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Abstract

We introduce SlayQA, a novel benchmark data
set designed to evaluate language models’ abil-
ity to handle gender-inclusive language, specif-
ically the use of neopronouns, in a question-
answering setting. Derived from the Social IQa
data set, SlayQA modifies context-question-
answer triples to include gender-neutral pro-
nouns, creating a significant linguistic distri-
bution shift in comparison to common pre-
training corpora like C4 or Dolma. Our re-
sults show that state-of-the-art language models
struggle with the challenge, exhibiting small,
but noticeable performance drops when answer-
ing question containing neopronouns compared
to those without.

1 Introduction

Currently, the recognition of the importance of
inclusivity and representation in NLP is growing
(Sun et al., 2019; Stanczak and Augenstein, 2021;
Lauscher et al., 2022). Traditional data sets of-
ten reflect and perpetuate binary gender norms,
which can marginalize non-binary and gender non-
conforming individuals and cause harm (Ansara
and Hegarty, 2013). This lack of inclusivity high-
lights a critical need for resources that better rep-
resent the full spectrum of gender identities. One
aspect of gender-inclusive language use that is gain-
ing more and more acceptance is the usage of neo-
pronouns like xe/xyr or ze/zir. Neopronouns are
novel pronouns that people who do not identify
themselves as belonging to the polar extremes of
the gender spectrum can choose to use for reference
to themselves instead of the classical, gendered pro-
nouns: he/him and she/her. Current benchmarks
that assess this kind of linguistic inclusivity mostly
focus on the generation of correct neopronouns in
context or similar tasks (Ovalle et al., 2023; Hos-
sain et al., 2023). On the other hand, resources that
simply implement established LM benchmarks in
a more inclusive way are rare.

context: "Sydney caught xyr 
son Austin smoking pot when xe 
told em not to."  
question: "What will happen to 
Sydney?"  
answerA: "angry xyr kid did 
this" ✔ 
answerB: "will be grounded" ❌ 
answerC: "give em xyr pot"  ❌

context: "Sydney caught her 
son Austin smoking pot when 
s h e t o l d h i m n o t t o . " 
question: "What will happen to 
Sydney?"  
answerA: "angry her kid did 
this" ✔  
answerB: "will be grounded" ❌  
answerC: "give him her pot" ❌

Figure 1: Visualization of the conversion process that
turns Social IQa data into SlayQA data

To address this gap, we present SlayQA: Social
linguistics analytics yielding Queer Agents, a novel
benchmark set derived from the existing Social
IQa (SIQa) data set (Sap et al., 2019b). It con-
tains a situation description (the context), social
reasoning questions and three prospective answers,
where all context-question-answer pairs include
at least two acts of pronoun-based reference and
gender-neutral pronouns. Because SlayQA system-
atically replaces established, gendered pronouns
with gender-affirming neopronouns, it is a more
inclusive data set that better reflects the diversity
of human identities. Although neo-pronouns are
commonly rated less grammatical than their estab-
lished counterparts (Hekanaho, 2021; Rose et al.,
2023), they are beginning to be adopted in vari-
ous social circles. Here, the key word is begin-
ning – they are still infrequent in discourse and and
also in common pretraining corpora like C4 (Raffel
et al., 2020), Dolma (Soldaini et al., 2024), and
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RedPajama-Data-1T (Together Computer, 2023).
As such, our pronoun-altered benchmark marks a
significant pronoun distribution shift in compari-
son to these pretraining corpora. Consequentially,
SlayQA helps to assess how well language models
are able to generalize to novel linguistic structures.

2 Related work

Dev et al. (2021) conduct a survey on harms in-
volving gender-neutral speech and neopronouns in
general purpose NLP systems. Replies included,
for example, the non-detection of hate-speech or
automatic educational assessments marking gender-
inclusive language as wrong. Furthermore they
show that from skewed training data, bias in word
embeddings arises. For GLoVe embeddings (Pen-
nington et al., 2014), gendered pronouns appear in
close proximity in their vector space, whereas neo-
pronouns hardly cluster with them. Similarly, in the
original BERT model (Devlin et al., 2019), neopro-
nouns are out-of-vocabulary items. In a more ap-
plied setting, Lauscher et al. (2023) show that ma-
chine translation systems are able to translate gen-
dered pronouns well, but not neopronouns. They
are either plainly copied or the included agents
are misgendered. Furthermore, for sentences with
gender-neutral or neopronouns, overall translation
quality (e.g. syntactic, semantic) diminishes.

The most prominent NLP benchmarks for
gender-inclusivity are TANGO (Ovalle et al., 2023)
and MISGENDERED (Hossain et al., 2023). While
TANGO contains sentences with names and neo-
pronouns to be completed by generative models,
MISGENDERED also includes an explicit statement
of the agents’ preferred pronouns. Their goals are
therefore almost identical: to assess whether lan-
guage models can correctly produce text with neo-
pronouns when prompted with them. Evaluations
on these data sets show similar results: errors rarely
occur with gendered pronouns, but correct continu-
ation scores drop with the gender-neutral singular
they. Worst scores (accuracy below 10%) are found
for neopronouns. A possible explanation can be
found in Ovalle et al. (2024), who show that the
BPE algorithm (Gage, 1994) commonly used in
state-of-the-art LLMs dissects neopronouns into
smaller parts, which never happens to established
pronouns. This is caused by data scarcity – com-
mon pre-training data sets lack examples of neopro-
nouns in use. As the BPE algorithm leaves lexical
tokens intact if and only if they occur with a high

C4 Dolma

he 144.202.977 965.297.366
she 92.421.725 544.245.250
they 260.126.090 1.705.400.768

thon 872.654 992.499
e 213.797.769 240.457.628
ae 3.910.812 4.135.288
co 83.935.707 199.206.147
vi 10.139.390 12.534.070
xe 1.148.568 2.134.212
ey 869.765 1.691.904
ze 1.618.896 1.793.116

Table 1: Frequencies for established subject pronouns
and subject neopronouns in C4 and Dolma

enough frequency, neopronouns are usually split.
Current data sets that are used to measure the

question answering abilities of NLP systems are not
concerned with gender-inclusivity. While Rogers
et al. (2023) present a large taxonomy including
many different kinds of tasks, domains and data for-
mats, ‘fairness’ seems to be only an afterthought in
contemporary QA evaluation, e.g. by only referring
to the inclusion of multilingual data.

3 (Neo)pronouns in pre-training corpora
and evaluation data sets

3.1 (Neo)pronouns in C4 and Dolma
We argue that our benchmark introduces a sig-
nificant distribution shift between the pretraining
corpora and the evaluation data with regard to
pronouns. To assess this proposed distribution
shift, we determine the frequencies of established
and neopronouns in these corpora through the n-
gram lookup function of What’s In My Big Data?
(WIMBD) (Elazar et al., 2024) – if the neopro-
nouns occur less frequently in pretraining corpora
than established pronouns, then our neopronoun
benchmark introduces a drastic distribution shift in
its pronoun distribution compared to these corpora.

We adapt our list of pronouns from the seminal
study by Hossain et al. (2023). For the sake of
brevity, we do not include further gender-affirming
pronoun variations like nounself, emojiself, num-
berself or nameself pronouns (Lauscher et al.,
2022).

We search C4 (Raffel et al., 2020) and Dolma
(Soldaini et al., 2024) for the subject, object, pos-
sessive (pronoun and determiner) and reflexive
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context question answerA answerB answerC

he 10.238 146 2.020 2.066 2.060
she 13.291 221 2.759 2.716 2.715
they 14.178 150 2.996 2.993 3.007

thon 0 0 0 0 0
e 1 0 0 0 0
ae 0 0 0 0 0
co 0 0 0 0 0
vi 0 0 0 0 0
xe 0 0 0 0 0
ey 0 0 0 0 0
ze 0 0 0 0 0

Table 2: Token frequencies for morphological paradigms of gendered and gender-neutral pronouns in Social IQa
data

forms of the neopronouns from Hossain et al.
(2023), as we evaluate models trained on these
corpora. While we also evaluate models trained on
RedPajama-Data-1T (Together Computer, 2023),
no n-gram frequencies for this data set are avail-
able through WIMBD. C4 is based on Common-
Crawl web dumps that were then cleaned, filtered
and deduplicated to certain degrees. RedPajama-
Data-1T and Dolma also contain considerable por-
tions of CommonCrawl enriched with data from
diverse sources, such as GitHub code, Reddit posts,
academic papers from SemanticScholar and Arxiv,
etc., which were then also cleaned, filtered and
deduplicated. They were explicitly created as
open data sets that mirror the data that commer-
cial/closed models like Anthropic’s Claude, Ope-
nAI’s ChatGPT or Meta’s Llama models are trained
on. Therefore, they can be seen as somewhat ex-
emplary for the data that commercial models are
trained on, and the overall frequency distributions
found in them should be generally similar to those
in not publicly available pre-training corpora.

The frequencies for subject pronouns in both
corpora are found in Table 1, all other results are
listed in Appendix A. In comparison to the estab-
lished pronouns, neopronouns occur with reduced
frequencies. The neopronouns e and co are ex-
ceptions, but as e is a highly frequent letter in the
English language and co also serves as a productive
morpheme, it is reasonable to assume that the vast
majority of these instances are not representative
of pronoun usage. The neopronouns that do not
constitute such widely used building blocks of or-
dinary English, e.g. thon, xe or ey, occur much less

throughout the training data. For example, he oc-
curs one thousand times more than thon in Dolma.
These distributions are stable across all morpho-
logical forms (see Tables 5, 6, 7 and 8). Although
the possesive and reflexive pronouns are overall
less frequent, all forms are still found across all
training corpora. The only exception is the reflex-
ive virself, which is completely absent from the C4
data. Yet, the presence of all other forms in the data,
and especially the presence of the reflexives, which
should not be accidental n-gram matches, confirms
that pronoun use of these neopronouns is indeed
included in these pre-training data sets, just to a
much lesser degree than the usage of established
pronouns.

Although no n-gram frequency results are avail-
able for RedPajama-Data-1T, we assume that the
underlying distribution should be mostly equal to
the two examined corpora – all three corpora are
mainly based on CommonCrawl web dumps, so
it is reasonable to expect a large lexical overlap
between them.

A final indicator for the different pronoun dis-
tributions can be found in Table 9, where we
show the number of sub-word tokens which the
different grammatical forms of our investigated
(neo)pronouns are split into by the tokenizers of
our tested models. Here, we find generally higher
numbers for the neopronouns, especially for the
reflexive forms. Because the standard BPE tok-
enization algorithm keeps highly frequent forms
intact as one token, this split of lexical words into
several sub-words is another display of their infre-
quency compared to established pronouns.
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3.2 (Neo)pronouns in SIQa

While the mentioned pre-training corpora contain
very little neopronouns, the numbers are even more
extreme for the SIQa data set (Sap et al., 2019b).
The original SIQa contains 37.588 triples of con-
text, question and three prospective answers. It is
based on the Atomic data set (Sap et al., 2019a),
which contains commonsense if-then statements
for machine learning. These were then manually
rewritten into context, question and right answer
triples. False answers were added manually and
by sampling randomly from correct answers to dif-
ferent questions. As gender fairness was not a
concern in the compilation of this data set, the dis-
tributions of gendered pronouns and gender-neutral
neopronouns deviate strongly. Table 2 shows the
absolute token counts (aggregating over the com-
plete morphological paradigms) for SIQa. Gen-
dered pronouns occur quite frequently – mostly in
the context, less so in the answers, rarely in the
questions. Neopronouns are not featured at all in
any form (the one e is likely to be a typo).

Nevertheless, SIQa exhibits some gender-
inclusive tendencies. The gender-neutral singular
reflexive themself occurs 74 times across the whole
data set, indicating that more usage of gender-
neutral they is likely to be featured more promi-
nently. Besides, also the choice of included names
appears to be fairly inclusive after a cursory qualita-
tive inspection, because many of the named agents
in SIQa feature gender-neutral names like Alex or
Kai. Yet, it is still rather conservative and does not
feature any neopronouns.

4 Benchmark creation

4.1 Neopronouns and (co)reference

Pronouns usually either substitute for a noun
(phrase) or are used to signal reference to some-
thing that can be inferred from the situational con-
text (Quirk et al., 1985). As such, they are ubiqui-
tous in everyday language, but generally do not at-
tract new lexemes because they constitute a closed
word class. Novel items are only slowly intro-
duced via grammaticalization (Heine and Song,
2011). Neopronouns, then, present a unique case;
some of them developed organically within spe-
cific social groups to promote gender inclusivity,
others were deliberately created for that purpose
(e.g., ey in 1975, thon in the late 19th century, see
McGaughey, 2020). While neopronouns are gain-
ing traction in some communities, they remain less

widely adopted, with gender-neutral they being the
notable exception.

For SlayQA, we specifically filter out exam-
ples that do not include at least two coreference
chains with named entities. This filtering is crucial
because without multiple entities in the text, the
replacement of pronouns with neopronouns does
not significantly alter the amount of generalization
measured by the task. When only one entity is
present, changed pronouns do not pose an insur-
mountable challenge to a model’s understanding of
the situation – there are no options for interpreting
the neopronoun in/correctly. However, when multi-
ple named entities are involved, the task becomes
much more demanding, as the model must accu-
rately track and resolve these coreferences across
texts. This ensures that SlayQA actually tests the
ability to handle neopronouns in use.

4.2 Creating the distribution shift
To create the envisioned distribution shift, we first
parsed all examples in the SIQa training and de-
velopment data sets as a combined context +
question + answers string with spacy (Honnibal
et al., 2020) and performed coreference resolution
with coreferee (Hudson, 2023). For the following
data modification step, we included all sentences
that feature at least two coreference chains which
resolve to proper nouns, i.e. names in the case of
the SIQa data set. Sentences without any pronouns
or with coreference that resolves to a singular entity
were therefore discarded. From the original 35.364
entries in the training data, 1.985 examples were
left after this procedure.

In a second step, we then iterated over all left-
over examples and filtered out those that did not
contain any male or female gendered pronoun. Af-
ter this step, 1.388 examples were left. For each
context-question-answers entry in the filtered data,
we then replaced all forms of established male pro-
nouns (forms of he) and established female pro-
nouns (forms of she) with one randomly chosen set
of corresponding neopronoun forms. We decided
not to alter forms of they as they are a) already used
in a gender-neutral fashion in several examples in
SIQa, and b) proved to be hard to correctly parse
into singular or plural forms, where replacement of
the plural form with a singular neopronoun might
create illogical examples.

Finally, we noticed that a minority of data points
in SIQa feature incorrect or mixed pronoun use. In
the following example, Kai is first referred to with
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Motivation
Practical Cognitive Intrinsic Fairness

□ □

Generalisation type
Compositional Structural Cross Task Cross Language Cross Domain Robustness

□
Shift type

Covariate Label Full Assumed
□

Shift source
Naturally occuring Partitioned natural Generated shift Fully generated

□
Shift locus

Train–test Finetune train–test Pretrain–train Pretrain–test
□

Table 3: GenBench Evaluation Card for SlayQA

male pronouns (himself, him) in the context, but
then with the gender-neutral singular they in the
first answer:

• context: Tracy saw Kai standing there
by himself and decided to go talk to
him.

• question: How would Kai feel as a
result?

– answerA: upset they had to deal
with someone

– answerB: they want to be left
alone

– answerC: happy to not be lonely
anymore

We acknowledge this haphazard noise in the orig-
inal data but due to the rarity of its occurrence, we
do not further attempt to clean the data from it.

5 SlayQA in the generalisation taxonomy

Table 3 shows where SlayQA is located in the gen-
eralisation hierarchy by Hupkes et al. (2023).

Motivation SlayQA is both cognitively and
fairness-motivated. Humans are generally able to
use neopronouns correctly and productively. Con-
sequently, if language models are indeed good mod-
els of human language (usage), they should not
struggle with social reasoning that includes neo-
pronouns. Additionally, the inclusion and correct
processing of neopronouns also relates to fairness
of language technologies – they should be appli-
cable to all potential users, even in the light of a

changing linguistic and societal landscape (cf. also
related work in Section 2).

Generalisation type SlayQA assesses whether
language models can interpret novel, highly in-
frequent pronoun forms in social reasoning con-
texts. This is a test for compositional generalisa-
tion, as neopronouns are systematic, productively
used, substitutive with regard to the referents they
replace, and localist in the sense of only depend-
ing on context, question and answer sentences. As
such, our benchmark fulfils the criteria essential for
compositional generalisation, as laid out by Hupkes
et al. (2020).

Shift type Our benchmark constitutes a covari-
ate shift. We assume that social reasoning of the
kind that SIQa tests is somehow implicitly, if not
explicitly, included in the pre-training data. By
changing the pronouns in the complete data sets
(context, questions and answers), we do not alter
the nature of the task or the correctness patterns of
the answers. While the test distribution now dif-
fers more strongly from the training distribution:
p(xtst) ̸= p(xtr), the conditional probabilities still
stay the same: p(ytst|xtst) = p(ytr|xtr).

Shift source Our benchmark includes a gener-
ated shift. As the original SIQa data set is crowd-
sourced, it is reasonable to assume that it still
follows a somewhat representative, if not com-
pletely authentic (in the sense of Stefanowitsch,
2020) linguistic distribution, comparable to com-
mon pre-training corpora without synthetic data.
This representative distribution is explicitly altered

46



for SlayQA by including a much higher proportion
of neopronouns than classical corpora.

Shift locus The data shift is localized between
pre-training and testing. We explicitly do not fine-
tune the models on social reasoning with neopro-
nouns, as we are interested in the compositional
abilities of LLMs as is and do not want to skew
them with additional training on data that reflects
the fairness generalization we aim to assess.

6 Evaluation

6.1 Methodology

Models We evaluate five different, autoregres-
sive models: OLMo-1B (Groeneveld et al., 2024)
as a representative model for the Dolma pre-
training corpus (Soldaini et al., 2024), three
RedPajama-INCITE-7B models (base, chat-tuned
and instruction-tuned) for the RedPajama-Data-
1T data (Together Computer, 2023) and a quan-
tized version of the instruction-tuned Llama-3.1 8B
(Team, 2024) for C4 (Raffel et al., 2020). Because
the original Llama-1 was provably trained on C4
(among other data sets, see Touvron et al., 2023a),
we assume that this data set is still fully present
in the training data of Llama-3. However, it is not
clear whether this is actually the case, since the
most recent Llama paper (Team, 2024) does not
reveal any information about the concrete make-up
of the pre-training data.

Due to the exorbitant resource demands of so-
called small state-of-the-art models like OlMo-7B
or Llama-3.1-8B, their evaluation on this proposed
benchmark was, unfortunately, beyond the capabil-
ities of our available GPU resources. Therefore,
we opted to only evaluate smaller (OLMo-1B) or
quantized models. For the Llama-3.1 model, we
had to resort to a version working with lower num-
ber precision (quantized from FP16 down to INT4
with AutoAWQ, based on Lin et al., 2024). Unfortu-
nately, this specific configuration is only available
for the instruction-tuned model, so we do not pro-
vide scores for the base model.

Data We evaluate our models on three data sets:
our distribution-shifted benchmark, the original
1.388 unaltered data points with at least two coref-
erence chains, and a random selection of 1.388
examples sampled from Social IQa that were not
restricted with regard to coreference. For repro-

ducibility reasons, we host SlayQA1, the randomly
sampled Social IQa set2 and the unaltered data
points, NoSlayQA3, on the Hugging Face hub.

Scoring To assess the preference of the in-
dividual models, we use the Hugging Face
transformers library (Wolf et al., 2020) and its
evaluation metrics. In line with Brown et al. (2020),
we measured the language models’ preference for
a specific answer by calculating its probability con-
ditioned on the context and question. To do so,
we chose a perplexity-based (Jelinek et al., 1977)
approach.4 We calculated the perplexities of con-
catenated context + question + answer strings for
all three choices in each example and then selected
the answer with the lowest perplexity as the one
preferred by the model. As such, we perform zero-
shot evaluation on models not explicitly fine-tuned
for this task. Performance is measured as accuracy
against the gold standard labels in the data.

6.2 Results
The results of the zero-shot evaluation are dis-
played in Table 4. Across all models and evalu-
ation data sets, the results lie between 7% and 13%
above the baseline. This indicates that all models
have acquired some generalization capabilities in
the social reasoning domain, at least as instantiated
by the SIQa/SlayQA question patterns. The dif-
ferences between the models and between the data
sets for the various models are comparatively small,
but still exhibit somewhat systematic patterns.

From a model-centric viewpoint, the Llama-
3.1-8B model in particular outperforms the other
models, achieving the highest scores on all three
data sets – 46.97% on the SIQa subset, 46.4% on
NoSlayQA, and 44.16% on SlayQA. This quan-
tized model consistently outpaces the RedPajama
series and the OLMo-1B model by three to four
percentage points. The RedPajama models demon-
strate slightly varying performance, with the Base
variant surpassing the others on the SIQa subset and
the instruction-tuned version achieving the worst
performance. The scores for OLMo-1B are compa-
rable to the best RedPajama scores.

1https://huggingface.co/datasets/bbunzeck/
slayqa

2https://huggingface.co/datasets/bbunzeck/
minisiqa

3https://huggingface.co/datasets/bbunzeck/
noslayqa

4Original experiments with the outlines library (Willard
and Louf, 2023) and constrained generation showed similar
tendencies, but generally resulted in lower accuracy scores.
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Model SIQa subset NoSlayQA SlayQA

Random baseline 33.33% 33.33% 33.33%

allenai/OLMo-1B 43.88% 42.87% 42.21%

togethercomputer/RedPajama-INCITE-Base-3B-v1 42.87% 43.3% 40.99%
togethercomputer/RedPajama-INCITE-Instruct-3B-v1 40.71% 41.35% 40.78%
togethercomputer/RedPajama-INCITE-Chat-3B-v1 41.5% 43.95% 41.93%

hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4 46.97% 46.4% 44.16%

Table 4: Results for different models

When comparing the data sets, it is striking that
scores for SlayQA are consistently lower than the
scores the unaltered NoSlayQA. Despite the differ-
ences being fairly marginal, this pattern is stable
across all five models. Interestingly, performance
on the (presumably easier) SIQa subset, which was
not filtered for two coreference chains, is not al-
ways higher than the performance on (No)SlayQA.
While this is the case for OLMo-1b and Llama-3.1-
8B, the RedPajama models always perform better
on NoSlayQA than on the SIQa subset.

7 Discussion and conclusion

We created SlayQA as a more inclusive benchmark
for evaluating question answering and social rea-
soning in LMs. A key motivation was to test how
well these models can generalize in this domain,
particularly under the significant distribution shift
between pre-training and test data that we created
by replacing gendered pronouns with neopronouns
that occur much less frequently in the investigated
pre-training corpora.

The results indicate that we have succeeded in
our objectives. The scores on SlayQA are consis-
tently lower than those on the parallel NoSlayQA
data set, which suggests that the models struggle
more with the challenges SlayQA presents. Inter-
estingly, however, the scores on SlayQA are not
always below our random selection SIQa data. This
finding is intriguing because we expected questions
requiring the tracking of two coreference chains
to be more challenging than those without such
demands. It is quite possible that questions without
two coreference chains introduce different, perhaps
equally complex, challenges. Moreover it should
also be noted that the relatively small differences
between models could be due to training noise –
for an even more comprehensive evaluation of neo-
pronouns’ influence, several comparable models

that differ in their random initializations would
be needed. As these are not readily available and
costly to train, we have to leave this direction to
future work.

From a model-centric standpoint, the largest
model (Llama-3.1-8B) consistently outperforms
the smaller models, even though it was drastically
quantized to much lower number precision. Among
the smaller models, the performance differences
are minimal, with no substantial gap between the
1B OLMo and 2B RedPajama models. Addition-
ally, there are no significant differences between
the base RedPajama model and those fine-tuned
for instruction-following or conversational tasks,
which is surprising given the assumption that fine-
tuning should improve performance on question
answering tasks compared to vanilla models.

Although we were not able to evaluate larger
models, our accuracies do not deviate drastically
from comparable zero-shot evaluations for much
larger models. In the the Llama-1 paper, Tou-
vron et al. (2023a) report scores between 48.5%
for Llama-1-7B and 52.3% for Llama-1-65B. For
Llama-2 (Touvron et al., 2023b), scores align as
well (48.3% for the 7B model, 50.7% for the 70B
model). Even the largest Llama-3 model with 405B
parameters only achieves 53.7% on SIQa, as re-
ported in Team (2024). Judging from these meagre
scaling effects, we assume that evaluations of larger
models on SlayQA should not deviate drastically.

While we decided to employ a zero-shot evalua-
tion approach for comparability, it would also be
interesting to see how models fare in multi-shot rea-
soning or fine-tuning contexts. The AllenAI leader
board for SIQa5 reports the best fine-tuned model
with a score of 84.31%. Furthermore, prompting
has started to replace more technical evaluation ap-

5https://leaderboard.allenai.org/socialiqa/
submissions/public
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proaches (although it remains debated, see Hu and
Levy, 2023) – as such it would be also interesting
to see how commercial and open models work in
SIQa in prompting settings with chain-of-thought
or different reasoning approaches.

Future research similar to SlayQA should def-
initely aim to include even more novel and lin-
guistically interesting forms, e.g. the aforemen-
tioned nounself, emojiself, numberself or nameself
pronouns (Lauscher et al., 2022). Their unique
structure and usage should be even rarer than neo-
pronouns and could pose even more veritable chal-
lenges to the generalization capabilities of modern
LMs. Additionally, the SlayQA paradigm could be
expanded to other benchmarks that test different
capabilities. For example, it would be interesting
whether performance on the grammatical bench-
mark BLiMP (Warstadt et al., 2020) deteriorates
with the inclusion of neopronouns. Finally, the
influence of different language modeling choices,
e.g. tokenization, deserves further scrutiny. As
our tested models did not drastically differ in sub-
word tokenization for the tested (neo)pronouns, we
cannot draw definite conclusions. Evaluation on a
wider range of models could illuminate this further.

Limitations

As this study is the first of its kind, it is still limited
in various ways. As previously mentioned, evalua-
tions of extremely large LMs were impossible due
to limited resources. Yet, the comparison of our
results with those of contemporary model reports
showed similar scores, so we assume that this limi-
tation did not impact the current study in a major
way. Another limiting factor lies in the focus on
neopronouns. As mentioned in the previous para-
graph, further ways of gender-inclusive pronoun
usage exist. Each one of them is deserving of recog-
nition in inclusive NLP research, but for the sake
of brevity, we focused on neopronouns only. As a
final limitation, we question the quality of SIQa as
a benchmark of social reasoning. We include one
example in section 4.2, but our manual inspection
of SIQa yielded many more such examples with
confusing or borderline nonsensical “correct” an-
swers. While we chose it as the base of SlayQA
due to its widespread use in evaluation of SOTA
models, its quality for the kind of reasoning it aim
to evaluate is fairly questionable.
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A Pronoun frequencies in pre-training corpora

The following tables contain the absolute token frequencies of all non-subject forms of the established
gendered pronouns he and she, the gender-neutral they (which is more commonly used in the plural form,
except the explicitly singular themself ), and eight neopronouns from Hossain et al. (2023). Frequencies
are reported for C4 (Raffel et al., 2020) and Dolma (Soldaini et al., 2024), and were calculated with
WIMBD (Elazar et al., 2024).

C4 Dolma

him 76.642.827 466.261.554
her 120.502.480 610.920.325

them 206.400.522 1.224.786.435

thon 872.654 992.499
em 14.687.464 25.071.924
aer 607.125 638.705
co 83.935.707 199.206.147
vir 456.939 645.878
xem 285.577 357.204
em 14.687.464 25.071.924
zir 22.433 40.578

Table 5: Frequencies for established object pronouns and object neopronouns in C4 and Dolma

C4 Dolma

his 154.746.745 932.171.598
her 120.502.480 610.920.325

their 300.195.337 1.677.918.677

thons 54.734 90.213
es 17.287.828 20.223.489

aer 607.125 638.705
cos 2.040.163 5.310.600
vis 2.335.366 4.775.286
xyr 3.579 10.039
eir 201.341 375.303
zir 22.433 40.578

Table 6: Frequencies for established possessive determiners and neo-determiners in C4 and Dolma

C4 Dolma

his 154.746.745 932.171.598
hers 2.652.526 10.223.659

theirs 2.429.259 12.494.222

thons 54.734 90.213
ems 2.938.663 4.043.142
aers 20.147 24.815
cos 2.040.163 5.310.600
virs 4.374 11.125
xyrs 1.912 1.977
eirs 20.911 24.996
zirs 681 2.317

Table 7: Frequencies for established possessive pronouns and possessive neopronouns in C4 and Dolma
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C4 Dolma

himself 22.378.650 134.674.595
herself 11.941.936 63.594.961

themself 158.315 1.289.078

thonself 36 248
emself 1.017 2.341
aerself 28 161
coself 51 193
virself 0 49

xemself 155 626
emself 1.017 2.341
zirself 387 1.695

Table 8: Frequencies for established reflexive pronouns and reflexive neopronouns in C4 and Dolma

B Token numbers for (neo)pronouns

OLMo RedPajama-INCITE Llama-3.1-8B

Subj. Obj. Det. Poss. Reflex. Subj. Obj. Det. Poss. Reflex. Subj. Obj. Det. Poss. Reflex.

he 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
she 1 1 1 1 2 1 1 1 1 2 1 1 1 2 3
they 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2

thon 1 1 2 2 3 1 1 2 2 3 1 1 2 2 2
e 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2
ae 1 2 2 2 3 1 2 2 2 3 1 2 2 2 3
co 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2
vi 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2
xe 1 2 2 2 3 1 2 2 2 3 1 2 2 2 3
ey 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2
ze 1 2 2 2 3 1 2 2 2 3 1 2 2 2 3

Table 9: Number of sub-word tokens that a form of a (neo)pronoun is split into by a specific model
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