@inproceedings{koufakou-etal-2024-towards,
title = "Towards a new Benchmark for Emotion Detection in {NLP}: A Unifying Framework of Recent Corpora",
author = "Koufakou, Anna and
Nieves, Elijah and
Peller, John",
editor = "Hupkes, Dieuwke and
Dankers, Verna and
Batsuren, Khuyagbaatar and
Kazemnejad, Amirhossein and
Christodoulopoulos, Christos and
Giulianelli, Mario and
Cotterell, Ryan",
booktitle = "Proceedings of the 2nd GenBench Workshop on Generalisation (Benchmarking) in NLP",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.genbench-1.13",
pages = "196--206",
abstract = "Emotion recognition in text is a complex and evolving field that has garnered considerable interest. This paper addresses the pressing need to explore and experiment with new corpora annotated with emotions. We identified several corpora presented since 2018. We restricted this study to English single-labeled data. Nevertheless, the datasets vary in source, domain, topic, emotion types, and distributions. As a basis for benchmarking, we conducted emotion detection experiments by fine-tuning a pretrained model and compared our outcomes with results from the original publications. More importantly, in our efforts to combine existing resources, we created a unified corpus from these diverse datasets and evaluated the impact of training on that corpus versus on the training set for each corpus. Our approach aims to streamline research by offering a unified platform for emotion detection to aid comparisons and benchmarking, addressing a significant gap in the current landscape. Additionally, we present a discussion of related practices and challenges. Our code and dataset information are available at https://github.com/a-koufakou/EmoDetect-Unify. We hope this will enable the NLP community to leverage this unified framework towards a new benchmark in emotion detection.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="koufakou-etal-2024-towards">
<titleInfo>
<title>Towards a new Benchmark for Emotion Detection in NLP: A Unifying Framework of Recent Corpora</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Koufakou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elijah</namePart>
<namePart type="family">Nieves</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Peller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd GenBench Workshop on Generalisation (Benchmarking) in NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dieuwke</namePart>
<namePart type="family">Hupkes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Verna</namePart>
<namePart type="family">Dankers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khuyagbaatar</namePart>
<namePart type="family">Batsuren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amirhossein</namePart>
<namePart type="family">Kazemnejad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mario</namePart>
<namePart type="family">Giulianelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Emotion recognition in text is a complex and evolving field that has garnered considerable interest. This paper addresses the pressing need to explore and experiment with new corpora annotated with emotions. We identified several corpora presented since 2018. We restricted this study to English single-labeled data. Nevertheless, the datasets vary in source, domain, topic, emotion types, and distributions. As a basis for benchmarking, we conducted emotion detection experiments by fine-tuning a pretrained model and compared our outcomes with results from the original publications. More importantly, in our efforts to combine existing resources, we created a unified corpus from these diverse datasets and evaluated the impact of training on that corpus versus on the training set for each corpus. Our approach aims to streamline research by offering a unified platform for emotion detection to aid comparisons and benchmarking, addressing a significant gap in the current landscape. Additionally, we present a discussion of related practices and challenges. Our code and dataset information are available at https://github.com/a-koufakou/EmoDetect-Unify. We hope this will enable the NLP community to leverage this unified framework towards a new benchmark in emotion detection.</abstract>
<identifier type="citekey">koufakou-etal-2024-towards</identifier>
<location>
<url>https://aclanthology.org/2024.genbench-1.13</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>196</start>
<end>206</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards a new Benchmark for Emotion Detection in NLP: A Unifying Framework of Recent Corpora
%A Koufakou, Anna
%A Nieves, Elijah
%A Peller, John
%Y Hupkes, Dieuwke
%Y Dankers, Verna
%Y Batsuren, Khuyagbaatar
%Y Kazemnejad, Amirhossein
%Y Christodoulopoulos, Christos
%Y Giulianelli, Mario
%Y Cotterell, Ryan
%S Proceedings of the 2nd GenBench Workshop on Generalisation (Benchmarking) in NLP
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F koufakou-etal-2024-towards
%X Emotion recognition in text is a complex and evolving field that has garnered considerable interest. This paper addresses the pressing need to explore and experiment with new corpora annotated with emotions. We identified several corpora presented since 2018. We restricted this study to English single-labeled data. Nevertheless, the datasets vary in source, domain, topic, emotion types, and distributions. As a basis for benchmarking, we conducted emotion detection experiments by fine-tuning a pretrained model and compared our outcomes with results from the original publications. More importantly, in our efforts to combine existing resources, we created a unified corpus from these diverse datasets and evaluated the impact of training on that corpus versus on the training set for each corpus. Our approach aims to streamline research by offering a unified platform for emotion detection to aid comparisons and benchmarking, addressing a significant gap in the current landscape. Additionally, we present a discussion of related practices and challenges. Our code and dataset information are available at https://github.com/a-koufakou/EmoDetect-Unify. We hope this will enable the NLP community to leverage this unified framework towards a new benchmark in emotion detection.
%U https://aclanthology.org/2024.genbench-1.13
%P 196-206
Markdown (Informal)
[Towards a new Benchmark for Emotion Detection in NLP: A Unifying Framework of Recent Corpora](https://aclanthology.org/2024.genbench-1.13) (Koufakou et al., GenBench 2024)
ACL