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Abstract

We introduce OmniDialog — the first tri-
modal comprehensive benchmark grounded in
a knowledge graph (Wikidata) to evaluate the
generalization of Large Multimodal Models
(LMMs) across three modalities. Our bench-
mark consists of more than 4,000 dialogues,
each averaging 10 turns, all annotated and
cross-validated by human experts. The dia-
logues in our dataset are designed to prevent
shortcut learning by incorporating various for-
mats and misleading or irrelevant multimodal
cues. We also evaluate both multimodal and
unimodal models to gain insights into how they
process modality inputs introduced in the con-
versation.

1 Introduction

Multimodal dialogue systems became a focal point
in research, drawing significant attention of both
academia and industry. This surge of interest stems
from their potential to contribute to more natu-
ral and nuanced human-computer interactions by
seamlessly integrating text, audio, and visual cues
(Zhu et al., 2023; Liu et al., 2023b; Koh et al.,
2023b,a). Yet, the complexity of these systems
has led to challenges in their evaluation. Existing
benchmarks, in many instances, fall short in cap-
turing the intricacies of the real-world interactions,
lacking the necessary depth and diversity to eval-
uate the true capabilities of multimodal dialogue
systems (Huang et al., 2024).

In response, we introduce the OmniDialog
benchmark, a multimodal, multi-turn benchmark
designed to evaluate the generalization abilities
of Large Multimodal Models (LMMs). Specifi-
cally, our benchmark assesses their capability to
support multi-turn conversations, process modality
injections at random points within the dialogue,
and operate with three modalities simultaneously
(text, visual, and audio). It stands out by grounding
on Wikidata knowledge graph and encompasses

a vast array of more than 4,000 dialogues, each
with an average of 10 turns. To ensure the highest
quality, our human annotators designed these
dialogues from scratch and then cross-validated
them to ensure accuracy and consistency. The
uniqueness of OmniDialog lies in its design: it
requires deep understanding of three modalities –
text, visual, and audio. Moreover, to ensure that
systems truly understand the context rather than
exploit shortcuts, we present dialogues in various
formats.

Our contributions are as follows:

• We introduce OmniDialog — the first compre-
hensive benchmark for evaluating multimodal
dialogue models, where questions are based
on Wikidata KG facts and incorporates three
modalities: text, visual, and audio. This offers
a robust, diverse, and challenging platform for
assessment.

• We provide comprehensive evaluation of the
existing multimodal dialogue systems against
this new benchmark.

The primary data for OmniDialog is sourced
from Wikipedia1 and Wikidata2, ensuring both
the authenticity and generalization ability of the
dialogues. The datasets and evaluation code
will be released under an open source licence at
https://github.com/ai-forever/OmniDialog.

2 Related Work

In this section, we provide a brief description of
popular multimodal datasets and state-of-the-art
multimodal transformer architectures.

1https://www.wikipedia.org/
2https://www.wikidata.org
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Figure 1: Examples of dialogues from the OmniDialog dataset.

2.1 Multimodal Dialogue Datasets

Dialogue datasets that merge various modalities
play a crucial role in training and evaluating mul-
timodal systems. There are two key aspects that
such datasets need to consider: first, the strength
and the robustness of relationships among different
modalities, and second, the ability to identify user’s
query and to follow instructions.

Significant progress in cross-modal benchmark-
ing has been achieved recently. Specifically, com-
binations like language and vision have tackled
challenges in image captioning, visual question an-
swering (VQA), and visual reasoning (Young et al.,
2014; Chen et al., 2015; Krishna et al., 2016; Goyal
et al., 2016). Language and audio studies have em-
phasised audio captioning and classification (Kim
et al., 2019; Drossos et al., 2019; Gemmeke et al.,
2017), while language and video research has con-
centrated on video series description and visual
grounding (Li et al., 2021; Chen et al., 2023; Sig-
urdsson et al., 2016) among other tasks. The vast
majority of these datasets are focused on one spe-
cific domain - a natural language description of the
modality. In contrast, substantially fewer works
have addressed a relatively new field of multimodal
dialogue systems benchmarking.

Early works in this area considered evaluating
multimodal dialogue systems via QA approach on
vision-language based tasks (Goyal et al., 2016;
Johnson et al., 2016; Gurari et al., 2018). Other
studies further aim to estimate the ability of visual
instruction following (Dai et al., 2023; Liu et al.,
2023b; Xu et al., 2022), visual grounding (Chen

et al., 2022; Kazemzadeh et al., 2014). Several
benchmarks emphasise the incorporation of com-
mon knowledge bases in unstructured form and re-
trieval techniques into the general VQA setup (Yu
et al., 2023; Marino et al., 2019; Schwenk et al.,
2022). Besides the visual-text dialogues type, there
are also datasets for the joint evaluation of text
and audio in both Spoken QA (SQA) (Lee et al.,
2018b,a) and audio captioning tasks (Kim et al.,
2019; Drossos et al., 2019; Zhao et al., 2023). How-
ever, all of these benchmarks suffer from a single
drawback: due to the question-answering problem
setting, they put very little attention to the model’s
ability to maintain the long context of the dialogue
in order to further rely on it for later response gen-
eration and do not focus on interaction of several
modalities (e.g. image + audio).

Only in recent time due to the significant success
of OpenAI GPT4 and GPT4-V (OpenAI, 2023a,b),
along with open-source LLMs (Li et al., 2023a;
Awadalla et al., 2023; Dai et al., 2023; Shuster et al.,
2020) to carry on complete visually-augmented
conversations, there were taken steps towards ad-
vanced multimodal dialogue datasets design. These
datasets bring together the visual conditioning with
the instructionally formulated questions, with re-
liance upon dialogue context and requirement of
extensive domain and world knowledge (Das et al.,
2016; de Vries et al., 2016; Mostafazadeh et al.,
2017; Johnson et al., 2016; Shuster et al., 2018;
Meng et al., 2020; Huang et al., 2023b; Liu et al.,
2024). However, the scope of their application
is constrained since they focus on using only two
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modalities — visual and text ones. Other modali-
ties, therefore, remain relatively unexplored in the
dialogue setting.

In contrast to the above mentioned works, our
benchmark fuses the data from three modalities:
text, visual, and audio, and enables building com-
plex relationships on their basis. Furthermore, to
the best of our knowledge, OmniDialog is the first
benchmark to merge all three modalities together
in a single dialogue setup. Our benchmark de-
mands multiple knowledge forms, such as basic
factual world knowledge and scientific knowledge
in historical, physical, and biological domains. The
underlying factual evidence in the OmniDialog
benchmark is derived from the WikiData knowl-
edge graph, therefore, it is precise and reliable.
Dialogs are constructed based on a random subset
of entities and images from Wikidata.

2.2 Visual-Audio-Language Models
One straightforward approach to embed the abil-
ity to understand other modalities into pre-trained
LLMs is to use specialised out-of-the-box visual,
audio, etc. based models as external tools (Schick
et al., 2023; Yang et al., 2023; Li et al., 2023b).
This means that the language model serves as a
skills orchestrator, invoking "expert" models of par-
ticular modality via language calls in order to com-
plete certain tasks when necessary. However, these
methods suffer from weak connectivity and limited
interaction between modalities, resulting in a loss
of significant cross-modal information.

More recently, end-to-end multimodal language
models have gained considerable interest. Some of
the early studies embedded visual data understand-
ing into LMs via additional parameters augmenta-
tion and further joint cross-modal training (Alayrac
et al., 2022; Wang et al., 2022; Gong et al., 2023).

As opposed to training from scratch, follow-up
research has focused on integration of pre-trained
visual and language models. The dominant ap-
proach was to implement a trainable projection
layer between the pre-trained modality feature ex-
tractor and the LLM. This setup leads to the in-
jection of high-quality modality embeddings into
the language context, which is perceived as a "for-
eign language" by the language model. More-
over, keeping the number of tunable parameters
small, improves the computational efficiency of the
cross-modal training. So far, a variety of different
network architectures and learning strategies have
been proposed to fuse different vision and language

models in a single multimodal system (Liu et al.,
2023b; Koh et al., 2023b; Zhang et al., 2023; Gao
et al., 2023).

However, these approaches are limited to using
mostly image content as input. Only a handful of
works have attempted to broaden the model’s in-
put feature space by incorporating other modalities
(Huang et al., 2023a; Girdhar et al., 2023; Wang
et al., 2023; Zhao et al., 2023).

3 OmniDialog

In this section, we describe OmniDialog — a bench-
mark for evaluating multimodal dialogue systems
in English. Our dataset is distinguished by its diver-
sity in dialogue types, human annotation, and strict
evaluation metrics. It is grounded to knowledge
graphs, which means that the discussed facts, im-
ages, and audios in dialogs are taken from Wikidata.
Our benchmark comprised of more than 4,000 dia-
logues, each averaging 10 turns, with data and facts
sourced primarily from Wikipedia and Wikidata.

3.1 Dialog Types
OmniDialog consists of four main types of dia-
logues: text-text, visual-text, audio-text, and tri-
modal dialogues. Each of these is designed to test
the system’s ability to generalise across different
modalities and comprehend information retaining
general knowledge from an LLM.

3.1.1 Text Dialogues
Most contemporary generative pre-trained mod-
els come with a conversational counterpart. Even
though many multimodal conversational systems
possess a robust linguistic foundation, understand-
ing how multimodal tuning impacts unimodal ca-
pabilities is crucial. Consequently, OmniDialog
incorporates a strictly textual segment.

These dialogues aim to gauge solely language-
based, in-context comprehension. Hence, models
must rely exclusively on linguistic understanding
to navigate the dialogue. For a cohesive integration
between textual and multimodal dialogues, we em-
ploy Wikidata facts as our primary dialogue ques-
tion source, emphasizing factual discourse over
creative content.

For constructing textual dialogues, we selected
topics and extracted corresponding random Wiki-
data entities, including films, writers, actors, ani-
mals and food. Human annotators then crafted dia-
logues based on the relationships and facts (Wiki-
data triples) associated with these entities. Recog-
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Dataset Multi-turn Interleaved #Dialogs #Turns #Images #Audio KG Annotation
CLEVR-Dialog (Johnson et al., 2016) Yes No 425.0 k. 4250.0 k. 85.0 k. No No Synthetic
OpenViDial (Meng et al., 2020) No No 1100.0 k. 1100.0 k. 1100.0 k. No No Synthetic
DialogCC (Lee et al., 2022) Yes Yes 92.9 k. 930.0 k. 651.0 k. No No Synthetic
SparklesEval (Huang et al., 2023b) Yes No 6.5 k. 26.0 k. 10.9 k. No No Synthetic
MPCHAT (Ahn et al., 2023) Yes Yes 15.0 k. 42.5 k. 153.0 k. No No Synthetic
LLaVA (Liu et al., 2023b) Yes No 56.7 k. 514.0 k. 56.7 k. No No Synthetic
PhotoBook (Haber et al., 2019) Yes No 2.5 k. 164.6 k. 0.4 k. No No Human
VisDial (Das et al., 2016) Yes No 133.0 k. 1200.0 k. 133.0 k. No No Human
GuessWhat?! (de Vries et al., 2016) Yes No 155.0 k. 821.0 k. 66.0 k. No No Human
IGC (Mostafazadeh et al., 2017) Yes No 4.2 k. 25.3 k. 4.2 k. No No Human
Image-Chat (Shuster et al., 2018) No No 201.8 k. 401.0 k. 201.8 k No No Human
MMD (Saha et al., 2017) Yes Yes 151.6 k. 6400.0 k. 4200.0 k. No No Human
PhotoChat (Zang et al., 2021) Yes Yes 12.3 k. 156.0 k. 10.9 k. No No Human
MMDialog (Feng et al., 2022) Yes Yes 1800.0 k. 4920.0 k. 1530.0 k. No No Human
VDialogUE (Li et al., 2023c) Yes Yes 1080.0 k. 4900.0 k. 1530.0k. No No Human
MMDU Benchmark (Liu et al., 2024) Yes Yes 110 1.6 k. 421 No No Human
OmniDialog (Ours) Yes Yes 4.0 k. 27.0 k. 2.4 k. 1.0 k. Yes Human

Table 1: Comparison of OmniDialog with existing multi-modal English-language dialogue datasets.

Modality Dialogue Type # Dialogues # Questions (KG-based) # Questions (General)
Text General dialogues 1 455 2,000 6 492

Single Image 1 794 6 506 5 552
Visual Clarifying Image 400 1 349 1 420

Misleading Image 220 290 396
Single Audio 283 2 366 1 334

Audio Clarifying Audio 500 2 109 1 471
Dual Audio 100 499 203

Trimodal General dialogues 165 0 2 000

Table 2: Statistics of dialogues in the OmniDialog, categorized by modality and dialogue type.

nizing that Wikidata might occasionally offer lim-
ited information, annotators were advised to sup-
plement dialogue content using relevant Wikipedia
articles.

3.1.2 Visual Dialogues

Visual dialogues in OmniDialog are designed to
assess the model’s capacity to integrate visual pro-
cessing with natural language understanding. In
each dialogue, a single image is employed (not
necessarily in the initial dialog turn), and at least
four facts from WikiData are utilized. The visual
dialogues are divided into three categories, each
with its unique structure and purpose:

1. Single Image Dialogues: In this format, the
user introduces a single image and poses ques-
tions related to it. These questions encompass
both intricate queries oriented towards facts
from WikiData and straightforward inquiries
regarding the content of the image. A sample
dialogue is illustrated in Figure 1.

2. Clarifying Image Dialogues: This dialogue
structure begins with the user posing a ques-
tion that cannot be answered without addi-
tional clarifying information. The user then
provides an image to supplement the dialogue
and to facilitate further discussion.

3. Misleading Image Dialogues: In this sce-
nario, the user poses a question along with an
image that, while thematically related, is irrel-
evant. The model must identify the image’s
irrelevance and respond accurately, followed
by a discussion about the image. Some base-
line multimodal LLMs tend to shift focus on
the image, ignoring its irrelevance to the query.
This dialogue type is designed to address such
tendencies, encouraging models to balance
attention between visual and textual inputs
mitigating such shortcut behaviors.

3.1.3 Audio Dialogues
Audio and textual modalities have been fused
within dialogues in OmniDialog in a way that al-
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lows a better understanding of the model’s sound
comprehension ability’s contribution to its multi-
modal dialogue performance.

The audio-text OmniDialog dialogues were used
to evaluate the role of the model’s sound compre-
hension in its multimodal conversation skills. To
ensure the diversity of different sound types and
the balance between the factual reliability and the
realism of the discussion, we defined the following
rules: 1) the same audio should be used in dia-
logues only once; 2) each dialogue should contain
at least 2 and no more than 4 facts; 3) non-factual
knowledge questions should be as simple that a
5-year-old child would be able to answer.

Based on the collected sound files and Wikidata
textual facts, we also identified three categories
within the structure of the dialogues:

1. Single Audio Dialogues: In this split, first
turn of conversation contains an audio record-
ing and a question about its content. In the
further dialogue progression, both evidence-
based questions referring to the WikiData en-
tity and sound based questions are used.

2. Clarifying Audio Dialogues: Within this dia-
logue type, the user sends an audio recording
along with an accompanying question in the
middle of the discussion. In this case, the
audio serves as a clarification to one of the
evidence-based questions. The subsequent di-
alogue is built around the audio content, with
a variety of relevant questions about it.

3. Dual Audio Dialogues: Two audio recordings
are used simultaneously in these dialogues,
setting them apart from the other types. Con-
versations include both questions about con-
tent of audios and evidence-based ones that
pertain to the related entities recognized on
audio. The dialogues should emphasise the
connection between the sounds, whether by
questioning their characteristics or compar-
ing the entities they are associated with. The
purpose of this dialogue type is to examine
the model’s ability to differentiate and remem-
ber various audio information throughout the
conversation.

3.1.4 Trimodal Dialogues
Trimodal dialogues in OmniDialog aim to gauge
the model’s capability to process and combine in-
formation from three modalities: text, visual, and

audio ones. Within these dialogues, models are
expected to integrate and act on the information
derived from all sources to provide accurate an-
swers. We have curated 100 high-quality trimodal
dialogues, categorized into four distinct scenarios:

1. Image-sound Matching: The model is asked
to match an object’s sound from the audio
with its visual representation in an image to
identify the subject of discussion.

2. Multimodal Navigation: The audio clarifies
the object, concept, or event depicted in the
image. Subsequent questions focus on this
audio-visual correspondence.

3. Audio-based Continuation: These dialogues
start with an image showing a certain situation.
The task is to understand how this situation
might change considering the given audio.

4. Misleading Dialogues: The dialogues con-
tain unrelated audio and visual prompts. Mod-
els must adeptly shift attention between these
different sources of information to respond
accurately.

3.2 Human Annotation
Multimodal dialogue creation is a nuanced task
demanding attention to the details. To ensure the
integrity of the data, we implemented a rigorous
protocol:

Annotation Protocol:

• Develop comprehensive guidelines with illus-
trative examples.

• Host training sessions to resolve annotators’
doubts.

• Enforce a rigorous verification process for all
dialogues.

Media Criteria:

• Ensure audio and images align with articles
and provide multiple facts.

• Maintain a minimum duration of 4 seconds
for audio clips.

Dialogue Rules:

• Keep dialogues between 4 and 20 messages.

• Base multimodal questions on Wikidata facts
or clear links between articles.
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• Root text dialogues in Wikipedia data.

• Limit user questions to 2-15 words and an-
swers to 1-10 words.

Synonyms: Include synonyms in dialogues
when alternate answers exist. Ensure they fully
address the user’s questions. They are essential for
text and audio dialogues.

Negative examples: Negative examples are re-
quired for multiple choice evaluation setup to be
passed as answer options along with ground truth
answer. So they have been added to all questions,
including names, dates, numbers, yes/no, and oth-
ers. Along with negative examples, neutral options
"can’t answer", "not enough information" were al-
ways added.

Challenges: We faced issues like repetitive facts
and overly concise answers. Solutions included
rephrasing, adding comparative elements, and vary-
ing sentence structures.

Team Workflow: Our six-member team pro-
duced 20-25 dialogues each day. Validation was
quicker, taking about 40% of the dialogue creation
time.

3.3 Evaluation and Metrics

Evaluating generative models is inherently chal-
lenging. The evaluation method can alter both
numerical results and leaderboard rankings dras-
tically. While OmniDialog was initially designed
for open-ended generative responses, this design
posed evaluation complexities. The variability in
training can result in models producing diverse or
brief responses, making it essential for ground truth
options to account for such variability.

Given our benchmark’s focus on factual ques-
tions, we aim to prioritize answer correctness over
stylistic variations. To this end, we convert dia-
logues into multiple-choice questions and deter-
mine accuracy based on the selected response.

The given answer is recorded, but for conse-
quential questions the correct answer to the current
question is used in the previous context to enforce
model capabilities and fair comparison between
multimodal and text-only models. For evaluation
details, please refer to Appendix A.2.

The final score is reported as the mean accuracy
of model answers. Total stands for mean of accu-
racies reported on benchmark subsets.

Text-Only

Visual Type 1

Visual Type 2

Visual Type 3

Audio Type 1

Audio Type 2

Audio Type 3

Trimodal

81.85

83.58

84.49

58.25

65.66

68.15

72.44

82.63

Gemini 1.5 Flash
LLaVA-1.6-34B
InternVL2-1B
InternVL2-40B
GPT4-o-mini-2024-07-18
Qwen2-Audio

Figure 2: Comparison of models: Radar plot of baseline
evaluation against different dialog types.

4 Baselines

Given that the most progress has been achieved
for the combination of visual and textual modali-
ties, we have adapted several recently introduced
models to process the dialogue input. The base-
lines include not only the trimodality models but
also bimodal (visual-text) and unimodal models
(language-only) models. The latter are evaluated
using the corresponding part of OmniDialog.

Trimodal. Gemini (Team, 2024) serves as a
baseline model supporting all three modalities.

Visual-Language. Several (near) state-of-the-
art models are assessed on the language-only
and visual-language OmniDialog parts: series of
LLaVA models (Liu et al., 2023a), series of In-
ternVL 2.0 (Chen et al., 2024) chat models with
the LLM backbones of various size (from 1B
to 40B parameters) and strong vision encoder
(InternViT-6B and its distilled version InternViT-
300M), and Idefics2 8B (Laurençon et al., 2024)
vision-language model trained with the interleaved
data.

These models ignore audio data during the eval-
uation process and only encode images with pro-
posed visual adapter architectures.

Language-only. GPT-4-mini is used as a
language-only baseline reference for OmniDialog.
No encoding of visual or audio data is performed
during the evaluation and model solely reasons
from previosly answered questions.
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Model Text-Only Visual Audio Trimodal Total
Type 1 Type 2 Type 3 Type 1 Type 2 Type 3

Random Guessing 16.41 26.68 26.18 26.54 17.85 18.90 15.56 40.08 22.16
Trimodal Models

Gemini 1.5 Flash (Team, 2024) 72.36 79.01 82.34 57.58 57.55 57.83 63.90 77.27 68.48
Visual-Language Models

LLaVA-v1.5-7B (Liu et al., 2023a) 68.45 69.23 64.15 44.11 54.58 59.25 59.23 69.26 61.03
LLaVA-v1.5-13B 69.74 73.22 72.39 46.46 55.26 60.11 63.01 75.05 64.40

LLaVA-v1.6-Mistral-7B 69.47 73.92 73.44 48.15 59.59 62.90 62.45 75.05 65.62
LLaVA-1.6-34B 81.85 80.77 83.70 53.20 65.66 68.15 72.44 81.16 73.37

Idefics2-8B (Laurençon et al., 2024) 66.45 65.86 69.85 54.21 59.16 62.67 63.58 71.47 64.16
InternVL2-1B 45.36 60.42 57.06 44.44 43.63 44.44 48.51 63.89 50.97
InternVL2-2B 50.30 65.79 63.45 46.56 49.13 47.66 51.33 69.58 55.47
InternVL2-8B 70.02 78.63 78.44 56.90 60.71 61.51 65.75 78.00 68.74

InternVL2-26B 71.45 79.90 79.40 53.20 56.25 56.96 53.20 78.42 66.1
InternVL2-40B 80.43 83.58 84.49 58.25 64.48 64.46 58.25 82.63 72.07

GPT4-o-mini-2024-07-18 (OpenAI, 2023a,b) 78.85 76.67 79.61 55.56 55.40 58.92 61.72 80.56 68.41
Audio-Language Models

Qwen2-Audio (Chu et al., 2024) 53.84 44.90 48.25 41.33 55.87 55.87 49.63 47.79 49.69
Language-only Models

GPT4-o-mini-2024-07-18 - 26.61 30.14 34.68 - - - 42.55 -

Table 3: Performance evaluation results across different categories of models on our OmniDialog benchmark. Best
in each dialogue category is highlighted id bold.

5 Discussion

We discuss result of OmniDialog benchmark evalu-
ation presented in Table 3.

1. Influence of the LLM Backbone on Perfor-
mance. There is a strong correlation between
the evaluation results and the performance of the
model’s LLM backbone. Models with more power-
ful backbones consistently achieve higher results
across all image types. For instance, there is a sig-
nificant performance gap of over 20% between the
InternVL2 40B and InternVL2 1B models across
all dialogue types. Similarly, the difference be-
tween LLaVA-1.6 34B and 7B models averages
nearly 8%. The dialogs in OmniDialog are con-
structed using Wikipedia and WikiData entities.
Hence, the LLM’s knowledge of Wikipedia content
helps multimodal models based on these backbones
generalize better across multimodal information.

2. Challenges in Visual Type-3 Dialogues. The
lowest performance in visual-language models is
observed in Type 3 visual dialogues, where mis-
leading images are introduced into the dialogue
context. Although models can answer textual ques-
tions correctly, they struggle with questions related
to the image modality, especially when the question
is distant from the image. This challenge may arise
from the typical training process, where models are
used to encountering the image and accompanying
question in a strict sequence. LLaVA-based models
experience an average performance drop of 20% in

visual Type 3 dialogues compared to visual Types
1 and 2.

All benchmarked models do not generalize well
on questions not matching context of the distracting
image. We show the example of Type 3 visual
dialogue in Section A Figure 7.

3. Challenges in Audio Dialogues. The most
challenging modality type of dialogue in the bench-
mark is audio dialogues. Visual-language models
struggle to guess the correct answer to questions,
even with the teacher-forcing approach, leading
to lower performance compared to other dialogue
types. It is evident that models adapted to the au-
dio domain, such as Qwen-Audio 7B, show lower
metrics on audio datasets compared to stronger
baselines that do not process audio.

4. High Results on Multimodal Inputs. The
teacher-forcing of context introduced in 4 reduces
the influence of modality input, enabling models to
provide correct answers even when they struggle
to process a specific modality. Reinforcing past
context with correct answers leads to a significant
performance boost in tasks with added modalities.
Thus, strong visual-language models without audio
perception (such as LLaVA-v1.6 34B) perform well
on audio-based dialogues.

If we switch to a mode where specific model an-
swers are added as the continuation of the dialogue
for further assessment, the results might differ. We
leave this type of evaluation for further research.

189



What

this

Is

's

Where

In

How

you

name
Can Do was

belong did
Are

does

it

native

true

Tell

tell

me

there

country

he

name

was

colour

country

his

's

la
ng
ua
ge

color
thiskind

songpicture
music

audio
man

personpiece

photo

it

this

there

occupation

name

native

country

was

did

what

which

many

know

tell
this

you
you

he this

to
he

there

this

true

language

that

me

me

what

any

citizenship

have

Figure 3: Bigram word pairs in user questions.
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Figure 4: Distribution of word lengths in user ques-
tions with an average of 6 words.

Figure 5: Wordcloud of assistant answers.
Figure 6: Distribution of word lengths in assistant
answers with an average of 4.5 words

6 Benchmark Statistics

Figures 3 - 4 show characteristics of the OmniDia-
log dataset in terms of textual analysis of the repli-
cas. We explore key elements such as the word bi-
gram distribution in user questions, the word cloud
of required assistant responses as well as the length
distributions for both of them.

7 Conclusion

We introduced OmniDialog, a diverse and com-
prehensive benchmark for multimodal dialogue
systems, comprising more than 4,000 dialogues
based on entities, facts, and media from Wikidata
knowledge graph. These dialogues, designed to
prevent shortcut learning, offer a unique challenge

for multimodal systems with various formats and
misleading cues. The knowledge graph founda-
tion of OmniDialog makes it a valuable resource
for comparing multimodal models based on factual
information.

We also analyze several baselines, both open-
source and proprietary, with respect to their gen-
eralization across various modalities and types of
dialogues introduced with OmniDialog. Following
the teacher-forcing evaluation, we compared mod-
els operating with different modalities. We believe
that the creation of multimodal benchmarks will
motivate the community to develop dialogue assis-
tants further and enhance their evaluation. We also
aim to build upon this work by providing various
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types of assessments using LLM oracles, both with
and without teacher forcing, which may result in
a fairer comparison of the quality of multimodal
models.

Limitations

While Wikidata is generally considered a reliable
source of information, it carries an inherent risk of
bias, as it may contain its own biases, errors, and
inconsistencies. Since OmniDialog is focused on
English, using this source limits our ability to fairly
evaluate the multilingual generalization of models.
Additionally, the potential for human errors dur-
ing annotation and editing cannot be overlooked,
which might introduce further discrepancies or in-
accuracies into the dataset.

Ethical Statement

We acknowledge the importance of diversity and
representation in data sources. Our aim with Om-
niDialog was to ensure a broad and diverse rep-
resentation in dialogues, striving to avoid poten-
tial biases where certain cultures might be under-
represented.
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A Appendix

A.1 Misleading Image example
In Figure 7, we present the evaluation of the visual-
language model on a visual dialogue containing a
misleading image. Although the model success-
fully answered the textual questions, it failed to
provide the correct answer related to the image in
the subsequent conversation.

A.2 Evaluation pipeline
In this section we clarify how teacher forced evalu-
ation is performed. Past context is obtained from
ground truth labels for previous questions.

System Prompt

You are an expert whose job is to answer
questions from the user possibly using im-
ages and audios and previous questions with
given answers.
First, reason about the correct answer. Then
write the answer in the following format
where X is exactly one of English letters
(A,B,C,...): "ANSWER: X".
If you are uncertain of the correct answer,
guess the most likely one.

Context

User: What is the country of origin of the
film "Addicted to Plastic?"
A) Canada.
B) Colombia.
C) Australia.
D) France.
E) China.
F) Russia.
G) Argentina.
Assistant: Answer: A

User: Can you Tell me the director’s name?
A) Stanley Kubrick.
B) It’s Ian Connacher.
C) Akira Kurosawa.
D) Alfred Hitchcock.
E) John Ford.
F) Ingmar Bergman.

G) Martin Scorsese.
Assistant: Answer: B

User: What genre?
A) Gothic film.
B) Biographical film.
C) Historical film.
D) Gangster film.
E) It’s a documentary film.
F) War film.
G) Detective film.
Assistant: Answer: E

User: Who composed the music?
A) Ian Connacher.
B) Richard Wagner.
C) Siegfried Ochs.
D) Antonio Vivaldi.
E) Pyotr Tchaikovsky.
F) Franz Schubert.
G) Frederic Chopin.
Assistant: Answer: A

User: What year did it come out?
A) In 2009.
B) In 2007.
C) In 2005.
D) In 2010.
E) In 2001.
F) In 2006.
G) In 2008.
Assistant: Answer: G

User: Answer, what is its duration?
A) 85 minutes.
B) 86 minutes.
C) 99 minutes.
D) 88 minutes.
E) 89 minutes.
F) 87 minutes.
G) 91 minutes.

Model Generation

Assistant: Answer: A
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Visual Dialogue (Type-3): Misleading Image

User: In which country is the city of Berlin located?

Choices:

A. Spain
B. Italy
C. France
D. Germany

Assistant: D. Germany
Ground Truth: D. Germany

Continuation

User: In which country is the city of Berlin located?
Assistant: Germany
User: What time of day is shown in the picture?
Choices:

A. It is nighttime
B. It is daylight hours
C. It is sunset
D. It is sunrise

Assistant: D. It is sunrise
Ground Truth: B. It is daylight hours

Continuation

User: In which country is the city of Berlin located?
Assistant: Germany
User: What time of day is shown in the picture?
Assistant: It is daylight hours
User: What country is shown in the picture?
Choices:

A. United States
B. Saudi Arabia
C. China
D. Brazil

Assistant: A. United States
Ground Truth: B. Saudi Arabia

Figure 7: Example of visual Type 3 with the misleading image
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