
Proceedings of the 2nd GenBench Workshop on Generalisation (Benchmarking) in NLP, pages 27–41
November 16, 2024 ©2024 Association for Computational Linguistics

From Language to Pixels:
Task Recognition and Task Learning in LLMs

Janek Falkenstein, Carolin Schuster, Alex Berger and Georg Groh
Technical University of Munich, Germany

{j.falkenstein, carolin.schuster, a.berger}@tum.de
grohg@in.tum.de

Abstract

Large language models (LLMs) can perform
unseen tasks by learning from a few in-context
examples. How in-context learning works is
still uncertain. We investigate the mechanisms
of in-context learning on a challenging non-
language task. The task requires the LLM to
generate pixel matrices representing images of
basic shapes. We introduce a framework to
analyze if this task is solved by recognizing
similar formats from the training data (task
recognition) or by understanding the instruc-
tions and learning the skill de novo during infer-
ence (task learning). Our experiments demon-
strate that LLMs generate meaningful pixel ma-
trices with task recognition and fail to learn
such tasks when encountering unfamiliar for-
mats. Our findings offer insights into LLMs’
learning mechanisms to guide future research
on their seemingly human-like behavior.

1 Introduction

The rapid development of LLMs increases the
chance of misinterpreting their capabilities. It is
crucial to explore the potential of LLMs and re-
search their underlying mechanisms. This helps in
interpreting LLMs outputs, guides future research
to improve language models, and informs their use
and regulation.

Since Brown et al. (2020) demonstrated the abil-
ities of GPT-3, there has been a growing interest
in researching LLMs’ potential to generalize to
other tasks. Many studies demonstrated LLMs’
abilities in solving reasoning tasks (Li et al., 2021;
Srivastava et al., 2023; Huang and Chang, 2023).
Contrary, it has been shown that LLMs still strug-
gle to reason about seemingly simple tasks where
humans perform superior (Valmeekam et al., 2022;
Binz and Schulz, 2023; Huang and Chang, 2023).
These findings demonstrate ambiguity in LLMs’
general abilities and the need to further probe chal-
lenging tasks.

Figure 1: Two 8×8 pixel matrices representing simple
images generated by an LLM using in-context learning.

In addition to the ambiguity about general ca-
pabilities, it is also unclear how and why LLMs
benefit from in-context learning, i.e., how they can
learn from instructions and demonstrations in the
prompt. Brown et al. (2020) suggest that in-context
learning could stem from genuinely learning new
tasks, identifying tasks learned during training, or a
mix of both approaches. However, the mechanisms
of in-context learning remain uncertain.

On one hand, the inner workings (e.g., attention
patterns) are too vast and complex to analyze di-
rectly. On the other hand, finding a higher-level
abstraction to describe the model’s internal pro-
cesses is challenging. It is crucial to differentiate
LLMs’ achievements from human-like comprehen-
sion and reasoning as their training misses critical
contexts, such as communicative intent (Bender
and Koller, 2020; Asher et al., 2023). Especially
terms like "learning" and "understanding" should
be used cautiously (Bender et al., 2021; Shanahan,
2022). However, higher-level frameworks can help
to explain LLM behaviors and assess LLMs’ po-
tential (Shanahan et al., 2023).

We adopt the abstraction level from Brown et al.
(2020) and the terminology proposed by Pan et al.
(2023) and distinguish between task learning (TL)
and task recognition (TR). TR assesses how well
LLMs can identify tasks through demonstrations
and apply their pre-trained priors. TL describes
the ability to learn new input-label mappings not
encountered during training. Building on this, we
introduce a framework that involves breaking tasks
into subtasks and analyzing each for TL and TR to
thoroughly investigate in-context learning.

27

We instruct a model to generate pixel art as 8×8
pixel matrices (see Figure 1). The experiments
solely use the model’s inherent tokens without ad-
ditional fine-tuning or incorporating image mod-
els. While investigating this task, we demonstrate
unique capabilities, pinpoint where the pixel matrix
task falls along the spectrum between TL and TR,
and establish and validate a straightforward frame-
work of breaking complex tasks into subtasks to
clarify how LLMs achieve the observed capabili-
ties.

Our main contributions are summarized as fol-
lows:

• We show that LLMs can create pixel matrices
of digits, letters, and simple everyday objects.

• We find that LLMs rely on task recognition to
generate meaningful pixel matrices, which in-
dicates strong task recognition but limited task
learning abilities for uncommon non-language
tasks.

• We propose a framework to break tasks into
subtasks to better explain the capabilities of
LLMs and separate the effects of TL and TR.

2 Related Work

Text-to-image models The success of LLMs has
influenced the research on multi-modal models for
vision and language. Many text-to-image models
use text encoders from LLM transformers and com-
bine them with an image encoder (e.g., Radford
et al., 2021; Alayrac et al., 2022; Saharia et al.,
2022). Others adhere closer to the LLM architec-
ture. Koh et al. (2023) have used visual encoders to
ground an LLM in the visual domain, enabling im-
age captioning and text-to-image tasks. Similarly,
Pourreza et al. (2023) generates images represented
as brush strokes. They add an image feature ex-
tractor and cross-attention blocks to provide visual
feedback during stroke generation. These studies
demonstrate that LLMs possess implicit knowledge
about images and the visual domain. Our task is
distinct in that it generated images without extra
image encoders or training.

Pure LLMs on image generation Probing the
ability of LLMs to create images without fine-
tuning or adding layers has been done by bench-
marks that assemble tasks to assess LLM perfor-
mances. BIG-bench (Srivastava et al., 2023) in-
cludes some tasks that involve ASCII art and Bang

et al. (2023) let ChatGPT draw country flags with
Scalable Vector Graphics (SVG) code. Chala-
malasetti et al. (2023) benchmark LLMs on describ-
ing 5×5 grids filled with two different symbols and
following such descriptions. In addition, some blog
posts explore ChatGPT’s ability to draw images
with SVG (Pu, 2022; Shahir, 2023 Shiryaev, 2022).
To our knowledge, no comprehensive study has ex-
plored LLMs’ capacity for generating visuals, and
we are the first to assess the pixel matrix image
format.

In-context learning How in-context learning
works is still disputed. Some recent studies com-
pared in-context learning to implicit fine-tuning or
Bayesian inference (Dai et al., 2023; Von Oswald
et al., 2023; Xie et al., 2022). Whether this capa-
bility arises from comprehending the instruction
or recognizing the task from the training data is
still an open research question. Pan et al. (2023)
introduced the terminology employed in our paper
and distinguished cases where TL and TR were ap-
plied. Other studies experimented with modifying
the prompt or comparing tasks, aiming to ascertain
whether LLMs employ TR or TL (Reynolds and
McDonell, 2021; Min et al., 2022). We diverge in
our approach by closely examining one particular
task concerning TL or TR to contribute insights to
the broader understanding of in-context learning
and to provide a framework for future task evalua-
tions.

Decomposing Tasks Letting the model explain
each reasoning step (Chain-of-Thought) has been
shown to improve results (Lampinen et al., 2022;
Kojima et al., 2022; Wei et al., 2022). Other stud-
ies have shown that explicitly decomposing com-
plex tasks and solving the subtasks enhances perfor-
mance (Zhou et al., 2022; Khot et al., 2022; Prasad
et al., 2023; Radhakrishnan et al., 2023). Our ex-
periments do not focus on prompting or explic-
itly breaking down tasks to improve performance.
However, these results support our proposed frame-
work: when analyzing LLMs, it is useful to con-
sider subtasks, as models likely implicitly decom-
pose tasks and solve subtasks through either TL or
TR.

3 Method

Our experimental setup aims to assess LLMs’ gen-
eral capabilities on the challenging pixel-matrix
task and determine whether it is addressed through

28

TR or TL. Simultaneously, we demonstrate our
framework’s utility in explaining LLMs’ capabili-
ties and differentiating between TL and TR.

We choose the pixel matrix task because it is
particularly challenging. It requires the model to
translate instructions and visual knowledge into a
new format. The task’s complexity helps to clearly
distinguish between TR and TL and assess our
framework. Simpler tasks can be solved in many
different ways, and the likelihood that the model
recognizes or learns arbitrary parts increases, com-
plicating the decision between TR and TL.

By thoroughly examining a single task, we pro-
vide evidence contributing to a broader understand-
ing of in-context learning and the differentiation
between TR and TL.

3.1 Prompt Structures and Dataset

The prompts for the pixel matrix experiments con-
sist of a task description and four demonstrations.
The description introduces the concept of pixels
and pixel matrices. The demonstrations show ex-
ample pixel matrices with labels. These 8×8 pixel
matrices are depicted with 8 rows, each contain-
ing 8 pixel symbols (e.g., 0 and 1, or G and K).
After the four examples, another label specifying
the object to be sketched is added. See Figure 2
for the prompt structure. The model is expected to
generate a corresponding pixel matrix.

We evaluate the performance of creating pixel
matrices across four categories: digits, letters,
punctuation symbols, and real-world objects. The
real-world objects are simple enough to be dis-
playable on an 8×8 pixel canvas (e.g., chess board,
padlock, or sun). Appendix C includes a complete
enumeration of the objects. In total, we have 93 dif-
ferent objects. We generate ten instances for each
object. We test each of the four object categories
separately.

3.2 Experimental Setup

For the experiments, we modified the pixel sym-
bols, the few-shot examples, and the task descrip-
tion of the prompt. We used the gpt-3.5-turbo-0613
model accessed through the OpenAI API. Other
open-source models, such as Bloom (Scao et al.,
2022), GPT-Neox20B (Black et al., 2022), and Star-
coder (Li et al., 2023), cannot generate meaningful
pixel matrices (see Appendix E.3). Therefore, we
focus our analysis on GPT-3.5.

Images displayed on a computer screen are a
collection of color dots, called pixels. [...]
We can represent different objects by creating a
pixel matrix which consists of 0s and 1s. [...]

Here is an example of an 8 by 8 pixel matrix
showing three:
00000000
00111110
00000110
00111100
00001110
00000110
00111100
00000000
###

[... three more examples ...]

This is an example of a grid of pixels that
form an image of [object]:

Figure 2: Prompt structure used for generating pixel
matrices in the experiments. The descriptions and ex-
amples were adjusted according to each experiment.

General capabilities We conducted a Baseline
experiment that shows the model’s general capa-
bilities and acts as a baseline for the other experi-
ments. The pixel symbols are 0 and 1 and represent
white and black. Furthermore, we conducted ex-
periments with color representations to evaluate
advanced capabilities and determine the limits of
the pixel matrix task. The Color Digits experiment
added four additional digits for red, blue, yellow,
and green, while the Color RGB experiment used
RGB code values as pixel symbols.

Task recognition vs. task learning These ex-
periments aim to understand whether GPT-3.5 ap-
proaches the pixel matrix task through TR or TL.
We follow three hypotheses as indicators for TL:

• Performance should be independent of the fre-
quency in the training data and equal across
tasks of the same difficulty.

• Performance should deteriorate when provid-
ing misleading instructions.

• Performance should improve when making
the task easier.

Following these hypotheses, we designed three ex-
periments.

The first experiment, (GK Pixels), substitutes the
pixel values 0 and 1 with two letters chosen uni-
formly at random from the Latin alphabet. Black-
and-white pixel matrices with 0s and 1s are preva-
lent in the training data, while matrices with values

29

G and K are not. Simple objects like digits and
letters represented as matrices are likely well rep-
resented and learned during training, enabling TR.
In contrast, the GK Pixel matrix format must be
recognized or learned from the context.

The second experiment, Wrong Labels, uses mis-
labeled examples in the prompt. We hypothesize
that a deteriorating performance would indicate
TL because misleading examples make the instruc-
tions of the task unclear. However, a constant per-
formance in this experiment means that in-context
learning helps to identify a given task rather than
learning it (Min et al., 2022; Pan et al., 2023). We
conducted the Wrong Labels experiment by misla-
beling each of the four prompt examples. We also
experimented without any examples (zero-shot) to
test if the model could learn from the instruction of
the prompt alone.

GPT-3.5’s tokenizer1 combines multiple pixel
symbols of our baseline matrix format into one to-
ken (see Figure 7). Consequently, a single pixel ma-
trix can be represented by various tokens, expand-
ing the token vocabulary from two to more than ten.
Hence, learning the task becomes more challenging
because it is necessary to understand the meaning
of each potential token. For the third experiment
(One Token), we inserted spaces between pixel sym-
bols to ensure one token corresponds to a single
pixel symbol and make the task easier to learn.
Such adjustment enhanced results for straightfor-
ward pattern completion tasks (Mirchandani et al.,
2023). In the case of TL, we anticipate improved
results for our task.

In addition to these three experiments, we use
the baseline results to compare objects similarly
challenging to sketch but unevenly represented in
the training data or of different difficulty but evenly
represented in the training data. If the results align
with the assumed difficulty, it suggests TL with-
out relying on pixel matrices in the training data.
For TR, only the training data is relevant. Conse-
quently, when two similarly challenging objects
have uneven representation, the one more prevalent
during training should yield more accurate results.

Breaking tasks into subtasks With this set of
experiments, we demonstrate how manually de-
composing tasks can help distinguish between TL
and TR. If the model fails to complete the subtasks,
we infer that the main task is solved by TR. When
the model succeeds in difficult tasks not seen dur-

1https://platform.openai.com/tokenizer

ing training, we do not immediately attribute this to
TL but instead examine the subtasks. Labeling the
process as TL is inappropriate if the model simply
combines subtasks it solved using TR.

To test one subtask explicitly, we generated tex-
tual descriptions of objects’ shapes and visuals us-
ing a simple prompt. For the GK task, we tested
the subtasks of translating 01 pixel matrices to GK
pixel matrices. For the specific prompts, see Ap-
pendix A. If LLMs can generate GK pixel matrices
correctly, one could assume they first recognize
the 01 pixel matrices from training data and then
use the prompt to translate 01 pixel matrices to GK
pixel matrices, solving two subtasks and combining
the results.

We also tested our pixel matrix task using a dif-
ferent image format by having the model generate
SVG code instead. This format allows for a more
straightforward combination of different shapes be-
cause overlapping shapes do not affect each other.
Examining the generation of real-world objects can
reveal whether the model predominantly replicates
SVG code for the specific object or decomposes
the object into subparts and combines them.

3.3 Evaluation

We converted each pixel matrix to an image with a
simple Python script. Then, we conducted a classi-
fication study with three annotators. Each annota-
tor described the generated images by specifying
the digits, letters, and punctuation symbols they
observed without knowing the possible set of char-
acters. For real-world objects, we provided the cor-
rect answer. We let the annotator decide whether
the respective object is recognizable because even
a good image on an 8×8 pixel canvas is challeng-
ing to recognize without context. We counted the
percentage of generations correctly classified or
marked as recognizable for each experiment.

4 Results

This section presents the results of our experiments.
The quantitative results are summarized in Table 1.

4.1 General Capabilities

We demonstrate the general capabilities of GPT-3.5
to create pixel matrices, including colorful images.

2The objects of the mislabeled demonstrations are also
generated and evaluated for digits and letters, potentially ad-
versely impacting the displayed score by about 20%.

30

https://platform.openai.com/tokenizer

Figure 3: Selected positive examples of the baseline experiment: digits 0, 1, 4, 7, and 9; letters K, Q, R, W, and Y;
the symbols ampersand, asterisk, exclamation point, and semi-colon; the objects sad face, heart, house, stick figure,
and chess board.

Experiments Digits Letters Punct. Objs.

Baseline 73% 76% 45% 14%
Color Digits 56% 65% 32% 3%
Color RGB 15% 6% 10% 6%
GK Symbols 36% 37% 21% 2%
One Token 72% 72% 36% 12%
Wrong Label 2 50% 67% 35% 12%

Table 1: Comparing experiment results: Percentage of
recognizable images across generation tasks and image
categories. Results obtained by human evaluation.

Basic experiment For digits, 73 % were cor-
rectly identified by the annotators, with the only
exception being the number 4, which is only recog-
nizable in three out of ten instances. For two-digit
numbers (10 and 32), none of the generated exam-
ples accurately display the number. Instead, some
pixel matrices represent other meaningful objects,
like the letters A or H, or the number 9.

Almost all letters are consistently generated cor-
rectly and recognizable. Exceptions occurred with
more complex letters. The letter E often features
more than three horizontal lines, and W and M
are occasionally wrong. Surprisingly, the letter V
consistently appears as an X in the pixel matrix.
The German umlauts Ä, Ö, and Ü fail to show cor-
responding vowels, often resulting in seemingly
random pixel matrices.

Except for the percent and dollar signs, most
punctuation symbols are generated correctly at least
once in ten instances. Even complex symbols like
the ampersand are successfully abstracted and gen-
erated on an 8×8 pixel matrix. More common
symbols like the comma and exclamation marks
are consistently generated. Left closing symbols
yield good results, while not a single right clos-
ing symbol is generated correctly (see Figure 8).
The output typically corresponds to the left symbol
when requesting a right closing symbol.

Simple and common everyday items like the
heart, sad face, and house yield mostly recogniz-
able images. For the stick figure and cat, some

Figure 4: Images generated with pixel values for color:
digits, letters, and punctuation symbols (top row); two
hearts, suns, windows, and cacti (bottom row).

instances are of high quality, while others seem
completely random. Results for the remaining ob-
jects appear mostly random. Compare Figure 3 for
selected positive examples.

Adding color Results for digits, letters, and
punctuation symbols show slightly lower accuracy
than simple black-and-white images. Complex let-
ters such as W and M become even less recogniz-
able than in the basic experiment. Certain letters
comprised multiple colors.

The quality of the generated pixel matrices in the
real-world object category declines. The images
display vibrant colors, but the colors lack an asso-
ciation with the specified objects. The images for
the star and sun do not contain more yellow, and
those for a window or glass do not contain more
blue. Only the cactus images consistently appear
green. Compare Figure 4 for selected images from
these experiments.

For the experiment with RGB color codes as
pixel symbols, the model more often did not ad-
here to the format, i.e., generating an output that is
not a pixel matrix. Only 15 % of the digits were
recognized compared to 56 % with a pixel matrix
of 5 color values.

4.2 Task Recognition vs. Task Learning

The results demonstrated in this section reveal in-
sights into where the pixel matrix task lies on the
spectrum between TR and TL. The corresponding
discussion can be found in Section 5.2.

31

- The fundamental shape is a vertical line
positioned in the center of the 8x8 grid.
- At the top of the line, there is a small
horizontal line extending towards the right
side of the grid, connected to the vertical
line's midsection.
- The bottom part of the vertical line extends
slightly below the grid's baseline, forming a
slight curve.

Figure 5: Excerpt from a generated description for the
digit 7 with incorrect shapes and inconsistencies.

The simplified 8x8 pixel representation of a
house consists of a square shape measuring 6
pixels in height and 6 pixels in width,
representing the main body of the house. On top
of the square, centered horizontally, there is
a triangle shape measuring 4 pixels in height
and 6 pixels in width, representing the roof.
The top row of the triangle is aligned with the
top row of the square.

Figure 6: Excerpt from a generated description for a
real-world object, illustrating the ability to describe in-
dividual components accurately, yet assembling them
incohesive.

Different pixel symbols When substituting 0 and
1 with the letters G and K the model generates pixel
matrices in the correct format. Some instances are
generated correctly. Still, overall, the results are
significantly worse across all four categories (see
Table 1).

Wrong labels The performance remains largely
unchanged compared to the baseline when the la-
bels of the demonstrations are wrong. The numbers
in Table 1 for digits, letters, and punctuation are
lower for this experiment because these datasets
test objects that were wrongly labeled. Neverthe-
less, occasionally the model ignores the incorrect
labels and produces correct pixel matrices. The
zero-shot experiment outputs do not adhere to the
format and reveal that the model needs examples
to recognize the format.

One token per pixel symbol We observe slightly
lower accuracy than the basic experiment, partic-
ularly for punctuation symbols. The output more
often does not conform to the correct format, gener-
ating a message stating it is a language model and
cannot generate images.

4.3 Breaking Tasks into Subtasks

Translating 01 pixel matrices to GK pixel matrices
is successful in most instances (51 out of 60). Gen-
erated textual descriptions often lack coherence for

Figure 7: Comparing tokenization of different image
formats: each color-coded sequence represents symbols
combined into a single token. Images are screenshots
from the OpenAI tokenizer webpage.

digits, letters, and most punctuation symbols. The
described shapes appear random for all numbers
except for 0, 1, and 8 (see Figure 5). Some level of
abstraction is observed for real-world objects, but
coherency keeps lacking. The generated texts men-
tion useful shapes for an object but unrealistically
combine them (see Figure 6).

According to our evaluation, 35% of SVG im-
ages of real-world objects are correct, a much
higher score than for all other experiments. With
only a few exceptions, the resulting images display
the colors relevant to the desired object. Inaccurate
images frequently present correct parts of objects,
but the model fails to assemble the details in a hier-
archical, cohesive way (compare Figure 9).

5 Discussion

In this section, we examine our experiment results.
We discuss the overall performance in the pixel
matrix task, assess if they tackle the task through
TL or TR, and evaluate if breaking down the task
into subtasks is a valid framework to explain LLM
abilities.

5.1 LLMs Pixel Matrix Capabilities

GPT-3.5 showcases a solid ability to generate sim-
ple images in the form of pixel matrices without
fine-tuning or including an image layer.

The capability of an LLM to use tokens trained
to represent text for other purposes, such as repre-
senting pixels, highlights its potential beyond lan-
guage generation (e.g., pattern completion). The
results also indicate that language models possess
information about different modalities, such as im-
ages. While image models rely on explicit images
for training, LLMs have the advantage that tex-
tual descriptions inherently involve abstraction and
the omission of (potentially) unnecessary details.
Therefore, LLMs could help to increase the gener-
alizability of image models.

32

Figure 8: Left (top row) and right (bottom row) closing
symbols, emphasizing the discrepancy in image quality
for closely related objects.

5.2 Pixel Matrix Task Is Solved by Task
Recognition

We found evidence that the pixel matrix task can-
not be solved without TR. This evidence includes
the deteriorated outcomes with uncommon (GK)
pixel values and unaltered results despite incorrect
examples in the prompt. Additionally, our zero-
shot experiments confirm that relying solely on the
instruction part of the prompt is insufficient for the
model to learn the task. Altering the format to rep-
resent each pixel by one token does not improve
the results despite simplifying the task and making
it easier to learn.

Further, several pairs of objects with the same
difficulty level are solved in only one of two in-
stances. These object pairs include digits vs. num-
ber 10, letter A vs. letter Ä, and left closing sym-
bols vs. right closing symbols (see Figure 8). If
the model understands the tasks (rather than only
replicating training instances), it would be able to
solve either both or none of the pair’s instances. We
assume that the former object in each pair is signif-
icantly more present during training than the latter.
Similarly, drawing the complex shapes of some
digits, punctuation symbols, and letters appears
more challenging than drawing simple real-world
objects. For instance, copying an ampersand is
challenging, whereas a simple smiley face is not.
However, the results are consistently better for such
complex shapes than for simple real-world objects.

Our findings indicate that the pixel matrix task
is solved through TR, not TL. Thus, it shows that
LLMs lack human-like understanding and general-
ization capabilities despite sometimes seeming oth-
erwise. Rather, the large data corpus is extremely
powerful and includes samples of uncommon tasks.
Given the current architecture, we assert that LLMs
will not attain understanding and reasoning. En-
hancing current LLMs requires incorporating even
more diverse data and improved training.

5.3 What Task Is Recognized?

The results of the baseline experiment show that
the pixel matrix task has been learned only to a lim-

Figure 9: SVG-generated images (crown, wine glass,
house, and lightning flash) exhibit a lack of cohesiveness
in the arrangement of their components.

iting degree during training. Language models are
not extensively trained on text-to-pixel matrix data,
making it challenging to generalize this task to new
images by combining seen objects and concepts.
We conclude that it is more appropriate to say that
it recognizes the task of drawing a specific object
instead of a general text-to-image task. Therefore,
the model cannot generalize to pixel matrices for
objects it has not encountered during training, as
this ability is neither acquired during training nor
inference. In conclusion, it’s crucial to pinpoint
the exact task that is recognized and solved to not
overestimate the capabilities.

5.4 Decomposing Tasks to Evaluate
Capabilities of LLMs

The previous results show that the model applies
TR to solve the experiments with 01-pixel matri-
ces. The pixel matrix task can be broken down
into subtasks, such as accessing visual information
about the object, decomposing objects into basic
shapes, generating different shapes on a pixel ma-
trix, and combining this information to form a pixel
matrix representing a certain object. We show that
the generated textual descriptions for digits, letters,
and punctuation symbols were inadequate. Also,
combining different shapes on a pixel matrix is
challenging, as overlapping parts result in new to-
kens. The model relies on TR because it fails to
solve these subtasks sufficiently.

In contrast, the GK pixel and the SVG code task
are solved by solving subtasks. TR alone does not
explain the results of the GK pixel matrix task be-
cause the model likely did not encounter such pixel
matrices during training. We believe the model
breaks down the task into creating a 01-pixel ma-
trix and exchanging 0s and 1s with Gs and Ks. We
show that an LLM can solve both individual sub-
tasks. In the SVG code experiments, combining
various shapes is accomplished by concatenating
corresponding lines of code, which makes combin-
ing subtasks easier than for the pixel matrix task.
The results show that the model draws different
parts of objects but fails to put them together with

33

correct dimensions and spatial correlations (see
Figure 9). This suggests that the model decom-
poses the object into its visual parts, recognizes
these from training data, and combines them into
one image rather than relying directly on TR.

Our framework of breaking down tasks into sub-
tasks helps to assess TL and TR abilities. On the
one hand, as in the case of pixel matrices, it helps
to identify difficult subtasks and areas for improve-
ment, such as targeted training data. On the other
hand, the SVG and GK experiments demonstrate
how our framework helps explain LLM capabilities
and distinguish between TL and TR. When examin-
ing tasks like the GK pixel matrix, one might mis-
takenly conclude that the model is learning from
scratch. However, decomposing the task reveals
that simpler subtasks might be recognized from the
training data. This prevents premature conclusions
about TL but raises a philosophic question: How
much must the model decompose the task, and how
simple must the subtasks be to classify it as TL?

6 Conclusion

Our study demonstrates that LLMs can generate
pixel matrices representing objects such as digits,
letters, and simple real-world items. Our exper-
iments show evidence of strong task recognition
and limited task learning ability. We argue that
breaking down complex tasks into smaller subtasks
is a useful framework for evaluating and explain-
ing LLM capabilities, preventing misleading con-
clusions when assessing the task’s overall perfor-
mance, and helping to distinguish between TL and
TR.

As LLMs improve their ability to recognize
tasks, locate relevant training data, and break down
complex tasks, distinguishing between task learn-
ing and task recognition becomes increasingly com-
plex. Although one might argue that this, at the
core, represents task recognition of subtasks, fu-
ture research is needed to explore how this process
compares to human learning.

7 Limitations

Our evaluation captures broader trends, and our dis-
cussion is based on conclusions drawn from clear
tendencies in the results rather than small differ-
ences. More thorough evaluations and comparisons
across different models could strengthen the results.
We have conducted a short ablation study with dif-
ferent models (see Appendix E.3). As the outputs

depend on prompts, more prompt engineering and
other prompts could have yielded different results.

We also rely on the generated outputs and gen-
eral knowledge about LLMs to interpret their re-
sults because empirical analysis of the model’s in-
ternal workings (e.g., evaluating attention patterns)
is extremely resource-intensive. Thus, we inter-
pret LLMs, highly complex statistical distributions,
using simple human-like concepts (e.g., breaking
down tasks).

References
Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,

Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, Roman Ring, Eliza Rutherford, et al. 2022.
Flamingo: a visual language model for few-shot
learning. In Advances in Neural Information Pro-
cessing Systems.

Nicholas Asher, Swarnadeep Bhar, Akshay Chaturvedi,
Julie Hunter, and Soumya Paul. 2023. Limits for
learning with language models. In Proceedings of the
12th Joint Conference on Lexical and Computational
Semantics (*SEM 2023), pages 236–248, Toronto,
Canada. Association for Computational Linguistics.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei
Ji, Tiezheng Yu, Willy Chung, et al. 2023. A multi-
task, multilingual, multimodal evaluation of chatgpt
on reasoning, hallucination, and interactivity. arXiv
preprint arXiv:2302.04023.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In Proceedings of the 2021 ACM confer-
ence on fairness, accountability, and transparency,
pages 610–623.

Emily M. Bender and Alexander Koller. 2020. Climbing
towards NLU: On meaning, form, and understanding
in the age of data. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5185–5198, Online. Association for
Computational Linguistics.

Marcel Binz and Eric Schulz. 2023. Using cognitive
psychology to understand gpt-3. Proceedings of the
National Academy of Sciences, 120(6):e2218523120.

Sidney Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang,
Michael Pieler, Usvsn Sai Prashanth, Shivanshu Puro-
hit, Laria Reynolds, Jonathan Tow, Ben Wang, and
Samuel Weinbach. 2022. GPT-NeoX-20B: An open-
source autoregressive language model. In Proceed-
ings of BigScience Episode #5 – Workshop on Chal-
lenges & Perspectives in Creating Large Language

34

Models, pages 95–136, virtual+Dublin. Association
for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Kranti Chalamalasetti, Jana Götze, Sherzod Haki-
mov, Brielen Madureira, Philipp Sadler, and David
Schlangen. 2023. clembench: Using game play to
evaluate chat-optimized language models as conver-
sational agents. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 11174–11219, Singapore. Associ-
ation for Computational Linguistics.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming
Ma, Zhifang Sui, and Furu Wei. 2023. Why can GPT
learn in-context? language models secretly perform
gradient descent as meta-optimizers. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 4005–4019, Toronto, Canada. Associa-
tion for Computational Linguistics.

Jie Huang and Kevin Chen-Chuan Chang. 2023. To-
wards reasoning in large language models: A survey.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 1049–1065, Toronto,
Canada. Association for Computational Linguistics.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2022. Decomposed prompting: A modular
approach for solving complex tasks. arXiv preprint
arXiv:2210.02406.

Jing Yu Koh, Ruslan Salakhutdinov, and Daniel
Fried. 2023. Grounding language models to im-
ages for multimodal generation. arXiv preprint
arXiv:2301.13823.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Andrew Lampinen, Ishita Dasgupta, Stephanie Chan,
Kory Mathewson, Mh Tessler, Antonia Creswell,
James McClelland, Jane Wang, and Felix Hill. 2022.
Can language models learn from explanations in con-
text? In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 537–563,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Belinda Z. Li, Maxwell Nye, and Jacob Andreas. 2021.
Implicit representations of meaning in neural lan-
guage models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long

Papers), pages 1813–1827, Online. Association for
Computational Linguistics.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11048–11064,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Suvir Mirchandani, Fei Xia, Pete Florence, brian ichter,
Danny Driess, Montserrat Gonzalez Arenas, Kan-
ishka Rao, Dorsa Sadigh, and Andy Zeng. 2023.
Large language models as general pattern machines.
In 7th Annual Conference on Robot Learning.

Jane Pan, Tianyu Gao, Howard Chen, and Danqi Chen.
2023. What in-context learning “learns” in-context:
Disentangling task recognition and task learning.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 8298–8319, Toronto,
Canada. Association for Computational Linguistics.

Reza Pourreza, Apratim Bhattacharyya, Sunny Panchal,
Mingu Lee, Pulkit Madan, and Roland Memisevic.
2023. Painter: Teaching auto-regressive language
models to draw sketches. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 305–314.

Archiki Prasad, Alexander Koller, Mareike Hartmann,
Peter Clark, Ashish Sabharwal, Mohit Bansal, and
Tushar Khot. 2023. Adapt: As-needed decompo-
sition and planning with language models. arXiv
preprint arXiv:2311.05772.

Evan Pu. 2022. Probing compositional un-
derstanding of chatgpt with svg. https:
//evanthebouncy.medium.com/probing-
compositional-understanding-of-chatgpt-
with-svg-74ec9ca106b4 accessed 12/10/2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748–8763. PMLR.

Ansh Radhakrishnan, Karina Nguyen, Anna Chen,
Carol Chen, Carson Denison, Danny Hernandez, Esin
Durmus, Evan Hubinger, Jackson Kernion, Kamilė
Lukošiūtė, et al. 2023. Question decomposition im-
proves the faithfulness of model-generated reasoning.
arXiv preprint arXiv:2307.11768.

35

Laria Reynolds and Kyle McDonell. 2021. Prompt pro-
gramming for large language models: Beyond the
few-shot paradigm. In Extended Abstracts of the
2021 CHI Conference on Human Factors in Com-
puting Systems, CHI EA ’21, New York, NY, USA.
Association for Computing Machinery.

Chitwan Saharia, William Chan, Saurabh Saxena,
Lala Li, Jay Whang, Emily L Denton, Kam-
yar Ghasemipour, Raphael Gontijo Lopes, Burcu
Karagol Ayan, Tim Salimans, et al. 2022. Photo-
realistic text-to-image diffusion models with deep
language understanding. Advances in Neural Infor-
mation Processing Systems, 35:36479–36494.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Jamshaid Shahir. 2023. Writing code to
produce images with chatgpt. https:
//towardsdatascience.com/image-generation-
with-chatgpt-68c98a061bec accessed
12/10/2023.

Murray Shanahan. 2022. Talking about large language
models. arXiv preprint arXiv:2212.03551.

Murray Shanahan, Kyle McDonell, and Laria Reynolds.
2023. Role play with large language models. Nature,
pages 1–6.

Denis Shiryaev. 2022. Drawing mona lisa with chat-
gpt. https://neural.love/blog/chatgpt-svg
accessed 12/10/2023.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià
Garriga-Alonso, et al. 2023. Beyond the imitation
game: Quantifying and extrapolating the capabili-
ties of language models. Transactions on Machine
Learning Research.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,
and Subbarao Kambhampati. 2022. Large language
models still can’t plan (a benchmark for LLMs on
planning and reasoning about change). In NeurIPS
2022 Foundation Models for Decision Making Work-
shop.

Johannes Von Oswald, Eyvind Niklasson, Ettore Ran-
dazzo, Joao Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. 2023.
Transformers learn in-context by gradient descent.
In Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pages 35151–35174.
PMLR.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,

et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An explanation of in-context
learning as implicit bayesian inference. In Interna-
tional Conference on Learning Representations.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

36

A Prompt Details

This section supplements Section 3 by offering
additional details and complete examples of the
prompts used in our experiments.

A.1 Main Experiments
All prompts consist of one natural language instruc-
tion that describes the pixel matrix task by intro-
ducing pixels and the concept of pixel matrices and
pixel symbols. This part is adjusted if the pixel
symbols change. The second part of the prompts
contains the demonstrations adapted to the object
category and pixel symbols.

Independent of the pixel format, the prompt in-
cludes examples of numbers 2, 3, 8, and 6 for digits.
The prompt examples for letters are A, F, G, and H.
In the category of punctuation symbols, the exam-
ples are the forward slash, division sign, question
mark, and the dot symbol, and for real-world ob-
jects, the examples are the smiley face, umbrella,
tree, and deer.

See Figure 10 for a complete prompt for the
baseline experiment.

A.2 Generating Descriptions
Refer to Figure 12 for the prompt used to gener-
ate descriptions of the objects’ shapes and appear-
ances.

A.3 Translating 01 to GK pixel matrices
Refer to Figure 13 for the prompt used to translate
01 pixel matrices to GK pixel matrices.

B Model Configurations

Pre-experiments revealed that a temperature of 1
was a good balance between randomness to ensure
differences between each instance while maintain-
ing the required format. We implemented a stop
sequence for OpenAI models and restricted gener-
ated tokens to 100 for huggingface models. Apart
from these modifications, we adhered to the default
settings provided by the respective model APIs.

C Enumeration of All Objects

We evaluated the performance of creating pixel ma-
trices across four categories: digits, letters, punctu-
ation symbols, and real-world objects. Digits range
from 0 to 9, with additional two-digit numbers, 10
and 32. The letter category comprises all Latin al-
phabet letters, including German umlauts (Ä, Ü, Ö)
and eszett (ß), totaling 30 letters. The punctuation

Images displayed on a computer screen are a
collection of color dots, called pixels. If you
look really closely at the screen, you will be
able to see the individual pixels. The
collection of pixels that make up an image are
stored as a matrix.
We can represent different objects (e.g.,
numbers, letters, or shapes) by creating a
pixel matrix which consists of 0s and 1s. The
matrix should be of the size 8 by 8. Each entry
represents a pixel of a black or a white pixel.
That means the image has a display capable of 8
pixels in width and 8 pixels in height. Since
there are only 64 pixels in total the objects
to be displayed are significantly simplified.

Here is an example of an 8 by 8 pixel matrix
showing three:
00000000
00111110
00000110
00111100
00001110
00000110
00111100
00000000
###
Here is an example of a grid of pixels that
form an image of two:
00000000
00111100
01100110
00001100
00011000
00110000
01111110
00000000
###
Here is an example of a grid of pixels that
form an image of eight:
00000000
00111100
01100110
00111100
01100110
00110100
00011000
00000000
###
Here is an example of a grid of pixels that
form an image of six:
00000000
00111100
01100000
01100000
00111100
01100110
00111100
00000000
###
This is an example of a grid of pixels that
form an image of [object]:

Figure 10: The full prompt used to generate digits for
the baseline experiments, with a placeholder for the
requested digit.

37

Images displayed on a computer screen are
actually a collection of dots of color, called
pixels. If you look really closely at the
screen, you will be able to see the individual
pixels. The collection of pixels that make up
an image are stored as a matrix. Each pixel can
represent a different color.
We can represent different objects (e.g.,
numbers, letters, or shapes) by creating a
pixel matrix which consists different symbols
and each symbol stands for a different color.
In our 8x8 pixel matrix, we use the following
symbols to encode color: white (represented by
"0"), black ("1"), red ("2"), yellow ("3), green
("4"), and blue ("5"). This means each entry of
the matrix is either a 0, a 1, a 2, a 3, a 4, or
a 5. The matrix should be of the size 8 by 8.

Here is an example of an 8 by 8 pixel matrix
showing a smiley face:
31133113
31133113
33333333
33313333
13333331
31333313
33111133
33333333
###

Here is an example of a grid of pixels that
form an image of a tree:
00444400
04444440
44444444
44444444
44444444
00011000
00011000
00011000
###

Here is an example of a grid of pixels that
form an image of an umbrella:
00555500
05555550
55555555
00001000
00001000
00001000
00101000
00011000
###

Here is an example of a grid of pixels that
form an image of a deer:
10001000
11111000
01010000
11110001
01111111
01111111
01010101
01010101
###

Figure 11: Complete prompt used for experiments with
new symbols representing different colors for the real-
world object category. The first part and the demonstra-
tions are adjusted.

Describe a simplified visual representation of
[object] which can be used to create an 8x8
pixel artwork of [object]. Emphasize only the
essential features for recognition, omitting
intricate details due to space constraints.
Deliver a concise description of the
fundamental shape and distinctive traits and if
necessary mention proportions, alignments, and
spatial relationships in a simplified rendition
of [object].

Figure 12: Prompt for generating descriptions of objects
shapes which were added to pixel matrix prompt with
the idea to enhance the outputs.

I want you to translate a 01 pixel matrix to a
GK pixel matrix. Replace every 0 with a G and
every 1 with a K.
Here is an example of a 01 pixel matrix:
00000000
00111100
01100000
01100000
00111100
01100110
00111100
00000000
###
Translation:
GGGGGGGG
GGKKKKGG
GKKGGGGG
GKKGGGGG
GGKKKKGG
GKKGGKKG
GGKKKKGG
GGGGGGGG
###

[...three more examples...]

Here is an example of a 01 pixel matrix:
[Exmaple 01 pixel matrix]
Translation:

Figure 13: Prompt for generating descriptions of objects
shapes which were added to pixel matrix prompt with
the idea to enhance the outputs.

38

digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 32
letters A, B, C, D, E, F, G, H, I, J, K, L, M, N, O,

P, Q, R, S, T, U, V, W, X, Y, Z, Ä, Ö, Ü, ß
punct. comma, semicolon, exclamation point,

equal sign, plus sign, hashtag, dollar sign,
percent sign, ampersand, asterisk, left
parenthesis, right parenthesis, left bracket,
right bracket, left curly brace, right curly
brace, less than sign, greater than sign,
backslash, underscore, colon, single quote,
double quote, at sign, caret

objs. sad face, cup, heart, wine glass half full,
cactus, key, skull, mouse, crown, lightning
flash, padlock, cat, crab, a chess board,
a house, coffee, car, window, chair, star,
mountain, sun, boat, stick figure, fly

Table 2: Enumeration of all generated objects in our
experiments.

symbol category encompasses 25 different sym-
bols, while real-world objects consist of 26 diverse
items. All objects are enumerated in Table C.

D Evaluation

We recruited 3 students from our university to an-
notate the images generated in our experiments.
Figure 14 shows our whole set of instructions.

Figure 14: The complete instructions given to the human
annotators.

E Complementary Results

Some figures showin images resulting from our
experiments.

E.1 GPT-4 Color RGB

See Figure 16 for selected images generated by
GPT-4 with RGB color codes as pixel symbols.

E.2 Images with Scalable Vector Graphics

Compare Figure 17 for images generated with SVG
code.

E.3 Model Comparison

By default, we employed gpt-3.5-turbo-0613 ac-
cessed through the OpenAI API. We further com-
pared various models (Bloom (Scao et al., 2022),
GPT-Neox20B (Black et al., 2022), Starcoder (Li
et al., 2023)) on the pixel matrix task. Our primary
aim is to contrast models fine-tuned on code with
instruction-tuned LLMs based on our hypothesis
that with TL, the performance should be indepen-
dent of the frequency in the training data. Anticipat-
ing a higher occurrence of pixel matrices in code-
based data and better instruction comprehension by
classic LLMs, we hypothesize that the traditional
models will excel if TL is applied. Conversely,
with TR, the code models should demonstrate bet-
ter performance.

GPT-3.5, with 175 billion parameters, demon-
strates the best performance. In contrast, Bloom,
also equipped with 175 billion parameters, adheres
to the format but fails to solve any pixel matrix cor-
rectly. Gpt-Neox with 20 billion parameters does
not generate any meaningful pixel matrix. The
smallest model (15.5 billion parameters), Stracoder,
fine-tuned specifically for code-related tasks, dis-
plays the best performance besides GPT-3.5. Its
outputs for digits and letters are nearly as good as
GPT-3.5, but it struggles with punctuation symbols
and real-world objects.

GPT-4 shows significant improvements com-
pared to GPT-3.5. It creates much more meaningful
real-world objects on an 8x8 canvas (e.g., padlock,
flash, key, or cactus), and it consistently creates col-
orful digits with RGB codes as pixel values, which
GPT-3.5 cannot generate (see Figure 16).

E.4 16×16 pixel matrices

One thought was that an 8×8 pixel canvas might be
too limiting, hindering the LLM from generating
meaningful images of real-world objects like a cat

39

Figure 15: Negative examples from the baseline experiment: digits 1, 4, 5, 10, and 32; letters E, N, Ö, T, and V; the
symbols at-sign, dollar sign, double quote, equal sign, and percent sign; the objects boat, cup, fly, star and wine
glass.

Figure 16: Selected instances of images generated by
GPT-4 on an 8 by 8 pixel matrix with RGB values as
pixel symbols showing two instances of each object: car,
sun, cactus, coffe, house, mountain, sad face, wine glass.
The magenta stripes resulting from translating slightly
off output textual format to images.

or a boat. We conducted experiments with a pixel
matrix of size 16×16. However, the overall results
showed a slight degradation, and we did not see any
improvements for specific objects where a larger
canvas may be beneficial.

F Supplementary Discussion

We attributed some observed behavior to the au-
toregressive architecture of GPT-like models. For
example, the letter V was never correctly generated
and always resulted in the letter X. We assume that
after correctly generating the first line of the matrix
according to V, the subsequent generations favored
a pixel matrix showing the letter X due to its higher
frequency in training compared to that of a V. If the
prompt would be truly "understood", the attention
to the previous pixels should not overshadow the
requested object.

In the One Token Experiment, overall results

Figure 17: Example results from experiments with SVG
code as image format showing two instances of each
object: house, car, sun, crown, mountain, heart, cactus,
window, wine glass, and lightning flash.

40

showed a slight decline, but notable improvements
were observed with the new matrix format, espe-
cially for the object ’chess board’. An additional
experiment with the chess board showed that while
42 out of 60 generations were correct with the basic
matrix format, all 60 chess board generations were
correct with the new format. We assume this might
be because this object resembles a pattern com-
pletion task, which is less error-prone with fewer
tokens Mirchandani et al. (2023).

We have conducted most of our experiments with
a format that used more than ten different tokens
to represent a pixel matrix as the tokenizer com-
bines sequences of 0s and 1s. During our experi-
ments with G and K as symbols, we assume that
it translated in 01-matrices to the new format even
though the tokens are different and the number of
tokens changes (see Figure 7). Thus, the token em-
beddings represent even uncommon non-semantic
similarities.

41

