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Abstract
Most artificial intelligence agents in interactive fiction games are implemented using reinforcement learning.
Considering the recent rapid development of large language models, we propose an approach that utilizes a large
language model to tackle interactive fiction game tasks. The chosen test dataset is TextWorld Commonsense, an
interactive fiction game environment designed for artificial intelligence agents. In these games, the AI agent’s
task is to organize rooms and place items in appropriate locations. To achieve a high score in the game, common
sense knowledge about ”which items belong to which locations” is important. Our approach is based on GPT-4
and a carefully designed prompt. Experimental results demonstrate that our approach outperforms prior research.
Specifically, GPT-4 with feedback-augmented prompt successfully completed all tasks in both simple and medium
level game environments without fine-tuning. In hard level game environments, our approach achieved a normalized
score of 0.70, surpassing the best baseline score of 0.57.

Keywords: GPT4, text game, common sense

1. Introduction
Interactive fiction games pose a challenging natu-
ral language processing task. In interactive fiction
games, both player commands and feedback from
the engine are in natural language form. There-
fore, to play these games, artificial intelligence (AI)
agents not only need to comprehend the text re-
sponded by the game engine but also generate
natural language to take an action. In addition to
language understanding, AI agents often require
other complex abilities such as long-term memory,
planning, and common sense to attain high scores.
Due to sparse rewards, traditional AI agents for in-
teractive fiction games have relied on reinforcement
learning techniques.
The main challenge of reinforcement learning lies
in its difficulty of training. Considering the rapid
development of large language models (LLMs) in
recent years (Zhao et al., 2023), we propose an
approach that utilizes GPT-4 (Bubeck et al., 2023)
to solve interactive fiction games. The carefully de-
signed prompt is the main part of our research ap-
proach, drawing inspiration from key achievements
in the field of prompt engineering, such as Chain-
of-Thought (COT), few-shot prompting and output
templates. COT encourages deep reasoning within
LLMs through specific prompt phrases (e.g., ”think
step by step”), resulting in more coherent outputs
(Wei et al., 2022). Few-shot prompting helps LLMs
deepen their understanding of the task by providing
examples in the prompt. Output template, inspired
by Park et al. (Park et al., 2023), standardizes
model outputs using ”<fill in>” prompts, facilitating
subsequent automated processing. Additionally,
we introduce feedback augmented prompting, a
technique that simply clarifies reward and punish-

ment information responded by the game engine,
aiding large language models in better grasping the
situation.
We evaluated the performance of our approach on
the TextWorld Commonsense dataset (Murugesan
et al., 2021) (details in Section 4.1). Experimental
results show that GPT-4 with our carefully designed
prompts successfully completed all tasks in simple
and medium level games. In hard level game en-
vironments, our approach achieved a normalized
score of 0.70, surpassing the best baseline perfor-
mance (score of 0.57). The contributions of our
study are as follows:

• We evaluated the performance of large lan-
guage models on the TWC dataset, and by in-
tegrating Chain-of-Thought (Wei et al., 2022),
few-shot prompting, and feedback augmenta-
tion, our research approach achieved the state-
of-art performance on the TWC dataset as we
known. While demonstrating outstanding per-
formance, our approach also possesses the
advantage of simplicity in implementation.

• Through ablation experiments, we confirmed
the contributions of each module to our re-
search approach and highlighted the signifi-
cance of the feedback augmentation technique
proposed in this study.

2. Related Work
2.1. Datasets
Interactive fiction games were initially designed for
human players, with one of the most famous games
being Zork. Numerous studies on Zork indicate
that the game poses a challenging task for exist-
ing AI agents (Haroush et al., 2018a; Yao et al.,
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2021; Tsai et al., 2023) (including agents based
on large language models). Instead of directly
studying difficult games, we try to incrementally im-
prove the performance of AI agents in simpler game
environments. To address the need of customiz-
ing game environments, Côté et al. (Côté et al.,
2019) introduced TextWorld, a sandbox environ-
ment that allows users to create games manually
or through a set of generation mechanisms. The
TextWorld Commonsense environment (Muruge-
san et al., 2021) (TWC) is built on TextWorld, with
the primary goal of assessing agents’ ability to ap-
ply common sense. Following TWC, more complex
interactive fiction game environments emerged,
such as Science World (Wang et al., 2022) and
Complex World (Basavatia et al., 2023). The chal-
lenge with Science World lies in its domain-specific
environment, where an agent performing well may
lack general skills to apply in other contexts. Com-
plex World, being more intricate than TWC, is a
subject for our future study.

2.2. Agents
Due to the sparse rewards in interactive fiction
games, reinforcement learning has naturally be-
come the primary implementation method for AI
agents. LSTM-DQN (Narasimhan et al., 2015)
stands out as one of the earliest achievements in
this field, where Karthik et al. used LSTM to encode
textual observation into hidden states. DRRN (He
et al., 2015), an improvement upon LSTM-DQN,
separated the neural network into two parts to en-
coding states and actions separately, enhancing
the model’s performance and stability. KG-A2C
(Ammanabrolu and Hausknecht, 2020), during the
exploration process, generates a knowledge graph
to further guide the model’s exploration, proving to
enhance the learning efficiency and performance
of agents. These approaches mentioned above
are used as baselines in the TextWorld Common-
sense paper. It is worth noting that as stated in the
TWC paper (Murugesan et al., 2021), LSTM-DQN
is implemented as LSTM-A2C, which represents
a different reinforcement learning paradigm more
suitable for the TWC environment. The proposed
TWC Agent in the TWC paper extracts common
sense from ConceptNet and, by combining this
common sense knowledge, achieves the highest
performance among all models mentioned above.

2.3. Prompt Engineering
Due to the vast number of parameters in large lan-
guage models, fine-tuning has become a costly
task. This problem have prompted people to seek
better ways to utilize large language models, and
prompt engineering is one of the best options.
Prompt engineering significantly enhances mod-
els’ performance on specific tasks without modify-

ing their parameters, achieved through cleverly de-
signed prompts. There is a wealth of prior research
in the field of prompt engineering, and we will only
introduce three techniques used in this study: (1)
Few-shot prompting. Brown et al. (Brown et al.,
2020) trained GPT-3 and found that significant per-
formance improvement in large language models
can be achieved by providing only a few examples
within prompts, without the need for costly fine-
tuning. (2) Chain-of-Thought. Wei et al. (Wei et al.,
2022) found that rather than directly outputting re-
sults, prompting the model to output the thought
process at the same time leads to more accurate re-
sults. They prompt the model to output in a similar
manner by providing Chain-of-Thought examples.
Subsequently, Kojima et al. (Kojima et al., 2022) fur-
ther pointed out that similar effects can be achieved
by simply appending special key words (such as
”think step by step”) in prompts. (3) Output tem-
plate. Joon et al.’s study on AI villages (Park et al.,
2023) is one of the most impressive works of large
language models in recent years. We borrowed the
idea of output templates from this paper. Specif-
ically, prompts like ”<fill in>” can standardize the
model’s output, facilitating subsequent automation
processes.

3. Model
3.1. Problem Setup
Our study focuses on using large language models
to solve interactive fiction games. The dataset se-
lected for our study is the TextWorld Commonsense
(TWC), which includes five games for each of the
three difficulty levels: easy, medium, and hard. The
dataset can be found on GitHub 1. In each game,
the AI agent’s task is to organize rooms, specifi-
cally by placing certain objects back in their desig-
nated locations. For example, a used tissue on the
ground should be put in the trash can, and a dirty
piece of clothing should be placed in the washing
machine. The criteria for determining which object
belongs to a specific location are based on com-
mon sense, and the validity of these object-location
pairs has been confirmed by human evaluators (Mu-
rugesan et al., 2021).
At each time step, the agent receives an observa-
tion from the game engine, presented in natural
language form. Subsequently, the agent needs to
respond in natural language to present its consid-
eration and take action. After the chosen action is
executed, the game engine returns a new obser-
vation, and then the agent needs to choose a new
action. This cycle has two termination conditions:
either the agent completes all tasks or the number
of actions taken exceeds the predefined limit. In
our study, the action limit is set to 20.

1https://github.com/IBM/commonsense-
rl/tree/master/games/twc
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It should be noted that as stated in the TWC paper
(Murugesan et al., 2021), the maximum number of
steps for all agents is set to 50, while we limit the
number of steps to 20 for two reasons. Firstly, our
study aims to improve the efficiency of GPT-4 under
restricted conditions. Secondly, limiting the number
of steps not only reduces the frequency of API calls
but also keeps the action history concise, which
leads to a lower API usage cost. On the other hand,
as stated in the TWC paper, the average number
of steps taken by humans to complete hard-level
games is 15.
The observations returned by the game engine in-
clude following content:

• Action Feedback: If an action is executed, the
agent receives feedback from the environment.
If the model earns a reward in an action, that
information is also included in the feedback.
For example, a pair of action and feedback
could be: ”insert dirty yellow T-shirt into wash-
ing machine -> You put the dirty yellow T-shirt
into the washing machine. Your score has just
gone up by one point”. In this example, ”in-
sert dirty yellow T-shirt into washing machine”
is the action, and the part after the arrow is
feedback from the game engine.

• Environment Description: Textual descrip-
tion of the current environment.

• Inventory: A list of currently held items.

• Available Action List: A list of actions cur-
rently available to the agent.

3.2. Prompts
Our study proposes an approach using large lan-
guage models to play interactive fiction games, with
the carefully designed prompt being the most cru-
cial part of our approach. Specifically, the prompt
engineering techniques included in our prompts
are: one-shot prompting, Chain-of-Thought, output
template, and feedback augmentation.
An example of prompts is provided below:

Task: You are an experienced text game
player, your goal is to put things in their
proper locations and improve your score.
Example walkthrough: Action 0: insert
dirty yellow dress into washing machine
-> You put the dirty yellow dress into the
washing machine. Your score has just
gone up by one point. Right position. Ac-
tion 1: take dirty yellow T-shirt from bench
-> You take the dirty yellow T-shirt from the
bench. Action 2: insert dirty yellow T-shirt
into washing machine -> You put the dirty
yellow T-shirt into the washing machine.
Your score has just gone up by one point.

Right position. Action 3: take wet azure
dress from suspended shelf -> You take
the wet azure dress from the suspended
shelf. Action 4: insert wet azure dress
into clothes drier -> You put the wet azure
dress into the clothes drier. Your score
has just gone up by one point. Right posi-
tion. Action 5: take white cap from bench
-> You take the white cap from the bench.
Action 6: go east -> -= Corridor =-You’ve
entered a corridor. Action 7: put white cap
on hat rack -> You put the white cap on
the hat rack. Your score has just gone
up by one point. Right position. Action 8:
take dirty cardigan -> You pick up the dirty
cardigan from the ground. Action 9: take
dirty checkered shirt from shoe cabinet
-> You take the dirty checkered shirt from
the shoe cabinet. Action 10: take dirty
maroon dress -> You pick up the dirty ma-
roon dress from the ground. Action 11:
go west -> -= Laundry Room =-You’ve en-
tered a laundry room. Action 12: insert
dirty cardigan into washing machine ->
You put the dirty cardigan into the wash-
ing machine. Your score has just gone
up by one point. Right position. Action
13: insert dirty checkered shirt into wash-
ing machine -> You put the dirty check-
ered shirt into the washing machine. Your
score has just gone up by one point. Right
position. Action 14: insert dirty maroon
dress into washing machine -> You put
the dirty maroon dress into the washing
machine. Your score has just gone up by
one point. Right position.

Action history: Action 0: examine sus-
pended shelf ->The suspended shelf is
reliable. Action 1: take dirty singlet ->You
pick up the dirty singlet from the ground.

Inventory: You are carrying: a dirty singlet

Current environment: -= Laundry Room =-
You’ve entered a laundry room. You begin
to take stock of what’s here. You can see
a washing machine. Empty! What kind of
nightmare TextWorld is this? You make
out an opened clothes drier. The clothes
drier is empty! What a waste of a day!
You can see a laundry basket. Hmmm...
what else, what else? The laundry basket
is empty! What a waste of a day! You can
see a suspended shelf. The suspended
shelf is ordinary. But oh no! there’s noth-
ing on this piece of garbage. You move
on, clearly infuriated by TextWorld. You
scan the room, seeing a bench. But the
thing hasn’t got anything on it. Oh! Why
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couldn’t there just be stuff on it? You make
out a work table. But oh no! there’s noth-
ing on this piece of garbage.
Action you can take:
* close clothes drier
* close laundry basket
* close washing machine
* drop dirty singlet
* examine bench
* examine clothes drier
* examine laundry basket
* examine suspended shelf
* examine washing machine
* examine work table
* insert dirty singlet into clothes drier
* insert dirty singlet into laundry basket
* insert dirty singlet into washing machine
* look
* put dirty singlet on bench
* put dirty singlet on suspended shelf
* put dirty singlet on work table
Question: To put things in their proper
locations and improve your score, what
should you do? Think step by step then
choose ’one’ action from above list.
Consideration: <fill in>
Next action: <fill in>

”Task” is the task description that remains constant
for each time step. ”Example walkthrough” is an
one-shot example we provide to large language
models, which is basically the action history taken
by a human player in a hard-level game from the
training dataset. To demonstrate the movement of
objects across rooms, we deliberately selected an
environment 2 consisting of two rooms.
The ”Action history” is the memory of LLMs, get-
ting longer as the time step increases, and it is tex-
tualized in the format of ”action -> action feedback”.
Action is extracted from the response of LLM, while
action feedback is basically the content returned by
the game engine. However, it should be noted that
we have appended content to item-placing action
feedback for feedback augmentation. For details,
please refer to Section 3.3. Another point to note is
that while action feedback is always short, when the
agent moves to a new room, the feedback provides
a complete description of the environment, consis-
tent with the ”Current environment” part in the

2https://github.com/IBM/commonsense-
rl/blob/master/games/twc/hard/train/tw-iqa-cleanup-
objects7-take6-rooms2-train-aEOOFxjEcxElI9Xo.ulx

prompt. Therefore, to limit the length of prompts,
we only retain the content before the first period in
such cases.
”Current environment” is a textual description
of the current room obtained from the game en-
gine. The “Action you can take” is a list of possi-
ble actions obtained from the game engine. The
“Question,” “Consideration,” and “Next Action”
remain unchanged at each time step and can be
considered as an output template. Of particular
note are the keywords ”Think step by step” and
”Consideration: <fill in>,” which are simple imple-
mentations of the Chain-of-Thought.
For the above prompt, a sample output from GPT-4
turbo could be:

Consideration: To properly place the dirty
singlet, it should be put somewhere re-
lated to laundry processing. Inserting it
into the washing machine seems like the
most appropriate step since typically, dirty
clothes need to be washed before they
are dried or placed in a laundry basket.
Next action: insert dirty singlet into wash-
ing machine

3.3. Feedback augmentation
We propose feedback augmentation due to the am-
biguous feedback provided by the TWC game en-
gine, especially concerning item placement actions.
This ambiguity hinders GPT-4 from making accu-
rate judgments.
For instance, in the case of incorrectly placing an
item, we might get action-feedback pairs like: “in-
sert clean white polo shirt into chest of drawers ->
You put the clean white polo shirt into the chest of
drawers.” As seen, the environment informs us that
the action has been successfully executed, but it
does not indicate that the item (polo shirt) does not
belong to that location (chest of drawers).
However, when an item is correctly placed, we get
action-feedback pairs like: “insert clean white polo
shirt into wardrobe -> You put the clean white polo
shirt into the wardrobe. Your score has just gone up
by one point.” By comparing the two environmental
feedbacks, we find that a score increase implies the
item is correctly placed. While a fine-tuned model
might learn to judge the effectiveness of an action
based on the presence or absence of score growth
information, for a 0-shot setting, the default action
feedback is undoubtedly ambiguous.
Considering these factors, we introduce feedback
augmentation technique. The approach is very
simple; we just append a sentence of explanatory
text after the item-placing action feedback. Specifi-
cally, when an item is placed correctly, we append
”Right position” to the feedback text as a hint. An
example is as follows.
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Insert clean white polo shirt into wardrobe
-> You put the clean white polo shirt into
the wardrobe. Your score has just gone
up by one point. Right position.

For incorrectly placement, we append ”Wrong
position, you should put it somewhere else,
maybe the other room” to the feedback. For ex-
ample:

Insert clean white polo shirt into chest of
drawers -> You put the clean white polo
shirt into the chest of drawers. Wrong
position, you should put it somewhere
else, maybe the other room.

In this example, the action is incorrect because the
shirt should be placed in the wardrobe but not the
chest of drawers. The ”maybe the other room”
part encourages the model to explore across rooms.
These action-feedback pairs will then be stored in
the action history.

3.4. Using Prompts via API
In section 3.2, we introduced prompts used in our
approach. In this section, we briefly discuss the
usage of prompts. We utilize the OpenAI API to in-
voke GPT-4 Turbo (specifically named gpt-4-1106-
preview) and GPT-3.5 Turbo (specifically named
gpt-3.5-turbo-0613). For example, when calling
GPT-4 Turbo, the specific Python code is as fol-
lows:

1 from openai import OpenAI
2 client = OpenAI()
3 completion = client.chat.completions.

create(
4 model’=gpt-4-1106-’preview,
5 messages=[
6 {"role": "system", "content":

system_msg},
7 {"role": "user", "content": user_msg

}
8 ]
9 )

Listing 1: Python code for calling GPT-4 Turbo

Here, ‘system_msg‘ and ‘user_msg‘ are string vari-
ables containing the text content. In our usage, they
respectively encompass the following text content:

• system_msg: Task, Example walkthrough,
Action history, Inventory, Current environment.

• user_msg: Available action List, Question,
Consideration, Next action.

4. Experiments
4.1. Dataset
The dataset used to evaluate the performance of
the approach is TextWorld Commonsense (TWC),

which can be found on GitHub 3. This dataset in-
cludes five games each for easy, medium, and
hard levels. The levels differ mainly in the num-
ber of items to organize and the number of rooms.
The easiest game involves one item and one room,
while the most challenging game consists of seven
items and two interconnected rooms. Agents can
move between rooms using commands like ”go
east.”

4.2. Experimental Setup
We use the OpenAI API to call GPT-4 Turbo (specif-
ically named gpt-4-1106-preview) and GPT-3.5
Turbo (named gpt-3.5-turbo-0613). We did not
fine-tune these models. For each game, we set
a maximum limit of 20 actions that the model can
take. For each approach proposed and each game,
we run the experiment only once and obtain its re-
sult. Similar to the TWC paper (Murugesan et al.,
2021), we use normalized scores (score achieved
÷ maximum achievable score) to evaluate the per-
formance of different approaches.

4.3. Baselines
The baselines used in our study include LSTM-
A2C, DRRN, KG-A2C, and TWC Agent (introduc-
ing common sense knowledge through Number-
batch). Characteristics of these various baselines
have been introduced in the related works section.
It is important to note that the scores of these mod-
els are directly obtained from the TWC paper rather
than being re-implemented and tested. The scores
for these baselines are taken as the average of ten
repeated experiments (Murugesan et al., 2021).

5. Results
The experimental results are presented in Table
1. The scores in the table are normalized scores,
calculated by dividing the achieved score by the
maximum achievable score in games. Note that
each difficulty level includes five games. As shown
in the table, our proposed approach outperformed
the best-performing baseline in various difficulty
levels. It is noteworthy that all baseline methods
underwent 100 episodes of training on the training
set, while we did not fine-tune the large language
models.
We will discuss in the ablation study section about
which prompt engineering techniques are crucial
for our research method.

5.1. Ablation Study
”-GPT4”: Our approach relies on GPT-4, and a nat-
ural question is how the performance would change
by replacing it with other large language models.
Therefore, we replace GPT-4 with GPT-3.5 in our

3https://github.com/IBM/commonsense-
rl/tree/master/games/twc
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Easy Medium Hard
LSTM-A2C 0.86 0.74 0.54
DRRN 0.81 0.73 0.44
KG-A2C 0.85 0.72 0.46
TWC-Agent 0.96 0.85 0.57
Our approach 1.00 1.00 0.70

Table 1: Experimental Results. For detailed exper-
imental settings, please refer to Section 4.

approach and name it ”-GPT4”. It is important to
note that due to the presence of the output template
(Question, Consideration, and Next Action), GPT-
4’s responses are well-structured, and actions can
be automatically extracted from the response text.
However, GPT-3.5’s responses are rarely struc-
tured, requiring additional grounding techniques
to extract a valid action. In our study, we manually
extract action from GPT-3.5’s response text. The
human assistant’s task is to copy a part of text from
the model’s response (in the example above, it is
the part after ”Next action”), and paste it into the
interactive interface.
”-COT”: The output template in our prompt is like:

Question: To put things in their proper
locations and improve your score, what
should you do? Think step by step then
choose ’one’ action from above list.
Consideration: <fill in>
Next action: <fill in>

This output template was inspired by the Chain-of-
Thought (COT) study (Wei et al., 2022). A natural
question is whether removing the COT part from
the prompt would lead to a performance decline.
Therefore, we modify the output template as fol-
lows:

Question: To put things in their proper
locations and improve your score, what
should you do? Choose ’one’ action from
above list.
Next action: <fill in>

Compared to the previous template, we removed
”Think step by step then” and ”Consideration: <fill
in>”. We name the approach based on this prompt
as ”-COT”.
”-one-shot”: Brown et al. (Brown et al., 2020)
suggest that providing examples within prompts
to large-scale language models can significantly
improve their performance on specific tasks. To
test the effectiveness of the one-shot setting, we
removed the ”Example walkthrough” part from our
prompts and named this technique ”-one-shot”.
”-FA”: Feedback augmentation is the main innova-
tion in our study. To show the performance gain

Easy Medium Hard
TWC-Agent 0.96 0.85 0.57
Our approach 1.00 1.00 0.70
-GPT4 1.00 0.58 0.18
-COT 1.00 1.00 0.61
-one-shot 1.00 1.00 0.64
-FA 1.00 1.00 0.52

Table 2: Ablation experiment results. COT means
Chain-of-Thought, and FA means feedback aug-
mentation. For detailed experimental settings,
please refer to Section 5.1.

from feedback augmentation, we remove the ex-
planatory text appended after the action feedback
(basically restoring the default behavior of the game
environment, refer to Section 3.3), naming this ap-
proach ”-FA” (-Feedback Augmentation). For exam-
ple, below is the augmented action-feedback pair
when an item is misplaced. In the ”-FA” approach,
we simply remove the hint marked in bold.

Insert clean white polo shirt into chest of
drawers -> You put the clean white polo
shirt into the chest of drawers. Wrong
position, you should put it somewhere
else, maybe the other room.

The results of the ablation study are presented in
Table 2. Firstly, it is evident that GPT-4 is the most
crucial part for our approach. If GPT-4 is replaced
with GPT-3.5, the approach’s performance on hard-
level games drops from a normalized score of 0.70
to 0.18. Moreover, many outputs from GPT-3.5
turbo do not meet the valid format, requiring man-
ual adjustments. The second crucial module for
our method is feedback augmentation. After re-
moving feedback augmentation, the model’s per-
formance on hard-level games drops from 0.70 to
0.52. Lastly, we find that Chain-of-Thought and one-
shot setting also significantly improves the model’s
performance.

6. Discussion
6.1. One-shot Prompting
One-shot (as well as few-shot) prompting assists
large language models in understanding task detail
by providing examples within prompts. The main
issue with one-shot prompting lies in the signifi-
cant impact of example selection on the model’s
performance.
As mentioned in Section 3.2, to provide a demon-
stration of moving items across rooms, we deliber-
ately chose a game environment consisting of two
rooms for obtaining the example walkthrough.
To investigate the impact of sample selection on
the performance of our approach, in this section,
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Easy Medium Hard
TWC-Agent 0.96 0.85 0.57
Our approach 1.00 1.00 0.70
-one-shot 1.00 1.00 0.64
Easy one-shot 1.00 1.00 0.64

Table 3: One-shot prompting with easy-level ex-
ample experiment result. For detailed experimental
settings, please refer to Section 6.1.

we obtained an example walkthrough from an easy-
level game and replaced the hard-level example in
the prompts. The specific easy-level walkthrough
is as follows:

Example walkthrough: Action 0: take dirty
gray underpants from work table -> You
take the dirty gray underpants from the
work table. Action 1: insert dirty gray un-
derpants into washing machine -> You put
the dirty gray underpants into the washing
machine. Your score has just gone up by
one point. Right position.

The performance of the model after adopting the
easy-level one-shot setting (denoted as ”Easy one-
shot”) is shown in Table 3.
As shown in Table 3, we found that example selec-
tion will significantly affect model’s performance. Af-
ter replacing the hard-level walkthrough with that of
the easy level, the model’s performance decreased
from 0.70 to 0.64, which remained consistent with
the performance of not zero-shot setting (denoted
as ”-one-shot”).

6.2. Case Study
In simple and medium level games, our approach
keeps completing all tasks in the fewest steps. How-
ever, in hard-level games, the model may still make
incorrect actions. These actions are primarily due
to certain items not belonging to the current room.
For example, the following case is from the first
game at the hard level:

Action 0: take wet white jumper from pa-
tio chair -> You take the wet white jumper
from the patio chair. Action 1: put wet
white jumper on clothesline -> You put
the wet white jumper on the clothesline.
Your score has just gone up by one point.
Right position. Action 2: put milk on pa-
tio table -> You put the milk on the patio
table. Wrong position, you should put it
somewhere else, maybe the other room.

The part marked in bold indicates the incorrect ac-
tion made by the model. As indicated by the engine
feedback, in this example, the milk does not belong

to the patio table. While making this action, GPT-
4’s consideration is as follows:

Consideration: The milk you are carrying
is likely intended to be placed somewhere
it can remain cool or be utilized. It is not
appropriate for the BBQ, clothesline, or
the patio chair. Among the options, the
patio table seems to be the most logical
place to put the milk, as it is a typical lo-
cation to place food and beverages when
you’re spending time outdoors.
Next action: put milk on patio table

We can see that the model correctly ruled out BBQ,
clothesline, and patio chair as incorrect locations.
However, the model is not aware that there is a
refrigerator (the correct place for the milk) in another
room. Therefore, the model placing the milk on the
patio table is an understandable mistake. After
receiving feedback from the engine, the model’s
consideration is as follows:

Consideration: The milk is out of place; it
should likely be put somewhere with re-
frigeration to prevent spoilage, such as
a refrigerator, which could be inside the
house.
Next action: take milk from patio table

We can see that the model makes reasonable in-
ferences and successfully returns the milk to its
correct location in the subsequent actions:

Action 2: put milk on patio table -> You
put the milk on the patio table. Wrong po-
sition, you should put it somewhere else,
maybe the other room. Action 3: take milk
from patio table -> You take the milk from
the patio table. Action 4: go west -> -=
Kitchen =-You find yourself in a kitchen.
Action 5: insert milk into fridge -> You
put the milk into the fridge. Your score has
just gone up by one point. Right position.

However, there are also instances where, after mul-
tiple unsuccessful attempts, the model shifts its
attention to other items. For example, in the fol-
lowing case (from the second game at the hard
level), the model gives up picking up the white polo
shirt after two attempts:

Action 6: put clean white polo shirt on
sofa -> You put the clean white polo shirt
on the sofa. Wrong position, you should
put it somewhere else, maybe the other
room. Action 7: take clean white polo
shirt from sofa -> You take the clean white
polo shirt from the sofa. Action 8: go west
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-> -= Bedroom =-You find yourself in a
bedroom. Action 9: insert clean white
polo shirt into chest of drawers -> You
put the clean white polo shirt into the chest
of drawers. Wrong position, you should
put it somewhere else, maybe the other
room. Action 10: go east -> -= Livingroom
=-You are in a livingroom. Action 11: take
brown suit from end table -> You take the
brown suit from the end table.

Additionally, although rare, GPT-4 may also make
mistakes by repeating the same incorrect action
twice, as shown in the example below.

Action 8: go south -> -= Corridor =-Well,
here we are in a corridor. Action 9: take
clean white socks -> You pick up the clean
white socks from the ground. Action 10:
insert clean white socks into shoe cab-
inet -> You put the clean white socks into
the shoe cabinet. Wrong position, you
should put it somewhere else, maybe the
other room. Action 11: take clean white
socks from shoe cabinet -> You take the
clean white socks from the shoe cabinet.
Action 12: insert clean white socks into
shoe cabinet -> You put the clean white
socks into the shoe cabinet. Wrong po-
sition, you should put it somewhere else,
maybe the other room.

Let’s take a look at the model’s consideration when
making action 12 (repeatedly putting socks into the
shoe cabinet).

Consideration: In the current scenario,
you are in a corridor with various items
and furniture pieces such as a shoe cab-
inet, hat rack, key holder, and umbrella
stand, all of which are empty. You’re car-
rying a pair of clean white socks. The
socks typically belong in a bedroom or a
designated storage area for clothing, but
considering that the shoe cabinet is men-
tioned to be empty and is a suitable loca-
tion for storing such items, placing clean
socks there seems reasonable. Although
it was previously stated that the shoe cab-
inet was not the right place for the clean
white socks, given the context within the
game, it may be that different types of
items have specific correct placements;
the previous location could have been in-
correct for the other item but might be cor-
rect for the clean white socks. Additionally,
the placement of items is often based on
logical organization within a living space.
Next action: insert clean white socks
into shoe cabinet

The model seems to be questioning the accuracy
of the feedback provided by the game environment.
Given that there is no other more suitable place to
put the socks in the room besides the shoe cabinet,
such questioning is understandable. The actual
place where the socks belong is in another room,
which again highlights the difficulty of moving items
across rooms.
Apart from incorrect actions, there is a category
of actions that potentially do harm to the model’s
performance, referred to as redundant actions.
For instance, in the following case (also from the
second game at the hard level):

Action 0: insert clean plaid polo shirt into
wardrobe -> You put the clean plaid polo
shirt into the wardrobe. Your score has
just gone up by one point. Right position.
Action 1: close wardrobe -> You close
the wardrobe.

In this example, action 1 (close wardrobe) is a re-
dundant action. Due to the wardrobe being closed,
the option ”insert into wardrobe” will not appear
when picking up other clothing items subsequently.
Closing anything in the TWC game environment
does not yield any benefits (such as score improve-
ment) and is entirely redundant. If we include a hint
like ”no need to close anything,” the model’s perfor-
mance may improve further, but we do not want to
introduce dataset-specific knowledge to harm the
generality of our approach.

7. Conclusion
In our study, we proposed a method for imple-
menting artificial intelligence agents in interactive
fiction using large language models. Compared
to traditional reinforcement learning methods, our
approach is simple to implement and performs
well. Due to the extensive training on massive
datasets, GPT-4 have acquired basic knowledge
about the human world. On the TextWorld Com-
monsense dataset, our agent achieved scores sur-
passing the best-performing baseline (reinforce-
ment learning models trained on the training set)
without fine-tuning. Specifically, using feedback-
augmented prompts, GPT-4 perfectly completed
all tasks in simple and medium-level game environ-
ments. In hard-level environments, our method’s
performance (0.70) also far surpassed the best
baseline (0.57).
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