers to be
annotated for multiple events and includes annota-
tions for event modality, capturing events that did
not actually occur.

Another sentence-level event dataset is MAVEN
(MAssive eVENt detection dataset, Wang et al.,
2020). It aims to alleviate problems of data scarcity
and low coverage and contains 111 611 distinct
events across 4480 human-annotated documents in
total, corresponding to event-related articles from
English Wikipedia. It comprises 168 hierarchi-
cally organised event types derived from FrameNet
(Baker et al., 1998), intended to cover general-
domain events.

Li et al. (2021) introduce a document-level an-
notated dataset based on English Wikipedia arti-
cles and their referenced news articles called WIKI-
EVENTS. While only containing 246 documents

1The ACE corpora include coreference information. How-
ever, it is not an established part of the standard formulation
when evaluating the event extraction task.
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with 8544 sentences, the dataset serves as an essen-
tial benchmark for event extraction systems beyond
the sentence-level. Each document is annotated
with event types, event mentions (triggers and ar-
guments), and co-references across sentences, even
in sentences lacking an explicit event trigger. An-
notating co-references enables a fairer evaluation
of generative models, as an extracted argument is
considered correct if the model generates any co-
reference of the gold argument. In WIKIEVENTS

parlance, these are referred to as coref scores. The
annotators also aimed to annotate the most infor-
mative event mention, giving precedence to name
mentions over nominal mentions rather than fo-
cusing solely on the mention closest to the trigger
word. This allows for another evaluation mode for
WIKIEVENTS termed informative argument extrac-
tion, where models are evaluated on their ability
to extract the most informative argument mention.
The annotations of the dataset resemble ACE, but
expand the number of sub-events from 33 to 67
following the KAIROS ontology.2 Additionally,
WIKIEVENTS has a more fine-grained event-type
hierarchy. For instance, whereas ACE identifies the
event type and subtype such as Conflict.Attack,
WIKIEVENTS introduces event types at three levels,
such as Conflict.Attack.DetonateExplode.

In recent years, the fourth Message Under-
standing Conference (MUC-4, Sundheim, 1992)
dataset has resurfaced in research on document-
level event extraction. The dataset is based on
English newswire provided by the Federal Broad-
cast Information Services. It is annotated with the
event types Arson, Attack, Bombing, Kidnapping,
Robbery, Forced work stoppage, covering polit-
ical conflicts in Latin America. MUC-4 contains
1700 documents, which may be associated with
zero or more events of each type. Moreover, the
event type is associated with a template, each with
the same set of 24 argument roles to be filled with
either a numeric value, a categorical value, a text
string, or a canonical form extracted or derived
from the text. However, beyond event type classifi-
cation, most recent works on the dataset are based
on a simplified set of template slots restricted to
five argument roles, where all have text string val-
ues that can be directly extracted from the source
document (Du et al., 2021a,b; Gantt et al., 2024).
Given that a large proportion of the documents are

2https://www.darpa.mil/program/knowledge-dir
ected-artificial-intelligence-reasoning-over-sch
emas

linked to empty templates, indicating the absence
of relevant events, the ED task is important for
MUC-4.

Some of the models discussed in this survey em-
ploy additional datasets alongside those outlined
above. RAMS (Ebner et al., 2020) covers 9124
events from news articles and is annotated in a 5-
sentence window around each event trigger. PHEE
(Sun et al., 2022) is a biomedical domain-specific
dataset focused on drug safety, consisting of nearly
5000 sentences extracted from public medical case
reports. Finally, CASIE (Satyapanich et al., 2020),
consisting of 5000 news articles, with 1000 of these
annotated on the sentence-level for cyber-attack
events.

3 Models

The majority of the models we survey follow a
similar pattern as shown in Figure 2: the input
text is fed to an encoder–decoder transformer that
is fine-tuned to generate a representation of the
events conveyed in said text. Most of them can
be divided into one of two groups according to
how the events are represented in the generated
text. To structure this survey, we first consider the
representation of events in the output of the model;
two main approaches exist: i) either an event is
represented using a formal structure template in
line with Text2Event (Lu et al., 2021), or (ii) the
event is represented using a natural language tem-
plate in line with BART-Gen (Li et al., 2021). We
present these two distinct approaches in two sepa-
rate sections. A classification of all models is also
given in Figure 3. Note that the organisation of
this survey results from the fact that most of the
models within the scope of this work build upon
Text2Event and BART-Gen. However, this struc-
ture does not necessarily reflect a deep fundamental
difference between the two sections.

The first model using a generative transformer
to address EE falls partly outside this dichotomy.
TANL (Paolini et al., 2021) introduces an ED
model and an EAE model using T5 (Raffel et al.,
2020). However, TANL does not focus solely on
event extraction and can be trained on multiple in-
formation extraction (IE) tasks (named entity recog-
nition, coreference resolution, etc). This is a recur-
ring pattern in the papers we survey; different IE
tasks are often similar enough that a single archi-
tecture can be reused. TANL goes one step further
by simultaneously training on multiple tasks before
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Extract the event information
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[destroyed|Attack] five tanks.

Iraqi troops attacked five tanks
using ?3 at ?4 place

Formal Structure Template

Augmented Natural Language

Natural Language Template
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Figure 2: Schema of a standard generative event extraction model. On the left-hand side are common features given
to the model as input. Some models rely only on the source text being present. A trigger word can be marked in the
source text if the task being worked on is argument extraction. The inputs are generally given to an encoder–decoder
model, which then generates a representation of the event. Three examples of possible outputs are shown on the
right-hand side. TANL uses augmented natural language, while models based on generating a formal structure or
natural language templates are described respectively in Sections 3.1 and 3.2 respectively. Note that some models
do not follow this general pattern (see for example, QGA-EE).

evaluating event extraction. However, this setup
is not common and makes direct comparisons of
results difficult. TANL is also unique among gen-
erative models in that it is the only one that relies
on offset-based annotation for training. This is
because it uses an augmented text representation
where the input text is generated in the model’s out-
put together with the extracted information. This
can be seen in Figure 2, where the first box on the
right showcases an example of TANL’s output for
event detection. Subsequent models only generate
the structured information without generating the
whole sentence. In this regard, TANL is more di-
rectly comparable to a sequence tagging scheme.
For example, if the word “destroyed” appeared
twice in the given example, the model would be
able to distinguish between the two and tag only
the relevant one.

3.1 Formal Structure Template

The first popular approach to represent events fol-
lowing TANL is to discard the source text from the
output and keep only what is evaluated: the event
structure. The exact structure used differs across
models and needs only to be able to encode an as-
sociative dictionary between role and arguments
(e.g. S-expression, JSON).

This approach was pioneered by Text2Event
(Lu et al., 2021), which jointly models the ED and
EAE subtasks. They use a T5 encoder–decoder
model, where the encoder is given the source sen-
tence alone and the decoder is supervised by an

S-expression, as illustrated by Figure 2. The output
of the model is therefore a mix of labels (event
type, argument roles), structure tokens (separat-
ing the events and arguments), and input tokens
(the extracted trigger and arguments) following a
strict ordering. To enforce this ordering (e.g. an
argument role must be followed by input tokens,
then by a structure token), Text2Event introduces
constrained decoding: the output vocabulary is re-
stricted to valid tokens at each step (e.g. the softmax
is only applied over tokens appearing in the input
if an argument role was just generated). They show
that this is particularly helpful with small training
sets. Their ablation study also includes curriculum
learning and shows that using natural language to-
kens for argument roles is preferable to arbitrary
tokens. While TANL is often used as a baseline,
it was not used as a basis for future work. Con-
versely Text2Event prompted a series of follow-up
models bringing incremental improvements. For
example, Set Learning (Li et al., 2023) improves
Text2Event by attempting to enforce permutation-
invariance of its output. In Text2Event a sample is
supervised with a sequence of event arguments in
an arbitrary order, whereas Li et al. (2023) super-
vises every sample with multiple orderings of the
arguments and events.

The KC-GEE model (Wu et al., 2023) also fol-
lows most of the Text2Event architecture but uses
prefix-tuning to enhance the performance on the
task. Specifically, schema information – what are
the possible event types and roles – is used to condi-
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Figure 3: Overview of the models covered by the survey. The two shaded blocks correspond to the type of event
representation generated by the models. The T5 and BART boxes indicate the backbone LLM of the different
models. The constrained and pointer decoding boxes envelop models that do not freely generate from their entire
vocabulary. Instead, their output is restricted either through a masking mechanism (constrained decoding) or by
similarity with the input (pointer decoding). The multiple IE tasks box groups together models that are also used
for other information extraction tasks such as named entity recognition and relation extraction. For each model,
the lower left letters indicate which subtasks are tackled, while the lower right letters indicate the datasets they are
evaluated on. The subtasks are: Trigger extraction & classification (ED), Argument extraction, and Joint trigger and
argument extraction. A model can be used in a pipeline setup if it is marked for both trigger and argument extraction
subtasks. The listed datasets are: ACE, CASIE, ERE, RAMS, and WIKIEVENTS. A slightly expanded version of
this figure is presented in the appendix as Table 1.

tion both the encoder and the decoder through vec-
tor prefixes. This enables the model to generalise to
unseen event types in a zero-shot setting. Addition-
ally, KC-GEE targets document-level event extrac-
tion and incorporates a cross-attention mechanism
to effectively process entire documents. KC-GEE
achieves notable performance gains compared to
Text2Event on WIKIEVENTS, and in the zero-shot
setting.

Retrieve&Sample (Ren et al., 2023) focuses
solely on document-level event argument extrac-
tion with retrieval-augmented generation (RAG).
Specifically, they first retrieve top-k potentially
helpful documents from the training corpus. The
helpfulness of a document is computed using a
T5-encoder-based siamese network from the in-
put text and event schema. The retrieved docu-
ments are fed as an additional input to the model
(Figure 2) together with the input document and
schema information. They also explore two other
retrieval strategies: context-consistent retrieval and
schema-consistency retrieval. As it is designed for
document-level extraction, the model is evaluated
on RAMS and WIKIEVENTS.

Lu et al. (2022) introduce UIE as a unified infor-
mation extraction framework via text-to-structure

generation. Like TANL, the authors aim to tackle
multiple IE tasks, however this is done with a for-
mal structure similar to Text2Event. UIE formalise
a unified structure for encoding different infor-
mation elements (i.e. entities, relations, events),
dubbed structural extraction language. The au-
thors argue that any information extraction task
can be decomposed into two atomic operations:
spotting and associating; where the former opera-
tion locates relevant text spans and the latter con-
nects the spans with a task-specific schema. The
task to perform is indicated with a prefix referred
to as structural schema instructor. For event ex-
traction, this prefix contains the full dictionary of
possible event types or roles, depending on the
subtask. UIE is developed by the same team as
Text2Event, and can be considered as its TANL-
inspired generalisation. In particular they use an
IE-specific pre-training that removes the need for
constrained decoding. ACE, CASIE and PHEE are
used to evaluate the models performance on the
EE task. The UIE experimental setup composed of
multiple IE tasks is subsequently re-used by other
works we present in the next paragraphs. In parallel,
Wang et al. (2022) introduce DeepStruct, a similar
text-to-structure model which also addresses mul-

77



tiple IE tasks. However, they use GLM (Du et al.,
2022b), a decoder-only transformer as a backbone,
and only use ACE for evaluation.

Inspired by instruction tuning, Wang et al.
(2023a) propose InstructUIE as a unified infor-
mation extraction framework for multiple IE tasks
in line with UIE. More specifically, all IE tasks are
reformulated into the task of natural language gen-
eration with expert-designed instructions, which
include a description of the output format (e.g. Out-
put format is “type: trigger”). InstructUIE features
joint training of multiple IE tasks on a collection
of 32 datasets by creating a unified and consistent
label set based on semantics, thus benefiting from
cross-task knowledge sharing and more training
data. Although InstructUIE is trained to extract the
trigger and arguments jointly, it is only evaluated
in a pipeline fashion on the same datasets as UIE.

Further extending instruction tuning, Xiao et al.
(2024) propose YAYI-UIE as an end-to-end univer-
sal information extraction framework. Xiao et al.
(2024) employ a two-step instruction tuning pro-
cedure: first, real-life dialogue data are used to
enhance the model’s capacity to understand hu-
man language instructions; second, the model is in-
struction fine-tuned for IE tasks on the InstructUIE
datasets extended with Chinese-language datasets
– in particular DuEE (Li et al., 2020b; Han et al.,
2022) for event extraction. The instruction and
output setup is somewhat similar to InstructUIE,
except that a JSON-based format is used for the
event structure. Similarly to DeepStruct, YAYI-
UIE is based on a decoder-only model. They use
Baichuan2 (Yang et al., 2023) as a backbone model,
which is pre-trained using RLHF (Christiano et al.,
2017) on English and Chinese data. YAYI-UIE
achieves competitive results on the EAE subtask
on the UIE experimental setup; the authors show-
case in their ablation study the effectiveness of
using real-life dialogue data to aid the model in
understanding human instructions.

A few works evaluate decoder-only large lan-
guage models (LLMs) for EE in a zero or few-
shot fashion (Wang et al., 2024, 2022; Xiao et al.,
2024; Wei et al., 2024), however outside of Deep-
Struct and YAYI-UIE, these efforts tend not to in-
volve any fine-tuning. Worth noting is the work
of Chen et al. (2024) that we refer to as LLM-
EE. It sets out to assess the value of using pre-
trained LLMs for EE, experimenting with a wide
variety of different strategies. In a first suite of
experiments, they prompt pre-trained LLMs to ex-

tract event information directly. Using ACE and
MAVEN for evaluation, the LLMs tested include
PaLM (Chowdhery et al., 2022), GPT-3.5-Turbo,
and GPT-4 (OpenAI, 2024). Chen et al. (2024)
report experiments for several different configura-
tions; zero-shot and one-shot approaches, including
both joint and pipeline strategies for the subtasks of
ED and EAE, in addition to extraction of multiple
events, for all event types simultaneously and indi-
vidually. However, the results show that LLMs fall
short of fine-tuned supervised approaches as was
already shown by Gao et al. (2023). In a second
suite of experiments, Chen et al. (2024) prompt
the LLMs to generate annotated examples, aim-
ing to improve the performance of fine-tuned mod-
els by augmenting the training data. This is mo-
tivated by the problems of data scarcity and class
imbalance seen in many common datasets where
certain low-frequent event types have very few an-
notated examples. The selection of models used
for fine-tuning to evaluate the data augmentation
comprises generative approaches like Text2Event
discussed above. The results show that training
on the augmented data yields a modest but consis-
tent improvement in F-score (due to an increase in
precision at the slight recall cost). An obvious av-
enue for future work left unexplored by Chen et al.
(2024), is to further instruction fine-tune the LLM
itself on EE specifically. Moreover, the context
size of current LLMs would likely make them bet-
ter positioned for document-level EE, rather than
the sentence-level analysis required by datasets like
ACE and MAVEN. Some works explore some spe-
cific characteristics of LLMs for EE, for example
Code4Struct (Wang et al., 2023b) look at the possi-
bility of transfer learning between python code and
event structure using code-imitation prompts for
few-shot event extraction. TISE (Fu et al., 2024)
extends this by designing a method to select appro-
priate samples for the in-context learning prompts.

As described in Section 2, the template-filling
dataset MUC-4 has reemerged in recent EE re-
search. The GTT framework introduced by Du
et al. (2021b) is one of the pioneering efforts in
building an end-to-end generative model for the
task of template filling, transforming it into a se-
quence generation problem. Although it is an
encoder-only model, we include it in our survey
for its seminal role. Extending the role filler en-
tity extraction system GRIT (Du et al., 2021a), the
framework relies on BERT with a partially-causal
attention mask. Word prediction is done with a
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dot-product pointer selection mechanism to restrict
output word predictions to the input vocabulary.
The input includes a list of possible event types
and structure tokens so that they can be gener-
ated, while the output is based on a formal struc-
ture template with a fixed set of (unlabelled) roles.
In summary, GTT shows strong similarities with
Text2Event, yet with some differences due to the
use of BERT with a partial causal attention mask
instead of an encoder–decoder. Compared to simi-
lar non-generative models, Du et al. (2021b) find
that GTT performs better on MUC-4 documents
with multiple events.

Some generative EE models focus on more spe-
cific problems. For example, DICE (Ma et al.,
2023) is a T5-based model focused on the clin-
ical domain, introducing a dataset alongside a
Text2Event-like EAE model and a DEGREE-like
ED model (described in the next section). Sim-
ilarly, while most efforts focus on monolingual
event extraction, Huang et al. (2022) explore zero-
shot cross-lingual argument extraction on ACE and
ERE using language-agnostic templates. They pro-
pose X-GEAR (Cross-lingual Generative Event
Argument extractoR), which, given an input sen-
tence, the trigger, and a type-dependent template,
replaces the placeholder in the template either by
generating a token or directly copying a token from
the source text. The copy mechanism, adapted
from See et al. (2017), conditions the generation of
a token on a weighted sum of two distributions: the
vocabulary distribution from the pre-trained mT5
model, serving as the backbone, and the copy prob-
ability derived from the cross-attention weights,
which allows for directly copying tokens from the
input sequence. Although X-GEAR is primarily
developed for cross-lingual applications, it demon-
strates strong performance in argument classifica-
tion when both the source and target languages
are English. While multiple studies (Paolini et al.,
2021; Lu et al., 2021; Ren et al., 2023) highlight
the benefit of using natural language for role labels
in the generated template, X-GEAR conducts an
ablation study showing that this approach does not
generalise to cross-lingual settings.

3.2 Natural Language Template
Using natural language labels for event types and
roles is expected to improve performance in the
standard setup, as it allows models to leverage the
LM pretraining of the backbone transformer (com-
monly BART). However, these architectures still

use a non-natural formal structure to delimit dif-
ferent arguments. An alternative to this approach
is to use a natural language template to structure
the event as is shown on the right of Figure 2. We
describe these approaches in what follows.

The first model of this type is BART-Gen (Li
et al., 2021), a document-level EAE model. Argu-
ment extraction is framed as a conditional genera-
tion task, using a BART encoder–decoder model
(Lewis et al., 2020). The output generated follows
a predetermined natural language template given
by the event ontology. The templates are specific
to each event type and are also given in the input
with special tokens in lieu of arguments. This al-
lows BART-Gen to use a pointer-like mechanism
for generation: the vectors at the output of BART-
Gen are compared with the input embeddings, and
the model then generates the token with the highest
similarity, ensuring that all generated tokens appear
in the input. Additionally, clarification statements
in the form of type statements (e.g. <arg> is a Per-
son), are included to avoid mismatches in entity
types for arguments, and are used to re-rank the
output sequences. A distinct trigger identification
and classification model is introduced, as BART-
Gen serves solely as an argument identification and
classification system. However, this event detection
model is not generative.

Zeng et al. (2022) introduce EA2E (Event-Aware
Argument Extraction) to solve document-level ar-
gument extraction by incorporating explicit event–
event relations into an iterative inference process.
Building upon BART-Gen (Li et al., 2021), the
task is formulated as conditional generation, filling
the argument placeholders of a pre-defined tem-
plate. Moreover, event–event relations are also
exploited by labelling the arguments of previously
extracted events in the input. This allows the model
to learn regularities, such as an entity previously
extracted as a Defendant being more likely to be
the Perpetrator in attack events. EA2E performs
this in an iterative fashion: first, the model gen-
erates the result for each target trigger, and then
the predicted results will be used to augment the
context for a second extraction. Evaluated on ACE
and WIKIEVENTS, EA2E achieves advantageous
results compared to previous works, such as BART-
Gen. Du et al. (2022a) present a similar model
evaluated on WIKIEVENTS alone. Dubbed Mem-
ory DocIE, their approach takes as input a natu-
ral language template and a document, augmented
with the most similar event already extracted from

79



the document, where the latter is intended to act as
a “document memory store”. Event similarity is
computed as the cosine between S-BERT embed-
dings of the filled event templates. Furthermore, all
possible pairs of event roles are checked to mark in-
compatibilities, e.g. the jailer slot of an arrest
event, is unlikely to be filled by the attacker of an
attack-detonate event. The resulting constraints
are enforced by masking incompatible tokens when
generating arguments.

Hsu et al. (2022) propose the DEGREE model,
targeting low-resource event extraction. While DE-
GREE still follows BART-Gen in that it uses BART
to fill in a natural language template, it differs in
how the event extraction task is approached. BART-
Gen requires the event type to be known in order
to select the appropriate template to be filled since
the event type is traditionally extracted together
with the trigger. In contrast, DEGREE still uses
event-type-specific templates, but initiates them
with “Event trigger is <trigger>” thus, it is able
to perform trigger identification together with ar-
gument extraction given the event type. However,
DEGREE is also trained to classify the event type.
This is done by supervising the models with ev-
ery possible template such that negative templates
leave the <trigger> placeholder as-is in the out-
put, while the correct templates would replace it
with the trigger word. This means that all sam-
ples must be run through BART with all possible
event templates during inference. This allows DE-
GREE to be used both in joint and pipeline settings.
Furthermore, compared to BART-Gen, the input
is extended with event type descriptions, such as
“The event is related to conflict and some violent
physical act.”, and event keywords that are seman-
tically similar to the event type. Compared to other
generation-based models such as BART-Gen (Li
et al., 2021), Text2Event (Lu et al., 2021), and
TANL (Paolini et al., 2021), DEGREE shows com-
parable or inferior performance on sentence-level
datasets. However, DEGREE’s strength lies in low-
resource settings, where it achieves significantly
better performance even when trained on just 1%
of the data.

Following DEGREE, Liu et al. (2022) introduce
GTEE-DynPref, an approach using BART for con-
ditional generation while attempting to ease event
typing in the model’s input. Usually, DEGREE’s
input is event-typed in two ways: through a type
instruction “Event type Meet” and the natural lan-
guage template. GTEE-DynPref replaces the type

instruction with a vector representation similar to
that of KC-GEE. Compared to DEGREE, an addi-
tional embedding matrix is used to associate type
instruction prefix vectors to each event type. Each
sample is associated with a distribution over event
types using BERT. This distribution defines a con-
vex combination of prefix vectors that are used in
substitution to static type instruction. Since the
type information is still enforced through the tem-
plate, the model relies on training with negative
event types. A 3-step curriculum learning approach
used to bootstrap the type instruction embeddings
further increases the complexity of the training pro-
cedure. Still, Liu et al. (2022) report competitive
results on their evaluation datasets, ACE and ERE.

Hsu et al. (2023) introduce AMPERE, which
also extends DEGREE by adding a dynamically
generated prefix. This prefix incorporates struc-
tured information from abstract meaning represen-
tation (AMR) of the input passage. The AMR
graph is encoded into prefix vectors using a BART-
based AMR parser called SPRING (Bevilacqua
et al., 2021). They show that explicit semantic
structure from AMR aids event argument extrac-
tion. Compared to DEGREE, AMPERE injects
AMR prefixes both into the encoder’s self-attention
blocks and into the decoder’s cross-attention blocks.
Additionally, they re-introduce a copy mechanism
previously discarded by DEGREE but condition
it with regularisation to encourage more frequent
copying.

3.3 Iterative Question-Answering Approaches
In recent years, several efforts have approached
EE as a Question-Answering (QA) task (Du and
Cardie, 2020; Li et al., 2020a; Lyu et al., 2021).
As a recent and generation-oriented study within
this framework, Lu et al. (2023) propose the QGA-
EE model for argument extraction, consisting of a
question generation model (QG), and a question an-
swering model (QA). Unlike models such as BART-
Gen, which uses fixed templates for each event
type, the sequence-to-sequence QG model gener-
ates context-aware questions tailored to the input
sentence and the argument roles. A series of ques-
tions is generated for each sample, one for each
role, each depending on the already extracted argu-
ments. In order to generate the questions, the model
is trained on manually created templates for each
role in the ACE ontology, such as “Who was the
attacking agent?” and “Who attacked <target>?”.
The QA model is trained with all possible ques-
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tions as inputs and generates the answer strings
corresponding to the role questions. The extracted
arguments are then cross-checked with the input
sentence, retaining only those that match perfectly.
The authors explore the use of both BART and T5
architectures as the backbone for the QA model,
finding that T5 yields better performance.

4 Summary and Outlook

This paper has surveyed the uptake of generative
approaches to event extraction in NLP, presenting a
range of different methods from encoder–decoders
to decoder-only models. While some approaches
take entire documents into account and others fo-
cus on the sentence-level, all evaluate performance
based on matching predicted strings towards the
strings found in the original input text.

We argue that the field has yet to embrace gen-
erative approaches to EE fully. Sticking to the tra-
ditional formulation of an “extraction” task makes
it difficult to take full advantage of the capabili-
ties of generative models like LLMs. The wide
context windows of current LLMs also make them
more suited for capturing more general or “com-
plex events” – to use the words of Qi et al. (2022)
– rather than the more granular and predicate-
centered events typically targeted in the field so
far. Going forward, we hope to see new formula-
tions of the task itself, focusing on more high-level
event analysis or understanding. By moving away
from span-based and sentence-level annotations to
more abstract and document-level annotations, with
an evaluation methodology that correspondingly
focuses on semantics rather than string matching
towards a source text, we believe that the field can
have a version of event analysis that will be more
useful for many downstream applications (Olsen
et al., 2024) and more attuned to the strengths and
possibilities of generative approaches and LLMs.
In fact, the arguments for such a shift from an “ex-
tractive” to an “abstractive” view could also be
made for many other IE tasks in NLP where both
modelling and evaluation are traditionally tied to
span-based text annotations.

5 Limitations

In this survey, we adopt a narrow definition of gen-
erative methods – encoder–decoder and decoder-
only transformers generating some natural lan-
guage – to provide a detailed description of the
systems rather than offering a broad overview.

This focus allows for a more in-depth analysis
but may limit the breadth of the discussion. Con-
sequently, we are not discussing closely related
work within information extraction, such as Named
Entity Recognition and Relation Extraction. For
readers seeking a broader perspective, we recom-
mend the work of Huang et al. (2023) and Xu et al.
(2023).

While this survey paper strives to cover all gen-
erative approaches to the task of event extraction
within our scope, it is still possible that some rele-
vant work has been unintentionally excluded, not
due to a deliberate omission, but rather because it
was not identified during our search. Our search
was conducted across main NLP and AI venues
such as ACL, EMNLP, and AAAI.

Some generative models were excluded as they
did not generate natural language in their output,
such as PAIE (Ma et al., 2022) and EEQA (Du and
Cardie, 2020). We also excluded models such as
RAP (Yao et al., 2023) as it is a generic method that
could be plugged into any IE model generative or
not. Some data-augmentation articles blur the line
between dataset and model papers, most notably
Gao et al. (2022) and are not included in our survey.

The page limit imposed on some articles made it
hard to assess their characteristics, for example UIE
(Lu et al., 2022) does not mention using constrained
decoding in their article even though it is present
in the code they provide. However, it is unclear
whether this code path was actively used.

It is also worth noting that this survey does not
extensively cover all datasets relevant to event ex-
traction. The selection of datasets is guided by
those used in evaluating the models the paper cov-
ers, which has led to a focus on English-language
sources. Consequently, most datasets discussed in
this survey are based on English, further reinforc-
ing the overrepresentation of the English language.

Finally, while we address evaluation and per-
formance in our discussions, we do not present
evaluation scores for any of the models. Peng et al.
(2023) describe several challenges in evaluating
event extraction systems, highlighting issues such
as discrepancies in output space and data process-
ing, as well as the absence of pipeline evaluation,
which impact the fair comparison of model per-
formance. During the course of this research, we
observed the same discrepancies in system evalua-
tions.
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6 Ethics

This work is intended to encourage further re-
search within the framework of generative methods
for event extraction. However, we acknowledge
that several ethical concerns are inherent in this
approach and may even be enhanced within this
framework, warranting careful consideration.

Reliance on mainly English datasets for event
extraction, coupled with the issue of hallucinations
from large language models, might pose risks of
harm and generate non-factual events, especially
if not properly addressed. These risks should be
given particular attention when moving towards
more “abstractive” generative approaches.
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TANL ✔ ✔ ✘ ✔ ✔ ✘ ✘ ✘ ✘ T5 Formal ✘ ✘

Text2Event ✘ ✘ ✔ ✘ ✔ ✘ ✔ ✘ ✘ T5 Formal ✘ constrained

Set Learning ✘ ✘ ✔ ✔ ✔ ✘ ✘ ✘ ✘ T5 Formal ✘ constrained

KC-GEE ✘ ✘ ✔ ✘ ✔ ✘ ✘ ✘ ✔ T5 Formal ✘ constrained

Retrieve&Sample ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✔ T5 Formal ✘ ✘

UIE ✘ ✘ ✔ ✔ ✔ ✔ ✘ ✘ ✘ T5 Formal ✘ ✘

DeepStruct ✔ ✔ ✘ ✔ ✔ ✘ ✘ ✘ ✘ GLM Formal ✘ ✘

InstructUIE ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘ T5 Formal ✘

YAYI-UIE ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘ Baichuan2 Formal ✘

LLM-EE ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ Several Formal ✘

GTT ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ BERT Formal ✘ pointer

DICE ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ T5 Formal ✘ ✘

X-GEAR ✘ ✔ ✘ ✘ ✔ ✘ ✔ ✘ ✘ BART∨T5 Formal ✔ pointer

BART-Gen ✘† ✔ ✘ ✘ ✔ ✘ ✘ ✔ ✔ BART Natural ✔ pointer

EA2E ✘ ✔ ✘ ✘ ✔ ✘ ✘ ✘ ✔ BART Natural ✔ pointer

Memory DocIE ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✔ BART Natural ✔ pointer

DEGREE ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✘ ✘ BART Natural ✔ ✘

GTEE-DynPref ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✘ ✘ BART Natural ✔ ✘

AMPERE ✘ ✔ ✘ ✘ ✔ ✘ ✔ ✘ ✘ BART Natural ✔ pointer

QGA-EE ✘ ✔ ✘ ✘ ✔ ✘ ✘ ✘ ✘ BART∨T5 Iterative ✘ ✘

Table 1: List of models we introduce alongside some of their properties. This is a slightly expanded table version of
Figure 3. For the “Backbone” column, a BART∨ T5 means that the model was trained with multiple configurations,
some with BART and some with T5. For the “Template in input” column, a “ ” means that there is an instruction on
the nature of the output, but not the exact output template. †: The BART-Gen paper describe an event detection
model, but it is not generative.
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