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Abstract
Inferences from adjective-noun combinations
like Is artificial intelligence still intelligence?
provide a good test bed for LLMs’ understand-
ing of meaning and compositional generaliza-
tion capability, since there are many combi-
nations which are novel to both humans and
LLMs but nevertheless elicit convergent human
judgments. We study a range of LLMs and find
that the largest models we tested are able to
draw human-like inferences when the inference
is determined by context and can generalize to
unseen adjective-noun combinations. We also
propose three methods to evaluate LLMs on
these inferences out of context, where there is a
distribution of human-like answers rather than a
single correct answer. We find that LLMs show
a human-like distribution on at most 75% of
our dataset, which is promising but still leaves
room for improvement.

1 Introduction

As the pretraining datasets of LLMs grow, it be-
comes increasingly difficult to test whether LLMs
can generalize to unseen instances of linguistic phe-
nomena, since it is hard to systematically exclude
them from the pretraining data (Kim et al., 2022).
Adjective-noun combinations, in particular with so-
called privative adjectives like fake, provide a good
test bed for testing granular language understand-
ing and semantic composition in LLMs, since we
can find many adjective-noun bigrams which are
easy for humans to understand despite being novel
to them, and can further confirm that they are novel
to the LLM by a string search over its pretraining
corpus. Adjective-noun bigrams are naturally as-
sociated with membership inferences which allow
us to test whether LLMs have successfully “com-
posed” their meaning: is an {adjective} {noun} still
a {noun}? This inference is not as straightforward
as it may seem: while a yellow flower is clearly still
a flower (a subsective inference), a fake or coun-
terfeit dollar bill is typically not a dollar bill (a

Figure 1: Membership inferences for adjective-noun
combinations vary by adjective and noun.

privative inference), even though a fake watch is
typically a watch (Martin, 2022; Ross et al., 2024).
In order to draw the correct inference, humans and
LLMs need to grasp not only the effect of the adjec-
tive on the noun’s properties, but also which proper-
ties are required vs. merely typical for membership
in that noun/category. Moreover, like many cases
of meaning, this inference depends on context. For
example, a fake crowd might qualify as a crowd if
it is made up of paid actors, but less so if it is just
painted dummies on a movie set. Nonetheless, hu-
mans derive convergent inferences for many novel
bigrams both with and without context, giving a
ground truth to which we can compare LLMs.

Building on the dataset of English human judg-
ments developed in Ross et al. (2024), we com-
pare LLMs of several sizes with humans for
cases in which the context determines the infer-
ence. We further explore three methods to evaluate
LLMs against the full distribution of human rat-
ings when there is no provided context. We find
that when the context determines the inference, re-
cent larger LLMs closely match human behavior,
while smaller LLMs only sometimes do so. Almost
all LLMs, even smaller ones, are able to handle
novel adjective-noun combinations as well as they
handle known ones, suggesting that they evaluate
these combinations on-the-fly and can generalize
accordingly like humans do. This alignment in
performance on observed and novel combinations
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continues to hold in a setting where no context
is provided. However, we find that even 70B pa-
rameter LLMs are only able to approximate the
distribution of ratings of a population of human
raters for 75% of our dataset or less, struggling
on combinations with high human variance and in-
ferences which are rare for a particular adjective,
such as a homemade cat not necessarily being a
cat. Most LLMs also assign a more positive rat-
ing to the question “Is artificial intelligence still
intelligence?” than most humans (see Figure 5).
In sum, while our generalization results are highly
promising, there is room for improvement on the
task of matching human inferences in this category
overall. We share our code and data on GitHub.1

2 Related work

Most previous computational work on adjective-
noun composition focuses on distributional seman-
tics using word embeddings (Boleda et al., 2013,
2012; Cappelle et al., 2018; Guevara, 2010; Har-
tung et al., 2017; Vecchi et al., 2017). Cappelle
et al. (2018) specifically analyze privative adjec-
tive embeddings, finding no difference between
their embeddings and embeddings of other adjec-
tives. Results for early LLMs are largely nega-
tive: BERT (Devlin et al., 2019) shows no evi-
dence of compositionality for adjective-noun and
noun-noun phrases, relying instead on word over-
lap heuristics for similarity judgments (Yu and Et-
tinger, 2020). Bertolini et al. (2022) study the in-
ferences of adjective-noun combinations for BERT
and RoBERTa (Liu et al., 2019). They divide ad-
jectives into three inference classes—intersective,
subsective and privative—based on previous com-
putational work (Lalisse and Asudeh, 2015; Nayak
et al., 2014), and test whether LLMs can draw the
correct pattern of inferences for adjectives in each
class. However, recent work in linguistics (Pavlick
and Callison-Burch, 2016b; Martin, 2022; Ross
et al., 2024) suggests that Bertolini et al.’s task may
be ill-defined, since adjectives in these “classes”
can license either a subsective or a privative infer-
ence depending on the noun and context. Indeed,
Goodale and Mascarenhas (2023) find that BERT
can distinguish between intersective and subsective
adjectives, which are more clearly distinct.

For the “Is an X a Y” task more broadly, LLMs
from BERT to Llama 2 (Touvron et al., 2023) show

1https://github.com/rossh2/
artificial-intelligence/

some, but limited abilities to judge “Is an X a Y”
for hypernyms, especially with negation (Hanna
and Mareček, 2021; Ettinger, 2020; Ravichander
et al., 2020; Nikishina et al., 2023; Moskvoretskii
et al., 2024). Results from property learning also
show that earlier models struggle to learn what
properties are typical of nouns (Do and Pavlick,
2021; Apidianaki and Garí Soler, 2021; Pavlick
and Callison-Burch, 2016a)—a key part of our task,
since LLMs must know what constitutes a watch
in order to judge whether a fake watch counts as
one. Meanwhile, Lyu et al. (2022) find that BERT
and GPT-3 (Brown et al., 2020) cannot handle in-
ferences on recursive adjectives, such as “Is my fa-
vorite new movie my favorite movie?”, while Sathe
et al. (2024) find that GPT-2 (Radford et al., 2019),
MPT 30B (MosaicML NLP Team, 2023) and other
smaller models struggle to predict whether rare
adjective-noun combinations are acceptable to hu-
mans. However, less is known about the capabili-
ties of newer, larger models in these areas. Recent
work with newer models including Llama 2 and
GPT-3 on noun-noun compounds—whose mean-
ing arises less straightforwardly from their parts
than adjective-noun combination (Hacken, 2016)—
shows that the LLMs do not generalize well in this
case (Ormerod et al., 2024; Coil and Shwartz, 2023;
Rambelli et al., 2024) .

3 Human judgment dataset

Ross et al. (2024) present two datasets of hu-
man judgments on adjective-noun inferences. The
first, which we refer to as NO-CONTEXT, col-
lects human ratings on “Is an {adjective} {noun}
a {noun}?” on a 5-point Likert scale (“Definitely
not”, “Probably not”, “Unsure”, “Probably yes”
and “Definitely yes”) for 798 bigrams, covering
102 nouns crossed with 6 typically-privative and
6 typically-subsective adjectives. (In this paper,
we use “(typically-)privative / subsective adjective”
to refer to adjectives historically classed as such,
which often but not always result in the respective
inference.) 180 of the 798 bigrams are zero fre-
quency in the C4 pretraining corpus (Raffel et al.,
2020), which we take as a proxy for the undisclosed
pretraining corpora of the models we study. We
take these bigrams to be novel to both humans and
LLMs.2 We call a bigram high-frequency if it is in
the top quartile of bigrams studied by Ross et al.

2The dataset was not published when these models were
trained, so there is no danger of it being included in model
pretraining.
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Ross et al. show that this inference depends on
the adjective and noun, with bigrams with “subsec-
tive” adjectives usually (but not always; e.g., home-
made cat) being rated subsective, while bigrams
with “privative” adjectives such as fake crowd elicit
a wide distribution of ratings from privative to sub-
sective, with high variance per bigram. Moreover,
humans converge on inference judgments for many
zero-frequency bigrams, and show similar variance
overall between zero-frequency and high-frequency
bigrams, demonstrating that they can generalize
these inferences.

The second dataset, which we refer to as CON-
TEXT, shows that providing a context with appro-
priate detail is sufficient to determine the infer-
ence for typically-privative adjectives. Participants
first read a short 50-word context and then an-
swer “In this setting, is an {adjective} {noun} a
{noun}?” The dataset contains 56 expert-written
contexts for 28 bigrams, with one privative-biased
and one subsective-biased context for each bigram;
an example is shown in Appendix B.1. 6 bigrams
are zero-frequency in C4 and a further 7 are low-
frequency (below median frequency in the total set).
This dataset is much smaller due to the need for
trained annotators to create the contexts.

4 Experiment 1: In-context meaning
generalization

Typical LLM evaluations assume a single correct
answer for each question. Thus, we begin with the
smaller CONTEXT dataset from Ross et al. (2024)
where the contexts provided are sufficient to de-
termine the inference. Our evaluation focuses on
the following two aspects: (1) whether the LLM is
sensitive to the provided context, and (2) whether
the LLM is able to choose the intended inference
both for high-frequency bigrams it has presumably
seen during pretraining and also for zero-frequency
bigrams which we presume it has not.

4.1 Method

Experiment 1a evaluates the 28 bigrams in CON-
TEXT with no context provided. While there is no
single correct rating in this setting, we can use this
as a baseline to see if providing a context changes
the rating. Experiment 1b evaluates the same bi-
grams but provides the two contexts for each bi-
gram which bias the rating for humans. For both,
we adapt the method used in Ross et al. (2024) as
closely as possible for LLMs. We use the same

question wording, asking “(In this context [1b],)
is an {adjective} {noun} still a {noun}?” with the
same 5-point Likert scale, the only difference being
that the Likert scale is described in words rather
than pictured. We provide 5 few-shot examples
illustrating each rating on the scale.3 We believe
this to be a comparable setup since humans also see
examples during the training phase of the experi-
ment, though humans only see three. The few-shot
examples only demonstrate the use of the Likert
scale with “is-a” judgments, and do not include any
typically-privative adjectives; see Appendix B.2.

To get responses on the Likert scale, we calcu-
late the surprisal of the 5 answers. The model’s
response is whichever of these 5 answers has the
lowest surprisal. This limits us to assessing open-
source models where log-probabilities of the in-
put are available, excluding popular closed-source
models like GPT-4 (OpenAI, 2024). We study the
Llama 2 (Touvron et al., 2023) and Llama 3 series4

(Dubey et al., 2024) in detail, as well as Mixtral
7x8B (Jiang et al., 2024) and Qwen 2 72B (Yang
et al., 2024). We test all sizes of Llama 2 and
Llama 3 to investigate whether generalization abil-
ity improves with model size. We primarily focus
on instruction-tuned models; results for the base
Llama models are shown in Appendix E.

4.2 Results

Firstly, to measure whether the provided biased
contexts have a significant effect on inference
ratings, we compare the results from Experi-
ment 1a and 1b. Detailed results for Experi-
ment 1a are given in Appendix A. We fit the
same ordinal regression as Ross et al. (2024),
Rating ~ ContextBias, in R (R Core Team, 2023;
Christensen, 2022). While Ross et al. (2024) find
that for humans, both the privative and subsective
contexts have a significant effect on ratings com-
pared to rating the bigram with no context, we find
that this is not the case for all LLMs. For all LLMs,
we find that subsective contexts have a significant
effect (p < 0.05) compared to providing no con-
text in Experiment 1a. Privative contexts only have
a significant effect (p < 0.05) for those models
which rate many bigrams with typically-privative
adjectives as subsective without context (see Figure
9 in Appendix A), namely Llama 3 70B Instruct,

3Experiment 1c in Appendix E.5 performs an ablation
study on Experiment 1b with 0-shot prompting.

4In this paper, Llama 3 refers to the original Llama 3
models, not the newly released Llama 3.1 models.
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Figure 2: Accuracy on the context-based inference task (Experiment 1b) overall, in privative vs. subsective contexts,
and for high frequency vs. zero frequency bigrams. Accuracy on the context-based inference task increases with
model parameters for all models except Llama 2 Chat, and all models except Llama 2 70B Chat can generalize to
(perform similarly or better on) zero frequency (novel) bigrams.

Llama 3 8B Instruct and Qwen 2 72B Instruct.
Next, we judge the inference as correct if the

rating is “Definitely/Probably not” in privative-
biased contexts and “Probably/Definitely yes” in
subsective-biased contexts. Figure 2 shows the
accuracy for all language models under this met-
ric, plus a random guessing baseline. The human
results in Figure 2 should be viewed as a ceiling
measuring the effectiveness of the context at fixing
the inference, not human competence at the task.

We see that Llama 3 70B Instruct, Qwen 2 72B
Instruct and Mixtral 7x8B Instruct perform sim-
ilarly to humans on this task, suggesting a good
ability to (a) understand the effect the context has
on the thing described, (b) understand what is nec-
essary to count as an instance of each noun, and (c)
draw the correct inference based on the previous
two steps. For all models except Llama 2 70B Chat,
we see no difference between their accuracy on
high-frequency bigrams and zero-frequency ones.

Likewise, performance scales with model size
for all models except Llama 2 70B Chat. This is
because this metric penalizes use of the “Unsure”
rating, which Llama 2 70B Chat often uses (see Fig-
ure 9), and uses more often for the 6 zero-frequency
bigrams. Llama 2 13B Chat scores higher because
it is more confident, even though it is sometimes
confidently wrong. (Under the softer metric of “ac-
curacy within 1 SD of the human mean”, which
we will introduce in Section 5.1, performance does
indeed scale with model parameters – see Figure
10 in the Appendix.)

4.3 Discussion

While model performance on judging inferences
of adjective-noun combinations given a context

improves with scale, we see that almost all mod-
els behave similarly for high-frequency and zero-
frequency bigrams, despite presumably never hav-
ing seen the zero-frequency bigrams before (or at
least despite the substantial frequency gap). Thus,
we conclude that models do not handle this task by
memorizing inferences of noun membership dur-
ing pretraining and instead assess it dynamically,
thus being able to generalize (whether this process
is a case of genuine adjective-noun meaning com-
position, as humans are presumed to be able to
do in linguistic theory, or some other heuristics).
While this is an exciting result, this is a rather small
dataset. In the next section, we study the larger NO-
CONTEXT dataset from Ross et al. (2024).

5 Experiments 2 and 3: Evaluating
inferences without context

The NO-CONTEXT dataset in Ross et al. (2024)
asks the same inference question “Is an {adjective}
{noun} a {noun}?”, but without providing any addi-
tional context to help determine the inference. This
results in a wide distribution of human ratings for
some (but not all) bigrams involving typically pri-
vative adjectives. For example, a counterfeit dollar
bill is never judged to be a dollar bill. The distribu-
tion also widens for some bigrams with typically
subsective adjectives, such as homemade cat. In
this section, we propose three methods to investi-
gate whether LLMs can match the distribution of
ratings provided by humans in this context, since
there is no longer a single correct answer.

5.1 Method 1: Accuracy within 1 SD

The first method evaluates a single judgment de-
rived from an LLM and asks: Is the LLM sampling
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Figure 3: Accuracy within 1 SD of the human mean on the no-context inference task (Experiment 2) overall, for
typically privative vs. subsective adjectives, and for high vs. zero frequency bigrams. While accuracy is high, a
simple “majority” baseline nearly saturates this metric.

Figure 4: Ratings for select bigrams involving fake for
Llama 3 Instruct 70B, compared to the (rounded) 1 SD
interval around the human mean.

from the same distribution as the humans for each
bigram? A quick but coarse metric to assess this is
whether the LLM’s rating falls within one standard
deviation of the human mean, rounded to the near-
est integer rating (1 corresponds to “Definitely not”,
5 to “Definitely yes”).5 This method is intuitive
and easy to compute, but is also a relatively low bar.
To illustrate, Figure 4 shows the human means with
intervals 1 SD wide for a selection of bigrams of
the form fake {noun}, with the no-context ratings
from Llama 3 Instruct 70B superimposed. For fake
in particular, these intervals are relatively wide and
easy for the LLM to land in, although for subsec-
tive adjectives like useful, these intervals are much
smaller. Conversely, subsective inferences are by
far the most common inference, so we still expect
high performance for subsective adjectives.

5One alternative would be to compute the inter-annotator
agreement (IAA) between the LLM and the other, human
annotators, but existing metrics for IAA either calculate the
agreement between two annotators or the agreement across
the whole group.

Experiment 2 obtains single ratings for each of
the 798 bigrams in NO-CONTEXT using the same
setup as Experiment 1a (Section 4). Figure 3 shows
the scores on this metric, split by adjective type
(typically privative or typically subsective) and bi-
gram frequency. We also compare to three base-
lines: random, “majority”, and analogy. For the
random baseline, we sample 100 ratings from 1–5
for each bigram , calculate whether it is within 1
SD of the human mean for that bigram, and average
the results. The “majority” baseline guesses a fixed
rating depending on the adjective’s underlying cat-
egory as typically subsective or typically privative.
Bigrams with subsective adjectives are rated “Defi-
nitely yes” (5), while bigrams with privative adjec-
tives are rated “Unsure” (3), taking advantage of
the fact that privative adjectives tend to have wide
1-SD intervals that often overlap with 3.

Finally, the analogy baseline attempts to calcu-
late the inference by analogy, imitating reasoning
such as “a fake watch is a watch, and a handbag
is an expensive accessory like a watch, so a fake
handbag must also be a handbag”. Specifically, it
uses the distance between GloVe embeddings (Pen-
nington et al., 2014) to find nearby adjectives and
nearby nouns among all the adjectives and nouns
used in Ross et al. (2024), assembling those into
“nearby bigrams”. It then averages the human in-
ference ratings among those nearby bigrams which
are high-frequency (assumed “known”) to predict
the rating of the new bigram.

We find that most models, with the exception of
Llama 2 7B Chat, perform well under this metric,
but the high performance of the majority baseline
highlights the leniency of this metric. In fact, only
Llama 3 70B Instruct manages to outperform the
majority baseline. That said, the gap between the
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Figure 5: Ratings for “Is artificial/fake intelligence still
intelligence?”, showing the distribution for humans and
the single rating (with no context provided) for LLMs.
Most instruction-tuned LLMs give a more confident
(higher) rating than humans for artificial intelligence.

analogy baseline and the larger models suggests
that models are doing something more sophisti-
cated than simple analogical reasoning to high-
frequency inferences that they have seen before.
This is further borne out by the models’ high per-
formance on zero-frequency bigrams, as in Experi-
ment 1b, showing again that models seem to handle
this task on-the-fly rather than relying on having
seen the combination during pretraining. As in
Experiment 1b, performance scales with size.

For artificial intelligence specifically, we find
that most LLMs answer “Is artificial intelligence
still intelligence?” with “Definitely yes”, while hu-
mans tend to prefer a more conservative “Probably
yes”, as shown in Figure 5.

While this method is appealingly simple, perfor-
mance on this metric is close to saturated by the
majority baseline, making it difficult to evaluate
whether LLMs are performing in a “human-like”
way. We next explore two methods of generating
a distribution of ratings from an LLM, to see if
LLMs can capture the whole human distribution
rather than merely capturing a point within it.

5.2 Method 2: Log-probability distribution

5.2.1 Method

Our second method obtains a distribution of ratings
from the LLM by calculating the log-probabilities
of all 5 answers for each of the 798 bigrams in NO-
CONTEXT in Experiment 2 and converting this into
a probability distribution for each bigram. For each
bigram, we calculate the Jensen-Shannon diver-
gence between the distribution of ratings obtained
from the LLM and the distribution given by the

JS Divergence
Model Priv. Subs. Total

Human 0 0 0
Llama 3 70B Instruct 0.26 0.08 0.17
Qwen 2 72B Instruct 0.33 0.08 0.19
Llama 2 70B Chat 0.18 0.25 0.22
Mixtral 7x8B Instruct 0.32 0.13 0.22
Llama 3 8B Instruct 0.18 0.34 0.26
Llama 2 13B Chat 0.25 0.35 0.30
Uniform baseline 0.20 0.46 0.34
Llama 2 7B Chat 0.29 0.46 0.38
“Majority” baseline 0.71 0.12 0.40

Table 1: Jensen-Shannon divergence between per-
bigram rating distributions for humans and LLM log-
probabilities, for privative vs. subsective adjectives.

Figure 6: Average log-probability distribution for (typ-
ically) subsective vs. privative adjectives for selected
LLMs, compared to the average human distribution.

(normalized) human ratings.6 0 indicates perfect
overlap, while 1 indicates maximal divergence.

5.2.2 Results
Table 1 shows the average Jensen-Shannon diver-
gences, including a uniform distribution baseline
and the “majority” baseline reported in Section
5.1. Llama 3 70B Instruct shows the lowest aver-
age Jensen-Shannon divergence across all bigrams
using this method, with an excellent divergence
of just 0.08 on (typically) subsective adjectives,
matched by Qwen 2 72B. However, not all mod-
els are able to concentrate enough of their log-
probability mass on “Definitely yes” for bigrams
with subsective adjectives, such as Llama 2 70B

6While calculating the Kullback-Leibler divergence would
also let us treat the human ratings as ground truth, we prefer
the Jensen-Shannon divergence because it is bounded between
0 and 1 and thus easier to interpret.
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JS Divergence
Method Priv. Subs. Total

Log-probability 0.26 0.08 0.17
Context generation 0.38 0.11 0.24

Table 2: Jensen-Shannon divergence between per-
bigram rating distributions for humans and Llama 3
70B Instruct using the log-probability and context gen-
eration methods, for privative vs. subsective adjectives.

Chat, even though all models were able to rate
these bigrams as subsective when giving a single
rating (Table 14). Further, all models, especially
the larger ones, struggle with subsective-adjective
bigrams that humans rate as somewhat privative,
such as homemade cat or illegal currency. All mod-
els except Qwen 72B Instruct rate homemade cat
as mostly subsective (5), whereas humans’ ratings
are distributed evenly from 1-4, and Qwen does not
assign enough enough probability mass to these in-
termediate ratings. Figure 8 shows the distribution
for homemade cat for Llama 3 70B Instruct.

For bigrams with privative adjectives, where the
inference is much harder to predict, results are still
promising, but there is room for improvement. Fig-
ure 6 shows that although Llama 3 70B Instruct
has the lowest overall JS divergence for privative
adjectives, it rates them as subsective (5, “Defi-
nitely yes”) too often, and neither it nor Qwen 2
72B make human-like use of the “Unsure” rating
(perhaps a side-effect of their helpfulness training).
Section 5.4 discusses the item-by-item variation in
JS divergence in more detail.

More broadly, it is not clear that model log-
probabilities should map onto a distribution of
how frequent different answers are among humans.
Method 3 investigates a more sophisticated way of
getting a distribution of ratings from LLMs which
may map more closely onto the human distribution.

5.3 Method 3: Context generation

One source of variation in human ratings is that
different humans are likely imagining different in-
stantiations of the bigram, loosely corresponding
to the different contexts in Experiment 1 (though
likely much less well specified), depending on the
priors they each have. They then rate “Is an AN
an N?” given that imagined context. While some
humans may consider multiple instantiations and
form a small distribution which informs their single
answer, the distribution of ratings primarily arises

Figure 7: Distribution of per-bigram Jensen-Shannon
divergences between the rating distributions for humans
and Llama 3 70B when obtained from log-probabilities
vs. by generating contexts. 0 indicates perfect overlap,
while 1 indicates maximal divergence.

from consulting a larger population of humans. A
language model, when prompted with no context,
instead has a single set of priors and has to estimate
the log-probability of each answer given that single
set of priors. The next method investigates whether
we can improve the fit of the model’s distribution
by having it generate a set of contexts and rate “Is
an AN an N?” given each context, imitating this
aspect of the human variation and thought process.

5.3.1 Method

Method 3 asks the model to generate 12 different
“stories” of 50-100 words involving the target bi-
gram which “describe the {bigram} in detail”, giv-
ing three of the contexts used as few-shot prompts
for Experiment 1b as examples. This is somewhat
similar to recent efforts to mimic human survey
results by prompting or having the LLM generate
personas, then generating data with those personas
as context (Bisbee et al., 2024; Argyle et al., 2023;
Chan et al., 2024 i.a.). Experiment 3a generates all
12 stories in one chat using a temperature of 0.6
(see Appendix B.3 for the prompts). Then, Experi-
ment 3b uses the “In this setting, is an {adjective}
{noun} still a {noun}?” design from Experiment
1b to have the model rate the bigram inference in
each of these 12 contexts, yielding 12 ratings per
bigram. We can then calculate the Jensen-Shannon
divergence between this LLM-generated distribu-
tion and the human distribution.

However, this method is computationally expen-
sive: it took us ca. 400 GPU-hours with A100s to
generate the 12 contexts for our 798 bigrams with
Llama 3 70B Instruct. Thus, we conduct this exper-
iment with one model (Llama 3 70B Instruct) and
demonstrate this method as a proof of concept.
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Figure 8: Rating distributions over selected bigrams using log-probabilities vs. context generation, compared to the
human distributions. Both methods successfully capture bigrams like counterfeit dollar, counterfeit watch, and both
fail for false market and homemade bus. While the log-probability method fits most bigrams better, such as fake
lifestyle and useful heart, the context generation method is better for fake crowd and homemade cat.

Context A Context B

The new video game, “Epic Quest,” was about to
be launched, and the developers wanted to create a
buzz around it. They decided to stage a fake crowd
of fans waiting in line outside the game store on
launch night. They hired a team of people to
dress up in costumes and hold signs that read
“I’ve been waiting for 10 hours!” [. . . ]

The small town of Oakdale was hosting its annual
Christmas market, but the organizers were worried
that not enough people would show up. To create
the illusion of a bigger crowd, they set up a fake
crowd of mannequins dressed in winter coats
and hats, and placed them around the market stalls.
[. . . ]

Rating: Definitely yes (subsective) Rating: Probably not (privative)

Table 3: Two intuitive stories generated by Llama 3 70B Instruct about a fake crowd, which yield privative vs.
subsective inferences. We then ask Llama 3 to rate “Is a fake crowd still a crowd?” given these contexts.

5.3.2 Results

Table 3 shows two LLM-written stories illustrat-
ing a privative vs. subsective inference for fake
crowd which successfully capture human intuitions
about two kinds of fake crowd, showing promise
for this method. Appendix D contains additional
examples of generated contexts. Overall, however,
the Jensen-Shannon divergences in Table 2 show
that generating contexts actually fits the human dis-
tribution worse than just taking the log-probability
distribution directly for Llama 3 70B Instruct. Us-
ing a cut-off of 0.25 for JS divergence, we find that
the distributions generated using context genera-
tion are reasonably human-like for only 61.4% of
the 798 bigrams, compared to 75.3% for the log-
probability distributions. One possible explanation
is that we are not generating the right kind, or a
sufficient diversity, of contexts: we place hardly

any constraints on the story generation, but per-
haps e.g. explicitly asking for stories that disam-
biguate the target inference might match human
behavior better, since humans see the “Is an AN an
N?” question when imagining their “contexts”. A
final point of divergence from humans is Llama 3
70B Instruct’s unwillingness to ever use the “Un-
sure” rating, but this may be an issue with this
particular model rather than the method itself. Nev-
ertheless, this method yields well-distributed (often
bimodal) rating distributions, as shown in Figure
8, and, while not as close as the log-probability
distribution overall, still approximates the human
distribution well for many bigrams.

5.4 Distribution method comparison

Both methods of generating a distribution are good
at capturing the narrow subsective distributions of
most subsective adjectives. However, both meth-
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ods struggle for items like homemade bus, which
humans rate as more privative than subsective de-
spite the typically-subsective adjective, resulting
in a thin but long tail of high JS divergences (see
Figure 7, which compares the distribution of JS
divergences per bigram between the two methods).
Interestingly, the context generation method is bet-
ter able to capture this partially privative behav-
ior for certain bigrams, such as homemade cat,
which shows promise: it writes stories focusing
around knitted or cardboard cats, matching human
intuitions. (This yields a JS divergence of 0.33
compared to 1.00 for the log-prob distribution; see
Figure 8 and Appendix D for an example context.)

For the typically-privative adjectives which are
the primary focus of this paper, the log-probability
distributions provide a better fit overall, but not
for all bigrams. For 45 of them, such as fake leg,
context generation provides a better fit: many of the
generated stories are about prosthetics, deemed to
be legs (see Appendix D for an example, and Table
9 in the Appendix for more counts). More broadly,
Figure 7 shows that there is room for improvement
for both methods: both have a thick tail of bigrams
whose human distributions they do not fit well.

We fit linear regressions for JSDivergence ∼
AdjectiveType * HumanMean + HumanSD +
BigramFrequency in R for each method for Llama
3 70B Instruct and find, for each method, a sig-
nificant negative effect of privative adjective type
and human mean on the JS divergence, as well as
a significant positive effect of human SD and a
significant, positive interaction between adjective
type and human mean. We do not find an effect
of bigram frequency. This is an exciting result,
because it shows that Llama 3 70B Instruct is sim-
ilarly adept at modelling the human distribution
of ratings for novel (zero-frequency) bigrams as
it is for high-frequency bigrams, suggesting that
it can generalize beyond its training data. Exact
coefficients and an effects plot are given in the Ap-
pendix in Table 11 and Figure 15. Specifically, the
negative effect of human mean on typically sub-
sective adjectives supports the qualitative finding
that both methods struggle with bigrams involving
typically subsective adjectives with low human rat-
ings, i.e. which have a more privative interpretation.
Interestingly, we see the same effect for privative
adjectives, where JS divergence increases as the
human mean decreases (i.e. as the bigram is rated
more privative). Finally, the significant positive ef-
fect of human SD shows that both methods struggle

to predict the human distribution as human varia-
tion increases. These linear regressions achieve
an R2 of 0.44 (log-probability) and 0.55 (context
generation), meaning there is still variation left un-
explained by these factors. However, we find no
further qualitatively interpretable patterns.

6 Conclusion

In this paper, we study whether LLMs can combine
adjectives and nouns to yield noun membership
inferences both with and without context, for high-
frequency and zero-frequency (presumed novel)
bigrams. We find that when the inference is de-
termined by context, large, recent LLMs make the
expected inferences, while smaller and/or older
LLMs only sometimes do so. All LLMs, even
smaller ones, behave similarly for zero-frequency
bigrams as they do for high-frequency bigrams, sug-
gesting that they do not rely on having seen them
and their associated inference during pretraining.
Instead, they evaluate these combinations on-the-
fly and can generalize accordingly, as humans do.

We investigate three methods to evaluate whether
LLMs can extend this behavior to a setting where
no context is provided, where they either need to
fall within the human distribution of ratings or
match the whole human distribution. While recent
LLMs are able to fall within 1 SD of the human
mean for up to 95% of our dataset, this is a very le-
nient metric. On our stricter metric of matching the
human distribution (either using log-probabilities
or via context generation), we find that these LLMs
are good at capturing the simple distribution of
bigrams like multicolored flower and counterfeit
watch, but are only able to capture up to 75% of
our total dataset. LLMs struggle particularly with
bigrams with unusual inferences for their adjective,
such as homemade cat, and with bigrams with high
human variance. Interestingly, however, LLMs are
still equally able to capture distributions of novel
bigrams in this setting. In sum, our generaliza-
tion results are exciting because they show LLMs
are generalizing beyond their training data even
in this delicate, context-sensitive task, but there is
still room for improvement on the task of capturing
these inferences overall. Further, we hope that the
methods presented in this paper will inspire future
work which moves beyond targeting single correct
answers and begins to target human population dis-
tributions, from meaning and inferences to wider
issues such as opinions and political positions.
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7 Limitations

This paper has a number of limitations, being the
first exploration in this area. Firstly, we only
study English adjective-noun inferences. The set of
typically-privative adjectives and which inference
they trigger with which nouns may vary between
languages and cultures. Secondly, the dataset for
Experiment 1, which determines the inference by
providing an appropriate context, is not very large
(56 bigram/context pairs), resulting in lower than
ideal statistical power.

Third, for fair comparison to human participants,
and since the human data demonstrates that many
judgments are non-binary for this task, we use a 5-
point Likert scale rather than a binary yes/no ques-
tion. This assumes that the model can use the Likert
scale. While there is some previous work which
also uses Likert scales with similar models (Ar-
gyle et al., 2023; Chuang et al., 2024; Abeysinghe
and Circi, 2024), there is no work explicitly show-
ing that models understand Likert scales in gen-
eral. Thus, this design does not let us disentangle
whether the model is struggling with the task itself
or simply with the use of the Likert scale, despite
the 5-shot setting and the use of log-probabilities
to enforce use of the scale. This especially applies
to smaller models that are known to show weaker
instruction-following skills, and to non-instruction-
tuned models. Alternatives such as calculating the
surprisal of e.g. a fake watch is/is not a watch,
however, have their own issues, since LLMs have
been shown to be sometimes insensitive to negation
(Truong et al.; García-Ferrero et al., 2023).

Fourth, for comparison reasons, we use the same
prompts used in the human experiment to evaluate
the LLMs, including few-shot examples; however,
it is possible that this prompt phrasing and exact
choice of few-shot examples introduces artefacts
which adversely affect the LLMs’ performance and
“masks” their underlying ability at the task.

Finally, due to time and compute limitations, we
were only able to run the context generation method
for Llama 3 70B Instruct. In future work, we would
like to extend this method to other models and in-
vestigate which of the differences we see between
the context generation and the log-probability sam-
pling method for Llama 3 70B Instruct should be
attributed to the model vs. to the differences be-
tween the methods.
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Figure 9: Percentage of privative vs. subsective infer-
ences for bigrams in Experiment 1a (no context) for
each model (“Instruct/Chat” omitted for brevity).
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A Experiment 1a: No-context baseline

Figure 9 shows the proportions of bigram ratings
which are privative (“Definitely not” or “Probably
not”), subsective (“Definitely yes” or “Probably
yes”) or neither (“Unsure”) when the LLM (or hu-
man; 12 ratings/bigram for humans) rates these 28
bigrams without context in Experiment 1a. The
exact proportions are shown in Table 4. Each LLM
brings its own bias: Llama 3 70B is evenly bal-
anced, while Qwen 2 72B favors subsective ratings
and Mixtral 8x7B favors privative ratings. For hu-
mans, all of these bigrams have high variance when
rated in this out-of-context setting, which these per-
centages do not reflect.

B Data and prompts

B.1 Context examples from Ross et al. (2024)

To illustrate that the same bigram may be privative
or subsective in different contexts, we provide the
two contexts for fake concert written by Ross et al.
(2024) in Table 5.

B.2 Few-shot examples

The few-shot prompts for Experiment 1b and
Experiment 3b—5 bigrams with contexts, one
for each rating—are shown in Table 6. For the

Model priv. subs. unsure

Human 29.7% 57.4% 12.8%
Qwen 2 72B Instruct 30.8% 69.2% 0.0%
Llama 3 70B Instruct 46.2% 53.8% 0.0%
Llama 2 70B Chat 42.3% 34.6% 23.1%
Mixtral 7x8B Instruct 80.8% 15.4% 3.9%
Llama 3 8B Instruct 57.7% 42.3% 0.0%
Llama 2 13B Chat 84.6% 15.4% 0.0%
Llama 2 7B Chat 69.2% 0.0% 30.8%
Llama 3 70B 69.2% 30.8% 0.0%
Llama 3 8B 38.5% 53.8% 7.7%
Llama 2 70B 19.2% 19.2% 61.5%
Llama 2 13B 0.0% 0.0% 100%
Llama 2 7B 88.5% 11.5% 0.0%

Table 4: Percentage of privative vs. subsective infer-
ences for bigrams in Experiment 1a (no context, 5-shot).

chat/instruction-tuned models, we format the few-
shot prompt as a conversation between the assistant
and the user, where each context and question is
provided by the user and the assistant provides each
answer (without the “Answer” prefix). For the base
models, we concatenate the few-shot examples and
use the “Answer” prefix to indicate the answer. Hu-
mans see only the first three examples along with a
short explanation of the suggested reasoning, and
are encouraged but not required to pick the sug-
gested rating. For Experiment 1a and 2, where
no context is provided, we use the same bigrams,
shown in Table 7.

B.3 Prompts for context generation

We use the sequence of prompts shown in Table 8
to generate 12 contexts (“stories”) in a single chat.
We use three contexts already used in the few-shot
prompts for Experiment 1 as example stories to
help control the style and level of complexity of the
language. We found that providing example stories
was much more effective than trying to control the
output with detailed instructions. {bigram} and
{a/an} are substituted in at runtime.

C Additional qualitative analysis

C.1 Context generation

In addition to the regression in Section 5.4, we
conduct a qualitative error analysis of the bigrams
where the context generation method’s JS diver-
gence from the human distribution is particularly
high. Manual inspection of these bigrams suggests
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Privative-biased context: Subsective-biased context:

A well-known band gets into trouble when it
emerges that they included a fake concert in their
tax returns, which they claim had huge financial
losses (letting them get away with paying very
low taxes), but which never actually happened.

A political party disguises a fundraiser as a con-
cert so that they can hold it at a venue where
political rallies aren’t allowed. They even hire
an up-and-coming band to sing at the event. The
fake concert is a great success and the attendees
enjoy the music as well as networking with the
political candidates.

Table 5: The two contexts in Ross et al. (2024) for fake concert, which bias humans towards a privative vs. subsective
rating respectively. Contexts are carefully constructed to determine the inference without explicitly stating it or
implying it through value judgments.

Context: Sarah asks Leo to go to the store to buy a bell pepper. When he gets there, he realizes she
didn’t say which color pepper he should buy. He buys a green pepper. When he gets home, Sarah is
disappointed, because she prefers the red ones.
Question: On a scale of “Definitely not”, “Probably not”, “Unsure”, “Probably yes” or “Definitely
yes”, in this context, is the green pepper still a pepper?
Answer: Definitely yes

Context: Mark is an expert carver and carves a highly realistic pear out of dark colored wood. He
hides the wooden pear in his fruit bowl among the fruit he bought from the supermarket.
Question: On a scale of “Definitely not”, “Probably not”, “Unsure”, “Probably yes” or “Definitely
yes”, in this context, is the wooden pear still edible?
Answer: Definitely not

Context: Bob has climbing roses growing all up the side of his house, and wants to trim them for
the first time. He needs to find a way to reach the roses higher up. He looks in his shed to see what
he has and finds that he has a small ladder, which he can use to reach the roses halfway up the house,
though not the ones at the very top.
Question: On a scale of “Definitely not”, “Probably not”, “Unsure”, “Probably yes” or “Definitely
yes”, in this context, is the small ladder still useful?
Answer: Unsure

Context: Sam asks Carla to go to the store to buy ice for drinks for their party. Unfortunately, she
leaves it in her car all day and comes back in the evening to find that it has all melted. Carla doesn’t
know what to say to Sam about the melted ice, which he was planning to use in their cocktails.
Question: On a scale of “Definitely not”, “Probably not”, “Unsure”, “Probably yes” or “Definitely
yes”, in this context, is the melted ice still ice?
Answer: Probably not

Context: Jordan’s friend is on the high school basketball team, and is the tallest among her friends.
At the match, Jordan notices that her friend is actually a short basketball player, as most of the other
players are taller than her.
Question: On a scale of “Definitely not”, “Probably not”, “Unsure”, “Probably yes” or “Definitely
yes”, in this context, is the short basketball player still tall?
Answer: Probably yes

Table 6: Few-shot prompts for Experiment 1b and 3b, which give one bigram/context pair for each value on the
Likert scale to demonstrate use of the scale for “is-a” judgments.
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Question: On a scale of “Definitely not”, “Probably not”, “Unsure”, “Probably yes” or “Definitely
yes”, is a green pepper still a pepper?
Answer: Definitely yes

Question: On a scale of “Definitely not”, “Probably not”, “Unsure”, “Probably yes” or “Definitely
yes”, is a wooden pear still edible?
Answer: Definitely not

Question: On a scale of “Definitely not”, “Probably not”, “Unsure”, “Probably yes” or “Definitely
yes”, is a small ladder still useful?
Answer: Unsure

Question: On a scale of “Definitely not”, “Probably not”, “Unsure”, “Probably yes” or “Definitely
yes”, is melted ice still ice?
Answer: Probably not

Question: On a scale of “Definitely not”, “Probably not”, “Unsure”, “Probably yes” or “Definitely
yes”, is a short basketball player still tall?
Answer: Probably yes

Table 7: Few-shot prompts for Experiment 1a and Experiment 2, which give one bigram for each value on the Likert
scale to demonstrate use of the scale for “is-a” judgments.

In this task, you will write short, simple stories of 50-100 words about specific objects or things. The
story should use simple language and describe the object in detail.

Example: Write a short, simple story about a wooden pear.
Story: Mark is an expert carver and carves a highly realistic pear out of dark colored wood. He
hides the wooden pear in his fruit bowl among the fruit he bought from the supermarket. When his
friends come to visit, only one of them noticed the wooden pear hiding among the fruit.

Example: Write a short, simple story about melted ice.
Story: Sam asks Carla to go to the store to buy ice for drinks for their party. Unfortunately, she
leaves it in her car all day and comes back in the evening to find that it has all melted. Carla doesn’t
know what to say to Sam about the melted ice, which he was planning to use in their cocktails.

Example: Write a short, simple story about a short basketball player.
Story: Jordan’s friend is on the high school basketball team, and is the tallest among her friends. At
the match, Jordan notices that her friend is actually a short basketball player, as most of the other
players are taller than her. Even so, her friend does very well in the game and scores six points.

Now, write a short, simple story about {a/an} {bigram}, which includes the phrase “{bigram}” and
describes the bigram in detail. Start your story with “Story:”.

Write another different story about {a/an} {bigram}. Start your story with “Story:”. (repeated 2x)

Great! Write three more stories about {a/an} {bigram}. Number your stories with “Story 1:”, “Story
2:” and “Story 3:”. (repeated 3x)

Table 8: Prompts for Experiment 3a to generate contexts featuring a given bigram in which the inference “Is an
{adjective} {noun} a {noun}?” will later be judged.
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that some issues likely stem from Llama 3 70B In-
struct not picking same the (literal or abstract) noun
meaning as humans: for example, most contexts for
useful heart involve a metaphorical heart (e.g. the
heart of a community), while false market contexts
all involve physical markets rather than economic
markets. In some cases, the model also appears to
interpret the adjective metaphorically or loosely:
judging by the generated contexts, Llama 3 seems
to think that a fake idea is simply a wrong idea or
false idea. While fake can sometimes mean false
and vice versa, this is not the intuition the authors
had about fake idea. Finally, some bigrams also get
misunderstood as noun-noun compounds such as
counterfeit attack in the generated context in Ap-
pendix D, or incorporated into longer noun-noun
compounds, such as useful attack dog or former
attack helicopter.

More broadly, while the LLM generates pleas-
ingly diverse contexts for examples like fake crowd,
other examples such as fake concert are lacking in
diversity, with essentially the same blueprint being
repeated in all 12 stories.

D Generated contexts

To illustrate the qualitative analysis in Section 5.4,
we provide a representative context for homemade
cat and two for fake leg. We further show 9
randomly sampled contexts generated by Llama
3 70B Instruct, one for each of the 6 typically-
privative adjectives, and one context generated
for the typically-subsective adjectives illegal, use-
ful and multicolored. (Contexts for the typically-
subsective adjectives tend to follow an uninterest-
ing, predictable pattern; we stumbled across this
interesting supposedly-privative example involving
multicolored).

1. Context: Ben’s mom is a talented seamstress,
and she helps him make a homemade cat out
of old t-shirts and fabric remnants. They stuff
the cat with polyester fiberfill and add a sweet
face made from felt. Ben names the cat Stitch
and takes it to school for show-and-tell. His
classmates ooh and ahh over Stitch’s colorful
patches and softness.
LLM Rating: Probably not (privative)

2. Context: In the museum of medical history, a
fake leg was on display as part of an exhibit
on the evolution of prosthetics. The fake leg
was made in the 19th century, and was crafted

from wood and leather. It was a crude but
functional device, with a simple hinge at the
knee and a leather strap to hold it in place.
Visitors marveled at the primitive technology,
and were amazed by how far prosthetic design
had come since then. The fake leg was a tes-
tament to the ingenuity and perseverance of
people with disabilities throughout history.
LLM Rating: Probably not (privative)

3. Context: Rachel, a young amputee, was
thrilled to receive her new fake leg from the
hospital. It was her first prosthetic, and she
couldn’t wait to start learning how to walk
again. The fake leg was custom-made to fit
her perfectly, with a soft, cushioned socket
and a sturdy metal limb. With the help of her
physical therapist, Rachel quickly learned to
navigate the fake leg, and soon she was run-
ning and playing with her friends like she used
to.
LLM Rating: Probably yes (subsective)

4. Context: At the sci-fi convention, attendees
are amazed by an artificial painting that ap-
pears to come to life. The painting, created
by a team of digital artists, depicts a fantas-
tical landscape with towering mountains and
glowing forests. As people walk by, the paint-
ing responds by changing color, shape, and
even emitting sounds and scents. The artificial
painting is a huge hit, and people line up to
experience its immersive, interactive magic.
LLM Rating: Definitely yes (subsective)

5. Context: The detective was called to inves-
tigate a counterfeit attack on a popular on-
line shopping website. The hackers had cre-
ated fake websites that looked identical to the
real one, tricking customers into entering their
credit card information. The detective worked
tirelessly to track down the culprits, following
a trail of digital clues that led him from server
to server. Finally, he identified the IP address
of the hackers and worked with the authorities
to shut down the operation, saving thousands
of people from financial loss.
LLM Rating: Definitely yes (subsective)
Authors’ note: The LLM interpreted coun-
terfeit attack as a noun-noun compound here,
not as an adjective-noun combiniation (i.e. it
is an attack involving counterfeits, not an at-
tack that is counterfeit).
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6. Context: Rachel is a set designer for a film
production company. She needs a fake stick
that looks like a real magic wand for an up-
coming fantasy movie. She searches high
and low and finally finds the perfect fake
stick, complete with intricate carvings and
a sparkling crystal at the tip. The fake stick
becomes a key prop in the movie, and the ac-
tors love using it during filming. The movie
goes on to become a huge hit, and Rachel’s
fake stick is praised as one of the most iconic
props in the film.
LLM Rating: Definitely yes (subsective)

7. Context: The antique shop owner was thrilled
to find an old chest in the attic of his newly in-
herited store. As he rummaged through it, he
found a stack of old bills that looked like they
dated back to the 1800s. But as he examined
them closer, he realized they were actually
false currency, likely created by a counter-
feiter from that era. Despite being worthless,
the bills were still a fascinating piece of his-
tory, and the owner decided to display them
in his shop as a curiosity.
LLM Rating: Probably not (privative)

8. Context: Jack’s former reason for going to
the beach every summer was a faded, beach
towel that his family had used for years. The
towel had a fun, colorful design and a soft,
worn-out texture, but it was more than just a
towel - it was a symbol of family vacations
and summer fun. Jack would wrap himself
in it after a long day of swimming, but after
his family stopped going to the beach, the
towel was forgotten in the back of a closet, a
reminder of his former reason for soaking up
the sun.
LLM Rating: Definitely not (privative)

9. Context: Lily’s friend Emma lends her a
knockoff jewel to wear to a formal dance.
The knockoff jewel is a beautiful, long neck-
lace with a big, fake pearl pendant. Lily loves
the necklace and feels like a princess when
she wears it. However, when she tries to re-
turn it to Emma, she realizes that she lost the
clasp and can’t find it anywhere. Emma is
upset, but Lily promises to buy her a new one
to replace it.
LLM Rating: Definitely yes (subsective)

10. Context: In the small village of Ravenswood,
a mysterious illegal currency began to circu-
late. The coins were made of a heavy, dark
metal and featured an image of a raven on
one side and a crescent moon on the other.
They were stamped with a strange symbol
that no one could decipher. At first, the vil-
lagers were wary of the illegal currency, but
as more and more merchants began to accept
it, it became a popular alternative to the offi-
cial coins. However, the village elder warned
that the authorities would soon crack down on
the illegal currency, and those caught using it
would face severe penalties.
LLM Rating: Definitely yes (subsective)

11. Context: In a small village, there lived a re-
spected elder named Nalani who used a useful
fruit - a sweet and nutritious mango with a
yellow skin and creamy flesh. Nalani would
dry mango slices to create a natural sweet-
ener for her traditional recipes, and she would
also use mango oil to nourish her skin and hair.
The villagers would come to Nalani for beauty
tips, and she would share her secrets of using
the mango to promote healthy skin and hair.
Nalani’s wisdom and knowledge of the useful
mango were cherished by the community, and
she was revered as a guardian of traditional
knowledge.
LLM Rating: Definitely yes (subsective)

12. Context: On the beach, Jack builds an intri-
cate sandcastle, topped with a multicolored
image of a dragon. The dragon’s scales glint
in the sunlight, made from tiny shells and
pebbles in shades of green, blue, and pur-
ple. As the tide comes in, Jack watches as
the dragon begins to dissolve, its multicolored
image slowly disappearing into the waves. He
smiles, knowing that the memory of his cre-
ation will stay with him long after the castle
is gone.
LLM Rating: Probably not (privative)

E Additional experiment results

E.1 Tabular numerical results

Detailed numerical results for the figures in the
main body of the paper, including results for the
base models, are shown in Tables 10, 12, 13 and 14.
Table 9 shows thresholded counts for how many
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JS divergence Privative Subsective

Both low (< 0.25) 103 339
Both high (> 0.5) 31 3
Log-prob > context 187 39
Context > log-prob 45 7

Table 9: Number of bigrams with privative vs. subsec-
tive adjectives where Jensen-Shannon divergence is low
(<0.25) for both Method 2 (log-probability) and Method
3 (context generation), high (>0.5) for both, or where
one Method is (<0.5 and) better than the other.

bigrams each method of obtaining a distribution
performs better for.

E.2 Accuracy within 1 SD for Experiment 1b

Figure 12 shows Experiment 1b, which predicts the
inference given the context, using the more lenient
accuracy within 1 SD of the human mean metric
introduced in Section 5.1. This more lenient metric
does not penalise models which use “Unsure”, pro-
vided that that is within human ratings. With this
metric, performance scales uniformly with size for
instruction-tuned models.

E.3 Experiment 1b: Base models

For the inference task where the context is pro-
vided, Experiment 1b, we see in Figure 11 and
Table 12 that Llama 3 70B actually out-performs
its Instruct model overall by 7 points of accuracy.
This is largely due to its high accuracy on priva-
tive contexts (0.93 instead of 0.61), which com-
pensates for its lower accuracy on subsective con-
texts (0.75 instead of 0.93). We see the same pat-
tern for Llama 3 8B, which is better at privative
contexts and worse at subsective contexts than its
instruction-tuned counterpart. One possibility is
that Llama 3 Instruct is generally more biased to
affirmative ratings (i.e. subsective ratings on this
scale) after instruction/helpfulness tuning, thus do-
ing better in the subsective context simply because
a subsective rating is correct there. We can see in
Table 4 that when no context is provided (Experi-
ment 1a), Llama 3 Instruct assigns subsective and
privative ratings roughly evenly across bigrams,
while Llama 3 has a bias (69.2%) towards giving
these bigrams with typically-privative adjectives
privative ratings. For Llama 3, we see scaling with
size for both the accuracy metric and the accuracy
within 1 SD metric, as shown in Figure 11 and
Figure 12.

This pattern does not occur in Llama 2 across the
board - we see a marked improvement for Llama
2 7B over Llama 2 7B Chat in both context types,
but Llama 2 13B Chat is better at privative con-
texts than Llama 2 13B and only slightly worse at
subsective contexts, suggesting no overall pattern
for Llama 2, and no effect of its type of instruction
tuning. Likewise in Table 4, we see that instruction-
tuning Llama 2 70B does not result in a large shift
in the ratio of privative to subsective ratings, but
rather mostly reduces the proportion of “Unsure”
ratings. Notably, we actually see inverse scaling
with size for Llama 2 on all splits of this task (see
Figure 11) when using the accuracy metric, but
regular scaling with size using the accuracy within
1 SD metric, which does not punish the “Unsure”
rating so harshly (Figure 12).

E.4 Experiment 2: Base models

On the inference task where no context is provided,
Experiment 2, we see in Table 14 that Llama 3
70B, Llama 3 8B and Llama 2 70B perform com-
parably to their instruction-tuned counterparts us-
ing the within 1 SD metric. Performance is less
predictable for the smaller Llama 2 models, with
the ranking Llama 2 13B Chat > Llama 2 7B >
Llama 2 13B > Llama 2 7B Chat. As discussed
in the main body of the paper, this metric is quite
lenient – the fact that Llama 2 7B Chat actually
underperforms the random baseline, and that the
smaller Llama 2 models underperform the “major-
ity” baseline by at least 20 points of accuracy), is
itself striking, suggesting a distinct lack of com-
prehension of the task when presented out of the
blue with no context. While some of this difficulty
may be attributed to the Likert scale, even these
small models perform at at least 60% accuracy us-
ing the same metric and Likert scale (Table 13)
when a context is provided, so the difficulty must
lie at least partially with the out-of-the-blue setting.
Perhaps these older, smaller models do not capture
enough information about how the world typically
is from their pretraining (do not have sufficiently
human-like “priors” or world knowledge). Looking
at the distributions they produce, Figure 14 shows
that they distribute their probability mass relatively
evenly across the scale for subsective adjectives,
resulting in a poor fit. Table 10 shows the Jensen-
Shannon divergences, which are relatively low for
subsective adjectives for these models. Interest-
ingly, however, models of all sizes are competitive
for fitting the distribution of typically-privative ad-
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JS Divergence
Model Priv. Subs. Total

Human 0 0 0
Llama 3 70B Instruct 0.26 0.08 0.17
Qwen 2 72B Instruct 0.33 0.08 0.19
Llama 3 70B 0.16 0.21 0.19
Llama 2 70B Chat 0.18 0.25 0.22
Mixtral 7x8B Instruct 0.32 0.13 0.22
Llama 2 70B 0.17 0.30 0.24
Llama 3 8B 0.18 0.32 0.26
Llama 3 8B Instruct 0.18 0.34 0.26
Llama 2 13B Chat 0.25 0.35 0.30
Llama 2 7B 0.20 0.43 0.32
Llama 2 13B 0.21 0.43 0.32
Uniform baseline 0.20 0.46 0.34
Llama 2 7B Chat 0.29 0.46 0.38
“Majority” baseline 0.71 0.12 0.40

Table 10: Jensen-Shannon divergence between per-
bigram rating distributions for humans and LLMs when
sourced from log-probabilities, for privative vs. subsec-
tive adjectives, including base models.

jectives overall, with Qwen 2 72B Instruct, Mixtral
7x8B Instruct and Llama 2 7B Chat scoring the
lowest at around 0.3 JS divergence. Fitting the
human distribution of privative adjectives is not a
function of model size at all.

E.5 Experiment 1c: Zero-shot inferences with
context

Experiment 1c performs an ablation study on Ex-
periment 1b where we run the same experiment of
determining the inference given a biasing context,
but 0-shot instead of with 5-shot examples of “is-a”
inferences on the Likert scale. Table 15 shows the
results of Experiment 1c.

Whether the 5-shot examples help or hinder de-
pend on the individual model. For Llama 3 70B
Instruct, Llama 2 13B Chat, Llama 2 7B Chat and
Mixtral 7x8B Instruct, we see a drop of 3-14 points
in accuracy when we prompt the model 0-shot. For
the other three instruct models, however, Llama 2
70B Chat, Llama 3 8B Instruct and Qwen 2 72B
Instruct, we see a 6-9 point increase in accuracy
when we prompt 0-shot, suggesting that these mod-
els found the 5 examples (which were examples of
using the scale with “is-a” inferences, but were not
exactly the target task which always repeated the
noun) misleading rather than helpful.

Turning to the base models, we see a 4-13 point

Coefficient β̂ p

Log-probability
Intercept 0.61 p < 0.01
Privative -0.40 p < 0.01
Human mean -0.13 p < 0.01
Human SD 0.14 p < 0.01
75th-90th percentile 0.01 p = 0.56
50th-75th percentile 0.02 p = 0.22
25th-50th percentile 0.02 p = 0.25
Zero frequency 0.01 p = 0.36
Privative:Human mean 0.10 p < 0.01

Context generation
Intercept 0.93 p < 0.01
Privative -0.61 p < 0.01
Human mean -0.19 p < 0.01
Human SD 0.15 p < 0.01
75th-90th percentile 0.02 p = 0.38
50th-75th percentile 0.03 p = 0.15
25th-50th percentile 0.03 p = 0.16
Zero frequency 0.03 p = 0.09
Privative:Human mean 0.16 p < 0.01

Table 11: Coefficients for the regressions
JSDivergence ∼ AdjectiveType * HumanMean +
HumanSD + BigramFrequency for each method in
Section 5.4. For the adjective type factor, subsective is
the first level (intercept), for frequency bins, 90th-99th
percentile is the first level (intercept); dummy coding is
used throughout.

drop for all models (Llama 2 70B, Llama 3 8B,
Llama 2 13B, Llama 2 7B) except Llama 2 70B
when prompted 0-shot instead of 5-shot. Llama
2 70B shows a 38 point increase in accuracy on
this task when prompted 0-shot. This is because its
very low score on the 5-shot task is largely caused
by it answering “Unsure” for many bigrams, which
is always considered incorrect under this metric.
Without an example where “Unsure” is used, even
though “Unsure” is mentioned as a scale item,
Llama 2 70B uses this rating far less often and
is able to score much higher on this task. This is in
part an artefact of how this metric is scored – recall
from Figure 12 that Llama 2 70B still scores well
on the more lenient accuracy within 1 SD metric,
which includes “Unsure” for many bigrams.

E.6 Regression details for Section 5.4
Table 11 and Figure 15 show the coefficients and
effects plots for the two regressions in Section 5.4.
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Accuracy
Model Privative context Subsective context High freq. Zero freq. Total

Human 0.78 0.81 0.80 0.79 0.79
Llama 3 70B 0.93 0.75 0.85 0.83 0.84
Qwen 2 72B Instruct 0.68 0.93 0.80 0.83 0.80
Llama 3 70B Instruct 0.61 0.93 0.80 0.75 0.77
Mixtral 7x8B Instruct 0.79 0.68 0.80 0.75 0.73
Llama 2 7B 0.82 0.61 0.60 0.92 0.71
Llama 3 8B 0.54 0.86 0.75 0.67 0.70
Llama 3 8B Instruct 0.29 0.96 0.60 0.58 0.63
Llama 2 13B Chat 0.89 0.36 0.60 0.67 0.63
Llama 2 70B Chat 0.50 0.68 0.70 0.42 0.59
Llama 2 13B 0.64 0.39 0.55 0.42 0.52
Llama 2 7B Chat 0.75 0.25 0.50 0.50 0.50
Llama 2 70B 0.29 0.36 0.25 0.42 0.32
Random baseline 0.4 0.4 0.4 0.4 0.4

Table 12: Accuracy on the (5-shot) context-based inference task (Experiment 1) overall, by bigram frequency and
by context bias.

Figure 10: Accuracy within 1 SD of the human mean on the context-based inference task for instruction-tuned
models (5-shot). Under this more lenient metric, accuracy increases with model size for all models.

Figure 11: Accuracy on the context-based inference task for base models (5-shot). Accuracy increases with
parameters for Llama 3, but drops for Llama 2. However, accuracy within 1 SD on this task increases with model
parameters – see Figure 12.

150



Accuracy
Model Privative context Subsective context High freq. Zero freq. Total

Human 0.91 0.91 0.92 0.89 0.90
Llama 3 70B 0.93 0.86 0.85 1.00 0.89
Llama 2 70B Chat 0.89 0.86 0.85 0.83 0.88
Qwen 2 72B Instruct 0.79 0.93 0.85 0.83 0.86
Llama 2 70B 0.86 0.79 0.75 0.83 0.82
Llama 3 70B Instruct 0.61 1.00 0.80 0.92 0.80
Llama 3 8B 0.71 0.86 0.80 0.75 0.79
Llama 2 13B 0.89 0.61 0.65 0.75 0.75
Mixtral 7x8B Instruct 0.75 0.64 0.70 0.67 0.70
Llama 3 8B Instruct 0.46 0.89 0.65 0.67 0.68
Llama 2 7B Chat 0.79 0.57 0.55 0.83 0.68
Llama 2 7B 0.79 0.57 0.55 0.83 0.68
Llama 2 13B Chat 0.93 0.36 0.60 0.75 0.64
Random baseline 0.64 0.43 0.40 0.50 0.54

Table 13: Accuracy within 1 SD of human mean on the (5-shot) context-based inference task (Experiment 1) overall,
by bigram frequency and by context bias.

Accuracy (µ± 1σ)
Model Privative Subsective High frequency Zero frequency Total

Human 0.903 0.960 0.939 0.933 0.933
Qwen 2 72B Instruct 0.886 0.995 0.946 0.967 0.944
Llama 3 70B Instruct 0.778 0.995 0.892 0.911 0.892
Llama 3 70B 0.815 0.960 0.907 0.928 0.891
“Majority” baseline 0.781 0.993 0.881 0.912 0.885
Llama 2 70B 0.870 0.886 0.882 0.850 0.878
Llama 2 70B Chat 0.831 0.767 0.824 0.722 0.797
Mixtral 7x8B Instruct 0.653 0.914 0.803 0.756 0.791
Llama 3 8B 0.765 0.795 0.806 0.783 0.781
Llama 3 8B Instruct 0.833 0.679 0.735 0.789 0.752
Llama 2 13B Chat 0.455 0.776 0.706 0.517 0.624
Llama 2 7B 0.336 0.807 0.649 0.472 0.584
Analogy baseline 0.648 0.431 0.527 0.567 0.534
Llama 2 13B 0.772 0.317 0.566 0.433 0.533
Random baseline 0.610 0.325 0.464 0.456 0.460
Llama 2 7B Chat 0.447 0.252 0.394 0.267 0.345

Table 14: Accuracy within 1 SD of the human mean on the (5-shot) no-context inference task (Experiment 2) by
bigram frequency and by adjective type (typically-privative or typically-subsective).
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Figure 12: Accuracy within 1 SD of the human mean on the context-based inference task for base models (5-shot).
Under this more lenient metric, overall accuracy increases with model size, though still not in every category for
Llama 2.

Figure 13: Accuracy within 1 SD of the human mean on the no-context inference task (Experiment 2) by bigram
frequency and by adjective type (typically-privative or typically-subsective) for base models (5-shot).

Figure 14: Average log-probability distribution for (typically) subsective vs. privative adjectives for base LLMs,
compared to the average human distribution.
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Accuracy
Model Privative context Subsective context High freq. Zero freq. Total

Human 0.78 0.81 0.80 0.79 0.79
Qwen 2 72B Instruct 0.79 0.93 0.85 0.83 0.86
Llama 3 70B Instruct 0.86 0.82 0.80 0.83 0.84
Llama 3 70B 0.86 0.57 0.70 0.58 0.71
Llama 3 8B Instruct 0.64 0.75 0.70 0.67 0.70
Llama 2 70B 0.68 0.71 0.65 0.67 0.70
Mixtral 7x8B Instruct 0.75 0.64 0.70 0.67 0.70
Llama 2 70B Chat 0.82 0.53 0.55 0.83 0.68
Llama 2 7B Chat 0.89 0.39 0.55 0.75 0.64
Llama 2 7B 0.57 0.64 0.45 0.67 0.61
Llama 3 8B 0.89 0.25 0.40 0.75 0.57
Llama 2 13B Chat 0.93 0.21 0.50 0.58 0.57
Llama 2 13B 0.89 0.07 0.45 0.50 0.48
Random baseline 0.4 0.4 0.4 0.4 0.4

Table 15: Accuracy on the zero-shot context-based inference task (Experiment 1c) overall, by bigram frequency and
by context bias.

(a) Log-probability (b) Context generation

Figure 15: Effects plots for the regressions JSDivergence ∼ AdjectiveType * HumanMean + HumanSD +
BigramFrequency for each method in Section 5.4. There is no significant effect of bigram frequency.
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