
Proceedings of the 2nd GenBench Workshop on Generalisation (Benchmarking) in NLP, pages 54–68
November 16, 2024 ©2024 Association for Computational Linguistics

Automated test generation to evaluate tool-augmented LLMs
as conversational AI agents

Samuel Arcadinho
samuel.arcadinho@zendesk.com

David Aparício
david.aparicio@zendesk.com

Mariana S. C. Almeida
mariana.almeida@zendesk.com

Abstract
Tool-augmented LLMs are a promising ap-
proach to create AI agents that can have re-
alistic conversations, follow procedures, and
call appropriate functions. However, evaluat-
ing them is challenging due to the diversity of
possible conversations, and existing datasets
focus only on single interactions and function-
calling. We present a test generation pipeline
to evaluate LLMs as conversational AI agents.
Our framework uses LLMs to generate diverse
tests grounded on user-defined procedures. For
that, we use intermediate graphs to limit the
LLM test generator’s tendency to hallucinate
content that is not grounded on input proce-
dures, and enforces high coverage of the possi-
ble conversations. Additionally, we put forward
ALMITA, a manually curated dataset for evaluat-
ing AI agents in customer support, and use it to
evaluate existing LLMs. Our results show that
while tool-augmented LLMs perform well in
single interactions, they often struggle to han-
dle complete conversations. While our focus
is on customer support, our method is general
and capable of AI agents for different domains.

1 Introduction

Large language models (LLMs) are revolutionizing
AI agents and have demonstrated remarkable gen-
eralization capabilities across various domains (Wu
et al., 2023; Lan and Chen, 2024; Li et al., 2024).
In particular, LLMs have made a profound impact
as chatbots and as AI agents in customer support
systems (Dam et al., 2024; Katragadda, 2024).

Nevertheless, carelessly deploying an LLM as
an AI agent, and allowing them to interact with real
users and APIs, can lead to misinformation, reputa-
tional damage and costs to the company. Thus, it is
critical to evaluate AI agents beforehand. Despite
this need, evaluating the performance of LLMs
in real-world scenarios remains a significant chal-
lenge. This is specially true in a conversational con-
text, which is more complex than answering single-
interaction requests. Most current approaches to

evaluate LLMs focus primarily on specific tasks
such as multi-QA (Zhuang et al., 2024; Kamalloo
et al., 2024) or code generation (Liu et al., 2024b,a),
which do not fully evaluate the broader set of capa-
bilities that LLMs are expected to possess to truly
function as an effective conversational AI agents.

Focusing on customer support, an effective AI
agent is should be capable of interacting with tools
and the customer in order to resolve customer is-
sues, while stricly adhering to procedures described
by customer support admins. In order to assess the
AI agent’s performance, it is crucial to measure its
ability to follow a given set of procedures and their
resilience against potential customer manipulations.
For that, it is key to have a comprehensive evalu-
ation dataset, which can lead to valuable insights
into the agent’s abilities and limitations.

We propose a method to generate evaluation
datasets for tool-augmented LLMs as conversa-
tional AI agents. Our method automates dataset
generation using an LLM to create conversations
based on procedures, which are then transformed
into tests. We use intermediate graph structures to
improve the quality of the generated dataset (i.e.,
tests follow user-defined procedures) and make it
more comprehensive (i.e., tests cover most relevant
cases). To assess the AI agent’s ability to handle at-
tacks, we incorporate red teaming in our examples.

Our generation pipeline, illustrated in Figure 1,
builds diverse datasets autonomously by using syn-
thetically generated intents as seeds for procedures.
Additionally, our pipeline also allows for the inclu-
sion of real data where available, such as actual
procedures or APIs used by a company to gener-
ate synthetic conversations. While datasets can
be created fully automatically, we also put for-
ward ALMITA (Automated benchmark of Language
Models for Intelligent Tool-augmented Agents), a
manually curated dataset. We use this high-quality
dataset to benchmark LLMs as conversational tool-
augmented AI agents.

54

Intent

“cancel order”

Procedure
generator

1

Procedure

API extractor APIs

2

Flowgraph
generator

3

Flowgraph Conversation
graph generator

4

Conversation
graph

Noise
generator

5

Path
sampler

6
Paths

Cancel my order

Need the id

123

cancel(123) SUCCESS

Done

Conversation
generator

Conversation

7

Test
extractor

8

Cancel my order

Need the id

123

cancel(123) SUCCESS

Done

Cancel my order

Need the id

Cancel my order

Need the id

123

cancel(123) SUCCESS

Test #1 Test #2 Test #3

Figure 1: Automated test generation pipeline. For a given intent (e.g., cancel order) (1) we use an LLM to generate
a corresponding procedure. Then, (2) an LLM extracts relevant APIs from the procedure, and (3) generates a
flowgraph from the procedure and its APIs. Next, (4) an LLM generates a conversation graph from the flowgraph
and (5) adds noise to the graph (e.g., users going out of the expected procedure), to make the graph more realistic.
To obtain conversations from the graph, (6) we sample paths from it, which correspond to different interactions.
Finally, (7) an LLM generates conversations from the paths and (8) we extract tests from the sampled conversations.

Our main contributions are:

• A method that generates datasets to evaluate
tool-augmented LLMs as AI conversational
agents, reducing manual effort needed to ob-
tain such datasets. Our method provides an
holistic evaluation of AI agents, with real-
istic and diverse conversations, use of tools
(e.g., functions/APIs), and grounded on user-
defined procedures.

• ALMITA, the first conversational dataset that
can be used to evaluate customer support AI
agents, including both tooling (i.e., functions)
and conversation reply to follow company
user-defined procedures. ALMITA contains
1420 synthetic tests that were manually cu-
rated to ensure high-quality samples1.

• Benchmarking of multiple LLMs on the pro-
posed dataset. Our results indicate that current
LLMs have high performance regarding single
message accuracy and in calling the correct
functions, but have limited accuracy when the
complete conversation is considered, which
might indicate that they would not be success-
ful if deployed as fully autonomous customer
support AI agents.

We also note that, while our evaluation focuses
on customer support, the same method could be
applied, with some changes, to other domains.

1ALMITA, along with all other datasets generated using our
pipeline and referenced in the paper, are available in https:
//github.com/zendesk/almita-dataset.

2 Related work

With the increasing use of LLMs as AI agents, sig-
nificant efforts have been made to develop bench-
marks to evaluate their ability to correctly answer
customer requests in conversational settings. GAIA
proposes 466 human-annotated questions covering
tasks like general knowledge, daily tasks, and data
analysis (Mialon et al., 2023). Recently, AgentIn-
struct introduced a framework for generating syn-
thetic data from diverse sources, such as code, web
articles, and textbook chapters, to help agents gen-
erate and refine instruction sets (Mitra et al., 2024).
Unlike our work, these datasets do not assess tool-
augmented AI agents.

Datasets to evaluate tool-augmented LLMs have
been proposed. Zeng et al. (2023) propose Agent-
Tuning and compile multiple agent datasets to cre-
ate sequences of API calls. AgentBench features
multi-step interactions between an agent and the
environment, using various tools to solve user re-
quests (Liu et al., 2023). Patil et al. (2023) and Qin
et al. (2023) build datasets of APIs from sources
like TorchHub, TensorHub, and rapidAI, prompt-
ing an LLM to generate instructions solvable by
these APIs. Basu et al. (2024) combine multiple
datasets to convert user instructions into API calls.
APIGen introduced an automatic method to gen-
erate synthetic datasets for tool function calling
(Liu et al., 2024c). Unlike our work, these datasets
are not conversational and just focus on mapping
utterances to API calls, and they do not use inter-
mediate structures (i.e., graphs) to ensure coverage
and reduce hallucinations in generated tests.

55

https://github.com/zendesk/almita-dataset
https://github.com/zendesk/almita-dataset

Other relevant work focuses on graph learning
and on using different intermediate structures to
reducing hallucinations. Ye et al. (2023) propose
InstructGLM, which uses natural language to de-
scribe node features used to tune an LLM for infer-
ence on graphs. Wang et al. (2024) introduce NL-
Graph, a benchmark for graph-based problems writ-
ten in natural language, demonstrating that LLMs
can perform structured operations on textual de-
scriptions of graphs. Additionally, Narayan et al.
(2023) propose using question-answer blueprints
as intermediate representations to reduce halluci-
nations. These works do not fully encompass our
problem setting of generating conversations in dia-
log format, calling APIs, and extracting tests.

3 Method

Our automated test generation pipeline, illustrated
in Figure 1, begins by generating textual proce-
dures from input intents. While one could use an
LLM to directly generate conversations from proce-
dures, our approach converts the procedures into a
flowgraph and then into a conversation graph. Our
assumption is that using these intermediate struc-
tured representations makes the task of creating the
conversations grounded on the procedures more
accurate; see Section 4.2 for supporting evidence.
Additionally, the graphs allow us to introduce noise
into the conversations, making conversations more
realistic and challenging, and enable us to sample
paths, ensuring path coverage and conversation di-
versity. We then generate conversations from the
sampled paths. Finally, we extract tests from these
conversations by breaking down the conversation at
each user message, storing the context, and record-
ing the generated response as the correct reply.

3.1 Intent generator

Intents (or issues, e.g., cancel order) serve as the
seeds for our automated test generation method.
Intents can be generated by an LLM (as is the case
in this work), sourced from predefined domain-
specific intents, or a mix of both. The prompt used
to generate intents is shown in Appendix A.1.

3.2 Procedure generator

A procedure describes how a given issue/intent
should be solved by an agent. We use an LLM
to generate a procedure for each input intent by
asking it to provide a list of instructions that helps
an agent fulfill a given task. We enforce in the

prompt to avoid outputting general statements (e.g.,
"cancelling policies might depend on the company"
or "explain the company’s policy") since our goal
is to generate specific and unambiguous procedures
with precise and granular steps. We also enforce
that conditionals are possible but that they need to
have a clear solution in the steps of the procedure.
Finally, steps might contain actions based on APIs
(e.g., search a database, escalate an issue) but they
cannot be browsing actions (e.g., click on the login
page). The full prompt is shown in Appendix A.2.
Similarly to what we described for intents, existing
procedures (e.g., of a company) can be included as
input for our method. Moreover, procedures can
be generated based on existing knowledge, namely
existing tickets or help center articles.

Consider the intent "order not received": a sim-
ple procedure could be "If the customer did not
receive their order, allow the customer to cancel or
refund their order given that they provide a correct
order id". We use this procedure as an illustrative
example throughout the paper (see Figures 2 to 4.)

3.3 API extractor
Our target use-case is tool-augmented AI agents.
We use an LLM to generate APIs that are useful for
an input procedure. We enforce in the prompt that
the extracted APIs are agent APIs and not customer
facing APIs. Generated APIs include not only the
API name, but also their input output parameters,
as well as a small description. The full prompt
is shown in Appendix A.3. These APIs should be
explicitly called by the agent to fulfill the procedure.
Similarly to intents and procedures, existing APIs
can be easily included in our pipeline.

3.4 Flowgraph generator
The flowgraph generator receives as input a pro-
cedure and relevant APIs and generates a directed
graph encapsulating the logic of the procedure from
the agent’s perspective: nodes are agent actions and
edges are customer replies or API outputs. Nodes
are of 4 different types: (i) a single start_message
node is the initial message sent by the agent to the
customer, (ii) message nodes are additional mes-
sages sent by the agent to the customer, (iii) api
nodes are API calls performed by the agent, and (iv)
end_message nodes are messages by the agent that
end the interaction. To reduce hallucinations and
increase completeness, we enforce in the prompt
(Appendix A.4) that every detail from the proce-
dure needs to be in message nodes.

56

Greet the customer

Ask for order id

get_order_details

Inform that order
wasn’t found and ask

for correct info

Want to cancel or
refund the order?

Order cancelled

cancel_order refund_order

Order refunded

Didn’t receive
my order

Give order id Order not
found

Give order id

Order found

To cancel A refund

Success Success

Figure 2: Flowgraph for intent Order not received and procedure "If the customer did not receive their order, allow
the customer to cancel or refund their order given that they provide a correct order id". Blue nodes are message
nodes, black nodes are API call nodes, orange nodes are end nodes. Edge labels are user messages or API outputs.

An example of a flowgraph is given in Fig-
ure 2. Nodes in the flowgraph have a node_id (e.g.,
"N1"), a node_type (one of the four described
above), and a node_description, which should
be related to a step in the procedure (e.g., "Tell
the user the order was not found") or an API call
(e.g., "refund_order"). Edges in the graph are
either the user interaction (e.g., "Gives order id and
email") or the result of an API call (e.g., "Found
order"). Edges in the flowgraph have an edge_id
(e.g., "E1"), a tuple with the source node and the
target node (e.g., "(N1, N2)"), and an edge de-
scription, as described previously. We do one-shot
prompting, providing an example to the LLM; thus,
a complete flowgraph can be seen in flowgraph
prompt in Appendix A.4.

To try to guarantee correct flowgraphs, we in-
struct the LLM to generate graphs with only one
root node with type start_message, to always
have concrete messages in the node and edge de-
scriptions, and to provide API outputs in the out-
going edges of api nodes. To try to limit halluci-
nations and ensure that the graph encapsulates the
entire procedure, we instruct the LLM to follow
strictly what is in the procedure and to include all
content from it. At the end of the generation step,
we convert the graph into a networkx graph and, if
parsing succeeds, we pragmatically verify if all the
rules described previously are followed; if they are
not followed, we discard the generated flowgraph.

3.5 Conversation graph generator

A flowgraph represents a sequence of agent steps
to fulfill a procedure. The flowgraph’s structure
does not directly map to a conversation, which can
make the task of creating a conversation from a
flowgraph hard. Thus, the goal of the conversa-
tion graph generator is to convert the flowgraph

Didn’t receive
my order

Greet the
customer

get_order_
details

cancel_order refund_order

Ask for
order id

Gives order id

Do you want to
cancel or refund

the order?

I want to
cancel my
order

Your order
was cancelled

The order
wasn’t found

Gives another
order id

I want a
refund

Your order
has been
refunded

Order not found

Order found

Figure 3: Conversation graph for flowgraph from Fig.
2 for intent Order not received. Blue nodes are agent
nodes, green are user nodes, and black are API nodes.

into a a conversation graph, which is a structure
that is more akin to a dialogue. The generated
conversation graph is a directed graph that is ex-
pected to have nodes of three different types: (i)
agent nodes are messages sent by the agent, (ii)
customer nodes are messages sent by the customer,
and (iii) api nodes are API calls by the agent.

An example of a conversation graph is given in
Figure 3. Nodes in the conversation graph have
a node_id (e.g., "N1"), a node_type (one of the
three described above), and a node_description,
which is a message for agent and customer nodes,
and an API call for api nodes. Edges in the con-
versation graph connect consecutive messages/api
calls. Some conversation paths have conditions,
such as an API call returning that the order was
found or not; in these cases, edges have an edge de-
scription, otherwise the edge description is empty.

57

Cancel my order

Need the id

123

cancel(123) SUCCESS

Done

 Generated Conversation

Test #1

Cancel my order Cancel my order

Need the id

123

Cancel my order

Need the id

123

cancel(123) SUCCESS

Context

Expected
output

Test #2 Test #3

Donecancel(123)Need the id

Figure 4: Tests extracted from one conversation.

Edges in the flowgraph have an edge_id (e.g.,
"E1"), a tuple with the source node and the target
node (e.g., "(N1, N2)"), and an edge description.

In an effort to mitigate incorrect conversation
graphs, we provide the LLM with additional graph
construction rules, e.g., customer nodes should
be followed by either agent or api nodes, leaf
nodes should be assistant nodes. We use one-
shot prompting by giving the LLM as input an
example of a flowgraph and the corresponding con-
versation graph, as shown in Appendix A.5. Sim-
ilarly to flowgraphs, we load the generated graph
into networkx and verify if the required conditions
are met, otherwise the graph is discarded.

3.6 Noise generator

Conversation graphs are built from agent proce-
dures, thus they are expected to only contain good
behaviour by both the agent and the customer (i.e.,
happy paths). To make AI agents more resilient
to unexpected customer behaviour, which might
be malicious or not, we augment the conversation
graphs with behaviour outside of the procedure.

The noise generator traverses the agent nodes in
the conversation graph and, with a certain probabil-
ity (e.g., 20%), inserts an edge to a new customer
node with a node_description message which
can either be an "out-of-procedure" message or an
"attack" message. These messages are generated
beforehand by an LLM. Additionally, we add an
edge from the noisy customer node to a new agent
node with node_description as "Say you’re only
here to help with the original issue."

3.7 Path sampler

We extract conversations between a customer and
an agent by sampling paths from the conversation
graph. Given a conversation graph G with N nodes
and a desired number of conversations M , we em-

ploy a weighted random walks algorithm to sam-
ple paths, Algorithm 1, which is an enhanced ver-
sion of vanilla random walks, designed to improve
node coverage. For that, we use a weighting vector
w with N elements initialized with ones (line 3).
Each path p is built by iteratively sampling nodes
using sample_node (line 7). A node n, which is
a child of the last node in the current path p, is
sampled with a probability inversely proportional
to its weight wi, where wi is the number of times
node n was visited plus one (line 9). The index i
of node n in graph G is provided by node_index
(line 8). Path construction terminates when a leaf
node is reached (lines 11–13).

Algorithm 1 Conversation path sampling

1: Inputs: G, M
2: P ← ∅
3: w← 1N
4: while |P| < M do
5: p← ∅
6: while True do
7: n← sample_node(G, p,w)
8: i← node_index(G, n)
9: wi ← wi + 1

10: p← p | n
11: if n is EndNode then
12: P ← P | p
13: break

3.8 Conversation generator

The conversation generator creates synthetic con-
versations from an input conversation graph, a sam-
pled path, and relevant APIs. We provide the LLM
with context about the conversation graph struc-
ture and the APIs. Using one-shot prompting, we
present the LLM with an example triplet consisting
of a conversation graph, a list of APIs, and a sam-
pled path, as well as a possible conversation based
on these conditions (see Appendix A.6). In an
effort to generate valid conversations, we include
conditions in the prompt, such as always generating
a message with the API output following an API
message, alternating customer and assistant mes-
sages, ensuring agents act on API output messages,
and verifying API input and output types.

3.9 Test extractor

The test extractor converts a single conversation
into one or more tests. It iteratively breaks down

58

Intents Proc. Proc. Flowgraphs Conv.Graphs Conversations Tests
w/ APIs

Generated 84 168 132 70 49 217 1,420
+ auto. filters – – 98 55 33 – –
+ man. filters – 132 70 49 33 192 –
ALMITA 14 18 18 18 18 192 1,420
auto-ALMITA 52 63 63 63 63 407 2,696

Table 1: Statistics while bootstrapping ALMITA’s dataset from 84 intents. We show the number of samples after (i)
generation, (ii) automatic filtering, and (iii) human filtering annotations. "–" indicates no filtering. auto-ALMITA
was created using the same 84 seed intents as ALMITA, but using the same pipeline without any human filtering, so
that we can assess the capabilities of our test generation pipeline when no human annotators are available.

the conversation into sub-conversations (or con-
texts), each ending with a customer message (e.g.,
"Cancel my order") or an API output (e.g., "suc-
cess" following a cancel function call). The ratio-
nale is that since the generated conversations exem-
plify correct flows, we can construct contexts using
the preceding messages, with the expected output
being the next non-customer message, whether it’s
an agent response or an API call. Figure 4 illus-
trates an example of three tests extracted from a
generated conversation. Tests are used to evaluate
an AI agent by providing it with the context and
comparing its response with the expected output.

4 Results

In Section 4.1 we detail the creation of ALMITA,
a manually curated dataset for evaluating LLMs
as AI customer support agents. Two annotators
independently review each datapoint to identify
incorrect instances, followed by a discussion to
align their assessments and minimize disagree-
ments. Any datapoint deemed incorrect by at least
one annotator is then removed. GPT-4 is used for
all generation steps (see Figure 1). To assess the
benefits of the graph intermediate structures, we
conduct an ablation study comparing conversations
generated directly from procedures to those using
the intermediate structures, with manual curation
for quality assessment (Section 4.2). In Section 4.3,
we evaluate various AI agents on ALMITA. Finally,
in Section 4.4, we assess the effectiveness of our
pipeline in generating high-quality test sets auto-
matically. We do this by comparing the AI agents’
performance on ALMITA with those on its fully au-
tomated counterpart, auto-ALMITA.

4.1 Dataset generation: ALMITA
We begin by asking the LLM to generate intents
using the prompt from Appendix A.1, resulting in

84 intents. Using them as input, we prompt the
model to generate two procedures per intent, for a
total of 168 procedures. After manual annotation,
we remove 36 procedures that did not comply with
the rules from Section 3.2. The valid procedures av-
erage 315 words (ranging from 171 to 535) and 11
steps (ranging from 6 to 19). Next, we extract APIs
for each procedure as outlined in Section 3.3. APIs
not in the correct JSON format are automatically fil-
tered out, along with procedures with invalid APIs,
resulting in 70 valid procedures. Each of these
procedures, on average, includes 4 APIs (ranging
from 2 to 9). For each of the 70 procedures with
APIs, we generate the corresponding flowgraph.
We automatically filter out 15 flowgraphs and man-
ually filter 6 more that do not adhere to the rules
discussed in Section 3.4. The valid flowgraphs
average 15 nodes (ranging from 10 to 20) and 17
edges (ranging from 10 to 25). For each of the
remaining 49 valid flowgraphs, we generate the
corresponding conversation graph. We automati-
cally exclude 16 conversation graphs and manually
exclude 7 more based on adherence to rules (Sec-
tion 3.5). The valid conversation graphs average 23
nodes (ranging from 16 to 37) and 24 edges (rang-
ing from 15 to 37). From these conversation graphs,
we generate 217 conversations after path sampling
(Section 3.7). We manually filter out 25 conver-
sations for not following the rules (Section 3.8).
Thus, from the original 84 intents, we obtain 192
valid conversations. Each conversation traverses an
average of 12 nodes (ranging from 3 to 24). Finally,
tests are extracted from these conversations as de-
tailed in Section 3.9, resulting in 1420 generated
tests. Table 1 summarizes the dataset statistics. In
the end, the ALMITA dataset comprises 14 intents,
18 procedures, 18 flowgraphs, 18 conversations
graphs, 192 conversations and 1420 tests.

59

LLM
Reply API Test Conversation

Recall Correct Recall Correct Correct params. Correct Correct
GPT-4o 92.7 75.2 96.7 99.8 92.2 88.9 14.1
Mistral-NeMo-I 92.0 65.0 89.8 99.5 92.1 84.7 7.3
Claude3-s 88.0 60.3 96.2 99.8 90.5 83.3 10.4
GPT-4 53.2 77.7 98.1 99.8 93.0 76.9 4.2
Llama3.1-8b-I 74.8 53.5 72.1 90.8 85.9 73.1 1.6
GPT-4o w/ F 92.9 74.8 97.2 99.0 86.6 88.0 15.6

Table 2: AI agents evaluated on their capacity to produce correct replies with correct API calls. We test different
LLMs using the same prompt. Additionally, we evaluate LLMs using function calling (with the "w/ F" suffix). The
versions of the closed source models are gpt-4-0613, gpt-4o-2024-05-13, anthropic.claude-3-sonnet-20240229-v1:0.
The "-I" suffix indicates that it is an instruction model. All results are percentages, with the highest value in bold.

4.2 Ablation study: conversations from
procedures

We conduct an ablation study to validate the effec-
tiveness of our intermediate graph representations
in generating correct conversations. We remove
the flowgraph generator, conversation graph gen-
erator, noise generator, and path sampler, and gen-
erate conversations directly from the procedures
and APIs using the prompt from Appendix A.7.
Annotating conversations directly generated from
procedures showed to be a much more complex
and time-consuming than annotating conversations
generated from graphs. For this reason we only
annotate 50 conversations. All 50 conversations
are generated from the same 70 input procedures as
ALMITA, and they are curated by the same two an-
notators, following the same annotation strategy. K
The simplified pipeline results in ≈ 68% (34/50)
valid conversations, as evaluated by the same anno-
tators that curated ALMITA. In contrast, the original
pipeline with intermediate graph representations
yields ≈ 88% (192/217) valid conversations. This
indicates that graph representations improve the
validity of generated conversations. Even when
considering the cumulative impact of curating flow-
graphs, the original pipeline would automatically
generate ≈ 78% (192/217× 49/55) valid conver-
sations, which is above ≈ 68%.

Moreover, while the prompt used in the simpli-
fied pipeline could potentially be improved, the
simplified pipeline intrinsically does not ensure
that all branching paths from the procedure are
explored. This highlights the benefit of intermedi-
ate graph representations in covering all possible
conversation paths.

4.3 Evaluation of LLM AI agents

We use ALMITA to evaluate LLMs serving as cus-
tomer support AI agents. The dataset allows us
to evaluate the following dimensions, which we
report in Table 2: (i) reply recall: when the correct
action is to reply, the agent correctly sends a reply
message instead of calling an unnecessary API, (ii)
correct reply: when both the correct and the pre-
dicted action is to reply, the agent’s reply matches
the expected reply (we use BERTScore with a sim-
ilarity threshold of 0.55 after inspecting of some
examples), (iii) API recall: when the correct action
is to do an API call, the agent correctly detects that
it needed to perform an API call instead of reply-
ing, (iv) correct API: when both the correct and the
predicted action is to perform an API call, the agent
calls the correct API; (v) correct API parameters:
when both the correct and the predicted action are
the same API call, the agents calls the API with the
correct parameter values, (vi) test correctness (or
test accuracy): whether the test is fully correct (i.e.,
call the correct reply/API and, if the correct action
is an API, call the correct API and use the correct
parameters, or if the correct action is a reply, pro-
vide a correct reply), (vii) conversation correctness
(or conversation accuracy): whether the sequence
of all tests from the conversation where all correct.

We evaluate 5 different LLMs: GPT4-o, GPT-4,
Claude3-sonnet, Mistral-NeMo-Instruct, and
Llama3.1-8b-Instruct. To ensure fairness, we
use a uniform prompt for all models (details in Ap-
pendix A.8). Our prompt aims to be general, avoid-
ing any favoritism towards a specific model, al-
though we acknowledge that different models may
excel with different prompting styles. Since the
dataset includes API calling, we also test GPT4-o
with function calling, denoted as GPT-4o w/F.

60

We observe that all LLMs demonstrate high ac-
curacy when responding with an API, achieving
over 85% correctness in both the correct API and
correct API parameters dimensions. With the ex-
ception of Llama3.1-8b-I, which performs con-
siderably worse, the other models correctly deter-
mine when an API should be called, with an API
recall exceeding 90%. However, performance in
other dimensions is notably lower, suggesting that
datasets focused solely on API calls do not com-
prehensively evaluate an AI agent’s capabilities.

Interestingly, GPT-4 tends to call APIs even
when unnecessary, resulting in a lower reply recall
compared to other models. In terms of correct re-
ply, GPT models outperform the others, though this
may be biased by the use of GPT-4 for test genera-
tion. For test correctness, GPT-4o, Claude3-s, and
Mistral-NeMo-Instruct show the highest perfor-
mance, while GPT-4 and Llama3.1-8b-Instruct
rank among the lowest.

Most critically, we see that all models have very
low performance regarding correct conversation.
In practice, this would mean that these AI agents
would very likely fail at some step of a conversation
with a user. This showcases that current LLMs have
some limitations that require either better models
or very engineered prompts to suitably serve as
fully autonomous customer support AI agents.

Our dataset could, potentially, be useful to eval-
uate future models and/or strategies on their AI
agent capabilities. Furthermore, since the pipeline
is automated, the dataset could be updated to in-
clude more (and harder) tests, as well as adapted to
new or more specific domains.

4.4 Fully automated tests: auto-ALMITA

In this section, we analyze the results obtained by
AI agents on auto-ALMITA, the fully automated
version of the ALMITA dataset. This dataset was cre-
ated using the same seed intents from the ALMITA
dataset, described in section 4.1. Then we run the
same pipeline without the manual filtering steps.
Auto-ALMITA retains more data points and greater
diversity (see Table 1), albeit with some reduction
in quality. Being fully automatically generated,
auto-ALMITA can also be easily extended without
additional curation efforts.

We evaluate the same LLM agents from Table 2
and compare the global metric test correct obtained
by the AI agents both auto-ALMITA and ALMITA
in Figure 5. Both datasets rank the LLMs in the

70 74 78 82 86 90 94

70

74

78

82

86

90

94

GPT-4

Llama3.1-8b-I

GPT-4o

GPT-4o w/ F
Mistral-NeMo-I

Claude3-sonnet

test correct @ ALMITA

te
st

co
rr

ec
t@

au
to
-A
LM
IT
A

Figure 5: test correct value for different LLM Agents
on the auto-ALMITA and ALMITA datasets.

same order, with a high correlation value of 0.98
(detailed results are provided in Supplementary Ta-
ble 1). These findings suggest that the proposed
pipeline can generate evaluation datasets for AI
agents entirely automatically, which lead to conclu-
sions similar to those derived from curated datasets.

5 Conclusions

LLMs are being used as customer support AI
agents. However, existing evaluation datasets are
limited in their scope. We propose an automated
test generation pipeline to evaluate tool-augmented
conversational AI agents. Our proposed method
uses LLMs to generate intermediate graph struc-
tures that help limit hallucinations and improve
diversity in the generated tests. We evaluate dif-
ferent LLMs to analyze the current capabilities of
LLMs implemented as AI agents.

To facilitate this, we developed the ALMITA
dataset, which we used to thoroughly evaluate these
AI agents and identify their limitations. ALMITA al-
lows for a multifaceted evaluation across several
key dimensions, such as reply accuracy, API call
correctness, and overall conversation integrity. Our
findings highlighted significant limitations in cur-
rent LLMs, particularly in maintaining correct con-
versations throughout a user interaction.

Importantly, the ALMITA dataset can be used by
other researchers to evaluate AI agents, providing a
comprehensive benchmark for assessing various as-
pects of their performance, possibly in other target
domains. Additionally, since our test generation
pipeline is fully automated, we have the capabil-
ity to create new, more challenging versions of the
dataset. This adaptability ensures that our frame-
work can be continually updated to reflect more

61

complex and realistic scenarios, further enhancing
its utility for ongoing research and development of
AI agents in customer support and beyond.

6 Limitations

Our evaluation has some limitations. Namely, we
did not evaluate the diversity of the generated tests
quantitatively. We performed human annotation, to
verify correctness at each step, but the number of
annotations and of annotators was small. Our test
generation pipeline only used a single LLM as the
generator, namely GPT4 and this might influence
evaluation. A possible mitigation for this is to
repeat the test generation pipeline for other LLMs
and aggregate the tests. We evaluated multiple
LLMs but only using a single prompt. Our goal was
to test different models on the generated dataset,
but more advanced AI agents could be considered.

Additionally, we acknowledge that some metrics
may be too strict. As a future direction, we would
like to consider the severity of the errors of an AI
agent in a conversation. Conversations are rela-
tively fluid and we may have other replies/actions
that are somehow acceptable for a given procedure
besides of the most obvious and direct one that was
annotated in the dataset. There is still to be develop
more advanced and more semantic conversational
metrics allowing for some path variations, similarly
to what has been happening for the comparison of
two sentences where different words and order of
words can lead to similar meanings.

References
Kinjal Basu, Ibrahim Abdelaziz, Subhajit Chaudhury,

Soham Dan, Maxwell Crouse, Asim Munawar, Sad-
hana Kumaravel, Vinod Muthusamy, Pavan Kapa-
nipathi, and Luis A Lastras. 2024. Api-blend: A
comprehensive corpora for training and benchmark-
ing api llms. arXiv preprint arXiv:2402.15491.

Sumit Kumar Dam, Choong Seon Hong, Yu Qiao, and
Chaoning Zhang. 2024. A complete survey on llm-
based ai chatbots. arXiv preprint arXiv:2406.16937.

Ehsan Kamalloo, Shivani Upadhyay, and Jimmy Lin.
2024. Towards robust qa evaluation via open llms.
In Proceedings of the 47th International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, pages 2811–2816.

Vamsi Katragadda. 2024. Leveraging intent detection
and generative ai for enhanced customer support.
Journal of Artificial Intelligence General science
(JAIGS) ISSN: 3006-4023, 5(1):109–114.

Yu-Ju Lan and Nian-Shing Chen. 2024. Teachers’
agency in the era of llm and generative ai. Edu-
cational Technology & Society, 27(1):I–XVIII.

Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li,
Yizhen Yuan, Guohong Liu, Jiacheng Liu, Wenx-
ing Xu, Xiang Wang, Yi Sun, et al. 2024. Per-
sonal llm agents: Insights and survey about the
capability, efficiency and security. arXiv preprint
arXiv:2401.05459.

Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng
Wang, Zhen Yang, and Li Zhang. 2024a. Exploring
and evaluating hallucinations in llm-powered code
generation. arXiv preprint arXiv:2404.00971.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and
Lingming Zhang. 2024b. Is your code generated by
chatgpt really correct? rigorous evaluation of large
language models for code generation. Advances in
Neural Information Processing Systems, 36.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xu-
anyu Lei, Hanyu Lai, Yu Gu, Yuxian Gu, Hangliang
Ding, Kai Men, Kejuan Yang, Shudan Zhang, Xi-
ang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Shengqi Shen, Tianjun Zhang, Yu Su, Huan
Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
2023. Agentbench: Evaluating llms as agents. ArXiv,
abs/2308.03688.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu,
Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao,
Zhiwei Liu, Yihao Feng, et al. 2024c. Apigen:
Automated pipeline for generating verifiable and
diverse function-calling datasets. arXiv preprint
arXiv:2406.18518.

Grégoire Mialon, Clémentine Fourrier, Craig Swift,
Thomas Wolf, Yann André LeCun, and Thomas
Scialom. 2023. Gaia: a benchmark for general ai
assistants. ArXiv, abs/2311.12983.

Arindam Mitra, Luciano Del Corro, Guoqing Zheng,
Shweti Mahajan, Dany Rouhana, Andres Codas,
Yadong Lu, Wei ge Chen, Olga Vrousgos, Corby
Rosset, Fillipe Silva, Hamed Khanpour, Yash Lara,
and Ahmed Awadallah. 2024. Agentinstruct: Toward
generative teaching with agentic flows.

Shashi Narayan, Joshua Maynez, Reinald Kim Am-
playo, Kuzman Ganchev, Annie Louis, Fantine Huot,
Anders Sandholm, Dipanjan Das, and Mirella Lap-
ata. 2023. Conditional generation with a question-
answering blueprint. Transactions of the Association
for Computational Linguistics, 11:974–996.

Shishir G Patil, Tianjun Zhang, Xin Wang, and
Joseph E Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

62

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan
Tan, Xiaochuang Han, and Yulia Tsvetkov. 2024.
Can language models solve graph problems in natural
language? Advances in Neural Information Process-
ing Systems, 36.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023. Auto-
gen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint
arXiv:2308.08155.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu,
Yongfeng Zhang, et al. 2023. Natural language is
all a graph needs. arXiv preprint arXiv:2308.07134,
4(5):7.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning:
Enabling generalized agent abilities for llms. ArXiv,
abs/2310.12823.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,
and Chao Zhang. 2024. Toolqa: A dataset for llm
question answering with external tools. Advances in
Neural Information Processing Systems, 36.

63

A Prompts

A.1 Intent generation

System prompt

You are <REDACTED>, a platform providing customer support. You
serve clients from numerous different industries: internet providers,
financial institutions, e-commerce platforms, entertainment websites,
etc. All these clients have customer that can contact customer support
to obtain information, complain about something, or other reasons
to contact the customer support team.

User prompt

Your task is to generate a list of problems that can lead to a customer
contacting support. Think of the type of client for which the issue is
relevant, a description of the detailed issue, and a short name for the
error.
Generate {{ number_issues }} issues from a diverse pool of clients.
Format your answer as a json with the following structure:

[{
"client ": e.g., a bank , internet provider , etc.

Do not limit yourself to these examples!,
"issue": description of the error , be specific!,
"name": a short name for the issue

}]

A.2 Procedure generation

System prompt

You are <REDACTED>, a platform providing customer support. You
serve clients from numerous different industries: internet providers,
financial institutions, e-commerce platforms, entertainment websites,
etc. All these clients have customer that can contact customer support
to obtain information, complain about something, or other reasons
to contact the customer support team.
Your task is to generate a procedure that helps an agent to fulfil a
task. The agent can take actions or they can ask the customer for data
(e.g., email address). You can include branching in the procedure.

Do not give general statements such as "Each system might have
different processes". Instead, assume the role of a specific company
that has very defined processes.
Do not give general steps such as "Explain the company’s policy".
The agent is following a procedure, so all steps need to be clearly
stated, e.g., state precisely what is the policy. Do not leave room for
ambiguity nor lack of information.
Do not state conditionals that are not resolved in the procedures
such as "If it is allowed by the policy". Every conditional has to be
fully contained in the procedure, the agent should not have to read
another document nor rely on other knowledge about the company’s
procedures. Your role is to make up reasonable scenarios that are
unambiguous.
Steps should be precise and granular.
Avoid giving examples, we want a concise procedure.
Do not include actions that are unrelated to the interaction with the
client (e.g., document the interaction, monitor the process). The
procedure is solely on how to address the issue reported by the
customer.
Assume that you don’t have a browser. Do not include navigation
steps, just the actions that the agent should take.

User prompt

Issue
{{ issue }}

A.3 API extraction

System prompt

You are a programming assistant working for a customer experience
company. Given a procedure an agent should follow to solve a
customer problem, your job is to extract ALL possible APIs used by
the agent.
Never generate an API call that asks for passwords. The APIs
should be as specific as possible to what is in the procedure and
not general methods. All the API parameters should have type
different than None. When representing structured output follow
python convention like list[str] or dict[str, float]. Optional parameters
should follow the python convetion of Optional[str]. If the procedure
doesn’t have any action an agent should solve, return an empty
JSON.

Output
Respond only in JSON format with the following

schema. The name of the api should be written
in snake case.

{"apis": [{" name": str , "desc": str , "params ":
[{" name": str}], "output ": {"name": str ,
"type": str }}]}

User prompt

Procedure
```
{{ procedure }}
```

A.4 Flowgraph generation

System prompt

You are and experienced flowchart creator. You will be given a
procedure enclosed by <procedure></procedure> and a list of apis
that can used enclosed by <apis></apis>. Your job is to extract the
flowchart used to solve the problem. Your flowchart will be used by
an assistant to know how to solve the problem. The agent has no
access to the procedure, so all the information has to be contained in
this flowchart!!
You are and experienced flowchart creator. You will be given a
procedure enclosed by <procedure></procedure> and a list of apis
that can used enclosed by <apis></apis>. Your job is to extract the
flowchart used to solve the problem. Your flowchart will be used by
an assistant to know how to solve the problem. The agent has no
access to the procedure, so all the information has to be contained in
this flowchart!!

The flowchart is constituted by nodes and edges in the following
format:

[node_id](node_type){node_description}
[edge_id](parent_node_id ,

child_node_id){edge_description}

Node ids should always be N followed by an integer. Edge ids should
always be E followed by an integer.
You can use nodes of the type start_message, message, api and
end_message.
- start_message: initial message sent by the assistant to the customer,
taken from the procedure. It doesn’t have a parent node.
- message: node with a message sent by an assistant to the customer.
this message should have all the details found in the procedure.
- api: api call the assistant should perform.
- end_message: node to send a message and finish execution.

Graph construction rules
- The graph only have one root node of type ‘start_message‘.
- An outgoing edge from a message node is the reply of the customer.
Customer messages have to be specific.
- An outgoing edge from an api node is the output of the api.
- End nodes cannot have outgoing edges and should be of type
end_message.
- End nodes have the node type ‘end_message‘.
- Never have an edge going back to the start node N0.

64

Details
The messages by the agent and the customer should follow stricly
what is in the procedure. ALL the details in the procedure need to
be in the flowchat! Don’t assume that the agent will ever see the
procedure, so it is critical that the details are here, such as reasons
for something to fail, or information that needs to be collected.
Make sure all steps are nodes. Some procedures might have branch-
ing paths.
Always use the APIs when appropriate.
The flowchart must be enclosed by <flow></flow>.

Example of a flow:
<flow >
[N0](start_message){Greet the customer}
[E0](N0, N1){Didn 't receive my order}
[N1](message){Ask customer for order id, the email

or phone number}
[E2](N1, N2){Gives order id and email}
[E3](N1, N3){Gives order id and phone number}
[N2](api){get_order_details_by_email}
[N3](api){get_order_details_by_phone_number}
[N4](message){Do you want to cancel or refund the

order?}
[E3](N2, N4){Found order}
[E5](N3, N4){Found order}
[N5](message){Tell the user the order wasn 't found

and ask for correct information}
[E5](N2, N5){Order not Found}
[E6](N3, N5){Order not Found}
[E6](N5, N2){User provides another email or order

id}
[E7](N5, N3){User provides another phone number or

order id}
[N6](api){cancel_order}
[E8](N4, N6){I want to cancel the order}
[N7](end_message){Order cancelled}
[E9](N6, N7){Success}
[N8](api){refund_order}
[E9](N4, N8){I want a refund}
[N9](end_message){Order refunded}
[E10](N8, N9){Success}
</flow >

<apis >
{{ apis }}
</apis >

User prompt

<procedure >
{{ procedure }}
</procedure >

A.5 Conversation graph generation

System prompt

Your task is to convert a flowchart into a conversation graph.
The flowchart will be given in between <flowchart></flowchart>.
The flowchart is constituted by nodes and edges in the following
format:

[node_id](node_type){node_description}
[edge_id](parent_node_id ,

child_node_id){edge_description}

Nodes are of the following types:
- start_message: initial message sent by the assistant to the customer,
taken from the procedure.
- message: node with a message sent by an assistant to the customer.
- api: api call the assistant should perform.
- end_message: node to send an assistant message and finish execu-
tion. You need to convert it into a conversation graph where:

[node_id](node_type){node_description}
[edge_id](parent_node_id ,

child_node_id){edge_description}

Nodes are of the following types:
- assistant: message sent by the agent.
- user: message sent by the user.
- api: api call the agent should perform.

Graph construction rules:
- api nodes have outgoing edges with labels
- api nodes are followed by api or assistant nodes
- user nodes are followed by api or assistant nodes
- assistant nodes **can be only followed by** user nodes
- leaf nodes are assistant nodes

Edges connect user nodes to either assistant or api nodes. Only edges
from API calls can have descriptions.
The first node should start with an assistant node without any parent
node.
For instance, consider the following flow graph:

<flow >
[N0](start_message){Greet the customer}
[E0](N0, N1){Didn 't receive my order}
[N1](message){Ask customer for order id}
[E2](N1, N2){Gives order id}
[N2](api){get_order_details}
[N3](message){Do you want to cancel or refund the

order?}
[E3](N2, N3){Found order}
[N4](message){Tell the user the order wasn 't found}
[E4](N2, N4){Order not Found}
[E5](N4, N2){User gives another order id}
[N5](api){cancel_order}
[E6](N3, N5){I want to cancel the order}
[N6](end_message){Order cancelled}
[E7](N5, N6){Success}
[N7](api){refund_order}
[E8](N3, N7){I want a refund}
[N8](end_message){Order refunded}
[E9](N7, N8){Success}
</flow >

The correct output is:

<flow >
[N0](assistant){Greet the customer}
[N1](user){Didn 't receive my order}
[E0](N0, N1){}
[N2](assistant){Ask customer for order id}
[E1](N1, N2){}
[N3](user){Gives order id}
[E2](N2, N3){}
[N4](api){get_order_details}
[E3](N3, N4){}
[N5](assistant){Do you want to cancel or refund the

order?}
[E4](N4, N5){Found order}
[N6](assistant){Tell the user the order wasn 't

found}
[E4](N4, N6){Order not Found}
[N7](user){User gives another order id}
[E5](N6, N7){}
[E6](N7, N4){}
[N8](user){I want to cancel the order}
[E7](N5, N8){}
[N9](api){cancel_order}
[E8](N8, N9){}
[N10](assistant){Order cancelled}
[E9](N9, N10){Success}
[N11](user){I want a refund}
[E10](N5, N11){}
[N12](api){refund_order}
[E11](N11 , N12){}
[N13](assistant){Your order has been refunded}
[E12](N12 , N13){Success}
</flow >

User prompt

{{ flowgraph }}

A.6 Conversations generation

System prompt

You will receive a conversation graph with nodes and edges in the
following format:
-[Ni](assistant){message}: Agent nodes with the corresponding
message.
-[Nj](user){message}: User nodes with the corresponding mes-
sage.
-[Nk](api){message}: API nodes with the corresponding message.

The graph also has edges with the following format:
-[Ei](Ni,Nj){}: Message Ni happens before Nj.
-[Ej](Ni,Nj){api_output}: Only applicable when Ni is an API
node.
Message Ni happens before Nj and has api outputs api_output.
The flowchart is given inside <flow></flow>. The initial node is
[N1]. The agent is guiding the user throughout the process. Our
goal is to generate conversations based on the graph that follow the
specified paths, given between <paths></paths>.

65

For instance, consider the following flow graph:
<flow >
[N1](assistant){Greet the customer}
[N2](user){Didn 't receive my order}
[E1](N1, N2){}
[N3](assistant){Ask customer for order id}
[E2](N2, N3){}
[N4](user){Gives order id}
[E3](N3, N4){}
[N5](api){get_order_details}
[E4](N4, N5){}
[N6](assistant){Want to cancel or refund the order?}
[E5](N5, N6){Found order}
[N7](assistant){Tell user the order wasn 't found}
[E5](N5, N7){Order not Found}
[N8](user){User gives another order id}
[E6](N7, N8){}
[E7](N8, N5){}
[N9](user){I want to cancel the order}
[E8](N6, N9){}
[N10](api){cancel_order}
[E9](N9, N10){}
[N11](assistant){Order cancelled}
[E10](N10 , N11){Success}
[N12](user){I want a refund}
[E11](N6, N12){}
[N13](api){refund_order}
[E12](N12 , N13){}
[N14](assistant){Order refunded}
[E13](N13 , N14){Success}
</flow >

And the apis are:
<apis >
[

{
"name": "get_order_details",
"params ": [{" order_id ": "int"}],
"output ": {'name ': 'sent_status ', 'type ':

'list[dict[str , str]]'}
}

]
</apis >

If the given path is: [N1, N2, N3, N4, N5, N7], one possible conver-
sation is the following:

[
{

"role": "user",
"content ": "I didn 't receive my order"

},
{

"role": "assistant",
"content ": "Can you give me the order ID?"

},
{
"role": "user",
"content ": "The order ID is #812"

},
{

"role": "api",
"content ": "get_order_details(order_id =812)"

},
{

"role": "api_output",
"content ": "{" sent_status ": [{" item":

"Product1", "status ": "shipped "}]}"
},
{

"role": "assistant",
"content ": "I couldn 't find your order."

},
]

Generate the conversation in the format specified above. When
making information up, come up with reasonable names and never
generic entities like Example1, ProductX, and similar. For example,
if talking about products, mention existing products.
Only use the given APIs and make sure all the parameters are defined.
The conversations should follow the following rules:
- After a message with api role always include a message with
api_output role.
- After a message with the assistant role always follow with a message
with user role.
- A message with the user role is followed by a message with assistant
or api role.
- After a message with a api_output role always include a message
with assistant role.
- The API output should be in the format specified in the API defini-
tion. That is always in JSON format.
Note that, even if the node does not exist in the graph, the first
message should be a message by the user explaining their problem.

User prompt

{{ conversation_graph }}
<apis >{{ apis }}</apis >
path: {{ path }}

A.7 Conversations from procedures

System prompt

You are an experienced customer service agent. You will be given a
procedure enclosed by <procedure></procedure> and a list of apis
that can used enclosed by <apis></apis>. Your goal is to generate
conversations between an agent and a customer that could be solved
used the given procedure and apis.
For instance, consider the following procedure:

<procedure >
Handling a Customer Who Didn 't Receive Their Order

Start Interaction:
1.1. Greet the customer courteously.

Identify the Issue:
2.1. Confirm the customer didn 't receive the order.

Obtain Order Information:
3.1. Ask the customer to provide their order ID

along with the email address or phone number
associated with the order.

Retrieve Order Details:
4.1. If the customer provides the order ID and

email address:
- Use the company 's API to retrieve order details

by email.
4.2. If the customer provides the order ID and

phone number:
- Use the company 's API to retrieve order details

by phone number.

Check if Order is Found:
5.1. If the order is found , proceed to Step 6.
5.2. If the order is not found:
- Inform the customer that the order wasn 't found.
- Ask the customer to provide the correct email or

phone number and order ID.
- Repeat Step 3 based on the new information.

Determine Customer 's Request:
6.1. Ask the customer if they would like to cancel

the order or request a refund.

Processing Customer 's Request:
7.1. Cancellation:
- If the customer wants to cancel the order:
- Use the company 's API to cancel the order.
- Upon successful cancellation , inform the customer

that the order has been cancelled.
7.2. Refund:
- If the customer wants a refund:
- Use the company 's API to process the refund.
- Upon successful refund , inform the customer that

the order has been refunded.

End Interaction:
8.1. Conclude by thanking the customer for their

patience and confirming resolution.

And the apis are:

<apis >
[

{
"name": "get_order_details",
"params ": [{" order_id ": "int"}],
"output ": "bool"

}
]
</apis >

One possible conversation is the following:

[
{

"role": "assistant",
"content ": "Hello , how can I assist you?"

},
{

"role": "user",
"content ": "I didn 't receive my order"

},
{

"role": "assistant",
"content ": "Can you give me the order ID?"

},
{

"role": "user",
"content ": "The order ID is #812"

},
{

"role": "api",
"content ": "get_order_details(order_id =812)"

},
{

"role": "api_output",
"content ": "False"

},
{

"role": "assistant",
"content ": "I'm sorry but I couldn 't find

your order ."
},

]

66

Generate the conversation in the format specified above. When
making information up, come up with reasonable names and never
generic entities like Example1, ProductX, and similar. For example,
if talking about products, mention existing products.
Only use the given APIs and make sure all the parameters are defined.
The conversations should follow the following rules:

- After a message with api role always include a
message with api_output role.

- After a message with the assistant role always
follow with a message with user role.

- A message with the user role is followed by a
message with assistant or api role.

- After a message with a api_output role always
include a message with assistant role.

Note that, even if the node does not exist in the graph, the first
message should be a message by the user explaining their problem.

User prompt

<procedure >{{ procedure }}</procedure >
<apis >{{ apis }}</apis >

A.8 Tool-augmented AI agent

System prompt

You are a customer support agent with the goal of answering user
requests. You will be given the following information:

- conversation: Messages exchanged between the end
user and you , and the executed actions with
their

outputs.

This is the procedure you know about:

<procedure >
{{ procedure }}
</procedure >

You only know answers about this procedure! It is critical that you
do not come up with any data nor instructions that are not contained
in the procedure.
This is the list of available actions.

<actions >
{{ available_actions }}
</actions >

Sometimes your action might be simply to reply to an end user, other
times you will need to call an action that performs an operation
and/or retrieves necessary data. Some actions require information/-
parameters in order to be callable. If you do not have the necessary
information available in the context, YOU MUST ASK FOR IT
AND CANNOT SUGGEST THE ACTION. Make sure that you
follow the directives in the procedure before suggesting a relevant
action. For instance, some actions have consequences and might
require user confirmation before being executed, if stated in the
procedure. If this is the case, suggest a reply that asks confirmation
from the end user. Make sure that the information that you are using
properly matches the context (e.g., the user might give a phone num-
ber that does not match what is shown in the context, which contains
the output of actions.)
You MUST reply with a JSON object as follows:

{
'type ': name of the function to call ,
'parameters ': parameters to pass to the

function ,
}

User prompt

<conversation >
{{ conversation }}
</conversation >

B auto-ALMITA: Detailed evaluation

Supplementary Table 1 provides detailed results
obtained with the auto-ALMITA dataset, consider-
ing the 6 LLM agents and all the evaluation metrics
from Section 4.3.

67

LLM
Reply API Test Conversation

Recall Correct Recall Correct Correct params. Correct Correct
GPT-4o 91.1 77.1 89.5 95.1 84,4 85.4 14.7
Mistral-NeMo-I 89.2 67.5 89.5 93.8 80.7 81.3 10.3
Claude3-s 79.9 67.1 92.9 95.9 84.1 78.9 6.9
GPT-4 60.5 82.9 92.6 94.6 84.5 75.5 6.4
Llama3.1-8b-I 79.4 61.8 64.3 95.7 83.8 73.4 3.2
GPT-4o w/ F 89.6 75.3 93.0 93.8 72.2 82.9 11.5

Supplementary Table 1: LLM AI agents evaluated on auto-ALMITA. For each LLM, the highest value in shown in
bold. All results are percentages.

68

