@inproceedings{dikshit-etal-2024-investigating,
title = "Investigating Gender Bias in {STEM} Job Advertisements",
author = "Dikshit, Malika and
Bouamor, Houda and
Habash, Nizar",
editor = "Fale{\'n}ska, Agnieszka and
Basta, Christine and
Costa-juss{\`a}, Marta and
Goldfarb-Tarrant, Seraphina and
Nozza, Debora",
booktitle = "Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.gebnlp-1.11",
doi = "10.18653/v1/2024.gebnlp-1.11",
pages = "179--189",
abstract = "Gender inequality has been historically prevalent in academia, especially within the fields of Science, Technology, Engineering, and Mathematics (STEM). In this study, we propose to examine gender bias in academic job descriptions in the STEM fields. We go a step further than previous studies that merely identify individual words as masculine-coded and feminine-coded and delve into the contextual language used in academic job advertisements. We design a novel approach to detect gender biases in job descriptions using Natural Language Processing techniques. Going beyond binary masculine-feminine stereotypes, we propose three big group types to understand gender bias in the language of job descriptions, namely agentic, balanced, and communal. We cluster similar information in job descriptions into these three groups using contrastive learning and various clustering techniques. This research contributes to the field of gender bias detection by providing a novel approach and methodology for categorizing gender bias in job descriptions, which can aid more effective and targeted job advertisements that will be equally appealing across all genders.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dikshit-etal-2024-investigating">
<titleInfo>
<title>Investigating Gender Bias in STEM Job Advertisements</title>
</titleInfo>
<name type="personal">
<namePart type="given">Malika</namePart>
<namePart type="family">Dikshit</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nizar</namePart>
<namePart type="family">Habash</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Agnieszka</namePart>
<namePart type="family">Faleńska</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christine</namePart>
<namePart type="family">Basta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seraphina</namePart>
<namePart type="family">Goldfarb-Tarrant</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debora</namePart>
<namePart type="family">Nozza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Gender inequality has been historically prevalent in academia, especially within the fields of Science, Technology, Engineering, and Mathematics (STEM). In this study, we propose to examine gender bias in academic job descriptions in the STEM fields. We go a step further than previous studies that merely identify individual words as masculine-coded and feminine-coded and delve into the contextual language used in academic job advertisements. We design a novel approach to detect gender biases in job descriptions using Natural Language Processing techniques. Going beyond binary masculine-feminine stereotypes, we propose three big group types to understand gender bias in the language of job descriptions, namely agentic, balanced, and communal. We cluster similar information in job descriptions into these three groups using contrastive learning and various clustering techniques. This research contributes to the field of gender bias detection by providing a novel approach and methodology for categorizing gender bias in job descriptions, which can aid more effective and targeted job advertisements that will be equally appealing across all genders.</abstract>
<identifier type="citekey">dikshit-etal-2024-investigating</identifier>
<identifier type="doi">10.18653/v1/2024.gebnlp-1.11</identifier>
<location>
<url>https://aclanthology.org/2024.gebnlp-1.11</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>179</start>
<end>189</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Investigating Gender Bias in STEM Job Advertisements
%A Dikshit, Malika
%A Bouamor, Houda
%A Habash, Nizar
%Y Faleńska, Agnieszka
%Y Basta, Christine
%Y Costa-jussà, Marta
%Y Goldfarb-Tarrant, Seraphina
%Y Nozza, Debora
%S Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F dikshit-etal-2024-investigating
%X Gender inequality has been historically prevalent in academia, especially within the fields of Science, Technology, Engineering, and Mathematics (STEM). In this study, we propose to examine gender bias in academic job descriptions in the STEM fields. We go a step further than previous studies that merely identify individual words as masculine-coded and feminine-coded and delve into the contextual language used in academic job advertisements. We design a novel approach to detect gender biases in job descriptions using Natural Language Processing techniques. Going beyond binary masculine-feminine stereotypes, we propose three big group types to understand gender bias in the language of job descriptions, namely agentic, balanced, and communal. We cluster similar information in job descriptions into these three groups using contrastive learning and various clustering techniques. This research contributes to the field of gender bias detection by providing a novel approach and methodology for categorizing gender bias in job descriptions, which can aid more effective and targeted job advertisements that will be equally appealing across all genders.
%R 10.18653/v1/2024.gebnlp-1.11
%U https://aclanthology.org/2024.gebnlp-1.11
%U https://doi.org/10.18653/v1/2024.gebnlp-1.11
%P 179-189
Markdown (Informal)
[Investigating Gender Bias in STEM Job Advertisements](https://aclanthology.org/2024.gebnlp-1.11) (Dikshit et al., GeBNLP-WS 2024)
ACL
- Malika Dikshit, Houda Bouamor, and Nizar Habash. 2024. Investigating Gender Bias in STEM Job Advertisements. In Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP), pages 179–189, Bangkok, Thailand. Association for Computational Linguistics.