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Message from the Organisers

The ability to generalise well is often mentioned as one of the primary desiderata for models of natural
language processing (NLP). Yet, there are still many open questions related to what it means for an NLP
model to generalise well, and how generalisation should be evaluated. LLMs, trained on gigantic trai-
ning corpora that are, at best, hard to analyse or might not be publicly available at all, bring a new set of
challenges to the topic. The second GenBench workshop on generalisation (benchmarking) in NLP aims
to serve as a cornerstone to catalyse research on generalisation in the NLP community. The workshop
has two concrete goals: to bring together different expert communities to discuss challenging questions
relating to generalisation in NLP and to establish a shared platform for state-of-the-art generalisation
testing in NLP through our Collaborative Benchmarking Task (CBT). We started the CBT last year; this
year’s CBT is solely LLM-focused.

The second edition of the workshop was held at EMNLP 2024 in Miami, Florida. For this edition, we
accepted 11 archival papers in our main track, 2 archival papers for our CBT, and 9 extended abstracts.
The workshop also provided a platform for the authors of EMNLP Findings papers related to the work-
shop’s topic to present their work as a poster at the workshop.

The workshop would not have been possible without the dedication of the programme committee, whom
we would like to thank for their contributions. We would also like to thank Amazon for their sponsorship
of 10,000 dollars, which we used to grant travel awards to allow participants who could otherwise not
have attended to participate in the workshop, and to grant two best paper awards. Lastly, we are grateful to
our invited speakers, Pascale Fung, Najoung Kim, and Sameer Singh, for contributing to our programme.
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Ryan Cotterell, ETH Zürich
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Keynote Talk
Invited Talk 1

Pascale Fung
Hong Kong University of Science and Technology

2024-11-16 – Time: 09:15 – 10:00 –

Bio: Pascale Fung is a Chair Professor at the Department of Electronic & Computer Engineering at The
Hong Kong University of Science & Technology (HKUST), and a visiting professor at the Central Acade-
my of Fine Arts in Beijing. She is an elected Fellow of the Association for the Advancement of Artificial
Intelligence (AAAI) for her significant contributions to the field of conversational AI and to the develo-
pment of ethical AI principles and algorithms", an elected Fellow of the Association for Computational
Linguistics (ACL) for her “significant contributions towards statistical NLP, comparable corpora, and
building intelligent systems that can understand and empathize with humans”. She is an Fellow of the
Institute of Electrical and Electronic Engineers (IEEE) for her “contributions to human-machine interac-
tions” and an elected Fellow of the International Speech Communication Association for “fundamental
contributions to the interdisciplinary area of spoken language human-machine interactions”. She is the
Director of HKUST Centre for AI Research (CAiRE), an interdisciplinary research centre promoting
human-centric AI. She co-founded the Human Language Technology Center (HLTC). She is an affilia-
ted faculty with the Robotics Institute and the Big Data Institute at HKUST. She is the founding chair
of the Women Faculty Association at HKUST. She is an expert on the Global Future Council, a think
tank for the World Economic Forum. She represents HKUST on Partnership on AI to Benefit People
and Society. She is on the Board of Governors of the IEEE Signal Processing Society. She is a member
of the IEEE Working Group to develop an IEEE standard - Recommended Practice for Organizational
Governance of Artificial Intelligence. She was a Distinguished Consultant on Responsible AI at Meta in
2022, and a Visiting Faculty Researcher at Google in 2023. Her research team has won several best and
outstanding paper awards at ACL, ACL and NeurIPS workshops.
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Keynote Talk
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Najoung Kim
Boston University

2024-11-16 – Time: 11:00 – 11:45 –

Bio: Najoung Kim is an Assistant Professor at the Department of Linguistics and an affiliate faculty
in the Department of Computer Science at Boston University. She is also currently a visiting faculty
researcher at Google DeepMind. Before joining BU, she was a Faculty Fellow at the Center for Data
Science at New York University and received her PhD in Cognitive Science at Johns Hopkins University.
She is interested in studying meaning in both human and machine learners, especially ways in which
they generalize to novel inputs and ways in which they treat implicit meaning. Her research has been
supported by NSF and Google, and has received awards at venues such as ACL and *SEM.
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Keynote Talk
Invited Talk 3

Sameer Singh
University of California, Irvine

2024-11-16 – Time: 15:00 – 15:45 –

Bio: Dr. Sameer Singh is a Professor of Computer Science at UC Irvine. He is working primarily on
the robustness and interpretability of machine learning algorithms and models that reason with text and
structure for natural language processing. Sameer was a postdoctoral researcher at the University of Wa-
shington and received his Ph.D. from the University of Massachusetts, Amherst. He has been named the
Kavli Fellow by the National Academy of Sciences, received the NSF CAREER award, UCI Distingui-
shed Early Career Faculty award, the Hellman Faculty Fellowship, and was selected as a DARPA Riser.
His group has received funding from Allen Institute for AI, Amazon, NSF, DARPA, Adobe Research,
Hasso Plattner Institute, NEC, Base 11, and FICO. Sameer has published extensively at machine learning
and natural language processing venues and received conference paper awards at KDD 2016, ACL 2018,
EMNLP 2019, AKBC 2020, ACL 2020, and NAACL 2022.
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Evaluating the fairness of task-adaptive pretraining on unlabeled test data
before few-shot text classification

Kush Dubey
Independent

kushdubey63@gmail.com

Abstract

Few-shot learning benchmarks are critical for
evaluating modern NLP techniques. It is possi-
ble, however, that benchmarks favor methods
which easily make use of unlabeled text, be-
cause researchers can use unlabeled text from
the test set to pretrain their models. Given the
dearth of research on this potential problem, we
run experiments to quantify the bias caused by
pretraining on unlabeled test set text instead of
on unlabeled, independently drawn text. Con-
trolled few-shot and zero-shot experiments on
25 classification tasks and 3 language models—
BERT, GPT-2, and Mistral 7B—do not find
evidence of overoptimism. Furthermore, we
demonstrate the importance of repeated sub-
sampling when studying few-shot text classi-
fication, and recommend that few-shot learn-
ing benchmarks include multiple training folds.
Code and data are available here: https://
github.com/kddubey/pretrain-on-test/.

1 Introduction

It is common for NLP benchmarks to release text
from the test set, as researchers can submit a file of
predictions instead of submitting code. A potential
concern is that researchers can use this text during
training. Consider the Real-world Annotated Few-
shot Tasks (RAFT) benchmark (Alex et al., 2021),
which contains "few-shot" text classification tasks—
tasks where the training set contains a relatively
small number of labeled examples. Below is an
excerpt from the RAFT paper (emphasis added):

For each task, we release a public train-
ing set with 50 examples and a larger
unlabeled test set. We encourage unsu-
pervised pre-training on the unlabelled
examples and open-domain information
retrieval.

In the RAFT competition, a model is evaluated
by scoring its predictions on the same set of unla-

beled text which the model may have been trained
on (using an unsupervised training procedure).

It is wrong to train a model on test set features
with their labels and then evaluate on the test set
when one needs to estimate performance on out-
of-sample data. Test set performance would be
overoptimistic (Hastie et al., 2009). This fact is
widely known. But what if, as encouraged by Alex
et al. (2021), a model is trained on test set features
without test set labels? This paper studies this ques-
tion for the domain of few-shot text classification.

2 Motivation

NLP benchmarks for few-shot learning are preva-
lent, as having only a handful of labeled exam-
ples is more realistic. One consideration when
designing these benchmarks is that some few-shot
approaches can—at least theoretically—use unla-
beled text from the test set. With Pattern-Exploiting
Training (Schick and Schütze, 2021), for example,
one can train the final classifier on test set text with
soft labels predicted by an ensemble of supervised
models. With Pre-trained Prompt Tuning (Gu et al.,
2022), one can pretrain the language model (LM)
on unlabeled test set text before prompt-tuning on
the labeled training set. A more classical approach
would be to train a word2vec model (Mikolov et al.,
2013) on unlabeled test set text, run this model on
training text to get embeddings, and finally train a
classifier on these embeddings with labels from the
training set.

For other few-shot approaches, such as SetFit
(Tunstall et al., 2022) and in-context learning with
LLMs (as popularized by Brown et al., 2020), it is
more common to only use labeled text.

While the ability to exploit unlabeled text is use-
ful, applying this ability to test set text could be sub-
stantively different than applying it to text which is
statistically independent of the test set. This differ-
ence in methodology may be more concerning in
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the few-shot setting than in the many-shot setting.
It is conceivable that differences between few-shot
methods are due just as much to how unlabeled
text is used as they are to how the few, labeled
examples are used. This raises the question: does
pretraining a model on a benchmark’s unlabeled
test set text inflate the model’s performance on that
benchmark?

3 Related work

As indicated by the quote in §1, the RAFT bench-
mark implicitly assumes that the answer is no. The
validity of using test set features is not a fringe opin-
ion. The popular textbook by Hastie et al. (2009)
contains the following passage without a reference
or evidence (emphasis added):

There is one qualification: initial unsu-
pervised screening steps can be done be-
fore samples are left out. For example,
we could select the 1000 predictors with
highest variance across all 50 samples,
before starting cross-validation. Since
this filtering does not involve the class
labels, it does not give the predictors an
unfair advantage.

The opposite opinion—that exploiting unlabeled
test set features is unfair—may align more closely
with best practices. For example, Gururangan et al.
(2020) contains the following criticism of another
study when comparing performances on a text clas-
sification task:

Thongtan and Phienthrakul (2019) report
a higher number (97.42) on IMDB, but
they train their word vectors on the test
set.

Jacovi et al. (2023) argue that benchmarks which
release unlabeled test set text can be compromised,
but do not discuss potential problems with using
unlabeled test set text by itself.

Moscovich and Rosset (2022) contains experi-
ments and theory for unsupervised methods which
are common to tasks involving tabular data. They
find that estimators of out-of-sample performance
which were subject to these methods may be biased
positively or negatively, depending on the param-
eters of the problem. They recommend further
research on this bias in more domains, particularly
when dealing with small sample sizes and high-
dimensional data.

4 Experimental design

We study whether pretraining on unlabeled test set
text biases test set performance for 25 diverse text
classification tasks and two types of LMs: BERT
(Devlin et al., 2019) and GPT-2 (Radford et al.,
2019). Appendix A describes each task.

The goal of the experiment is to first establish
that pretraining is beneficial, in line with Guru-
rangan et al. (2020). Second, given that pretrain-
ing has a detectable effect, the experiment mea-
sures the accuracy difference between using test set
text for the pretraining stage—an arguably unfair
methodology—and using text which is independent
of the test set—an inarguably fair methodology.

In more detail, the experiment starts by subsam-
pling three separate sets of data from the full sam-
ple of data for a given text classification task:

• extra: n (either 50, 100, 200 or 500) unla-
beled texts which are optionally used for pre-
training

• train: m (either 50 or 100) labeled texts for
classification training

• test: n labeled texts to report accuracy.

Next, three accuracy estimators are computed. Pro-
cedures used to obtain them are described below.

4.1 accextra

1. Train a freshly loaded, pretrained LM on the
n unlabeled texts in extra using the LM’s
pretraining objective—masked language mod-
eling loss for BERT, or causal language mod-
eling loss for GPT-2. Texts are passed inde-
pendently, and padded to form batches.

2. Add a linear layer to this model and finetune
all of the LM’s weights to minimize classifi-
cation cross entropy loss on train.

3. Compute the classification accuracy of this
model on test.

Step 1 is task-adaptive pretraining—a procedure
broadly recommended by Gururangan et al. (2020).
Step 2 is a canonical way to train a transformer-
based LM for a classification task, according to
Section 2 of Zhang et al. (2021).

accextra is clearly an unbiased estimator of out-
of-sample accuracy because it never trains on test.
In other words, the expected value of accextra is
the accuracy one would observe on independent,
identically distributed data.
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Figure 1: The experimental design (§4) for n = 500 as an example.

Figure 2: Pseudocode for the accuracy estimators defined in §4.

4.2 acctest

acctest is identical to accextra, except that task-
adaptive pretraining is done on unlabeled text from
test instead of extra in step 1.

acctest represents what one might see in a com-
petition like RAFT, where pretraining on unlabeled
text from test is encouraged. It is unclear whether
this accuracy estimator is unbiased, because it in-
volved pretraining and evaluating on the same set
of test set text. A reasonable hypothesis is that it is
overoptimistic, i.e., E[acctest] > E[accextra].

4.3 accbase

accbase does not do task-adaptive pretraining; it
does not make any use of unlabeled text. It trains
a pretrained LM on train to do classification, and
then computes this model’s accuracy on test.

This score provides a sanity check. If there is
no boost from accbase to accextra, then it may not be
surprising to observe no difference between accextra
and acctest. A boost from accbase to accextra would
rule out undertraining as the cause of a null differ-
ence between accextra and acctest due to insufficient
pretraining epochs or too low a learning rate.

4.4 Repeated subsampling

The accuracy estimators are paired, because their
classification training and test data are identical.
The only difference is the source of unlabeled text
for pretraining. For accextra, the source is indepen-
dent of test data. For acctest, the test set text is used.
For accbase, no unlabeled text is used.

A potentially important source of variation in
this experiment is the particular subsamples, i.e.,
the particular realizations of extra, train, and
test for a given classification task. To expose this
variation, the experiment procedure is repeated tens
of times for each task.1 For example, for n = 500,
and for each of the 25 tasks, 20 (accextra, acctest,
accbase) triples are computed.

Appendix B explains more experiment choices.

5 Results

Appendix D.2 visualizes the distributions of accextra
− accbase and acctest − accextra. accextra − accbase is
a control: it is the accuracy boost from pretraining

1For n = 50 and n = 100, the experiment is repeated
100 times. For n = 200, the experiment is repeated 50 times.
For n = 500, the experiment is repeated 20 times. In total,
81, 000 finetuned BERT and GPT-2 models were evaluated.

3



on unlabeled independent text versus not pretrain-
ing at all. acctest − accextra is the main quantity of
interest: it is the evaluation bias from pretraining
on unlabeled test set text instead of on unlabeled
independent text.

Table 1 contains means of these differences for
each configuration of the experiment. It roughly
suggests that while pretraining is consistently ben-
eficial, pretraining on unlabeled test set text does
not bias test set performance one way or the other.

BERT GPT-2

n = 50
4.1%

0.19%
3.8%

0.18%

n = 100
3.9%

0.18%
4.1%

0.11%

n = 200
3.9%

-0.39%
4.4%

-0.05%

n = 500
3.5%

0.48%
4.6%

-0.08%

(a) m = 50

BERT GPT-2

n = 50
6.2%

-0.08%
2.2%

-0.05%

n = 100
6.1%

-0.37%
2.5%

0.03%

n = 200
4.1%

0.33%
6.3%

-0.01%

n = 500
6.1%

-0.16%
3.9%

-0.21%

(b) m = 100

Table 1: Means of accuracy differences taken across
all subsamples of all 25 classification tasks. For each
cell, the upper-left of the diagonal corresponds to the
sample mean of accextra − accbase, and the lower-right
corresponds to the sample mean of acctest − accextra.

6 Analysis

Reporting means is not enough, especially when
studying few-shot learning. Appendix D.2 demon-
strates that there is considerable variance, despite
pairing the accuracy estimators.2 While these vi-
sualizations tell us about how raw accuracy dif-
ferences vary, they do not tell us how the mean
accuracy difference varies. We seek a neat answer
to the core questions: on this benchmark of 25
classification tasks, how much does the overall ac-
curacy differ between two modeling techniques,
and how much does this difference vary?

2One source of variance is intentionally introduced: the
subsample splits, as explained in §4.4. The other source of
variance is inherent: the added linear layer to perform classifi-
cation is initialized with random weights.

One way to communicate the variance is to es-
timate the standard error of the mean difference
across classification tasks. But the standard er-
ror statistic can be difficult to interpret (Morey
et al., 2016). Furthermore, its computation is not
completely trivial due to the data’s hierarchical de-
pendency structure: each triple, (accextra, acctest,
accbase), is drawn from (train, test), which is
itself drawn from the given classification dataset.

6.1 Model

This analysis does not aim to estimate standard
errors. Instead, a hierarchical model is fit. Specif-
ically, for each LM type (indexed by i = 1, 2
for BERT and GPT-2), each classification task (in-
dexed by j = 1, 2, . . . , 25), each of their subsam-
ples (indexed by k = 1, 2, . . . , 20 for n = 500,
for example), and a control and treatment (indexed
by l = 0, 1), the number of correct predictions is
modeled (∗ is short for ijkl):

Y∗ ∼ Binomial(n, λ∗) (1)

logit(λ∗) = µ+ αzi + Uj + Vjk +Wjl + βxl (2)

µ ∼ Normal(0, 1) (3)

α ∼ Normal(0, 5) (4)

Uj ∼ Normal(0, σU ) (5)

Vjk ∼ Normal(0, σV ) (6)

Wjl ∼ Normal(0, σW ) (7)

β ∼ Normal(0, 1) (8)

σU , σV ∼ HalfNormal(0, 1) (9)

σW ∼ HalfNormal(0, 3.5355) (10)

(1) number of correct predictions

(2) logit link for accuracy rate, additive effects

(3) prior for the global intercept

(4) prior for the effect of the type of LM (BERT
or GPT-2)—a control variable

(5) prior for the effect of the classification task
(partial-pooled to reduce overfitting)

(6) prior for the nested effect of the task’s sub-
sampled dataset

(7) prior for the interaction effect of the task and
the intervention (to reduce underfitting)

(8) prior for the effect of the intervention

(9) prior for standard deviations

(10) prior for standard deviation.
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Figure 3: Distributions of average accuracy differences (11). The evaluation bias is akin to acctest − accextra. The
pretraining boost is akin to accextra − accbase.

The model is fit using Markov Chain Monte
Carlo, using the interface provided by the bambi
package (Capretto et al., 2022).

To analyze the pretraining boost, the control,
Yijk0, is n· accbase, and the treatment, Yijk1, is n·
accextra. Here, the intervention refers to pretraining
on unlabeled independent text versus not pretrain-
ing at all.

To analyze the evaluation bias, the control, Yijk0,
is n· accextra, and the treatment, Yijk1, is n· acctest.
Here, the intervention refers to pretraining on unla-
beled text from the test set instead of on unlabeled
independent text.

4,000 samples from the posterior predictive,
Ŷijkl, are drawn. Appendix E.1 includes a simula-
tion demonstrating the model’s ability to correctly
recover null and non-null effects.

6.2 Overall effects

Benchmarks assess methods by taking their aver-
age performance across tasks. To place the results
in this context, samples from the posterior predic-
tive distribution of Yijk1 − Yijk0 (6.1) are taken,
then averaged across i (the 2 LM types—BERT
and GPT-2), j (the 25 classification tasks), and
k (their subsamples), and divided by n to obtain

the distribution of the average accuracy difference
(expressed in dot notation, where dots are used as
placeholders for indices that have been averaged
over):

¯̂
Y···1 − ¯̂

Y···0
n

. (11)

Each distribution is that of the marginal effect of
the modeling intervention: pretraining versus not
pretraining (the pretraining boost), or pretraining
on unlabeled test set text instead of on unlabeled
independent text (the evaluation bias).

6.3 Task-level effects

While taking an average across tasks provides a
concise summary, it cannot be used to rule out the
existence of an evaluation bias. If the direction of
the bias depends on latent properties of the task,
averaging may cancel out real, positive biases with
real, negative ones. Alternatively, it may dilute the
few real, positive biases with many null ones.

Jin et al. (2021) argue and demonstrate that the
benefit of task-adaptive pretraining depends on the
task’s causal direction. If the principle of inde-
pendent causal mechanisms is also relevant to the
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fairness of pretraining on test set features, then
our accuracy data may contain (for the sake of ar-
gument) positive evaluation biases for anti-causal
tasks, and null biases for causal tasks.3

One way to analyze tasks is to sample from the
posterior predictive distribution of the accuracy
difference, and only average across subsamples:

¯̂
Yij·1 − ¯̂

Yij·0
n

. (12)

A more concise way is to perform a hypothesis
test for each setting of m,n, and the LM type:

H0 : E[acctest − accextra] = 0 (13)

H1 : E[acctest − accextra] > 0. (14)

The p-value is estimated via permutation testing.
It is then adjusted to control the false discovery rate
(Benjamini and Hochberg, 1995).

7 Discussion

Figure 3 demonstrates that the average pretraining
boost is significant in every configuration of the
experiment. This finding replicates that from Guru-
rangan et al. (2020). After averaging across settings
for m, n, and the 2 LM types, only two of the 25
classification tasks had a pretraining boost less than
0, and both were greater than -1%. 4 Task-adaptive
pretraining had the intended effect.

As shown in Figure 3, the evaluation bias
bounces inconsistently and insignificantly around
0. After averaging, 12 of the 25 classification tasks
had a positive evaluation bias, 13 had a negative
evaluation bias, and all tasks had an average evalu-
ation bias less than 1% in absolute value.

To avoid excessive averaging, we lemon-picked
tasks which reported a bias of at least +3% in any
experiment configuration. All tasks matching this
criterion were from experiments with BERT, as
BERT had greater training variance. If there were
a task-dependent evaluation bias, one could expect
that the bias is consistent across m or n within a
task, or there is a consistent pattern with how the
bias changes with m or n across tasks. Figure 4
does not clearly support either of these hypotheses.

3We will not assess any particular hypothesis about the
role of causality. We are only motivating task-level analysis.

4The tasks were blog_authorship_corpus and
movie_rationales.

Moscovich and Rosset (2022) found that the
evaluation bias caused by unsupervised methods
for tabular data converges to 0 as n increases. This
finding is not confirmed by this experiment. Fig-
ure 3 shows that within m = 50 and m = 100,
distributions of the evaluation bias hover around 0
across n. Figure 4 also does not support a relation-
ship between n and the evaluation bias for lemon-
picked tasks. But far more experiments varying n
are needed to thoroughly assess this insensitivity.

8 Overtraining

§7 rules out undertraining on unlabeled text as the
cause of a null evaluation bias. What if we over-
train? Overtraining on labeled test data trivially
increases test set performance. Perhaps overtrain-
ing on unlabeled test set text has a similar effect.
To test this hypothesis for text classification, GPT-2
is intentionally overtrained on unlabeled text for 2
epochs instead of 1.

For each of the 25 classification tasks and their
subsamples, pretraining for 2 epochs instead of 1 re-
sulted in a lower pretraining loss. The final pretrain-
ing loss is 20% lower on average, and the pretrain-
ing boost is negative, which indicates overfitting,
as intended. Figure 5 demonstrates that, despite
overtraining, the evaluation bias hovers around 0.
All 50 p-values from the test in (13) are greater
than 0.5.5 Overtraining on unlabeled test set text
causes test set performance to degrade to the same
degree that overfitting on unlabeled independent
text does.

9 Zero-shot text classification

Prompting an LLM is a popular choice for solving
NLP problems. These prompts can be pretrained
on. For example, Gemma 2 (Team et al., 2024) is
intentionally pretrained on prompts from the LM-
SYS benchmark (Zheng et al., 2023).

To study a more modern prompting approach,
the experiment in §4 is repeated with two modi-
fications. First, task-adaptive pretraining is done
on prompts—unlabeled texts with instructions for
solving the task. Second, classification training
is not performed; train is unused. The further-
pretrained LLM is immediately prompted to do the
task on test.

More specifically, pretraining is performed by
adding a QLoRA adapter layer (Dettmers et al.,

5Note that all p-values from the test in (13) are adjusted to
control the false discovery rate.
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Figure 4: Distributions of average evaluation biases (12) for the subset of tasks which reported an average evaluation
bias of at least +3% accuracy in any configuration of the experiment.

2024) to every linear layer in Mistral 7B (Jiang
et al., 2023). Perhaps notably, instructions mention
the set of possible answers—the class names.

Figure 6 (left) shows that, while pretraining on
prompts improves accuracy, pretraining on test
set prompts does not increase test set accuracy
compared to pretraining on independently drawn
prompts. 12 of the 25 tasks had a positive evalua-
tion bias and 13 had a negative evaluation bias. All
25 p-values from (13) are greater than 0.5; there is
no evidence of a task-level evaluation bias.

A limitation of this experiment is that it does
not account for contamination. If Mistral 7B’s
pretraining data included labeled or unlabeled parts
of the datasets used here, the pretraining boost and
evaluation bias may be diluted.

9.1 Packing instead of padding

Experiments so far passed pretraining texts inde-
pendently, adding and masking pad tokens to en-
able batching. Packing instead combines texts into
a single sequence of tokens whose length is the
model’s context length. Packing is often used dur-
ing the initial pretraining of an LLM, where the
model is trained on continuous streams of text to
increase throughput (Brown et al., 2020).

Does packing impact evaluation bias differently
than padding? One hypothesis is that, without spe-
cial handling of the attention mask, packing causes
the model to attend to previous texts, so the trans-
former has greater flexibility in modeling unlabeled
text. To study the effects of packing, the zero-shot
experiment in §9 is repeated with packing instead
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Figure 5: Average accuracy differences (11) after pretraining GPT-2 for 2 epochs instead of 1 (§8).

Figure 6: Average accuracy differences (11) for zero-shot classification (§9) with padding (left) and packing (right).
For each of the 25 classification tasks, 20 subsamples were taken.

of padding. Figure 6 (right) shows that there is a
pretraining boost, but no evaluation bias. All 25
p-values from (13) are greater than 0.5.

9.2 On testing test set contamination

Contamination detectors aim to flag overoptimistic
LLM evaluations. An LLM is contaminated if it
was pretrained and evaluated on the same set of
labeled data, as this procedure results in an evalua-
tion bias. In contrast, the result from §9.1 implies
that contamination of unlabeled test set text does
not result in an evaluation bias. Do contamination
detectors pick up this nuance?

The experiment in §9.1 is run for the ag_news
task and n = 500. Next, text-label pairs from test
are passed to the contamination hypothesis test in
Oren et al. (2024). The p-value for the model pre-
trained on unlabeled text from extra is 0.33. The
p-value for the model pretrained on unlabeled text
from test is 0.015, which indicates contamination.
However, the observed evaluation bias for this task
is statistically indistinguishable from 0.

Detectors need to be able to differentiate the con-
tamination of labeled text from the contamination
of unlabeled text. For those that do not, contami-
nation flags should be interpreted with care. Even
if such a detector never raises false flags, a con-
tamination flag may not indicate an overoptimistic
evaluation.

10 Meta-analysis

§4.4 briefly argues for subsampling multiple
datasets from the full classification dataset. To
assess this argument, the analysis was repeated
on 500 random slices of the m = 100, n = 500
dataset of accuracies such that exactly 1 (accextra,
acctest, accbase) triple per classification task (instead
of 20 triples) is included. This de-replicated data is
often all one gets from benchmarks.

Figure 7 (left) displays the cumulative distribu-
tion of the posterior mean of the evaluation bias
for m = 100, n = 500 under this de-replicated ex-
perimental design. The distribution is quite variant.
There is a 47% chance that the posterior mean of
β—the average increase in the log-odds of a cor-
rect prediction by pretraining on unlabeled test set
text instead of on unlabeled independent text—is
outside the interval (−0.04, 0.04), which would
indicate a significant negative or positive bias.6

For the zero-shot experiment in §9, there is a 50%
chance that that the posterior mean of β is outside
(−0.08, 0.08). Without repeated subsampling, one
may as well flip a coin to decide whether pretrain-
ing on unlabeled test set text is fair.

6For 0.04, the odds ratio is e0.04 ≈ 1.04. For con-
text, the average odds ratio between adjacent submissions
in the RAFT leaderboard is 1.03. For posterior means outside
(−0.04, 0.04), all of their 89% credible intervals exclude 0,
which evidences a non-null effect.
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Figure 7: Distributions of conclusions had there been no technical replication (§10).

11 Conclusion

Task-adaptive pretraining on unlabeled test set
text—instead of on unlabeled independent text—
did not result in a consistent or significant evalu-
ation bias. This appears to be the case when pre-
training helps, when it hurts, and when pretraining
is done on texts with instructions.

For benchmarks which release unlabeled text
from the test set, this finding does not completely
absolve LLM evaluations from scrutiny. The rea-
son is that the boost from pretraining on unlabeled
text—which is often significant—could be viewed
as a type of evaluation bias, depending on how
LLMs generalize. More concretely, suppose there
is a benchmark and two LLMs, A and B. A was not
pretrained on the benchmark’s unlabeled test set
text, while B was. With the perspective that LLM
benchmarks supply scores which are correlates of
performance on real-world tasks—instead of indi-
cators of performance solely on the benchmark’s
tasks—then B scoring higher on the benchmark
than A may be a misleading signal. If pretrain-
ing on the benchmark’s unlabeled text causes B to
generalize better only within the distribution of the
benchmark, then B’s edge on this benchmark does
not signal an edge in real-world tasks. Knowing
whether an LLM was pretrained on unlabeled test
set text is still important.

One recommendation for designing few-shot
benchmarks, which expands on the principle about
robustness from Bragg et al. (2021), is based on
the meta-analysis in §10: empirical studies of few-
shot learning should consider including multiple,
independent subsamples of training data. While
a single training set combined with a large test

set is sufficient for precise, unbiased estimation of
out-of-sample performance, this estimator is condi-
tional on the training set. In few-shot learning, the
training set is, by definition, minimal. The estima-
tor hides two sources of variance—that from the
randomly drawn training set, and that from random-
ness inherent in the training procedure. Figure 7
shows that this variance is large-enough to turn a
methodology into a coin flip for two different train-
ing procedures. In-context learning with LLMs is
also sensitive to the selection of few-shot examples
(Lu et al., 2022, Alzahrani et al., 2024). Bench-
marks which require training on multiple, indepen-
dent subsamples would expose training variance.

Limitations

This paper does not study semi-supervised meth-
ods like Pattern-Exploiting Training, or hand-
inspecting the test set text and targeting interven-
tions accordingly. We also do not study the effect
of including unlabeled test set texts in the initial
pretraining stage of an LLM.

The results are empirical. There may be tasks
where an evaluation bias exists, and these were not
part of the 25 classification tasks we collected. The
results do not theoretically or universally establish
that pretraining on unlabeled test set text is fair.
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A Classification tasks

The experiment was ran on 25 publicly avail-
able text classification tasks found in https://
huggingface.co/datasets. Inclusion criteria:

1. All text is in English.

2. The number of classes is not greater than 25,
because only 50 or 100 observations are used
for training the classifier.

3. The task is to classify one text, not a pair as
in, e.g., textual entailment tasks.

4. Texts are not so long that too much useful
signal is dropped when text is truncated to fit
in BERT/GPT-2’s context window, which is
set to 256 tokens.

5. Based on our best judgment, it is likely that
BERT/GPT-2 can do better than guessing.

Table 2 lists the exact tasks.

B Other experiment choices

This section expands on §4.
First, we clarify how classification training is

performed. For BERT, the linear layer transforms
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Hugging Face dataset Author(s) Number
of classes

Text length
(25, 75)
percentiles

ag_news Zhang et al. (2015) 4 (196, 266)
SetFit/amazon_counterfactual_en O’Neill et al. (2021) 2 (60, 125)
app_reviews Grano et al. (2017) 5 (10, 77)
blog_authorship_corpus Schler et al. (2006) 2 (92, 556)
christinacdl/clickbait_notclickbait_dataset 2 (46, 69)
climate_fever Diggelmann et al. (2020) 4 (80, 156)
aladar/craigslist_bargains He et al. (2018) 6 (346, 713)
disaster_response_messages 3 (74, 178)
emo Chatterjee et al. (2019) 4 (44, 83)
dair-ai/emotion Saravia et al. (2018) 6 (53, 129)
SetFit/enron_spam Metsis et al. (2006) 2 (342, 1553)
financial_phrasebank Malo et al. (2014) 3 (79, 157)
classla/FRENK-hate-en Ljubešić et al. (2019) 2 (34, 160)
hyperpartisan_news_detection Kiesel et al. (2019) 2 (39, 63)
limit Manotas et al. (2020) 2 (53, 123)
AmazonScience/massive FitzGerald et al. (2023) 18 (24, 44)
movie_rationales DeYoung et al. (2020) 2 (2721, 4659)
mteb/mtop_domain Muennighoff et al. (2023) 11 (26, 44)
ccdv/patent-classification Sharma et al. (2019) 9 (441, 775)
rotten_tomatoes Pang and Lee (2005) 2 (76, 149)
silicone Chapuis et al. (2020) 4 (29, 75)
trec Wang et al. (2007) 6 (36, 61)
tweets_hate_speech_detection Sharma (2019) 2 (62, 107)
yahoo_answers_topics Huangzhao (2018) 10 (58, 213)
yelp_review_full Zhang et al. (2015) 5 (287, 957)

Table 2: Brief descriptions of the 25 classification tasks used in this experiment. Click the link in the cell to be taken
to the dataset homepage in https://huggingface.co/datasets. The dataset subset (or config) and the chosen
prediction task are specified in code in src/pretrain_on_test/data.py.
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the [CLS] token embedding. For GPT-2, the linear
layer transforms the last token’s embedding. The
output dimension of the linear layer is the number
of classes in the classification task. This layer,
along with the rest of the weights in the LM, are
finetuned to minimize classification cross entropy
loss on train.

The BERT model used here is
bert-base-uncased. The GPT-2 model
used here is gpt2 (small), with 124M parameters.
train is stratify-sampled by the class to ensure

every class is represented, and to reduce the vari-
ance of accuracy estimators. test is not stratify-
sampled. We are only interested in the difference
between accuracies, which is a function of the dif-
ference between model likelihoods because the pri-
ors are uniform. So even if accuracies are worse
than the majority vote, differences are still mean-
ingful for the purposes of this experiment.
train text is not included during pretraining to

eliminate the overlap of pretraining data between
accextra and acctest. This choice was made in an
effort to widen any gap between them.
train contains m = 50 or m = 100 observa-

tions. m = 50 is inspired by the RAFT bench-
mark. m = 100 stretches the intention of "few" in
few-shot learning, but was tested in an attempt to
make lower-variance comparisons. BERT is quite
sensitive—see Appendix D.2.

C Hyperparameters and reproducibility

This paper’s experiment and analysis code, and
data, is available here: https://github.com/
kddubey/pretrain-on-test.
experiment.sh lists hyperparameters used for

each classification task and experiment configura-
tion. For the experiment in §4, BERT was pre-
trained for 2 epochs, and GPT-2 was pretrained
for 1 epoch. Classification hyperparameters were
pre-specified based on Zhang et al. (2021), with
batch sizes set to avoid out-of-memory errors. Run
the script on a GPU with at least 15 GB RAM
to reproduce results in §5. It takes about 5 days
on a T4 GPU. Training is performed using the
transformers package (Wolf et al., 2020).

D Results

D.1 Task-level analysis

The notebook analysis/dataset.ipynb can be
run to (1) produce visualizations of the distributions

of accextra, acctest, and accbase (for each classifica-
tion task and experiment configuration), and (2)
compute p-values for the hypothesis test specified
in (13). For all settings of m and n, no p-values
were statistically significant at the 0.05 level.

In Figure 4, amazon_counterfactual_en and
mtop_domain have a consistent evaluation bias
across m for n = 500 and n = 200, respectively.
But these tasks did not result in an evaluation bias
in any other experiment configuration, including
those with GPT-2 and Mistral 7B.

Care has to be taken when attempting to ana-
lyze or interpret accextra − accbase and acctest −
accextra together. That’s because these differences
are not independent: if accextra is high, then accextra
− accbase increases and acctest − accextra decreases.
This paper does not analyze the scores together,
per se. We care about acctest − accextra. accextra −
accbase only exists to sanity check that the pretrain-
ing code works; there may be an effect to detect.

D.2 Difference distributions

Figures 13 - 20 visualize the distributions of the
paired differences—accextra − accbase and acctest −
accextra–for each configuration of the experiment.

E Analysis

The analysis in §6 can be reproduced
by running all of the notebooks in
analysis/fit_posteriors/. Figure 3
can be reproduced by running the notebook
analysis/results/posterior_pred.ipynb.
Figure 4 can be reproduced by running the
notebook analysis/
results/posterior_pred_conditional.ipynb.
Changing the threshold for the bias to +2% accu-
racy instead of +3% did not change conclusions.

Posterior samples of β (which were used to draw
posterior predictive samples) were taken from four
chains with 1,000 draws each, after 500 steps of
tuning.

E.1 Hierarchical model checks

Hierarchical models require some basic checks to
have faith in their results (McElreath, 2018).

For each of the 24 hierarchical models (16 in §7,
4 in §8, and 4 in §9), no divergences were observed
during the fitting procedure. All trace plots were
healthy.

Figure 11 contains prior predictive distributions
for m = 100, n = 200, demonstrating that priors
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are not unreasonable. Using default priors from
the bambi package (Capretto et al., 2022), while
scientifically unreasonable (because they result in
wide, basin-like accuracy distributions), did not
change the conclusions of this paper.

Figure 12 contains posterior distributions of β
for m = 100, n = 200, demonstrating the hier-
archical model’s ability to recover both null and
non-null effects. This test can be reproduced by
running the notebook analysis/test.ipynb.

Figure 9 checks that posterior predictions for the
average task accuracies are calibrated. Figure 10
demonstrates the importance of including the Wjl

term. These figures can be reproduced by running
the notebook analysis/results/
posterior_pred_conditional.ipynb.

F Meta-analysis

The meta-analysis in §10 can be reproduced by
running the script, analysis/meta/meta.py, and
then the notebook analysis/meta/meta.ipynb.
No divergences were observed.

Another question is whether the subsample
causes a consistent evaluation bias. §10 establishes
that picking a single subsample causes the compar-
ison between acctest and accextra to be a coin flip.
But is the result of the coin flip explained by the
specific subsample that was drawn? If so, com-
paring models using a single subsample may not
be so noisy, because the effect of pretraining on
unlabeled test set text would be consistent across
models.

One way to answer this question is to mea-
sure the correlation between the evaluation bias
of BERT and GPT-2 for each setting of m and n,
and each of the 25 tasks. A positive correlation sug-
gests that the subsample causes the evaluation bias.
Spearman’s rank correlation coefficient is used be-
cause we are only interested in the consistency of
the relationship, not its linearity.

The observed distributions of correlations across
m, n, and the tasks are plotted in Figure 8 (a).
For context, 10 distributions of randomly permuted
pairs of subsample-level biases are plotted in Fig-
ure 8 (b) and (c). These correlations are theoret-
ically 0, and are positive or negative by chance
alone. The observed distributions are qualitatively
indistinguishable from the null ones. Notably, the
variance is consistent. A deeper dive into the cor-
relations did not find any consistently positive (or
negative) correlations at the task level. This re-

sult further evidences the importance of repeated
subsampling. Taking a single subsample does not
result in a consistent pretraining boost or evalua-
tion bias between BERT and GPT-2. This anal-
ysis can be reproduced by running the notebook
analysis/dataset_level.ipynb.

(a) Observed

(b) Randomly permuted

(c) Randomly permuted

Figure 8: Distribution of correlation between BERT and
GPT-2 across all m, n, and the 25 classification tasks.

G Zero-shot text classification

Here is an example of a prompt for the ag_news
task (Zhang et al., 2015):
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Your task is to classify a given text as
one of these categories:
World
Sports
Business
Sci/Tech

The text is a news article. Answer with its topic.

### Text: Bombardier CEO Quits, Shares
Dive Paul Tellier stepped down on Monday
as president and chief executive of
Bombardier Inc. (BBDsvb.TO: Quote,
Profile, Research) (BBDb.
### Answer:

For packing (§9.1), the prompts at inference are
in the same format as above. For training, 8 texts
were packed. Here is an example of an input se-
quence for ag_news, where 4 texts are packed:

Your task is to classify a given text as
one of these categories:
World
Sports
Business
Sci/Tech

The text is a news article. Answer with its topic.

### Text: US Electoral College withstands critics
... so far (AFP) AFP - Lambasted as antiquated
and anti-democratic, the Electoral College that
decides the US presidency has survived for
centuries as an unmovable albeit creaky pillar
of the American political system.

### Text: Voters in Hungary decide referenda
Voters in Hungary went to the polls Sunday to
decide a double referendum on citizenship
rights and their nation #39;s health care
system.

### Text: White House: Trying to Confirm Terror
Group #39;s Allegiance to bin
&lt;b&gt;...&lt;/b&gt; The Bush administration
says it #39;s trying to confirm the latest
declaration from the most feared militant group
in Iraq. In a statement posted on a Web site
Sunday, the group led by terror mastermind Abu
Musab

### Text: Fans rush to create mods for
long-awaited #39;Doom 3 #39; Activision #39;s
Doom 3, which launched earlier this month,
wasn #39;t on store shelves for three days
before players started creating their own
modifications - known as mods -o the game.

The zero-shot experiment files are in
cloud_scripts/gcp/experiments/zero_shot/
and cloud_scripts/gcp/experiments/
zero_shot_packing/. Batch sizes are set
to run on a GPU with at least 20 GB RAM.
The GPU must support the data types needed

for QLoRA, e.g., an L4 GPU. Figure 6 can
be reproduced by running the notebooks
in analysis/fit_posteriors/zero_shot and
analysis/fit_posteriors/zero_shot_packing
and then the notebook,
analysis/results/posterior_pred.ipynb.

The Mistral 7B model is Mistral-7B-v0.3, the
non-instruction-trained model.

We only study n = 100 in an initial effort to
provide evidence of an evaluation bias (due to the
relatively small test set), and take 20 repeated sub-
samples instead of 50. While n = 100 is quite
small, benchmarks such as LegalBench (Guha et al.,
2024) have test data in this range. And the analysis
transparently exposes variance.

QLoRA hyperparameters were pre-specified: ev-
ery adapter has rank 16 with α = 32 (LoRA scaling
factor), a 0.05 dropout rate, and no bias parame-
ters. The adapter layers introduce 41, 943, 040 new,
trainable parameters to Mistral 7B, whose parame-
ters are frozen. Pretraining was done for 1 epoch.

To increase the power of the contamination hy-
pothesis test run in §9.2, shards were formed to be
similar to the sequences passed in during pretrain-
ing. Here is an example of what the first 2 text-label
pairs in the dataset passed to the contamination test
looks like:

### Text: Customers bemoan changes in Quicken
2005 The new version of the personal finance
program drops support for a widely used file
format.
### Answer: Sci/Tech

### Text: Blair gives partial Iraq apology Tony
Blair has offered his Labour party a partial

apology for waging war in Iraq, striving to pull
angry supporters behind him ahead of an election
next year.
### Answer: World

The 2 p-values in §9.2 can be
obtained by running the notebook
analysis/contamination/test.ipynb on
an L4 GPU.
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Figure 9: Each of the points represents a task and an LM type (BERT or GPT-2).

Figure 10: Omitting the interaction effect causes underfitting. Note that the prior causes effects to shrink towards 0.
Each of the points represents a task and an LM type (BERT or GPT-2).
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(a) Null effect (b) Non-null, positive effect

Figure 11: Prior predictive distributions for m = 100, n = 200 from two different priors for β—the expected
increase in the log-odds of a correct prediction resulting from an intervention/treatment.

(a) Null effect is recovered.

(b) Non-null, positive effect is recovered.

Figure 12: Posterior distributions and trace plots for null and non-null effects from simulated data where
m = 100, n = 200, approximated by four chains with 1,000 draws each, after 500 steps of tuning. For each model,
no divergences were observed during the fitting procedure. Visualizations were produced by the arviz package
(Kumar et al., 2019).
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Abstract

Large language models (LLMs) can perform
unseen tasks by learning from a few in-context
examples. How in-context learning works is
still uncertain. We investigate the mechanisms
of in-context learning on a challenging non-
language task. The task requires the LLM to
generate pixel matrices representing images of
basic shapes. We introduce a framework to
analyze if this task is solved by recognizing
similar formats from the training data (task
recognition) or by understanding the instruc-
tions and learning the skill de novo during infer-
ence (task learning). Our experiments demon-
strate that LLMs generate meaningful pixel ma-
trices with task recognition and fail to learn
such tasks when encountering unfamiliar for-
mats. Our findings offer insights into LLMs’
learning mechanisms to guide future research
on their seemingly human-like behavior.

1 Introduction

The rapid development of LLMs increases the
chance of misinterpreting their capabilities. It is
crucial to explore the potential of LLMs and re-
search their underlying mechanisms. This helps in
interpreting LLMs outputs, guides future research
to improve language models, and informs their use
and regulation.

Since Brown et al. (2020) demonstrated the abil-
ities of GPT-3, there has been a growing interest
in researching LLMs’ potential to generalize to
other tasks. Many studies demonstrated LLMs’
abilities in solving reasoning tasks (Li et al., 2021;
Srivastava et al., 2023; Huang and Chang, 2023).
Contrary, it has been shown that LLMs still strug-
gle to reason about seemingly simple tasks where
humans perform superior (Valmeekam et al., 2022;
Binz and Schulz, 2023; Huang and Chang, 2023).
These findings demonstrate ambiguity in LLMs’
general abilities and the need to further probe chal-
lenging tasks.

Figure 1: Two 8×8 pixel matrices representing simple
images generated by an LLM using in-context learning.

In addition to the ambiguity about general ca-
pabilities, it is also unclear how and why LLMs
benefit from in-context learning, i.e., how they can
learn from instructions and demonstrations in the
prompt. Brown et al. (2020) suggest that in-context
learning could stem from genuinely learning new
tasks, identifying tasks learned during training, or a
mix of both approaches. However, the mechanisms
of in-context learning remain uncertain.

On one hand, the inner workings (e.g., attention
patterns) are too vast and complex to analyze di-
rectly. On the other hand, finding a higher-level
abstraction to describe the model’s internal pro-
cesses is challenging. It is crucial to differentiate
LLMs’ achievements from human-like comprehen-
sion and reasoning as their training misses critical
contexts, such as communicative intent (Bender
and Koller, 2020; Asher et al., 2023). Especially
terms like "learning" and "understanding" should
be used cautiously (Bender et al., 2021; Shanahan,
2022). However, higher-level frameworks can help
to explain LLM behaviors and assess LLMs’ po-
tential (Shanahan et al., 2023).

We adopt the abstraction level from Brown et al.
(2020) and the terminology proposed by Pan et al.
(2023) and distinguish between task learning (TL)
and task recognition (TR). TR assesses how well
LLMs can identify tasks through demonstrations
and apply their pre-trained priors. TL describes
the ability to learn new input-label mappings not
encountered during training. Building on this, we
introduce a framework that involves breaking tasks
into subtasks and analyzing each for TL and TR to
thoroughly investigate in-context learning.
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We instruct a model to generate pixel art as 8×8
pixel matrices (see Figure 1). The experiments
solely use the model’s inherent tokens without ad-
ditional fine-tuning or incorporating image mod-
els. While investigating this task, we demonstrate
unique capabilities, pinpoint where the pixel matrix
task falls along the spectrum between TL and TR,
and establish and validate a straightforward frame-
work of breaking complex tasks into subtasks to
clarify how LLMs achieve the observed capabili-
ties.

Our main contributions are summarized as fol-
lows:

• We show that LLMs can create pixel matrices
of digits, letters, and simple everyday objects.

• We find that LLMs rely on task recognition to
generate meaningful pixel matrices, which in-
dicates strong task recognition but limited task
learning abilities for uncommon non-language
tasks.

• We propose a framework to break tasks into
subtasks to better explain the capabilities of
LLMs and separate the effects of TL and TR.

2 Related Work

Text-to-image models The success of LLMs has
influenced the research on multi-modal models for
vision and language. Many text-to-image models
use text encoders from LLM transformers and com-
bine them with an image encoder (e.g., Radford
et al., 2021; Alayrac et al., 2022; Saharia et al.,
2022). Others adhere closer to the LLM architec-
ture. Koh et al. (2023) have used visual encoders to
ground an LLM in the visual domain, enabling im-
age captioning and text-to-image tasks. Similarly,
Pourreza et al. (2023) generates images represented
as brush strokes. They add an image feature ex-
tractor and cross-attention blocks to provide visual
feedback during stroke generation. These studies
demonstrate that LLMs possess implicit knowledge
about images and the visual domain. Our task is
distinct in that it generated images without extra
image encoders or training.

Pure LLMs on image generation Probing the
ability of LLMs to create images without fine-
tuning or adding layers has been done by bench-
marks that assemble tasks to assess LLM perfor-
mances. BIG-bench (Srivastava et al., 2023) in-
cludes some tasks that involve ASCII art and Bang

et al. (2023) let ChatGPT draw country flags with
Scalable Vector Graphics (SVG) code. Chala-
malasetti et al. (2023) benchmark LLMs on describ-
ing 5×5 grids filled with two different symbols and
following such descriptions. In addition, some blog
posts explore ChatGPT’s ability to draw images
with SVG (Pu, 2022; Shahir, 2023 Shiryaev, 2022).
To our knowledge, no comprehensive study has ex-
plored LLMs’ capacity for generating visuals, and
we are the first to assess the pixel matrix image
format.

In-context learning How in-context learning
works is still disputed. Some recent studies com-
pared in-context learning to implicit fine-tuning or
Bayesian inference (Dai et al., 2023; Von Oswald
et al., 2023; Xie et al., 2022). Whether this capa-
bility arises from comprehending the instruction
or recognizing the task from the training data is
still an open research question. Pan et al. (2023)
introduced the terminology employed in our paper
and distinguished cases where TL and TR were ap-
plied. Other studies experimented with modifying
the prompt or comparing tasks, aiming to ascertain
whether LLMs employ TR or TL (Reynolds and
McDonell, 2021; Min et al., 2022). We diverge in
our approach by closely examining one particular
task concerning TL or TR to contribute insights to
the broader understanding of in-context learning
and to provide a framework for future task evalua-
tions.

Decomposing Tasks Letting the model explain
each reasoning step (Chain-of-Thought) has been
shown to improve results (Lampinen et al., 2022;
Kojima et al., 2022; Wei et al., 2022). Other stud-
ies have shown that explicitly decomposing com-
plex tasks and solving the subtasks enhances perfor-
mance (Zhou et al., 2022; Khot et al., 2022; Prasad
et al., 2023; Radhakrishnan et al., 2023). Our ex-
periments do not focus on prompting or explic-
itly breaking down tasks to improve performance.
However, these results support our proposed frame-
work: when analyzing LLMs, it is useful to con-
sider subtasks, as models likely implicitly decom-
pose tasks and solve subtasks through either TL or
TR.

3 Method

Our experimental setup aims to assess LLMs’ gen-
eral capabilities on the challenging pixel-matrix
task and determine whether it is addressed through
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TR or TL. Simultaneously, we demonstrate our
framework’s utility in explaining LLMs’ capabili-
ties and differentiating between TL and TR.

We choose the pixel matrix task because it is
particularly challenging. It requires the model to
translate instructions and visual knowledge into a
new format. The task’s complexity helps to clearly
distinguish between TR and TL and assess our
framework. Simpler tasks can be solved in many
different ways, and the likelihood that the model
recognizes or learns arbitrary parts increases, com-
plicating the decision between TR and TL.

By thoroughly examining a single task, we pro-
vide evidence contributing to a broader understand-
ing of in-context learning and the differentiation
between TR and TL.

3.1 Prompt Structures and Dataset

The prompts for the pixel matrix experiments con-
sist of a task description and four demonstrations.
The description introduces the concept of pixels
and pixel matrices. The demonstrations show ex-
ample pixel matrices with labels. These 8×8 pixel
matrices are depicted with 8 rows, each contain-
ing 8 pixel symbols (e.g., 0 and 1, or G and K).
After the four examples, another label specifying
the object to be sketched is added. See Figure 2
for the prompt structure. The model is expected to
generate a corresponding pixel matrix.

We evaluate the performance of creating pixel
matrices across four categories: digits, letters,
punctuation symbols, and real-world objects. The
real-world objects are simple enough to be dis-
playable on an 8×8 pixel canvas (e.g., chess board,
padlock, or sun). Appendix C includes a complete
enumeration of the objects. In total, we have 93 dif-
ferent objects. We generate ten instances for each
object. We test each of the four object categories
separately.

3.2 Experimental Setup

For the experiments, we modified the pixel sym-
bols, the few-shot examples, and the task descrip-
tion of the prompt. We used the gpt-3.5-turbo-0613
model accessed through the OpenAI API. Other
open-source models, such as Bloom (Scao et al.,
2022), GPT-Neox20B (Black et al., 2022), and Star-
coder (Li et al., 2023), cannot generate meaningful
pixel matrices (see Appendix E.3). Therefore, we
focus our analysis on GPT-3.5.

Images displayed on a computer screen are a
collection of color dots, called pixels. [...]
We can represent different objects by creating a
pixel matrix which consists of 0s and 1s. [...]

Here is an example of an 8 by 8 pixel matrix
showing three:
00000000
00111110
00000110
00111100
00001110
00000110
00111100
00000000
###

[... three more examples ...]

This is an example of a grid of pixels that
form an image of [object]:

Figure 2: Prompt structure used for generating pixel
matrices in the experiments. The descriptions and ex-
amples were adjusted according to each experiment.

General capabilities We conducted a Baseline
experiment that shows the model’s general capa-
bilities and acts as a baseline for the other experi-
ments. The pixel symbols are 0 and 1 and represent
white and black. Furthermore, we conducted ex-
periments with color representations to evaluate
advanced capabilities and determine the limits of
the pixel matrix task. The Color Digits experiment
added four additional digits for red, blue, yellow,
and green, while the Color RGB experiment used
RGB code values as pixel symbols.

Task recognition vs. task learning These ex-
periments aim to understand whether GPT-3.5 ap-
proaches the pixel matrix task through TR or TL.
We follow three hypotheses as indicators for TL:

• Performance should be independent of the fre-
quency in the training data and equal across
tasks of the same difficulty.

• Performance should deteriorate when provid-
ing misleading instructions.

• Performance should improve when making
the task easier.

Following these hypotheses, we designed three ex-
periments.

The first experiment, (GK Pixels), substitutes the
pixel values 0 and 1 with two letters chosen uni-
formly at random from the Latin alphabet. Black-
and-white pixel matrices with 0s and 1s are preva-
lent in the training data, while matrices with values
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G and K are not. Simple objects like digits and
letters represented as matrices are likely well rep-
resented and learned during training, enabling TR.
In contrast, the GK Pixel matrix format must be
recognized or learned from the context.

The second experiment, Wrong Labels, uses mis-
labeled examples in the prompt. We hypothesize
that a deteriorating performance would indicate
TL because misleading examples make the instruc-
tions of the task unclear. However, a constant per-
formance in this experiment means that in-context
learning helps to identify a given task rather than
learning it (Min et al., 2022; Pan et al., 2023). We
conducted the Wrong Labels experiment by misla-
beling each of the four prompt examples. We also
experimented without any examples (zero-shot) to
test if the model could learn from the instruction of
the prompt alone.

GPT-3.5’s tokenizer1 combines multiple pixel
symbols of our baseline matrix format into one to-
ken (see Figure 7). Consequently, a single pixel ma-
trix can be represented by various tokens, expand-
ing the token vocabulary from two to more than ten.
Hence, learning the task becomes more challenging
because it is necessary to understand the meaning
of each potential token. For the third experiment
(One Token), we inserted spaces between pixel sym-
bols to ensure one token corresponds to a single
pixel symbol and make the task easier to learn.
Such adjustment enhanced results for straightfor-
ward pattern completion tasks (Mirchandani et al.,
2023). In the case of TL, we anticipate improved
results for our task.

In addition to these three experiments, we use
the baseline results to compare objects similarly
challenging to sketch but unevenly represented in
the training data or of different difficulty but evenly
represented in the training data. If the results align
with the assumed difficulty, it suggests TL with-
out relying on pixel matrices in the training data.
For TR, only the training data is relevant. Conse-
quently, when two similarly challenging objects
have uneven representation, the one more prevalent
during training should yield more accurate results.

Breaking tasks into subtasks With this set of
experiments, we demonstrate how manually de-
composing tasks can help distinguish between TL
and TR. If the model fails to complete the subtasks,
we infer that the main task is solved by TR. When
the model succeeds in difficult tasks not seen dur-

1https://platform.openai.com/tokenizer

ing training, we do not immediately attribute this to
TL but instead examine the subtasks. Labeling the
process as TL is inappropriate if the model simply
combines subtasks it solved using TR.

To test one subtask explicitly, we generated tex-
tual descriptions of objects’ shapes and visuals us-
ing a simple prompt. For the GK task, we tested
the subtasks of translating 01 pixel matrices to GK
pixel matrices. For the specific prompts, see Ap-
pendix A. If LLMs can generate GK pixel matrices
correctly, one could assume they first recognize
the 01 pixel matrices from training data and then
use the prompt to translate 01 pixel matrices to GK
pixel matrices, solving two subtasks and combining
the results.

We also tested our pixel matrix task using a dif-
ferent image format by having the model generate
SVG code instead. This format allows for a more
straightforward combination of different shapes be-
cause overlapping shapes do not affect each other.
Examining the generation of real-world objects can
reveal whether the model predominantly replicates
SVG code for the specific object or decomposes
the object into subparts and combines them.

3.3 Evaluation

We converted each pixel matrix to an image with a
simple Python script. Then, we conducted a classi-
fication study with three annotators. Each annota-
tor described the generated images by specifying
the digits, letters, and punctuation symbols they
observed without knowing the possible set of char-
acters. For real-world objects, we provided the cor-
rect answer. We let the annotator decide whether
the respective object is recognizable because even
a good image on an 8×8 pixel canvas is challeng-
ing to recognize without context. We counted the
percentage of generations correctly classified or
marked as recognizable for each experiment.

4 Results

This section presents the results of our experiments.
The quantitative results are summarized in Table 1.

4.1 General Capabilities

We demonstrate the general capabilities of GPT-3.5
to create pixel matrices, including colorful images.

2The objects of the mislabeled demonstrations are also
generated and evaluated for digits and letters, potentially ad-
versely impacting the displayed score by about 20%.
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Figure 3: Selected positive examples of the baseline experiment: digits 0, 1, 4, 7, and 9; letters K, Q, R, W, and Y;
the symbols ampersand, asterisk, exclamation point, and semi-colon; the objects sad face, heart, house, stick figure,
and chess board.

Experiments Digits Letters Punct. Objs.

Baseline 73% 76% 45% 14%
Color Digits 56% 65% 32% 3%
Color RGB 15% 6% 10% 6%
GK Symbols 36% 37% 21% 2%
One Token 72% 72% 36% 12%
Wrong Label 2 50% 67% 35% 12%

Table 1: Comparing experiment results: Percentage of
recognizable images across generation tasks and image
categories. Results obtained by human evaluation.

Basic experiment For digits, 73 % were cor-
rectly identified by the annotators, with the only
exception being the number 4, which is only recog-
nizable in three out of ten instances. For two-digit
numbers (10 and 32), none of the generated exam-
ples accurately display the number. Instead, some
pixel matrices represent other meaningful objects,
like the letters A or H, or the number 9.

Almost all letters are consistently generated cor-
rectly and recognizable. Exceptions occurred with
more complex letters. The letter E often features
more than three horizontal lines, and W and M
are occasionally wrong. Surprisingly, the letter V
consistently appears as an X in the pixel matrix.
The German umlauts Ä, Ö, and Ü fail to show cor-
responding vowels, often resulting in seemingly
random pixel matrices.

Except for the percent and dollar signs, most
punctuation symbols are generated correctly at least
once in ten instances. Even complex symbols like
the ampersand are successfully abstracted and gen-
erated on an 8×8 pixel matrix. More common
symbols like the comma and exclamation marks
are consistently generated. Left closing symbols
yield good results, while not a single right clos-
ing symbol is generated correctly (see Figure 8).
The output typically corresponds to the left symbol
when requesting a right closing symbol.

Simple and common everyday items like the
heart, sad face, and house yield mostly recogniz-
able images. For the stick figure and cat, some

Figure 4: Images generated with pixel values for color:
digits, letters, and punctuation symbols (top row); two
hearts, suns, windows, and cacti (bottom row).

instances are of high quality, while others seem
completely random. Results for the remaining ob-
jects appear mostly random. Compare Figure 3 for
selected positive examples.

Adding color Results for digits, letters, and
punctuation symbols show slightly lower accuracy
than simple black-and-white images. Complex let-
ters such as W and M become even less recogniz-
able than in the basic experiment. Certain letters
comprised multiple colors.

The quality of the generated pixel matrices in the
real-world object category declines. The images
display vibrant colors, but the colors lack an asso-
ciation with the specified objects. The images for
the star and sun do not contain more yellow, and
those for a window or glass do not contain more
blue. Only the cactus images consistently appear
green. Compare Figure 4 for selected images from
these experiments.

For the experiment with RGB color codes as
pixel symbols, the model more often did not ad-
here to the format, i.e., generating an output that is
not a pixel matrix. Only 15 % of the digits were
recognized compared to 56 % with a pixel matrix
of 5 color values.

4.2 Task Recognition vs. Task Learning

The results demonstrated in this section reveal in-
sights into where the pixel matrix task lies on the
spectrum between TR and TL. The corresponding
discussion can be found in Section 5.2.
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- The fundamental shape is a vertical line
positioned in the center of the 8x8 grid.
- At the top of the line, there is a small
horizontal line extending towards the right
side of the grid, connected to the vertical
line's midsection.
- The bottom part of the vertical line extends
slightly below the grid's baseline, forming a
slight curve.

Figure 5: Excerpt from a generated description for the
digit 7 with incorrect shapes and inconsistencies.

The simplified 8x8 pixel representation of a
house consists of a square shape measuring 6
pixels in height and 6 pixels in width,
representing the main body of the house. On top
of the square, centered horizontally, there is
a triangle shape measuring 4 pixels in height
and 6 pixels in width, representing the roof.
The top row of the triangle is aligned with the
top row of the square.

Figure 6: Excerpt from a generated description for a
real-world object, illustrating the ability to describe in-
dividual components accurately, yet assembling them
incohesive.

Different pixel symbols When substituting 0 and
1 with the letters G and K the model generates pixel
matrices in the correct format. Some instances are
generated correctly. Still, overall, the results are
significantly worse across all four categories (see
Table 1).

Wrong labels The performance remains largely
unchanged compared to the baseline when the la-
bels of the demonstrations are wrong. The numbers
in Table 1 for digits, letters, and punctuation are
lower for this experiment because these datasets
test objects that were wrongly labeled. Neverthe-
less, occasionally the model ignores the incorrect
labels and produces correct pixel matrices. The
zero-shot experiment outputs do not adhere to the
format and reveal that the model needs examples
to recognize the format.

One token per pixel symbol We observe slightly
lower accuracy than the basic experiment, partic-
ularly for punctuation symbols. The output more
often does not conform to the correct format, gener-
ating a message stating it is a language model and
cannot generate images.

4.3 Breaking Tasks into Subtasks

Translating 01 pixel matrices to GK pixel matrices
is successful in most instances (51 out of 60). Gen-
erated textual descriptions often lack coherence for

Figure 7: Comparing tokenization of different image
formats: each color-coded sequence represents symbols
combined into a single token. Images are screenshots
from the OpenAI tokenizer webpage.

digits, letters, and most punctuation symbols. The
described shapes appear random for all numbers
except for 0, 1, and 8 (see Figure 5). Some level of
abstraction is observed for real-world objects, but
coherency keeps lacking. The generated texts men-
tion useful shapes for an object but unrealistically
combine them (see Figure 6).

According to our evaluation, 35% of SVG im-
ages of real-world objects are correct, a much
higher score than for all other experiments. With
only a few exceptions, the resulting images display
the colors relevant to the desired object. Inaccurate
images frequently present correct parts of objects,
but the model fails to assemble the details in a hier-
archical, cohesive way (compare Figure 9).

5 Discussion

In this section, we examine our experiment results.
We discuss the overall performance in the pixel
matrix task, assess if they tackle the task through
TL or TR, and evaluate if breaking down the task
into subtasks is a valid framework to explain LLM
abilities.

5.1 LLMs Pixel Matrix Capabilities

GPT-3.5 showcases a solid ability to generate sim-
ple images in the form of pixel matrices without
fine-tuning or including an image layer.

The capability of an LLM to use tokens trained
to represent text for other purposes, such as repre-
senting pixels, highlights its potential beyond lan-
guage generation (e.g., pattern completion). The
results also indicate that language models possess
information about different modalities, such as im-
ages. While image models rely on explicit images
for training, LLMs have the advantage that tex-
tual descriptions inherently involve abstraction and
the omission of (potentially) unnecessary details.
Therefore, LLMs could help to increase the gener-
alizability of image models.
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Figure 8: Left (top row) and right (bottom row) closing
symbols, emphasizing the discrepancy in image quality
for closely related objects.

5.2 Pixel Matrix Task Is Solved by Task
Recognition

We found evidence that the pixel matrix task can-
not be solved without TR. This evidence includes
the deteriorated outcomes with uncommon (GK)
pixel values and unaltered results despite incorrect
examples in the prompt. Additionally, our zero-
shot experiments confirm that relying solely on the
instruction part of the prompt is insufficient for the
model to learn the task. Altering the format to rep-
resent each pixel by one token does not improve
the results despite simplifying the task and making
it easier to learn.

Further, several pairs of objects with the same
difficulty level are solved in only one of two in-
stances. These object pairs include digits vs. num-
ber 10, letter A vs. letter Ä, and left closing sym-
bols vs. right closing symbols (see Figure 8). If
the model understands the tasks (rather than only
replicating training instances), it would be able to
solve either both or none of the pair’s instances. We
assume that the former object in each pair is signif-
icantly more present during training than the latter.
Similarly, drawing the complex shapes of some
digits, punctuation symbols, and letters appears
more challenging than drawing simple real-world
objects. For instance, copying an ampersand is
challenging, whereas a simple smiley face is not.
However, the results are consistently better for such
complex shapes than for simple real-world objects.

Our findings indicate that the pixel matrix task
is solved through TR, not TL. Thus, it shows that
LLMs lack human-like understanding and general-
ization capabilities despite sometimes seeming oth-
erwise. Rather, the large data corpus is extremely
powerful and includes samples of uncommon tasks.
Given the current architecture, we assert that LLMs
will not attain understanding and reasoning. En-
hancing current LLMs requires incorporating even
more diverse data and improved training.

5.3 What Task Is Recognized?

The results of the baseline experiment show that
the pixel matrix task has been learned only to a lim-

Figure 9: SVG-generated images (crown, wine glass,
house, and lightning flash) exhibit a lack of cohesiveness
in the arrangement of their components.

iting degree during training. Language models are
not extensively trained on text-to-pixel matrix data,
making it challenging to generalize this task to new
images by combining seen objects and concepts.
We conclude that it is more appropriate to say that
it recognizes the task of drawing a specific object
instead of a general text-to-image task. Therefore,
the model cannot generalize to pixel matrices for
objects it has not encountered during training, as
this ability is neither acquired during training nor
inference. In conclusion, it’s crucial to pinpoint
the exact task that is recognized and solved to not
overestimate the capabilities.

5.4 Decomposing Tasks to Evaluate
Capabilities of LLMs

The previous results show that the model applies
TR to solve the experiments with 01-pixel matri-
ces. The pixel matrix task can be broken down
into subtasks, such as accessing visual information
about the object, decomposing objects into basic
shapes, generating different shapes on a pixel ma-
trix, and combining this information to form a pixel
matrix representing a certain object. We show that
the generated textual descriptions for digits, letters,
and punctuation symbols were inadequate. Also,
combining different shapes on a pixel matrix is
challenging, as overlapping parts result in new to-
kens. The model relies on TR because it fails to
solve these subtasks sufficiently.

In contrast, the GK pixel and the SVG code task
are solved by solving subtasks. TR alone does not
explain the results of the GK pixel matrix task be-
cause the model likely did not encounter such pixel
matrices during training. We believe the model
breaks down the task into creating a 01-pixel ma-
trix and exchanging 0s and 1s with Gs and Ks. We
show that an LLM can solve both individual sub-
tasks. In the SVG code experiments, combining
various shapes is accomplished by concatenating
corresponding lines of code, which makes combin-
ing subtasks easier than for the pixel matrix task.
The results show that the model draws different
parts of objects but fails to put them together with
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correct dimensions and spatial correlations (see
Figure 9). This suggests that the model decom-
poses the object into its visual parts, recognizes
these from training data, and combines them into
one image rather than relying directly on TR.

Our framework of breaking down tasks into sub-
tasks helps to assess TL and TR abilities. On the
one hand, as in the case of pixel matrices, it helps
to identify difficult subtasks and areas for improve-
ment, such as targeted training data. On the other
hand, the SVG and GK experiments demonstrate
how our framework helps explain LLM capabilities
and distinguish between TL and TR. When examin-
ing tasks like the GK pixel matrix, one might mis-
takenly conclude that the model is learning from
scratch. However, decomposing the task reveals
that simpler subtasks might be recognized from the
training data. This prevents premature conclusions
about TL but raises a philosophic question: How
much must the model decompose the task, and how
simple must the subtasks be to classify it as TL?

6 Conclusion

Our study demonstrates that LLMs can generate
pixel matrices representing objects such as digits,
letters, and simple real-world items. Our exper-
iments show evidence of strong task recognition
and limited task learning ability. We argue that
breaking down complex tasks into smaller subtasks
is a useful framework for evaluating and explain-
ing LLM capabilities, preventing misleading con-
clusions when assessing the task’s overall perfor-
mance, and helping to distinguish between TL and
TR.

As LLMs improve their ability to recognize
tasks, locate relevant training data, and break down
complex tasks, distinguishing between task learn-
ing and task recognition becomes increasingly com-
plex. Although one might argue that this, at the
core, represents task recognition of subtasks, fu-
ture research is needed to explore how this process
compares to human learning.

7 Limitations

Our evaluation captures broader trends, and our dis-
cussion is based on conclusions drawn from clear
tendencies in the results rather than small differ-
ences. More thorough evaluations and comparisons
across different models could strengthen the results.
We have conducted a short ablation study with dif-
ferent models (see Appendix E.3). As the outputs

depend on prompts, more prompt engineering and
other prompts could have yielded different results.

We also rely on the generated outputs and gen-
eral knowledge about LLMs to interpret their re-
sults because empirical analysis of the model’s in-
ternal workings (e.g., evaluating attention patterns)
is extremely resource-intensive. Thus, we inter-
pret LLMs, highly complex statistical distributions,
using simple human-like concepts (e.g., breaking
down tasks).
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A Prompt Details

This section supplements Section 3 by offering
additional details and complete examples of the
prompts used in our experiments.

A.1 Main Experiments
All prompts consist of one natural language instruc-
tion that describes the pixel matrix task by intro-
ducing pixels and the concept of pixel matrices and
pixel symbols. This part is adjusted if the pixel
symbols change. The second part of the prompts
contains the demonstrations adapted to the object
category and pixel symbols.

Independent of the pixel format, the prompt in-
cludes examples of numbers 2, 3, 8, and 6 for digits.
The prompt examples for letters are A, F, G, and H.
In the category of punctuation symbols, the exam-
ples are the forward slash, division sign, question
mark, and the dot symbol, and for real-world ob-
jects, the examples are the smiley face, umbrella,
tree, and deer.

See Figure 10 for a complete prompt for the
baseline experiment.

A.2 Generating Descriptions
Refer to Figure 12 for the prompt used to gener-
ate descriptions of the objects’ shapes and appear-
ances.

A.3 Translating 01 to GK pixel matrices
Refer to Figure 13 for the prompt used to translate
01 pixel matrices to GK pixel matrices.

B Model Configurations

Pre-experiments revealed that a temperature of 1
was a good balance between randomness to ensure
differences between each instance while maintain-
ing the required format. We implemented a stop
sequence for OpenAI models and restricted gener-
ated tokens to 100 for huggingface models. Apart
from these modifications, we adhered to the default
settings provided by the respective model APIs.

C Enumeration of All Objects

We evaluated the performance of creating pixel ma-
trices across four categories: digits, letters, punctu-
ation symbols, and real-world objects. Digits range
from 0 to 9, with additional two-digit numbers, 10
and 32. The letter category comprises all Latin al-
phabet letters, including German umlauts (Ä, Ü, Ö)
and eszett (ß), totaling 30 letters. The punctuation

Images displayed on a computer screen are a
collection of color dots, called pixels. If you
look really closely at the screen, you will be
able to see the individual pixels. The
collection of pixels that make up an image are
stored as a matrix.
We can represent different objects (e.g.,
numbers, letters, or shapes) by creating a
pixel matrix which consists of 0s and 1s. The
matrix should be of the size 8 by 8. Each entry
represents a pixel of a black or a white pixel.
That means the image has a display capable of 8
pixels in width and 8 pixels in height. Since
there are only 64 pixels in total the objects
to be displayed are significantly simplified.

Here is an example of an 8 by 8 pixel matrix
showing three:
00000000
00111110
00000110
00111100
00001110
00000110
00111100
00000000
###
Here is an example of a grid of pixels that
form an image of two:
00000000
00111100
01100110
00001100
00011000
00110000
01111110
00000000
###
Here is an example of a grid of pixels that
form an image of eight:
00000000
00111100
01100110
00111100
01100110
00110100
00011000
00000000
###
Here is an example of a grid of pixels that
form an image of six:
00000000
00111100
01100000
01100000
00111100
01100110
00111100
00000000
###
This is an example of a grid of pixels that
form an image of [object]:

Figure 10: The full prompt used to generate digits for
the baseline experiments, with a placeholder for the
requested digit.
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Images displayed on a computer screen are
actually a collection of dots of color, called
pixels. If you look really closely at the
screen, you will be able to see the individual
pixels. The collection of pixels that make up
an image are stored as a matrix. Each pixel can
represent a different color.
We can represent different objects (e.g.,
numbers, letters, or shapes) by creating a
pixel matrix which consists different symbols
and each symbol stands for a different color.
In our 8x8 pixel matrix, we use the following
symbols to encode color: white (represented by
"0"), black ("1"), red ("2"), yellow ("3), green
("4"), and blue ("5"). This means each entry of
the matrix is either a 0, a 1, a 2, a 3, a 4, or
a 5. The matrix should be of the size 8 by 8.

Here is an example of an 8 by 8 pixel matrix
showing a smiley face:
31133113
31133113
33333333
33313333
13333331
31333313
33111133
33333333
###

Here is an example of a grid of pixels that
form an image of a tree:
00444400
04444440
44444444
44444444
44444444
00011000
00011000
00011000
###

Here is an example of a grid of pixels that
form an image of an umbrella:
00555500
05555550
55555555
00001000
00001000
00001000
00101000
00011000
###

Here is an example of a grid of pixels that
form an image of a deer:
10001000
11111000
01010000
11110001
01111111
01111111
01010101
01010101
###

Figure 11: Complete prompt used for experiments with
new symbols representing different colors for the real-
world object category. The first part and the demonstra-
tions are adjusted.

Describe a simplified visual representation of
[object] which can be used to create an 8x8
pixel artwork of [object]. Emphasize only the
essential features for recognition, omitting
intricate details due to space constraints.
Deliver a concise description of the
fundamental shape and distinctive traits and if
necessary mention proportions, alignments, and
spatial relationships in a simplified rendition
of [object].

Figure 12: Prompt for generating descriptions of objects
shapes which were added to pixel matrix prompt with
the idea to enhance the outputs.

I want you to translate a 01 pixel matrix to a
GK pixel matrix. Replace every 0 with a G and
every 1 with a K.
Here is an example of a 01 pixel matrix:
00000000
00111100
01100000
01100000
00111100
01100110
00111100
00000000
###
Translation:
GGGGGGGG
GGKKKKGG
GKKGGGGG
GKKGGGGG
GGKKKKGG
GKKGGKKG
GGKKKKGG
GGGGGGGG
###

[...three more examples...]

Here is an example of a 01 pixel matrix:
[Exmaple 01 pixel matrix]
Translation:

Figure 13: Prompt for generating descriptions of objects
shapes which were added to pixel matrix prompt with
the idea to enhance the outputs.
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digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 32
letters A, B, C, D, E, F, G, H, I, J, K, L, M, N, O,

P, Q, R, S, T, U, V, W, X, Y, Z, Ä, Ö, Ü, ß
punct. comma, semicolon, exclamation point,

equal sign, plus sign, hashtag, dollar sign,
percent sign, ampersand, asterisk, left
parenthesis, right parenthesis, left bracket,
right bracket, left curly brace, right curly
brace, less than sign, greater than sign,
backslash, underscore, colon, single quote,
double quote, at sign, caret

objs. sad face, cup, heart, wine glass half full,
cactus, key, skull, mouse, crown, lightning
flash, padlock, cat, crab, a chess board,
a house, coffee, car, window, chair, star,
mountain, sun, boat, stick figure, fly

Table 2: Enumeration of all generated objects in our
experiments.

symbol category encompasses 25 different sym-
bols, while real-world objects consist of 26 diverse
items. All objects are enumerated in Table C.

D Evaluation

We recruited 3 students from our university to an-
notate the images generated in our experiments.
Figure 14 shows our whole set of instructions.

Figure 14: The complete instructions given to the human
annotators.

E Complementary Results

Some figures showin images resulting from our
experiments.

E.1 GPT-4 Color RGB

See Figure 16 for selected images generated by
GPT-4 with RGB color codes as pixel symbols.

E.2 Images with Scalable Vector Graphics

Compare Figure 17 for images generated with SVG
code.

E.3 Model Comparison

By default, we employed gpt-3.5-turbo-0613 ac-
cessed through the OpenAI API. We further com-
pared various models (Bloom (Scao et al., 2022),
GPT-Neox20B (Black et al., 2022), Starcoder (Li
et al., 2023)) on the pixel matrix task. Our primary
aim is to contrast models fine-tuned on code with
instruction-tuned LLMs based on our hypothesis
that with TL, the performance should be indepen-
dent of the frequency in the training data. Anticipat-
ing a higher occurrence of pixel matrices in code-
based data and better instruction comprehension by
classic LLMs, we hypothesize that the traditional
models will excel if TL is applied. Conversely,
with TR, the code models should demonstrate bet-
ter performance.

GPT-3.5, with 175 billion parameters, demon-
strates the best performance. In contrast, Bloom,
also equipped with 175 billion parameters, adheres
to the format but fails to solve any pixel matrix cor-
rectly. Gpt-Neox with 20 billion parameters does
not generate any meaningful pixel matrix. The
smallest model (15.5 billion parameters), Stracoder,
fine-tuned specifically for code-related tasks, dis-
plays the best performance besides GPT-3.5. Its
outputs for digits and letters are nearly as good as
GPT-3.5, but it struggles with punctuation symbols
and real-world objects.

GPT-4 shows significant improvements com-
pared to GPT-3.5. It creates much more meaningful
real-world objects on an 8x8 canvas (e.g., padlock,
flash, key, or cactus), and it consistently creates col-
orful digits with RGB codes as pixel values, which
GPT-3.5 cannot generate (see Figure 16).

E.4 16×16 pixel matrices

One thought was that an 8×8 pixel canvas might be
too limiting, hindering the LLM from generating
meaningful images of real-world objects like a cat
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Figure 15: Negative examples from the baseline experiment: digits 1, 4, 5, 10, and 32; letters E, N, Ö, T, and V; the
symbols at-sign, dollar sign, double quote, equal sign, and percent sign; the objects boat, cup, fly, star and wine
glass.

Figure 16: Selected instances of images generated by
GPT-4 on an 8 by 8 pixel matrix with RGB values as
pixel symbols showing two instances of each object: car,
sun, cactus, coffe, house, mountain, sad face, wine glass.
The magenta stripes resulting from translating slightly
off output textual format to images.

or a boat. We conducted experiments with a pixel
matrix of size 16×16. However, the overall results
showed a slight degradation, and we did not see any
improvements for specific objects where a larger
canvas may be beneficial.

F Supplementary Discussion

We attributed some observed behavior to the au-
toregressive architecture of GPT-like models. For
example, the letter V was never correctly generated
and always resulted in the letter X. We assume that
after correctly generating the first line of the matrix
according to V, the subsequent generations favored
a pixel matrix showing the letter X due to its higher
frequency in training compared to that of a V. If the
prompt would be truly "understood", the attention
to the previous pixels should not overshadow the
requested object.

In the One Token Experiment, overall results

Figure 17: Example results from experiments with SVG
code as image format showing two instances of each
object: house, car, sun, crown, mountain, heart, cactus,
window, wine glass, and lightning flash.
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showed a slight decline, but notable improvements
were observed with the new matrix format, espe-
cially for the object ’chess board’. An additional
experiment with the chess board showed that while
42 out of 60 generations were correct with the basic
matrix format, all 60 chess board generations were
correct with the new format. We assume this might
be because this object resembles a pattern com-
pletion task, which is less error-prone with fewer
tokens Mirchandani et al. (2023).

We have conducted most of our experiments with
a format that used more than ten different tokens
to represent a pixel matrix as the tokenizer com-
bines sequences of 0s and 1s. During our experi-
ments with G and K as symbols, we assume that
it translated in 01-matrices to the new format even
though the tokens are different and the number of
tokens changes (see Figure 7). Thus, the token em-
beddings represent even uncommon non-semantic
similarities.
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Abstract

We introduce SlayQA, a novel benchmark data
set designed to evaluate language models’ abil-
ity to handle gender-inclusive language, specif-
ically the use of neopronouns, in a question-
answering setting. Derived from the Social IQa
data set, SlayQA modifies context-question-
answer triples to include gender-neutral pro-
nouns, creating a significant linguistic distri-
bution shift in comparison to common pre-
training corpora like C4 or Dolma. Our re-
sults show that state-of-the-art language models
struggle with the challenge, exhibiting small,
but noticeable performance drops when answer-
ing question containing neopronouns compared
to those without.

1 Introduction

Currently, the recognition of the importance of
inclusivity and representation in NLP is growing
(Sun et al., 2019; Stanczak and Augenstein, 2021;
Lauscher et al., 2022). Traditional data sets of-
ten reflect and perpetuate binary gender norms,
which can marginalize non-binary and gender non-
conforming individuals and cause harm (Ansara
and Hegarty, 2013). This lack of inclusivity high-
lights a critical need for resources that better rep-
resent the full spectrum of gender identities. One
aspect of gender-inclusive language use that is gain-
ing more and more acceptance is the usage of neo-
pronouns like xe/xyr or ze/zir. Neopronouns are
novel pronouns that people who do not identify
themselves as belonging to the polar extremes of
the gender spectrum can choose to use for reference
to themselves instead of the classical, gendered pro-
nouns: he/him and she/her. Current benchmarks
that assess this kind of linguistic inclusivity mostly
focus on the generation of correct neopronouns in
context or similar tasks (Ovalle et al., 2023; Hos-
sain et al., 2023). On the other hand, resources that
simply implement established LM benchmarks in
a more inclusive way are rare.

context: "Sydney caught xyr 
son Austin smoking pot when xe 
told em not to."  
question: "What will happen to 
Sydney?"  
answerA: "angry xyr kid did 
this" ✔ 
answerB: "will be grounded" ❌ 
answerC: "give em xyr pot"  ❌

context: "Sydney caught her 
son Austin smoking pot when 
s h e t o l d h i m n o t t o . " 
question: "What will happen to 
Sydney?"  
answerA: "angry her kid did 
this" ✔  
answerB: "will be grounded" ❌  
answerC: "give him her pot" ❌

Figure 1: Visualization of the conversion process that
turns Social IQa data into SlayQA data

To address this gap, we present SlayQA: Social
linguistics analytics yielding Queer Agents, a novel
benchmark set derived from the existing Social
IQa (SIQa) data set (Sap et al., 2019b). It con-
tains a situation description (the context), social
reasoning questions and three prospective answers,
where all context-question-answer pairs include
at least two acts of pronoun-based reference and
gender-neutral pronouns. Because SlayQA system-
atically replaces established, gendered pronouns
with gender-affirming neopronouns, it is a more
inclusive data set that better reflects the diversity
of human identities. Although neo-pronouns are
commonly rated less grammatical than their estab-
lished counterparts (Hekanaho, 2021; Rose et al.,
2023), they are beginning to be adopted in vari-
ous social circles. Here, the key word is begin-
ning – they are still infrequent in discourse and and
also in common pretraining corpora like C4 (Raffel
et al., 2020), Dolma (Soldaini et al., 2024), and
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RedPajama-Data-1T (Together Computer, 2023).
As such, our pronoun-altered benchmark marks a
significant pronoun distribution shift in compari-
son to these pretraining corpora. Consequentially,
SlayQA helps to assess how well language models
are able to generalize to novel linguistic structures.

2 Related work

Dev et al. (2021) conduct a survey on harms in-
volving gender-neutral speech and neopronouns in
general purpose NLP systems. Replies included,
for example, the non-detection of hate-speech or
automatic educational assessments marking gender-
inclusive language as wrong. Furthermore they
show that from skewed training data, bias in word
embeddings arises. For GLoVe embeddings (Pen-
nington et al., 2014), gendered pronouns appear in
close proximity in their vector space, whereas neo-
pronouns hardly cluster with them. Similarly, in the
original BERT model (Devlin et al., 2019), neopro-
nouns are out-of-vocabulary items. In a more ap-
plied setting, Lauscher et al. (2023) show that ma-
chine translation systems are able to translate gen-
dered pronouns well, but not neopronouns. They
are either plainly copied or the included agents
are misgendered. Furthermore, for sentences with
gender-neutral or neopronouns, overall translation
quality (e.g. syntactic, semantic) diminishes.

The most prominent NLP benchmarks for
gender-inclusivity are TANGO (Ovalle et al., 2023)
and MISGENDERED (Hossain et al., 2023). While
TANGO contains sentences with names and neo-
pronouns to be completed by generative models,
MISGENDERED also includes an explicit statement
of the agents’ preferred pronouns. Their goals are
therefore almost identical: to assess whether lan-
guage models can correctly produce text with neo-
pronouns when prompted with them. Evaluations
on these data sets show similar results: errors rarely
occur with gendered pronouns, but correct continu-
ation scores drop with the gender-neutral singular
they. Worst scores (accuracy below 10%) are found
for neopronouns. A possible explanation can be
found in Ovalle et al. (2024), who show that the
BPE algorithm (Gage, 1994) commonly used in
state-of-the-art LLMs dissects neopronouns into
smaller parts, which never happens to established
pronouns. This is caused by data scarcity – com-
mon pre-training data sets lack examples of neopro-
nouns in use. As the BPE algorithm leaves lexical
tokens intact if and only if they occur with a high

C4 Dolma

he 144.202.977 965.297.366
she 92.421.725 544.245.250
they 260.126.090 1.705.400.768

thon 872.654 992.499
e 213.797.769 240.457.628
ae 3.910.812 4.135.288
co 83.935.707 199.206.147
vi 10.139.390 12.534.070
xe 1.148.568 2.134.212
ey 869.765 1.691.904
ze 1.618.896 1.793.116

Table 1: Frequencies for established subject pronouns
and subject neopronouns in C4 and Dolma

enough frequency, neopronouns are usually split.
Current data sets that are used to measure the

question answering abilities of NLP systems are not
concerned with gender-inclusivity. While Rogers
et al. (2023) present a large taxonomy including
many different kinds of tasks, domains and data for-
mats, ‘fairness’ seems to be only an afterthought in
contemporary QA evaluation, e.g. by only referring
to the inclusion of multilingual data.

3 (Neo)pronouns in pre-training corpora
and evaluation data sets

3.1 (Neo)pronouns in C4 and Dolma
We argue that our benchmark introduces a sig-
nificant distribution shift between the pretraining
corpora and the evaluation data with regard to
pronouns. To assess this proposed distribution
shift, we determine the frequencies of established
and neopronouns in these corpora through the n-
gram lookup function of What’s In My Big Data?
(WIMBD) (Elazar et al., 2024) – if the neopro-
nouns occur less frequently in pretraining corpora
than established pronouns, then our neopronoun
benchmark introduces a drastic distribution shift in
its pronoun distribution compared to these corpora.

We adapt our list of pronouns from the seminal
study by Hossain et al. (2023). For the sake of
brevity, we do not include further gender-affirming
pronoun variations like nounself, emojiself, num-
berself or nameself pronouns (Lauscher et al.,
2022).

We search C4 (Raffel et al., 2020) and Dolma
(Soldaini et al., 2024) for the subject, object, pos-
sessive (pronoun and determiner) and reflexive
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context question answerA answerB answerC

he 10.238 146 2.020 2.066 2.060
she 13.291 221 2.759 2.716 2.715
they 14.178 150 2.996 2.993 3.007

thon 0 0 0 0 0
e 1 0 0 0 0
ae 0 0 0 0 0
co 0 0 0 0 0
vi 0 0 0 0 0
xe 0 0 0 0 0
ey 0 0 0 0 0
ze 0 0 0 0 0

Table 2: Token frequencies for morphological paradigms of gendered and gender-neutral pronouns in Social IQa
data

forms of the neopronouns from Hossain et al.
(2023), as we evaluate models trained on these
corpora. While we also evaluate models trained on
RedPajama-Data-1T (Together Computer, 2023),
no n-gram frequencies for this data set are avail-
able through WIMBD. C4 is based on Common-
Crawl web dumps that were then cleaned, filtered
and deduplicated to certain degrees. RedPajama-
Data-1T and Dolma also contain considerable por-
tions of CommonCrawl enriched with data from
diverse sources, such as GitHub code, Reddit posts,
academic papers from SemanticScholar and Arxiv,
etc., which were then also cleaned, filtered and
deduplicated. They were explicitly created as
open data sets that mirror the data that commer-
cial/closed models like Anthropic’s Claude, Ope-
nAI’s ChatGPT or Meta’s Llama models are trained
on. Therefore, they can be seen as somewhat ex-
emplary for the data that commercial models are
trained on, and the overall frequency distributions
found in them should be generally similar to those
in not publicly available pre-training corpora.

The frequencies for subject pronouns in both
corpora are found in Table 1, all other results are
listed in Appendix A. In comparison to the estab-
lished pronouns, neopronouns occur with reduced
frequencies. The neopronouns e and co are ex-
ceptions, but as e is a highly frequent letter in the
English language and co also serves as a productive
morpheme, it is reasonable to assume that the vast
majority of these instances are not representative
of pronoun usage. The neopronouns that do not
constitute such widely used building blocks of or-
dinary English, e.g. thon, xe or ey, occur much less

throughout the training data. For example, he oc-
curs one thousand times more than thon in Dolma.
These distributions are stable across all morpho-
logical forms (see Tables 5, 6, 7 and 8). Although
the possesive and reflexive pronouns are overall
less frequent, all forms are still found across all
training corpora. The only exception is the reflex-
ive virself, which is completely absent from the C4
data. Yet, the presence of all other forms in the data,
and especially the presence of the reflexives, which
should not be accidental n-gram matches, confirms
that pronoun use of these neopronouns is indeed
included in these pre-training data sets, just to a
much lesser degree than the usage of established
pronouns.

Although no n-gram frequency results are avail-
able for RedPajama-Data-1T, we assume that the
underlying distribution should be mostly equal to
the two examined corpora – all three corpora are
mainly based on CommonCrawl web dumps, so
it is reasonable to expect a large lexical overlap
between them.

A final indicator for the different pronoun dis-
tributions can be found in Table 9, where we
show the number of sub-word tokens which the
different grammatical forms of our investigated
(neo)pronouns are split into by the tokenizers of
our tested models. Here, we find generally higher
numbers for the neopronouns, especially for the
reflexive forms. Because the standard BPE tok-
enization algorithm keeps highly frequent forms
intact as one token, this split of lexical words into
several sub-words is another display of their infre-
quency compared to established pronouns.
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3.2 (Neo)pronouns in SIQa

While the mentioned pre-training corpora contain
very little neopronouns, the numbers are even more
extreme for the SIQa data set (Sap et al., 2019b).
The original SIQa contains 37.588 triples of con-
text, question and three prospective answers. It is
based on the Atomic data set (Sap et al., 2019a),
which contains commonsense if-then statements
for machine learning. These were then manually
rewritten into context, question and right answer
triples. False answers were added manually and
by sampling randomly from correct answers to dif-
ferent questions. As gender fairness was not a
concern in the compilation of this data set, the dis-
tributions of gendered pronouns and gender-neutral
neopronouns deviate strongly. Table 2 shows the
absolute token counts (aggregating over the com-
plete morphological paradigms) for SIQa. Gen-
dered pronouns occur quite frequently – mostly in
the context, less so in the answers, rarely in the
questions. Neopronouns are not featured at all in
any form (the one e is likely to be a typo).

Nevertheless, SIQa exhibits some gender-
inclusive tendencies. The gender-neutral singular
reflexive themself occurs 74 times across the whole
data set, indicating that more usage of gender-
neutral they is likely to be featured more promi-
nently. Besides, also the choice of included names
appears to be fairly inclusive after a cursory qualita-
tive inspection, because many of the named agents
in SIQa feature gender-neutral names like Alex or
Kai. Yet, it is still rather conservative and does not
feature any neopronouns.

4 Benchmark creation

4.1 Neopronouns and (co)reference

Pronouns usually either substitute for a noun
(phrase) or are used to signal reference to some-
thing that can be inferred from the situational con-
text (Quirk et al., 1985). As such, they are ubiqui-
tous in everyday language, but generally do not at-
tract new lexemes because they constitute a closed
word class. Novel items are only slowly intro-
duced via grammaticalization (Heine and Song,
2011). Neopronouns, then, present a unique case;
some of them developed organically within spe-
cific social groups to promote gender inclusivity,
others were deliberately created for that purpose
(e.g., ey in 1975, thon in the late 19th century, see
McGaughey, 2020). While neopronouns are gain-
ing traction in some communities, they remain less

widely adopted, with gender-neutral they being the
notable exception.

For SlayQA, we specifically filter out exam-
ples that do not include at least two coreference
chains with named entities. This filtering is crucial
because without multiple entities in the text, the
replacement of pronouns with neopronouns does
not significantly alter the amount of generalization
measured by the task. When only one entity is
present, changed pronouns do not pose an insur-
mountable challenge to a model’s understanding of
the situation – there are no options for interpreting
the neopronoun in/correctly. However, when multi-
ple named entities are involved, the task becomes
much more demanding, as the model must accu-
rately track and resolve these coreferences across
texts. This ensures that SlayQA actually tests the
ability to handle neopronouns in use.

4.2 Creating the distribution shift
To create the envisioned distribution shift, we first
parsed all examples in the SIQa training and de-
velopment data sets as a combined context +
question + answers string with spacy (Honnibal
et al., 2020) and performed coreference resolution
with coreferee (Hudson, 2023). For the following
data modification step, we included all sentences
that feature at least two coreference chains which
resolve to proper nouns, i.e. names in the case of
the SIQa data set. Sentences without any pronouns
or with coreference that resolves to a singular entity
were therefore discarded. From the original 35.364
entries in the training data, 1.985 examples were
left after this procedure.

In a second step, we then iterated over all left-
over examples and filtered out those that did not
contain any male or female gendered pronoun. Af-
ter this step, 1.388 examples were left. For each
context-question-answers entry in the filtered data,
we then replaced all forms of established male pro-
nouns (forms of he) and established female pro-
nouns (forms of she) with one randomly chosen set
of corresponding neopronoun forms. We decided
not to alter forms of they as they are a) already used
in a gender-neutral fashion in several examples in
SIQa, and b) proved to be hard to correctly parse
into singular or plural forms, where replacement of
the plural form with a singular neopronoun might
create illogical examples.

Finally, we noticed that a minority of data points
in SIQa feature incorrect or mixed pronoun use. In
the following example, Kai is first referred to with
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Motivation
Practical Cognitive Intrinsic Fairness

□ □

Generalisation type
Compositional Structural Cross Task Cross Language Cross Domain Robustness

□
Shift type

Covariate Label Full Assumed
□

Shift source
Naturally occuring Partitioned natural Generated shift Fully generated

□
Shift locus

Train–test Finetune train–test Pretrain–train Pretrain–test
□

Table 3: GenBench Evaluation Card for SlayQA

male pronouns (himself, him) in the context, but
then with the gender-neutral singular they in the
first answer:

• context: Tracy saw Kai standing there
by himself and decided to go talk to
him.

• question: How would Kai feel as a
result?

– answerA: upset they had to deal
with someone

– answerB: they want to be left
alone

– answerC: happy to not be lonely
anymore

We acknowledge this haphazard noise in the orig-
inal data but due to the rarity of its occurrence, we
do not further attempt to clean the data from it.

5 SlayQA in the generalisation taxonomy

Table 3 shows where SlayQA is located in the gen-
eralisation hierarchy by Hupkes et al. (2023).

Motivation SlayQA is both cognitively and
fairness-motivated. Humans are generally able to
use neopronouns correctly and productively. Con-
sequently, if language models are indeed good mod-
els of human language (usage), they should not
struggle with social reasoning that includes neo-
pronouns. Additionally, the inclusion and correct
processing of neopronouns also relates to fairness
of language technologies – they should be appli-
cable to all potential users, even in the light of a

changing linguistic and societal landscape (cf. also
related work in Section 2).

Generalisation type SlayQA assesses whether
language models can interpret novel, highly in-
frequent pronoun forms in social reasoning con-
texts. This is a test for compositional generalisa-
tion, as neopronouns are systematic, productively
used, substitutive with regard to the referents they
replace, and localist in the sense of only depend-
ing on context, question and answer sentences. As
such, our benchmark fulfils the criteria essential for
compositional generalisation, as laid out by Hupkes
et al. (2020).

Shift type Our benchmark constitutes a covari-
ate shift. We assume that social reasoning of the
kind that SIQa tests is somehow implicitly, if not
explicitly, included in the pre-training data. By
changing the pronouns in the complete data sets
(context, questions and answers), we do not alter
the nature of the task or the correctness patterns of
the answers. While the test distribution now dif-
fers more strongly from the training distribution:
p(xtst) ̸= p(xtr), the conditional probabilities still
stay the same: p(ytst|xtst) = p(ytr|xtr).

Shift source Our benchmark includes a gener-
ated shift. As the original SIQa data set is crowd-
sourced, it is reasonable to assume that it still
follows a somewhat representative, if not com-
pletely authentic (in the sense of Stefanowitsch,
2020) linguistic distribution, comparable to com-
mon pre-training corpora without synthetic data.
This representative distribution is explicitly altered
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for SlayQA by including a much higher proportion
of neopronouns than classical corpora.

Shift locus The data shift is localized between
pre-training and testing. We explicitly do not fine-
tune the models on social reasoning with neopro-
nouns, as we are interested in the compositional
abilities of LLMs as is and do not want to skew
them with additional training on data that reflects
the fairness generalization we aim to assess.

6 Evaluation

6.1 Methodology

Models We evaluate five different, autoregres-
sive models: OLMo-1B (Groeneveld et al., 2024)
as a representative model for the Dolma pre-
training corpus (Soldaini et al., 2024), three
RedPajama-INCITE-7B models (base, chat-tuned
and instruction-tuned) for the RedPajama-Data-
1T data (Together Computer, 2023) and a quan-
tized version of the instruction-tuned Llama-3.1 8B
(Team, 2024) for C4 (Raffel et al., 2020). Because
the original Llama-1 was provably trained on C4
(among other data sets, see Touvron et al., 2023a),
we assume that this data set is still fully present
in the training data of Llama-3. However, it is not
clear whether this is actually the case, since the
most recent Llama paper (Team, 2024) does not
reveal any information about the concrete make-up
of the pre-training data.

Due to the exorbitant resource demands of so-
called small state-of-the-art models like OlMo-7B
or Llama-3.1-8B, their evaluation on this proposed
benchmark was, unfortunately, beyond the capabil-
ities of our available GPU resources. Therefore,
we opted to only evaluate smaller (OLMo-1B) or
quantized models. For the Llama-3.1 model, we
had to resort to a version working with lower num-
ber precision (quantized from FP16 down to INT4
with AutoAWQ, based on Lin et al., 2024). Unfortu-
nately, this specific configuration is only available
for the instruction-tuned model, so we do not pro-
vide scores for the base model.

Data We evaluate our models on three data sets:
our distribution-shifted benchmark, the original
1.388 unaltered data points with at least two coref-
erence chains, and a random selection of 1.388
examples sampled from Social IQa that were not
restricted with regard to coreference. For repro-

ducibility reasons, we host SlayQA1, the randomly
sampled Social IQa set2 and the unaltered data
points, NoSlayQA3, on the Hugging Face hub.

Scoring To assess the preference of the in-
dividual models, we use the Hugging Face
transformers library (Wolf et al., 2020) and its
evaluation metrics. In line with Brown et al. (2020),
we measured the language models’ preference for
a specific answer by calculating its probability con-
ditioned on the context and question. To do so,
we chose a perplexity-based (Jelinek et al., 1977)
approach.4 We calculated the perplexities of con-
catenated context + question + answer strings for
all three choices in each example and then selected
the answer with the lowest perplexity as the one
preferred by the model. As such, we perform zero-
shot evaluation on models not explicitly fine-tuned
for this task. Performance is measured as accuracy
against the gold standard labels in the data.

6.2 Results
The results of the zero-shot evaluation are dis-
played in Table 4. Across all models and evalu-
ation data sets, the results lie between 7% and 13%
above the baseline. This indicates that all models
have acquired some generalization capabilities in
the social reasoning domain, at least as instantiated
by the SIQa/SlayQA question patterns. The dif-
ferences between the models and between the data
sets for the various models are comparatively small,
but still exhibit somewhat systematic patterns.

From a model-centric viewpoint, the Llama-
3.1-8B model in particular outperforms the other
models, achieving the highest scores on all three
data sets – 46.97% on the SIQa subset, 46.4% on
NoSlayQA, and 44.16% on SlayQA. This quan-
tized model consistently outpaces the RedPajama
series and the OLMo-1B model by three to four
percentage points. The RedPajama models demon-
strate slightly varying performance, with the Base
variant surpassing the others on the SIQa subset and
the instruction-tuned version achieving the worst
performance. The scores for OLMo-1B are compa-
rable to the best RedPajama scores.

1https://huggingface.co/datasets/bbunzeck/
slayqa

2https://huggingface.co/datasets/bbunzeck/
minisiqa

3https://huggingface.co/datasets/bbunzeck/
noslayqa

4Original experiments with the outlines library (Willard
and Louf, 2023) and constrained generation showed similar
tendencies, but generally resulted in lower accuracy scores.
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Model SIQa subset NoSlayQA SlayQA

Random baseline 33.33% 33.33% 33.33%

allenai/OLMo-1B 43.88% 42.87% 42.21%

togethercomputer/RedPajama-INCITE-Base-3B-v1 42.87% 43.3% 40.99%
togethercomputer/RedPajama-INCITE-Instruct-3B-v1 40.71% 41.35% 40.78%
togethercomputer/RedPajama-INCITE-Chat-3B-v1 41.5% 43.95% 41.93%

hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4 46.97% 46.4% 44.16%

Table 4: Results for different models

When comparing the data sets, it is striking that
scores for SlayQA are consistently lower than the
scores the unaltered NoSlayQA. Despite the differ-
ences being fairly marginal, this pattern is stable
across all five models. Interestingly, performance
on the (presumably easier) SIQa subset, which was
not filtered for two coreference chains, is not al-
ways higher than the performance on (No)SlayQA.
While this is the case for OLMo-1b and Llama-3.1-
8B, the RedPajama models always perform better
on NoSlayQA than on the SIQa subset.

7 Discussion and conclusion

We created SlayQA as a more inclusive benchmark
for evaluating question answering and social rea-
soning in LMs. A key motivation was to test how
well these models can generalize in this domain,
particularly under the significant distribution shift
between pre-training and test data that we created
by replacing gendered pronouns with neopronouns
that occur much less frequently in the investigated
pre-training corpora.

The results indicate that we have succeeded in
our objectives. The scores on SlayQA are consis-
tently lower than those on the parallel NoSlayQA
data set, which suggests that the models struggle
more with the challenges SlayQA presents. Inter-
estingly, however, the scores on SlayQA are not
always below our random selection SIQa data. This
finding is intriguing because we expected questions
requiring the tracking of two coreference chains
to be more challenging than those without such
demands. It is quite possible that questions without
two coreference chains introduce different, perhaps
equally complex, challenges. Moreover it should
also be noted that the relatively small differences
between models could be due to training noise –
for an even more comprehensive evaluation of neo-
pronouns’ influence, several comparable models

that differ in their random initializations would
be needed. As these are not readily available and
costly to train, we have to leave this direction to
future work.

From a model-centric standpoint, the largest
model (Llama-3.1-8B) consistently outperforms
the smaller models, even though it was drastically
quantized to much lower number precision. Among
the smaller models, the performance differences
are minimal, with no substantial gap between the
1B OLMo and 2B RedPajama models. Addition-
ally, there are no significant differences between
the base RedPajama model and those fine-tuned
for instruction-following or conversational tasks,
which is surprising given the assumption that fine-
tuning should improve performance on question
answering tasks compared to vanilla models.

Although we were not able to evaluate larger
models, our accuracies do not deviate drastically
from comparable zero-shot evaluations for much
larger models. In the the Llama-1 paper, Tou-
vron et al. (2023a) report scores between 48.5%
for Llama-1-7B and 52.3% for Llama-1-65B. For
Llama-2 (Touvron et al., 2023b), scores align as
well (48.3% for the 7B model, 50.7% for the 70B
model). Even the largest Llama-3 model with 405B
parameters only achieves 53.7% on SIQa, as re-
ported in Team (2024). Judging from these meagre
scaling effects, we assume that evaluations of larger
models on SlayQA should not deviate drastically.

While we decided to employ a zero-shot evalua-
tion approach for comparability, it would also be
interesting to see how models fare in multi-shot rea-
soning or fine-tuning contexts. The AllenAI leader
board for SIQa5 reports the best fine-tuned model
with a score of 84.31%. Furthermore, prompting
has started to replace more technical evaluation ap-

5https://leaderboard.allenai.org/socialiqa/
submissions/public
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proaches (although it remains debated, see Hu and
Levy, 2023) – as such it would be also interesting
to see how commercial and open models work in
SIQa in prompting settings with chain-of-thought
or different reasoning approaches.

Future research similar to SlayQA should def-
initely aim to include even more novel and lin-
guistically interesting forms, e.g. the aforemen-
tioned nounself, emojiself, numberself or nameself
pronouns (Lauscher et al., 2022). Their unique
structure and usage should be even rarer than neo-
pronouns and could pose even more veritable chal-
lenges to the generalization capabilities of modern
LMs. Additionally, the SlayQA paradigm could be
expanded to other benchmarks that test different
capabilities. For example, it would be interesting
whether performance on the grammatical bench-
mark BLiMP (Warstadt et al., 2020) deteriorates
with the inclusion of neopronouns. Finally, the
influence of different language modeling choices,
e.g. tokenization, deserves further scrutiny. As
our tested models did not drastically differ in sub-
word tokenization for the tested (neo)pronouns, we
cannot draw definite conclusions. Evaluation on a
wider range of models could illuminate this further.

Limitations

As this study is the first of its kind, it is still limited
in various ways. As previously mentioned, evalua-
tions of extremely large LMs were impossible due
to limited resources. Yet, the comparison of our
results with those of contemporary model reports
showed similar scores, so we assume that this limi-
tation did not impact the current study in a major
way. Another limiting factor lies in the focus on
neopronouns. As mentioned in the previous para-
graph, further ways of gender-inclusive pronoun
usage exist. Each one of them is deserving of recog-
nition in inclusive NLP research, but for the sake
of brevity, we focused on neopronouns only. As a
final limitation, we question the quality of SIQa as
a benchmark of social reasoning. We include one
example in section 4.2, but our manual inspection
of SIQa yielded many more such examples with
confusing or borderline nonsensical “correct” an-
swers. While we chose it as the base of SlayQA
due to its widespread use in evaluation of SOTA
models, its quality for the kind of reasoning it aim
to evaluate is fairly questionable.
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A Pronoun frequencies in pre-training corpora

The following tables contain the absolute token frequencies of all non-subject forms of the established
gendered pronouns he and she, the gender-neutral they (which is more commonly used in the plural form,
except the explicitly singular themself ), and eight neopronouns from Hossain et al. (2023). Frequencies
are reported for C4 (Raffel et al., 2020) and Dolma (Soldaini et al., 2024), and were calculated with
WIMBD (Elazar et al., 2024).

C4 Dolma

him 76.642.827 466.261.554
her 120.502.480 610.920.325

them 206.400.522 1.224.786.435

thon 872.654 992.499
em 14.687.464 25.071.924
aer 607.125 638.705
co 83.935.707 199.206.147
vir 456.939 645.878
xem 285.577 357.204
em 14.687.464 25.071.924
zir 22.433 40.578

Table 5: Frequencies for established object pronouns and object neopronouns in C4 and Dolma

C4 Dolma

his 154.746.745 932.171.598
her 120.502.480 610.920.325

their 300.195.337 1.677.918.677

thons 54.734 90.213
es 17.287.828 20.223.489

aer 607.125 638.705
cos 2.040.163 5.310.600
vis 2.335.366 4.775.286
xyr 3.579 10.039
eir 201.341 375.303
zir 22.433 40.578

Table 6: Frequencies for established possessive determiners and neo-determiners in C4 and Dolma

C4 Dolma

his 154.746.745 932.171.598
hers 2.652.526 10.223.659

theirs 2.429.259 12.494.222

thons 54.734 90.213
ems 2.938.663 4.043.142
aers 20.147 24.815
cos 2.040.163 5.310.600
virs 4.374 11.125
xyrs 1.912 1.977
eirs 20.911 24.996
zirs 681 2.317

Table 7: Frequencies for established possessive pronouns and possessive neopronouns in C4 and Dolma
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C4 Dolma

himself 22.378.650 134.674.595
herself 11.941.936 63.594.961

themself 158.315 1.289.078

thonself 36 248
emself 1.017 2.341
aerself 28 161
coself 51 193
virself 0 49

xemself 155 626
emself 1.017 2.341
zirself 387 1.695

Table 8: Frequencies for established reflexive pronouns and reflexive neopronouns in C4 and Dolma

B Token numbers for (neo)pronouns

OLMo RedPajama-INCITE Llama-3.1-8B

Subj. Obj. Det. Poss. Reflex. Subj. Obj. Det. Poss. Reflex. Subj. Obj. Det. Poss. Reflex.

he 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
she 1 1 1 1 2 1 1 1 1 2 1 1 1 2 3
they 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2

thon 1 1 2 2 3 1 1 2 2 3 1 1 2 2 2
e 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2
ae 1 2 2 2 3 1 2 2 2 3 1 2 2 2 3
co 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2
vi 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2
xe 1 2 2 2 3 1 2 2 2 3 1 2 2 2 3
ey 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2
ze 1 2 2 2 3 1 2 2 2 3 1 2 2 2 3

Table 9: Number of sub-word tokens that a form of a (neo)pronoun is split into by a specific model
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Abstract
Tool-augmented LLMs are a promising ap-
proach to create AI agents that can have re-
alistic conversations, follow procedures, and
call appropriate functions. However, evaluat-
ing them is challenging due to the diversity of
possible conversations, and existing datasets
focus only on single interactions and function-
calling. We present a test generation pipeline
to evaluate LLMs as conversational AI agents.
Our framework uses LLMs to generate diverse
tests grounded on user-defined procedures. For
that, we use intermediate graphs to limit the
LLM test generator’s tendency to hallucinate
content that is not grounded on input proce-
dures, and enforces high coverage of the possi-
ble conversations. Additionally, we put forward
ALMITA, a manually curated dataset for evaluat-
ing AI agents in customer support, and use it to
evaluate existing LLMs. Our results show that
while tool-augmented LLMs perform well in
single interactions, they often struggle to han-
dle complete conversations. While our focus
is on customer support, our method is general
and capable of AI agents for different domains.

1 Introduction

Large language models (LLMs) are revolutionizing
AI agents and have demonstrated remarkable gen-
eralization capabilities across various domains (Wu
et al., 2023; Lan and Chen, 2024; Li et al., 2024).
In particular, LLMs have made a profound impact
as chatbots and as AI agents in customer support
systems (Dam et al., 2024; Katragadda, 2024).

Nevertheless, carelessly deploying an LLM as
an AI agent, and allowing them to interact with real
users and APIs, can lead to misinformation, reputa-
tional damage and costs to the company. Thus, it is
critical to evaluate AI agents beforehand. Despite
this need, evaluating the performance of LLMs
in real-world scenarios remains a significant chal-
lenge. This is specially true in a conversational con-
text, which is more complex than answering single-
interaction requests. Most current approaches to

evaluate LLMs focus primarily on specific tasks
such as multi-QA (Zhuang et al., 2024; Kamalloo
et al., 2024) or code generation (Liu et al., 2024b,a),
which do not fully evaluate the broader set of capa-
bilities that LLMs are expected to possess to truly
function as an effective conversational AI agents.

Focusing on customer support, an effective AI
agent is should be capable of interacting with tools
and the customer in order to resolve customer is-
sues, while stricly adhering to procedures described
by customer support admins. In order to assess the
AI agent’s performance, it is crucial to measure its
ability to follow a given set of procedures and their
resilience against potential customer manipulations.
For that, it is key to have a comprehensive evalu-
ation dataset, which can lead to valuable insights
into the agent’s abilities and limitations.

We propose a method to generate evaluation
datasets for tool-augmented LLMs as conversa-
tional AI agents. Our method automates dataset
generation using an LLM to create conversations
based on procedures, which are then transformed
into tests. We use intermediate graph structures to
improve the quality of the generated dataset (i.e.,
tests follow user-defined procedures) and make it
more comprehensive (i.e., tests cover most relevant
cases). To assess the AI agent’s ability to handle at-
tacks, we incorporate red teaming in our examples.

Our generation pipeline, illustrated in Figure 1,
builds diverse datasets autonomously by using syn-
thetically generated intents as seeds for procedures.
Additionally, our pipeline also allows for the inclu-
sion of real data where available, such as actual
procedures or APIs used by a company to gener-
ate synthetic conversations. While datasets can
be created fully automatically, we also put for-
ward ALMITA (Automated benchmark of Language
Models for Intelligent Tool-augmented Agents), a
manually curated dataset. We use this high-quality
dataset to benchmark LLMs as conversational tool-
augmented AI agents.
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Done
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cancel(123) SUCCESS

Test #1 Test #2 Test #3

Figure 1: Automated test generation pipeline. For a given intent (e.g., cancel order) (1) we use an LLM to generate
a corresponding procedure. Then, (2) an LLM extracts relevant APIs from the procedure, and (3) generates a
flowgraph from the procedure and its APIs. Next, (4) an LLM generates a conversation graph from the flowgraph
and (5) adds noise to the graph (e.g., users going out of the expected procedure), to make the graph more realistic.
To obtain conversations from the graph, (6) we sample paths from it, which correspond to different interactions.
Finally, (7) an LLM generates conversations from the paths and (8) we extract tests from the sampled conversations.

Our main contributions are:

• A method that generates datasets to evaluate
tool-augmented LLMs as AI conversational
agents, reducing manual effort needed to ob-
tain such datasets. Our method provides an
holistic evaluation of AI agents, with real-
istic and diverse conversations, use of tools
(e.g., functions/APIs), and grounded on user-
defined procedures.

• ALMITA, the first conversational dataset that
can be used to evaluate customer support AI
agents, including both tooling (i.e., functions)
and conversation reply to follow company
user-defined procedures. ALMITA contains
1420 synthetic tests that were manually cu-
rated to ensure high-quality samples1.

• Benchmarking of multiple LLMs on the pro-
posed dataset. Our results indicate that current
LLMs have high performance regarding single
message accuracy and in calling the correct
functions, but have limited accuracy when the
complete conversation is considered, which
might indicate that they would not be success-
ful if deployed as fully autonomous customer
support AI agents.

We also note that, while our evaluation focuses
on customer support, the same method could be
applied, with some changes, to other domains.

1ALMITA, along with all other datasets generated using our
pipeline and referenced in the paper, are available in https:
//github.com/zendesk/almita-dataset.

2 Related work

With the increasing use of LLMs as AI agents, sig-
nificant efforts have been made to develop bench-
marks to evaluate their ability to correctly answer
customer requests in conversational settings. GAIA
proposes 466 human-annotated questions covering
tasks like general knowledge, daily tasks, and data
analysis (Mialon et al., 2023). Recently, AgentIn-
struct introduced a framework for generating syn-
thetic data from diverse sources, such as code, web
articles, and textbook chapters, to help agents gen-
erate and refine instruction sets (Mitra et al., 2024).
Unlike our work, these datasets do not assess tool-
augmented AI agents.

Datasets to evaluate tool-augmented LLMs have
been proposed. Zeng et al. (2023) propose Agent-
Tuning and compile multiple agent datasets to cre-
ate sequences of API calls. AgentBench features
multi-step interactions between an agent and the
environment, using various tools to solve user re-
quests (Liu et al., 2023). Patil et al. (2023) and Qin
et al. (2023) build datasets of APIs from sources
like TorchHub, TensorHub, and rapidAI, prompt-
ing an LLM to generate instructions solvable by
these APIs. Basu et al. (2024) combine multiple
datasets to convert user instructions into API calls.
APIGen introduced an automatic method to gen-
erate synthetic datasets for tool function calling
(Liu et al., 2024c). Unlike our work, these datasets
are not conversational and just focus on mapping
utterances to API calls, and they do not use inter-
mediate structures (i.e., graphs) to ensure coverage
and reduce hallucinations in generated tests.
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Other relevant work focuses on graph learning
and on using different intermediate structures to
reducing hallucinations. Ye et al. (2023) propose
InstructGLM, which uses natural language to de-
scribe node features used to tune an LLM for infer-
ence on graphs. Wang et al. (2024) introduce NL-
Graph, a benchmark for graph-based problems writ-
ten in natural language, demonstrating that LLMs
can perform structured operations on textual de-
scriptions of graphs. Additionally, Narayan et al.
(2023) propose using question-answer blueprints
as intermediate representations to reduce halluci-
nations. These works do not fully encompass our
problem setting of generating conversations in dia-
log format, calling APIs, and extracting tests.

3 Method

Our automated test generation pipeline, illustrated
in Figure 1, begins by generating textual proce-
dures from input intents. While one could use an
LLM to directly generate conversations from proce-
dures, our approach converts the procedures into a
flowgraph and then into a conversation graph. Our
assumption is that using these intermediate struc-
tured representations makes the task of creating the
conversations grounded on the procedures more
accurate; see Section 4.2 for supporting evidence.
Additionally, the graphs allow us to introduce noise
into the conversations, making conversations more
realistic and challenging, and enable us to sample
paths, ensuring path coverage and conversation di-
versity. We then generate conversations from the
sampled paths. Finally, we extract tests from these
conversations by breaking down the conversation at
each user message, storing the context, and record-
ing the generated response as the correct reply.

3.1 Intent generator

Intents (or issues, e.g., cancel order) serve as the
seeds for our automated test generation method.
Intents can be generated by an LLM (as is the case
in this work), sourced from predefined domain-
specific intents, or a mix of both. The prompt used
to generate intents is shown in Appendix A.1.

3.2 Procedure generator

A procedure describes how a given issue/intent
should be solved by an agent. We use an LLM
to generate a procedure for each input intent by
asking it to provide a list of instructions that helps
an agent fulfill a given task. We enforce in the

prompt to avoid outputting general statements (e.g.,
"cancelling policies might depend on the company"
or "explain the company’s policy") since our goal
is to generate specific and unambiguous procedures
with precise and granular steps. We also enforce
that conditionals are possible but that they need to
have a clear solution in the steps of the procedure.
Finally, steps might contain actions based on APIs
(e.g., search a database, escalate an issue) but they
cannot be browsing actions (e.g., click on the login
page). The full prompt is shown in Appendix A.2.
Similarly to what we described for intents, existing
procedures (e.g., of a company) can be included as
input for our method. Moreover, procedures can
be generated based on existing knowledge, namely
existing tickets or help center articles.

Consider the intent "order not received": a sim-
ple procedure could be "If the customer did not
receive their order, allow the customer to cancel or
refund their order given that they provide a correct
order id". We use this procedure as an illustrative
example throughout the paper (see Figures 2 to 4.)

3.3 API extractor
Our target use-case is tool-augmented AI agents.
We use an LLM to generate APIs that are useful for
an input procedure. We enforce in the prompt that
the extracted APIs are agent APIs and not customer
facing APIs. Generated APIs include not only the
API name, but also their input output parameters,
as well as a small description. The full prompt
is shown in Appendix A.3. These APIs should be
explicitly called by the agent to fulfill the procedure.
Similarly to intents and procedures, existing APIs
can be easily included in our pipeline.

3.4 Flowgraph generator
The flowgraph generator receives as input a pro-
cedure and relevant APIs and generates a directed
graph encapsulating the logic of the procedure from
the agent’s perspective: nodes are agent actions and
edges are customer replies or API outputs. Nodes
are of 4 different types: (i) a single start_message
node is the initial message sent by the agent to the
customer, (ii) message nodes are additional mes-
sages sent by the agent to the customer, (iii) api
nodes are API calls performed by the agent, and (iv)
end_message nodes are messages by the agent that
end the interaction. To reduce hallucinations and
increase completeness, we enforce in the prompt
(Appendix A.4) that every detail from the proce-
dure needs to be in message nodes.
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Greet the customer

Ask for order id

get_order_details

Inform that order 
wasn’t found and ask 

for correct info

Want to cancel or 
refund the order?

Order cancelled

cancel_order refund_order

Order refunded

Didn’t receive 
my order

Give order id Order not 
found

Give order id

Order found

To cancel A refund

Success Success

Figure 2: Flowgraph for intent Order not received and procedure "If the customer did not receive their order, allow
the customer to cancel or refund their order given that they provide a correct order id". Blue nodes are message
nodes, black nodes are API call nodes, orange nodes are end nodes. Edge labels are user messages or API outputs.

An example of a flowgraph is given in Fig-
ure 2. Nodes in the flowgraph have a node_id (e.g.,
"N1"), a node_type (one of the four described
above), and a node_description, which should
be related to a step in the procedure (e.g., "Tell
the user the order was not found") or an API call
(e.g., "refund_order"). Edges in the graph are
either the user interaction (e.g., "Gives order id and
email") or the result of an API call (e.g., "Found
order"). Edges in the flowgraph have an edge_id
(e.g., "E1"), a tuple with the source node and the
target node (e.g., "(N1, N2)"), and an edge de-
scription, as described previously. We do one-shot
prompting, providing an example to the LLM; thus,
a complete flowgraph can be seen in flowgraph
prompt in Appendix A.4.

To try to guarantee correct flowgraphs, we in-
struct the LLM to generate graphs with only one
root node with type start_message, to always
have concrete messages in the node and edge de-
scriptions, and to provide API outputs in the out-
going edges of api nodes. To try to limit halluci-
nations and ensure that the graph encapsulates the
entire procedure, we instruct the LLM to follow
strictly what is in the procedure and to include all
content from it. At the end of the generation step,
we convert the graph into a networkx graph and, if
parsing succeeds, we pragmatically verify if all the
rules described previously are followed; if they are
not followed, we discard the generated flowgraph.

3.5 Conversation graph generator

A flowgraph represents a sequence of agent steps
to fulfill a procedure. The flowgraph’s structure
does not directly map to a conversation, which can
make the task of creating a conversation from a
flowgraph hard. Thus, the goal of the conversa-
tion graph generator is to convert the flowgraph

Didn’t receive 
my order

Greet the 
customer

get_order_
details

cancel_order refund_order

Ask for 
order id

Gives order id

Do you want to 
cancel or refund 

the order?

I want to 
cancel my 
order

Your order 
was cancelled

The order 
wasn’t found

Gives another 
order id

I want a 
refund

Your order 
has been 
refunded

Order not found

Order found

Figure 3: Conversation graph for flowgraph from Fig.
2 for intent Order not received. Blue nodes are agent
nodes, green are user nodes, and black are API nodes.

into a a conversation graph, which is a structure
that is more akin to a dialogue. The generated
conversation graph is a directed graph that is ex-
pected to have nodes of three different types: (i)
agent nodes are messages sent by the agent, (ii)
customer nodes are messages sent by the customer,
and (iii) api nodes are API calls by the agent.

An example of a conversation graph is given in
Figure 3. Nodes in the conversation graph have
a node_id (e.g., "N1"), a node_type (one of the
three described above), and a node_description,
which is a message for agent and customer nodes,
and an API call for api nodes. Edges in the con-
versation graph connect consecutive messages/api
calls. Some conversation paths have conditions,
such as an API call returning that the order was
found or not; in these cases, edges have an edge de-
scription, otherwise the edge description is empty.
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Cancel my order

Need the id

123

cancel(123) SUCCESS

Done

 Generated Conversation

Test #1

Cancel my order Cancel my order

Need the id

123

Cancel my order

Need the id

123

cancel(123) SUCCESS

Context

Expected 
output

Test #2 Test #3

Donecancel(123)Need the id

Figure 4: Tests extracted from one conversation.

Edges in the flowgraph have an edge_id (e.g.,
"E1"), a tuple with the source node and the target
node (e.g., "(N1, N2)"), and an edge description.

In an effort to mitigate incorrect conversation
graphs, we provide the LLM with additional graph
construction rules, e.g., customer nodes should
be followed by either agent or api nodes, leaf
nodes should be assistant nodes. We use one-
shot prompting by giving the LLM as input an
example of a flowgraph and the corresponding con-
versation graph, as shown in Appendix A.5. Sim-
ilarly to flowgraphs, we load the generated graph
into networkx and verify if the required conditions
are met, otherwise the graph is discarded.

3.6 Noise generator

Conversation graphs are built from agent proce-
dures, thus they are expected to only contain good
behaviour by both the agent and the customer (i.e.,
happy paths). To make AI agents more resilient
to unexpected customer behaviour, which might
be malicious or not, we augment the conversation
graphs with behaviour outside of the procedure.

The noise generator traverses the agent nodes in
the conversation graph and, with a certain probabil-
ity (e.g., 20%), inserts an edge to a new customer
node with a node_description message which
can either be an "out-of-procedure" message or an
"attack" message. These messages are generated
beforehand by an LLM. Additionally, we add an
edge from the noisy customer node to a new agent
node with node_description as "Say you’re only
here to help with the original issue."

3.7 Path sampler

We extract conversations between a customer and
an agent by sampling paths from the conversation
graph. Given a conversation graph G with N nodes
and a desired number of conversations M , we em-

ploy a weighted random walks algorithm to sam-
ple paths, Algorithm 1, which is an enhanced ver-
sion of vanilla random walks, designed to improve
node coverage. For that, we use a weighting vector
w with N elements initialized with ones (line 3).
Each path p is built by iteratively sampling nodes
using sample_node (line 7). A node n, which is
a child of the last node in the current path p, is
sampled with a probability inversely proportional
to its weight wi, where wi is the number of times
node n was visited plus one (line 9). The index i
of node n in graph G is provided by node_index
(line 8). Path construction terminates when a leaf
node is reached (lines 11–13).

Algorithm 1 Conversation path sampling

1: Inputs: G, M
2: P ← ∅
3: w← 1N
4: while |P| < M do
5: p← ∅
6: while True do
7: n← sample_node(G, p,w)
8: i← node_index(G, n)
9: wi ← wi + 1

10: p← p | n
11: if n is EndNode then
12: P ← P | p
13: break

3.8 Conversation generator

The conversation generator creates synthetic con-
versations from an input conversation graph, a sam-
pled path, and relevant APIs. We provide the LLM
with context about the conversation graph struc-
ture and the APIs. Using one-shot prompting, we
present the LLM with an example triplet consisting
of a conversation graph, a list of APIs, and a sam-
pled path, as well as a possible conversation based
on these conditions (see Appendix A.6). In an
effort to generate valid conversations, we include
conditions in the prompt, such as always generating
a message with the API output following an API
message, alternating customer and assistant mes-
sages, ensuring agents act on API output messages,
and verifying API input and output types.

3.9 Test extractor

The test extractor converts a single conversation
into one or more tests. It iteratively breaks down
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Intents Proc. Proc. Flowgraphs Conv.Graphs Conversations Tests
w/ APIs

Generated 84 168 132 70 49 217 1,420
+ auto. filters – – 98 55 33 – –
+ man. filters – 132 70 49 33 192 –
ALMITA 14 18 18 18 18 192 1,420
auto-ALMITA 52 63 63 63 63 407 2,696

Table 1: Statistics while bootstrapping ALMITA’s dataset from 84 intents. We show the number of samples after (i)
generation, (ii) automatic filtering, and (iii) human filtering annotations. "–" indicates no filtering. auto-ALMITA
was created using the same 84 seed intents as ALMITA, but using the same pipeline without any human filtering, so
that we can assess the capabilities of our test generation pipeline when no human annotators are available.

the conversation into sub-conversations (or con-
texts), each ending with a customer message (e.g.,
"Cancel my order") or an API output (e.g., "suc-
cess" following a cancel function call). The ratio-
nale is that since the generated conversations exem-
plify correct flows, we can construct contexts using
the preceding messages, with the expected output
being the next non-customer message, whether it’s
an agent response or an API call. Figure 4 illus-
trates an example of three tests extracted from a
generated conversation. Tests are used to evaluate
an AI agent by providing it with the context and
comparing its response with the expected output.

4 Results

In Section 4.1 we detail the creation of ALMITA,
a manually curated dataset for evaluating LLMs
as AI customer support agents. Two annotators
independently review each datapoint to identify
incorrect instances, followed by a discussion to
align their assessments and minimize disagree-
ments. Any datapoint deemed incorrect by at least
one annotator is then removed. GPT-4 is used for
all generation steps (see Figure 1). To assess the
benefits of the graph intermediate structures, we
conduct an ablation study comparing conversations
generated directly from procedures to those using
the intermediate structures, with manual curation
for quality assessment (Section 4.2). In Section 4.3,
we evaluate various AI agents on ALMITA. Finally,
in Section 4.4, we assess the effectiveness of our
pipeline in generating high-quality test sets auto-
matically. We do this by comparing the AI agents’
performance on ALMITA with those on its fully au-
tomated counterpart, auto-ALMITA.

4.1 Dataset generation: ALMITA
We begin by asking the LLM to generate intents
using the prompt from Appendix A.1, resulting in

84 intents. Using them as input, we prompt the
model to generate two procedures per intent, for a
total of 168 procedures. After manual annotation,
we remove 36 procedures that did not comply with
the rules from Section 3.2. The valid procedures av-
erage 315 words (ranging from 171 to 535) and 11
steps (ranging from 6 to 19). Next, we extract APIs
for each procedure as outlined in Section 3.3. APIs
not in the correct JSON format are automatically fil-
tered out, along with procedures with invalid APIs,
resulting in 70 valid procedures. Each of these
procedures, on average, includes 4 APIs (ranging
from 2 to 9). For each of the 70 procedures with
APIs, we generate the corresponding flowgraph.
We automatically filter out 15 flowgraphs and man-
ually filter 6 more that do not adhere to the rules
discussed in Section 3.4. The valid flowgraphs
average 15 nodes (ranging from 10 to 20) and 17
edges (ranging from 10 to 25). For each of the
remaining 49 valid flowgraphs, we generate the
corresponding conversation graph. We automati-
cally exclude 16 conversation graphs and manually
exclude 7 more based on adherence to rules (Sec-
tion 3.5). The valid conversation graphs average 23
nodes (ranging from 16 to 37) and 24 edges (rang-
ing from 15 to 37). From these conversation graphs,
we generate 217 conversations after path sampling
(Section 3.7). We manually filter out 25 conver-
sations for not following the rules (Section 3.8).
Thus, from the original 84 intents, we obtain 192
valid conversations. Each conversation traverses an
average of 12 nodes (ranging from 3 to 24). Finally,
tests are extracted from these conversations as de-
tailed in Section 3.9, resulting in 1420 generated
tests. Table 1 summarizes the dataset statistics. In
the end, the ALMITA dataset comprises 14 intents,
18 procedures, 18 flowgraphs, 18 conversations
graphs, 192 conversations and 1420 tests.
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LLM
Reply API Test Conversation

Recall Correct Recall Correct Correct params. Correct Correct
GPT-4o 92.7 75.2 96.7 99.8 92.2 88.9 14.1
Mistral-NeMo-I 92.0 65.0 89.8 99.5 92.1 84.7 7.3
Claude3-s 88.0 60.3 96.2 99.8 90.5 83.3 10.4
GPT-4 53.2 77.7 98.1 99.8 93.0 76.9 4.2
Llama3.1-8b-I 74.8 53.5 72.1 90.8 85.9 73.1 1.6
GPT-4o w/ F 92.9 74.8 97.2 99.0 86.6 88.0 15.6

Table 2: AI agents evaluated on their capacity to produce correct replies with correct API calls. We test different
LLMs using the same prompt. Additionally, we evaluate LLMs using function calling (with the "w/ F" suffix). The
versions of the closed source models are gpt-4-0613, gpt-4o-2024-05-13, anthropic.claude-3-sonnet-20240229-v1:0.
The "-I" suffix indicates that it is an instruction model. All results are percentages, with the highest value in bold.

4.2 Ablation study: conversations from
procedures

We conduct an ablation study to validate the effec-
tiveness of our intermediate graph representations
in generating correct conversations. We remove
the flowgraph generator, conversation graph gen-
erator, noise generator, and path sampler, and gen-
erate conversations directly from the procedures
and APIs using the prompt from Appendix A.7.
Annotating conversations directly generated from
procedures showed to be a much more complex
and time-consuming than annotating conversations
generated from graphs. For this reason we only
annotate 50 conversations. All 50 conversations
are generated from the same 70 input procedures as
ALMITA, and they are curated by the same two an-
notators, following the same annotation strategy. K
The simplified pipeline results in ≈ 68% (34/50)
valid conversations, as evaluated by the same anno-
tators that curated ALMITA. In contrast, the original
pipeline with intermediate graph representations
yields ≈ 88% (192/217) valid conversations. This
indicates that graph representations improve the
validity of generated conversations. Even when
considering the cumulative impact of curating flow-
graphs, the original pipeline would automatically
generate ≈ 78% (192/217× 49/55) valid conver-
sations, which is above ≈ 68%.

Moreover, while the prompt used in the simpli-
fied pipeline could potentially be improved, the
simplified pipeline intrinsically does not ensure
that all branching paths from the procedure are
explored. This highlights the benefit of intermedi-
ate graph representations in covering all possible
conversation paths.

4.3 Evaluation of LLM AI agents

We use ALMITA to evaluate LLMs serving as cus-
tomer support AI agents. The dataset allows us
to evaluate the following dimensions, which we
report in Table 2: (i) reply recall: when the correct
action is to reply, the agent correctly sends a reply
message instead of calling an unnecessary API, (ii)
correct reply: when both the correct and the pre-
dicted action is to reply, the agent’s reply matches
the expected reply (we use BERTScore with a sim-
ilarity threshold of 0.55 after inspecting of some
examples), (iii) API recall: when the correct action
is to do an API call, the agent correctly detects that
it needed to perform an API call instead of reply-
ing, (iv) correct API: when both the correct and the
predicted action is to perform an API call, the agent
calls the correct API; (v) correct API parameters:
when both the correct and the predicted action are
the same API call, the agents calls the API with the
correct parameter values, (vi) test correctness (or
test accuracy): whether the test is fully correct (i.e.,
call the correct reply/API and, if the correct action
is an API, call the correct API and use the correct
parameters, or if the correct action is a reply, pro-
vide a correct reply), (vii) conversation correctness
(or conversation accuracy): whether the sequence
of all tests from the conversation where all correct.

We evaluate 5 different LLMs: GPT4-o, GPT-4,
Claude3-sonnet, Mistral-NeMo-Instruct, and
Llama3.1-8b-Instruct. To ensure fairness, we
use a uniform prompt for all models (details in Ap-
pendix A.8). Our prompt aims to be general, avoid-
ing any favoritism towards a specific model, al-
though we acknowledge that different models may
excel with different prompting styles. Since the
dataset includes API calling, we also test GPT4-o
with function calling, denoted as GPT-4o w/F.
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We observe that all LLMs demonstrate high ac-
curacy when responding with an API, achieving
over 85% correctness in both the correct API and
correct API parameters dimensions. With the ex-
ception of Llama3.1-8b-I, which performs con-
siderably worse, the other models correctly deter-
mine when an API should be called, with an API
recall exceeding 90%. However, performance in
other dimensions is notably lower, suggesting that
datasets focused solely on API calls do not com-
prehensively evaluate an AI agent’s capabilities.

Interestingly, GPT-4 tends to call APIs even
when unnecessary, resulting in a lower reply recall
compared to other models. In terms of correct re-
ply, GPT models outperform the others, though this
may be biased by the use of GPT-4 for test genera-
tion. For test correctness, GPT-4o, Claude3-s, and
Mistral-NeMo-Instruct show the highest perfor-
mance, while GPT-4 and Llama3.1-8b-Instruct
rank among the lowest.

Most critically, we see that all models have very
low performance regarding correct conversation.
In practice, this would mean that these AI agents
would very likely fail at some step of a conversation
with a user. This showcases that current LLMs have
some limitations that require either better models
or very engineered prompts to suitably serve as
fully autonomous customer support AI agents.

Our dataset could, potentially, be useful to eval-
uate future models and/or strategies on their AI
agent capabilities. Furthermore, since the pipeline
is automated, the dataset could be updated to in-
clude more (and harder) tests, as well as adapted to
new or more specific domains.

4.4 Fully automated tests: auto-ALMITA

In this section, we analyze the results obtained by
AI agents on auto-ALMITA, the fully automated
version of the ALMITA dataset. This dataset was cre-
ated using the same seed intents from the ALMITA
dataset, described in section 4.1. Then we run the
same pipeline without the manual filtering steps.
Auto-ALMITA retains more data points and greater
diversity (see Table 1), albeit with some reduction
in quality. Being fully automatically generated,
auto-ALMITA can also be easily extended without
additional curation efforts.

We evaluate the same LLM agents from Table 2
and compare the global metric test correct obtained
by the AI agents both auto-ALMITA and ALMITA
in Figure 5. Both datasets rank the LLMs in the
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Figure 5: test correct value for different LLM Agents
on the auto-ALMITA and ALMITA datasets.

same order, with a high correlation value of 0.98
(detailed results are provided in Supplementary Ta-
ble 1). These findings suggest that the proposed
pipeline can generate evaluation datasets for AI
agents entirely automatically, which lead to conclu-
sions similar to those derived from curated datasets.

5 Conclusions

LLMs are being used as customer support AI
agents. However, existing evaluation datasets are
limited in their scope. We propose an automated
test generation pipeline to evaluate tool-augmented
conversational AI agents. Our proposed method
uses LLMs to generate intermediate graph struc-
tures that help limit hallucinations and improve
diversity in the generated tests. We evaluate dif-
ferent LLMs to analyze the current capabilities of
LLMs implemented as AI agents.

To facilitate this, we developed the ALMITA
dataset, which we used to thoroughly evaluate these
AI agents and identify their limitations. ALMITA al-
lows for a multifaceted evaluation across several
key dimensions, such as reply accuracy, API call
correctness, and overall conversation integrity. Our
findings highlighted significant limitations in cur-
rent LLMs, particularly in maintaining correct con-
versations throughout a user interaction.

Importantly, the ALMITA dataset can be used by
other researchers to evaluate AI agents, providing a
comprehensive benchmark for assessing various as-
pects of their performance, possibly in other target
domains. Additionally, since our test generation
pipeline is fully automated, we have the capabil-
ity to create new, more challenging versions of the
dataset. This adaptability ensures that our frame-
work can be continually updated to reflect more
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complex and realistic scenarios, further enhancing
its utility for ongoing research and development of
AI agents in customer support and beyond.

6 Limitations

Our evaluation has some limitations. Namely, we
did not evaluate the diversity of the generated tests
quantitatively. We performed human annotation, to
verify correctness at each step, but the number of
annotations and of annotators was small. Our test
generation pipeline only used a single LLM as the
generator, namely GPT4 and this might influence
evaluation. A possible mitigation for this is to
repeat the test generation pipeline for other LLMs
and aggregate the tests. We evaluated multiple
LLMs but only using a single prompt. Our goal was
to test different models on the generated dataset,
but more advanced AI agents could be considered.

Additionally, we acknowledge that some metrics
may be too strict. As a future direction, we would
like to consider the severity of the errors of an AI
agent in a conversation. Conversations are rela-
tively fluid and we may have other replies/actions
that are somehow acceptable for a given procedure
besides of the most obvious and direct one that was
annotated in the dataset. There is still to be develop
more advanced and more semantic conversational
metrics allowing for some path variations, similarly
to what has been happening for the comparison of
two sentences where different words and order of
words can lead to similar meanings.
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A Prompts

A.1 Intent generation

System prompt

You are <REDACTED>, a platform providing customer support. You
serve clients from numerous different industries: internet providers,
financial institutions, e-commerce platforms, entertainment websites,
etc. All these clients have customer that can contact customer support
to obtain information, complain about something, or other reasons
to contact the customer support team.

User prompt

Your task is to generate a list of problems that can lead to a customer
contacting support. Think of the type of client for which the issue is
relevant, a description of the detailed issue, and a short name for the
error.
Generate {{ number_issues }} issues from a diverse pool of clients.
Format your answer as a json with the following structure:

[{
"client ": e.g., a bank , internet provider , etc.

Do not limit yourself to these examples!,
"issue": description of the error , be specific!,
"name": a short name for the issue

}]

A.2 Procedure generation

System prompt

You are <REDACTED>, a platform providing customer support. You
serve clients from numerous different industries: internet providers,
financial institutions, e-commerce platforms, entertainment websites,
etc. All these clients have customer that can contact customer support
to obtain information, complain about something, or other reasons
to contact the customer support team.
Your task is to generate a procedure that helps an agent to fulfil a
task. The agent can take actions or they can ask the customer for data
(e.g., email address). You can include branching in the procedure.

Do not give general statements such as "Each system might have
different processes". Instead, assume the role of a specific company
that has very defined processes.
Do not give general steps such as "Explain the company’s policy".
The agent is following a procedure, so all steps need to be clearly
stated, e.g., state precisely what is the policy. Do not leave room for
ambiguity nor lack of information.
Do not state conditionals that are not resolved in the procedures
such as "If it is allowed by the policy". Every conditional has to be
fully contained in the procedure, the agent should not have to read
another document nor rely on other knowledge about the company’s
procedures. Your role is to make up reasonable scenarios that are
unambiguous.
Steps should be precise and granular.
Avoid giving examples, we want a concise procedure.
Do not include actions that are unrelated to the interaction with the
client (e.g., document the interaction, monitor the process). The
procedure is solely on how to address the issue reported by the
customer.
Assume that you don’t have a browser. Do not include navigation
steps, just the actions that the agent should take.

User prompt

# Issue
{{ issue }}

A.3 API extraction

System prompt

You are a programming assistant working for a customer experience
company. Given a procedure an agent should follow to solve a
customer problem, your job is to extract ALL possible APIs used by
the agent.
Never generate an API call that asks for passwords. The APIs
should be as specific as possible to what is in the procedure and
not general methods. All the API parameters should have type
different than None. When representing structured output follow
python convention like list[str] or dict[str, float]. Optional parameters
should follow the python convetion of Optional[str]. If the procedure
doesn’t have any action an agent should solve, return an empty
JSON.

# Output
Respond only in JSON format with the following

schema. The name of the api should be written
in snake case.

{"apis": [{" name": str , "desc": str , "params ":
[{" name": str}], "output ": {"name": str ,
"type": str }}]}

User prompt

# Procedure
```
{{ procedure }}
```

A.4 Flowgraph generation

System prompt

You are and experienced flowchart creator. You will be given a
procedure enclosed by <procedure></procedure> and a list of apis
that can used enclosed by <apis></apis>. Your job is to extract the
flowchart used to solve the problem. Your flowchart will be used by
an assistant to know how to solve the problem. The agent has no
access to the procedure, so all the information has to be contained in
this flowchart!!
You are and experienced flowchart creator. You will be given a
procedure enclosed by <procedure></procedure> and a list of apis
that can used enclosed by <apis></apis>. Your job is to extract the
flowchart used to solve the problem. Your flowchart will be used by
an assistant to know how to solve the problem. The agent has no
access to the procedure, so all the information has to be contained in
this flowchart!!

The flowchart is constituted by nodes and edges in the following
format:

[node_id ]( node_type){node_description}
[edge_id ]( parent_node_id ,

child_node_id){edge_description}

Node ids should always be N followed by an integer. Edge ids should
always be E followed by an integer.
You can use nodes of the type start_message, message, api and
end_message.
- start_message: initial message sent by the assistant to the customer,
taken from the procedure. It doesn’t have a parent node.
- message: node with a message sent by an assistant to the customer.
this message should have all the details found in the procedure.
- api: api call the assistant should perform.
- end_message: node to send a message and finish execution.

Graph construction rules
- The graph only have one root node of type ‘start_message‘.
- An outgoing edge from a message node is the reply of the customer.
Customer messages have to be specific.
- An outgoing edge from an api node is the output of the api.
- End nodes cannot have outgoing edges and should be of type
end_message.
- End nodes have the node type ‘end_message‘.
- Never have an edge going back to the start node N0.
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Details
The messages by the agent and the customer should follow stricly
what is in the procedure. ALL the details in the procedure need to
be in the flowchat! Don’t assume that the agent will ever see the
procedure, so it is critical that the details are here, such as reasons
for something to fail, or information that needs to be collected.
Make sure all steps are nodes. Some procedures might have branch-
ing paths.
Always use the APIs when appropriate.
The flowchart must be enclosed by <flow></flow>.

Example of a flow:
<flow >
[N0]( start_message){Greet the customer}
[E0](N0, N1){Didn 't receive my order}
[N1]( message){Ask customer for order id, the email

or phone number}
[E2](N1, N2){Gives order id and email}
[E3](N1, N3){Gives order id and phone number}
[N2](api){get_order_details_by_email}
[N3](api){get_order_details_by_phone_number}
[N4]( message){Do you want to cancel or refund the

order?}
[E3](N2, N4){Found order}
[E5](N3, N4){Found order}
[N5]( message){Tell the user the order wasn 't found

and ask for correct information}
[E5](N2, N5){Order not Found}
[E6](N3, N5){Order not Found}
[E6](N5, N2){User provides another email or order

id}
[E7](N5, N3){User provides another phone number or

order id}
[N6](api){cancel_order}
[E8](N4, N6){I want to cancel the order}
[N7]( end_message){Order cancelled}
[E9](N6, N7){Success}
[N8](api){refund_order}
[E9](N4, N8){I want a refund}
[N9]( end_message){Order refunded}
[E10](N8, N9){Success}
</flow >

<apis >
{{ apis }}
</apis >

User prompt

<procedure >
{{ procedure }}
</procedure >

A.5 Conversation graph generation

System prompt

Your task is to convert a flowchart into a conversation graph.
The flowchart will be given in between <flowchart></flowchart>.
The flowchart is constituted by nodes and edges in the following
format:

[node_id ]( node_type){node_description}
[edge_id ]( parent_node_id ,

child_node_id){edge_description}

Nodes are of the following types:
- start_message: initial message sent by the assistant to the customer,
taken from the procedure.
- message: node with a message sent by an assistant to the customer.
- api: api call the assistant should perform.
- end_message: node to send an assistant message and finish execu-
tion. You need to convert it into a conversation graph where:

[node_id ]( node_type){node_description}
[edge_id ]( parent_node_id ,

child_node_id){edge_description}

Nodes are of the following types:
- assistant: message sent by the agent.
- user: message sent by the user.
- api: api call the agent should perform.

Graph construction rules:
- api nodes have outgoing edges with labels
- api nodes are followed by api or assistant nodes
- user nodes are followed by api or assistant nodes
- assistant nodes **can be only followed by** user nodes
- leaf nodes are assistant nodes

Edges connect user nodes to either assistant or api nodes. Only edges
from API calls can have descriptions.
The first node should start with an assistant node without any parent
node.
For instance, consider the following flow graph:

<flow >
[N0]( start_message){Greet the customer}
[E0](N0, N1){Didn 't receive my order}
[N1]( message){Ask customer for order id}
[E2](N1, N2){Gives order id}
[N2](api){get_order_details}
[N3]( message){Do you want to cancel or refund the

order?}
[E3](N2, N3){Found order}
[N4]( message){Tell the user the order wasn 't found}
[E4](N2, N4){Order not Found}
[E5](N4, N2){User gives another order id}
[N5](api){cancel_order}
[E6](N3, N5){I want to cancel the order}
[N6]( end_message){Order cancelled}
[E7](N5, N6){Success}
[N7](api){refund_order}
[E8](N3, N7){I want a refund}
[N8]( end_message){Order refunded}
[E9](N7, N8){Success}
</flow >

The correct output is:

<flow >
[N0]( assistant){Greet the customer}
[N1](user){Didn 't receive my order}
[E0](N0, N1){}
[N2]( assistant){Ask customer for order id}
[E1](N1, N2){}
[N3](user){Gives order id}
[E2](N2, N3){}
[N4](api){get_order_details}
[E3](N3, N4){}
[N5]( assistant){Do you want to cancel or refund the

order?}
[E4](N4, N5){Found order}
[N6]( assistant){Tell the user the order wasn 't

found}
[E4](N4, N6){Order not Found}
[N7](user){User gives another order id}
[E5](N6, N7){}
[E6](N7, N4){}
[N8](user){I want to cancel the order}
[E7](N5, N8){}
[N9](api){cancel_order}
[E8](N8, N9){}
[N10]( assistant){Order cancelled}
[E9](N9, N10){Success}
[N11](user){I want a refund}
[E10](N5, N11){}
[N12](api){refund_order}
[E11](N11 , N12){}
[N13]( assistant){Your order has been refunded}
[E12](N12 , N13){Success}
</flow >

User prompt

{{ flowgraph }}

A.6 Conversations generation

System prompt

You will receive a conversation graph with nodes and edges in the
following format:
-[Ni](assistant){message}: Agent nodes with the corresponding
message.
-[Nj](user){message}: User nodes with the corresponding mes-
sage.
-[Nk](api){message}: API nodes with the corresponding message.

The graph also has edges with the following format:
-[Ei](Ni,Nj){}: Message Ni happens before Nj.
-[Ej](Ni,Nj){api_output}: Only applicable when Ni is an API
node.
Message Ni happens before Nj and has api outputs api_output.
The flowchart is given inside <flow></flow>. The initial node is
[N1]. The agent is guiding the user throughout the process. Our
goal is to generate conversations based on the graph that follow the
specified paths, given between <paths></paths>.
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For instance, consider the following flow graph:
<flow >
[N1]( assistant){Greet the customer}
[N2](user){Didn 't receive my order}
[E1](N1, N2){}
[N3]( assistant){Ask customer for order id}
[E2](N2, N3){}
[N4](user){Gives order id}
[E3](N3, N4){}
[N5](api){get_order_details}
[E4](N4, N5){}
[N6]( assistant){Want to cancel or refund the order?}
[E5](N5, N6){Found order}
[N7]( assistant){Tell user the order wasn 't found}
[E5](N5, N7){Order not Found}
[N8](user){User gives another order id}
[E6](N7, N8){}
[E7](N8, N5){}
[N9](user){I want to cancel the order}
[E8](N6, N9){}
[N10](api){cancel_order}
[E9](N9, N10){}
[N11]( assistant){Order cancelled}
[E10](N10 , N11){Success}
[N12](user){I want a refund}
[E11](N6, N12){}
[N13](api){refund_order}
[E12](N12 , N13){}
[N14]( assistant){Order refunded}
[E13](N13 , N14){Success}
</flow >

And the apis are:
<apis >
[

{
"name": "get_order_details",
"params ": [{" order_id ": "int"}],
"output ": {'name ': 'sent_status ', 'type ':

'list[dict[str , str]]'}
}

]
</apis >

If the given path is: [N1, N2, N3, N4, N5, N7], one possible conver-
sation is the following:

[
{

"role": "user",
"content ": "I didn 't receive my order"

},
{

"role": "assistant",
"content ": "Can you give me the order ID?"

},
{
"role": "user",
"content ": "The order ID is #812"

},
{

"role": "api",
"content ": "get_order_details(order_id =812)"

},
{

"role": "api_output",
"content ": "{" sent_status ": [{" item":

"Product1", "status ": "shipped "}]}"
},
{

"role": "assistant",
"content ": "I couldn 't find your order."

},
]

Generate the conversation in the format specified above. When
making information up, come up with reasonable names and never
generic entities like Example1, ProductX, and similar. For example,
if talking about products, mention existing products.
Only use the given APIs and make sure all the parameters are defined.
The conversations should follow the following rules:
- After a message with api role always include a message with
api_output role.
- After a message with the assistant role always follow with a message
with user role.
- A message with the user role is followed by a message with assistant
or api role.
- After a message with a api_output role always include a message
with assistant role.
- The API output should be in the format specified in the API defini-
tion. That is always in JSON format.
Note that, even if the node does not exist in the graph, the first
message should be a message by the user explaining their problem.

User prompt

{{ conversation_graph }}
<apis >{{ apis }}</apis >
path: {{ path }}

A.7 Conversations from procedures

System prompt

You are an experienced customer service agent. You will be given a
procedure enclosed by <procedure></procedure> and a list of apis
that can used enclosed by <apis></apis>. Your goal is to generate
conversations between an agent and a customer that could be solved
used the given procedure and apis.
For instance, consider the following procedure:

<procedure >
# Handling a Customer Who Didn 't Receive Their Order

Start Interaction:
1.1. Greet the customer courteously.

Identify the Issue:
2.1. Confirm the customer didn 't receive the order.

Obtain Order Information:
3.1. Ask the customer to provide their order ID

along with the email address or phone number
associated with the order.

Retrieve Order Details:
4.1. If the customer provides the order ID and

email address:
- Use the company 's API to retrieve order details

by email.
4.2. If the customer provides the order ID and

phone number:
- Use the company 's API to retrieve order details

by phone number.

Check if Order is Found:
5.1. If the order is found , proceed to Step 6.
5.2. If the order is not found:
- Inform the customer that the order wasn 't found.
- Ask the customer to provide the correct email or

phone number and order ID.
- Repeat Step 3 based on the new information.

Determine Customer 's Request:
6.1. Ask the customer if they would like to cancel

the order or request a refund.

Processing Customer 's Request:
7.1. Cancellation:
- If the customer wants to cancel the order:
- Use the company 's API to cancel the order.
- Upon successful cancellation , inform the customer

that the order has been cancelled.
7.2. Refund:
- If the customer wants a refund:
- Use the company 's API to process the refund.
- Upon successful refund , inform the customer that

the order has been refunded.

End Interaction:
8.1. Conclude by thanking the customer for their

patience and confirming resolution.

And the apis are:

<apis >
[

{
"name": "get_order_details",
"params ": [{" order_id ": "int"}],
"output ": "bool"

}
]
</apis >

One possible conversation is the following:

[
{

"role": "assistant",
"content ": "Hello , how can I assist you?"

},
{

"role": "user",
"content ": "I didn 't receive my order"

},
{

"role": "assistant",
"content ": "Can you give me the order ID?"

},
{

"role": "user",
"content ": "The order ID is #812"

},
{

"role": "api",
"content ": "get_order_details(order_id =812)"

},
{

"role": "api_output",
"content ": "False"

},
{

"role": "assistant",
"content ": "I'm sorry but I couldn 't find

your order ."
},

]
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Generate the conversation in the format specified above. When
making information up, come up with reasonable names and never
generic entities like Example1, ProductX, and similar. For example,
if talking about products, mention existing products.
Only use the given APIs and make sure all the parameters are defined.
The conversations should follow the following rules:

- After a message with api role always include a
message with api\_output role.

- After a message with the assistant role always
follow with a message with user role.

- A message with the user role is followed by a
message with assistant or api role.

- After a message with a api\_output role always
include a message with assistant role.

Note that, even if the node does not exist in the graph, the first
message should be a message by the user explaining their problem.

User prompt

<procedure >{{ procedure }}</procedure >
<apis >{{ apis }}</apis >

A.8 Tool-augmented AI agent

System prompt

You are a customer support agent with the goal of answering user
requests. You will be given the following information:

- conversation: Messages exchanged between the end
user and you , and the executed actions with
their

outputs.

This is the procedure you know about:

<procedure >
{{ procedure }}
</procedure >

You only know answers about this procedure! It is critical that you
do not come up with any data nor instructions that are not contained
in the procedure.
This is the list of available actions.

<actions >
{{ available_actions }}
</actions >

Sometimes your action might be simply to reply to an end user, other
times you will need to call an action that performs an operation
and/or retrieves necessary data. Some actions require information/-
parameters in order to be callable. If you do not have the necessary
information available in the context, YOU MUST ASK FOR IT
AND CANNOT SUGGEST THE ACTION. Make sure that you
follow the directives in the procedure before suggesting a relevant
action. For instance, some actions have consequences and might
require user confirmation before being executed, if stated in the
procedure. If this is the case, suggest a reply that asks confirmation
from the end user. Make sure that the information that you are using
properly matches the context (e.g., the user might give a phone num-
ber that does not match what is shown in the context, which contains
the output of actions.)
You MUST reply with a JSON object as follows:

{
'type ': name of the function to call ,
'parameters ': parameters to pass to the

function ,
}

User prompt

<conversation >
{{ conversation }}
</conversation >

B auto-ALMITA: Detailed evaluation

Supplementary Table 1 provides detailed results
obtained with the auto-ALMITA dataset, consider-
ing the 6 LLM agents and all the evaluation metrics
from Section 4.3.
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LLM
Reply API Test Conversation

Recall Correct Recall Correct Correct params. Correct Correct
GPT-4o 91.1 77.1 89.5 95.1 84,4 85.4 14.7
Mistral-NeMo-I 89.2 67.5 89.5 93.8 80.7 81.3 10.3
Claude3-s 79.9 67.1 92.9 95.9 84.1 78.9 6.9
GPT-4 60.5 82.9 92.6 94.6 84.5 75.5 6.4
Llama3.1-8b-I 79.4 61.8 64.3 95.7 83.8 73.4 3.2
GPT-4o w/ F 89.6 75.3 93.0 93.8 72.2 82.9 11.5

Supplementary Table 1: LLM AI agents evaluated on auto-ALMITA. For each LLM, the highest value in shown in
bold. All results are percentages.
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Abstract

We propose MMLU-SR, a novel dataset de-
signed to measure the true comprehension
abilities of Large Language Models (LLMs)
by challenging their performance in question-
answering tasks with modified terms. We rea-
soned that an agent that “truly” understands
a concept can still evaluate it when key terms
are replaced by suitably defined alternate terms,
and sought to differentiate such comprehension
from mere text replacement. In our study, we
modified standardized test questions by replac-
ing a key term with a dummy word along with
its definition. The key term could be in the
context of questions, answers, or both ques-
tions and answers. Notwithstanding the high
scores achieved by recent popular LLMs on
the MMLU leaderboard, we found a substan-
tial reduction in model performance after such
replacement, suggesting poor comprehension.
This new benchmark provides a rigorous bench-
mark for testing true model comprehension,
and poses a challenge to the broader scientific
community.

1 Introduction

Large Language Models (LLMs) have achieved
impressive quantitative performance on a wide
range of benchmarks, natural language process-
ing (Zellers et al., 2019; Wang et al., 2019), general
knowledge question-answering(Hendrycks et al.,
2021; Clark et al., 2018), and coding (Chen et al.,
2021; others, 2021). Additionally, by integrating
with some advanced prompting techniques, such
as Chain-of-Thought (CoT) (Wei et al., 2023) and
its variants (Yao et al., 2023; Trivedi et al., 2023;
Zhang et al., 2023), LLMs seem to exhibit a cer-
tain level of reasoning abilities including mathe-
matics (Zhang et al., 2024) and even causal in-
ference/discovery (Vashishtha et al., 2023; Wang
et al., 2020; Mao et al., 2022; Gupta et al., 2021).
However, some studies (Oren et al., 2023) have

*Visiting student at Rutgers ML Lab.

raised concerns about data leakage (i.e., training
models on the test sets), potentially rendering these
results unreliable. These seemingly contradictory
findings prompt the question of whether LLMs are
genuinely performing reasoning tasks or merely
predicting the next token. If LLMs are truly capa-
ble of reasoning, they should remain unaffected by
the replacement of key symbols within the test set.

A hallmark of human intelligence is the ability
to handle abstract concepts and to associate them
with arbitrary terms (Penn et al., 2008). With a few
exceptions such as onomatopoeia, the connection
between particular words and particular meanings
is arbitrary, and identical concepts are invoked by
different words in different human languages (e.g.
dog vs chien). Similarly, human reasoners are capa-
ble of analogizing structural relationships from one
domain to another, meaning that conceptual equiv-
alence can be retained even when details change
(Gentner and Medina, 1998). It follows that true
human-like comprehension should be unimpaired
when terms are substituted for synonymous terms,
as long as the substitution is comprehensibly de-
fined.

We wondered whether LLM peformance reflects
true human-like comprehension in this sense, or
whether it relies heavily on the specific terms used
on training corpora. To assess this, we propose
MMLU-SR, a new benchmark dataset that uses
symbol replacement to remove some important
terms from the questions and answers as shown
in Figure 1. Instead of relying on memorized terms,
this approach tests whether LLMs can reason using
the definitions and concepts of those terms, ensur-
ing a more robust evaluation of their understanding.

Our evaluations on GPT-3.5/4, Gemini, and
Llama3 families showed significantly lower per-
formance on MMLU-SR compared to the original
MMLU, demonstrating the effectiveness of our ap-
proach in preventing models from exploiting mem-
orized data. MMLU-SR thus provides a more chal-
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 Question

Answer

Question

 Answer

D. Tay-Sachs disease. A. Suppose 'Bard' means 'An inherited disorder that affects the
lungs, digestive system, and other organs, characterized by the

production of thick, sticky mucus.' Bard.

MMLU MMLU-SR 

Reasoning or Simply Next Token Prediction?

Symbol  
Replacement  

A. Suppose 'Bard' means 'An inherited disorder that affects the
lungs, digestive system, and other organs, characterized by the
production of thick, sticky mucus.' Bard.
B. Suppose 'Jump' means 'A genetic condition causing intellectual
disability, behavioral challenges, and certain physical
characteristics, resulting from a mutation in the FMR1 gene.' Jump.
C. Suppose 'Zelly' means 'A group of inherited disorders
characterized by a lack of melanin production in the skin, hair, and
eyes, leading to light pigmentation.' Zelly.
D. Suppose 'Dummy' means 'A rare genetic disorder that causes
progressive destruction of nerve cells in the brain and spinal cord,
leading to severe neurological symptoms.' Dummy.

Suppose 'Hat' means "the name given to any laboratory technique
that measures enzyme activity within a sample." Hat can be used to

identify carriers of:
Enzyme assay can be used

to identify carriers of:

 A. Cystic fibrosis.
 B. Fragile X syndrome.
 C. Oculocutaneous albinism.
 D. Tay-Sachs disease.

Figure 1: Illustration of our MMLU-SR testing scenarios. The red-colored and green-colored words represent the
original symbols in the MMLU dataset showing in answers and questions, which are replaced in the MMLU-SR
dataset with random words followed by their definitions, shown in orange text. The example question from the
MMLU dataset is correctly answered by both GPT-3.5-turbo and ChatGPT-4. However, the modified question from
the MMLU-SR “Question and Answer” dataset is answered incorrectly by both models.

lenging and revealing test of LLMs’ true reasoning
abilities and understanding.

Our findings indicate that while current LLMs
excel on traditional benchmarks, they face substan-
tial difficulties when key terms are replaced, high-
lighting the need for benchmarks like MMLU-SR
to ensure robust and comprehensive evaluation of
language models.

2 Related Works

MMLU Variants Benchmarks. MMLU Variants
such as CMMLU (Li et al., 2024) and TMMLU+
(Tam et al., 2024) are adaptations of the MMLU
benchmark for non-English languages; they trans-
late the original MMLU questions and answers
into other languages, providing a way to evalu-
ate language models’ performance in non-English
contexts. These benchmarks are crucial for as-
sessing the generalizability and robustness of mod-
els across different languages and cultural settings.

They preserve the original structure and intent of
MMLU while enabling a broader examination of
multilingual capabilities.

Reasoning Capabilities Benchmarks. Several
advanced reasoning benchmarks have been devel-
oped to evaluate the reasoning capabilities of lan-
guage models. AGIEval (Zhong et al., 2023) in-
cludes standardized tests and civil service exams to
assess reasoning and problem-solving skills in aca-
demic and professional scenarios. BoolQ (Clark
et al., 2019) comprises over 15,000 real yes/no
questions paired with Wikipedia passages to test
the ability of models to infer answers from contex-
tual information. GSM8K (Cobbe et al., 2021) fea-
tures 8.5K grade-school math problems requiring
multistep operations, targeting the evaluation of ba-
sic to intermediate mathematical problem-solving
abilities. DROP (Dua et al., 2019), an adversarially-
created reading comprehension benchmark, chal-
lenges models to navigate references and perform
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Question:
Suppose 'Hat' means "the name given to any laboratory technique that measures
enzyme activity within a sample." Hat can be used to identify carriers of:
Answer:
A. Cystic fibrosis.
B. Fragile X syndrome.
C. Oculocutaneous albinism.
D. Tay-Sachs disease.

The hypothetical technique "Hat," described as measuring enzyme activity within
a sample. Among the diseases listed:
Cystic fibrosis is primarily diagnosed through genetic testing and sweat chloride
tests, not directly through enzyme activity.
Fragile X syndrome is diagnosed through genetic testing, specifically by
identifying mutations in the FMR1 gene, not through enzyme activity.
Oculocutaneous albinism involves a lack of pigment production and is diagnosed
through genetic and physical exams, not typically through enzyme activity.
Tay-Sachs disease is characterized by a deficiency of the enzyme hexosaminidase
A. This deficiency leads to a buildup of specific lipids in the brain and nerve cells,
which can be measured through enzyme activity tests.
Given this, the best answer is: D. Tay-Sachs disease.

Model Input

Question Only

Model Output

Figure 2: Example ChatGPT-4 output of MMLU-SR
‘Question Only”.

discrete operations such as addition and sorting,
thus evaluating their capacity to understand com-
plex texts and execute logical reasoning tasks. Be-
yond purely language-based evaluation, on the mul-
timodal front, MMNeedle (Wang et al., 2024) in-
troduced one of the first multimodal benchmarks
to evaluate long-context multimodal reasoning ca-
pabilities of multimodal LLMs.

Unlike advanced reasoning benchmarks and
MMLU variants for language extension (e.g.,
CMMLU and TMMLU+), our MMLU-SR bench-
mark introduces a novel approach. It enhances
the challenge by replacing key words within the
questions with random words, each paired with
its definition, to differentiate from other bench-
marks. This approach targets the models’ reason-
ing abilities by preventing reliance on memorized
terms or vocabularies. By altering key symbols,
MMLU-SR ensures that the evaluation focuses on
the models’ understanding and reasoning, rather
than their recognition of specific vocabulary, thus
providing a more robust assessment of their true
cognitive capabilities. We build our benchmark
on the MMLU dataset because it encompasses a
wide range of subjects across various domains, in-
cluding Humanities, Social Sciences, STEM, and
Other fields. This diverse subject matter ensures a
comprehensive evaluation of language models’ rea-
soning capabilities, in contrast to other reasoning
benchmarks that often focus exclusively on specific
STEM subjects.

3 MMLU-SR Dataset

3.1 Dataset Construction

We have developed the MMLU-SR benchmark to
rigorously evaluate the reasoning and understand-
ing capabilities of LLMs. Inspired by ObjectNet
(Borji, 2020), our benchmark contains three sub-
sets: “Question Only”, “Answer Only”, and “Ques-
tion and Answer”, each offering a unique perspec-
tive on the data to comprehensively assess LLM
performance. To reduce human efforts in some re-
dundant tasks, we proposed an automatic process
to generate our dataset.

1. Term Extraction and Definition Genera-
tion: We extracted key terms from the ques-
tions and answers across all 57 subjects using
the assistance of gpt-3.5-turbo. The pro-
cess involved careful few-shot prompting, and
we separately extracted the contexts of ques-
tions or answers alone to ensure the model
focused on extracting terms rather than solv-
ing the questions. We also retrieved appro-
priate definitions within the specific subject
for each extracted term. For terms where the
automated process provided irrelevant or inac-
curate definitions, we manually reviewed and
corrected these entries (see Appendix F for de-
tails on the extent of manual modifications).

2. Dictionary Creation: Once the terms and
their definitions were extracted for each sub-
ject, we created JSON files where the terms
served as keys and the definitions as values.
This dictionary served as the basis for replac-
ing terms in the questions and answers.

3. Data Replacement: Using the created dictio-
naries, we replaced the key terms in the ques-
tions with random dummy words followed
by their definitions to create the “Question
Only” dataset. Similarly, we did this for the
answers to form the “Answer Only” dataset.
This ensured that the context remained human-
readable but required reasoning to infer the
replaced terms. Some definitions and replace-
ments required manual adjustments to ensure
clarity and accuracy.

4. Combining Question and Answer Sets: Af-
ter creating the “Question Only” and “Answer
Only” datasets, we combined them to form
the “Question and Answer” dataset. This step
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involved ensuring that the terms were con-
sistently replaced across both questions and
answers, maintaining the coherence of the
dataset.

5. Final Adjustments: All CSV sheets were
encoded in UTF-8 without headers. We manu-
ally fixed any typos that existed in the original
MMLU dataset to ensure the quality and read-
ability of the MMLU-SR dataset.

The MMLU-SR dataset was created using these
meticulous steps. We formed both development
and test sets, with the development set used for few-
shot learning and the test set reserved for evaluation.
This structured approach ensured that the dataset
effectively tested the reasoning abilities of LLMs,
differentiating between simple pattern recognition
and genuine understanding. To effectively demon-
strate how our MMLU-SR dataset can challenge
more sophisticated models, we use Figure 2, Fig-
ure 3, and Figure 4 that feature responses from
ChatGPT-4. For comparative insights, example re-
sponses of ChatGPT-3.5 are available from Table 8,
Table 9, and Table 10 in Appendix B.

3.2 “Question Only” Dataset
Our “Question Only” dataset replaces key symbols
with dummy words in most questions from the orig-
inal MMLU dataset and keeps the answer choices
unchanged. However, some straightforward ques-
tions, such as those involving only mathematical
operations and numbers or simple questions like
“Which of the following statements is true?”, re-
main unmodified. Generally, we changed at least
one important term in the context, replacing it with
a random dummy word followed by its definition;
sometimes, multiple terms are replaced in the ques-
tion to further test the model’s reasoning capabili-
ties.

Figure 2 illustrates an example where the dummy
word ‘Hat’ is used to replace term ‘enzyme assay’
and is defined as “the name given to any laboratory
technique that measures enzyme activity within
a sample.” In this case, ChatGPT-4 successfully
recognized ‘Hat’ and understood that the critical
aspect was whether the diseases listed in the an-
swer choices could be identified through enzyme
activity. The model systematically eliminated each
answer option, except for the last one, as it was
the only choice that could be measured through en-
zyme activity tests. This setup effectively tests the
model’s ability to comprehend and reason based

Question:
Enzyme assay can be used to identify carriers of:
Answer:
A. Suppose 'Bard' means 'An inherited disorder that affects the lungs, digestive system, and other
organs, characterized by the production of thick, sticky mucus.' Bard.
B. Suppose 'Jump' means 'A genetic condition causing intellectual disability, behavioral challenges,
and certain physical characteristics, resulting from a mutation in the FMR1 gene.' Jump.
C. Suppose 'Zelly' means 'A group of inherited disorders characterized by a lack of melanin
production in the skin, hair, and eyes, leading to light pigmentation.' Zelly.
D. Suppose 'Dummy' means 'A rare genetic disorder that causes progressive destruction of nerve
cells in the brain and spinal cord, leading to severe neurological symptoms.' Dummy.

To determine which disorder enzyme assays can identify among the given options, let's analyze
each one:
A. 'Bard' sounds like Cystic Fibrosis. Enzyme assays can indeed be used to identify carriers of
Cystic Fibrosis.
B. 'Jump' is indicative of Fragile X Syndrome. Identification of carriers typically involves genetic
testing rather than enzyme assays.
C. 'Zelly' refers to albinism. Albinism is usually diagnosed through genetic tests and physical
examination, not enzyme assays.
D. 'Dummy' is reminiscent of Huntington's Disease.   Diagnosis and carrier detection for such
neurodegenerative disorders generally rely on genetic testing.
Based on this analysis, the most appropriate answer is: A. Bard (Cystic Fibrosis)

Model Input

Answer Only

Model Output

Figure 3: Example ChatGPT-4 output of MMLU-SR
“Answer Only”.

Question:
Suppose 'Hat' means "the name given to any laboratory technique that measures enzyme activity within
a sample." Hat can be used to identify carriers of:
Answer:
A. Suppose 'Bard' means 'An inherited disorder that affects the lungs, digestive system, and other
organs, characterized by the production of thick, sticky mucus.' Bard.
B. Suppose 'Jump' means 'A genetic condition causing intellectual disability, behavioral challenges, and
certain physical characteristics, resulting from a mutation in the FMR1 gene.' Jump.
C. Suppose 'Zelly' means 'A group of inherited disorders characterized by a lack of melanin production in
the skin, hair, and eyes, leading to light pigmentation.' Zelly.
D. Suppose 'Dummy' means 'A rare genetic disorder that causes progressive destruction of nerve cells in
the brain and spinal cord, leading to severe neurological symptoms.' Dummy.

Given that 'Hat' is defined as any laboratory technique measuring enzyme activity, we can analyze:
Bard: refers to Cystic Fibrosis, and can be screened for using enzyme assays
Jump: refers to Fragile X Syndrome. Carrier identification typically relies on genetic testing rather

than enzyme assays.
Zelly: refers to albinism. Diagnosing albinism generally involves genetic tests and physical

examination, not typically enzyme assays. 
Dummy: refers to a neurological condition like Huntington's Disease. The identification of carriers

for such conditions also primarily uses genetic testing rather than enzyme assays.
Thus, the use of 'Hat' (enzyme assays) is most applicable to: A. Bard (Cystic Fibrosis)

Model Input

Question and Answer

Model Output

Figure 4: Example ChatGPT-4 output of MMLU-SR
“Question and Answer”.

on the provided definitions, rather than relying on
pre-trained knowledge of the term ‘enzyme assay’.

3.3 “Answer Only” Dataset

Our “Answer Only” dataset modifies the answer
choices in most text from the original MMLU
dataset similarly to the “Question Only” dataset
and keeps the questions unchanged. We ensure
that at least one answer choice is modified among
all four choices. In specific cases, such as “moral
scenarios” where the answers are simple TRUE or
FALSE choices, we make substitutions like “Sup-
pose ‘Jack’ means ‘True’.” and “Suppose ‘Luck’
means ‘False’.” Despite these modifications, Ta-
ble 3 still shows the accuracy drops among all
models compared to the original “moral scenarios”
sheet from MMLU. This underscores the challenge
posed to models in adapting to these symbolic sub-
stitutions. Figure 3 demonstrates that ChatGPT-4
was able to recognize the replaced terms in answer
choices A, B, and C, identifying ‘Bard’ as ‘Cystic
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Table 1: Performance of gpt-4o-mini,gpt-4o, gemini-1.5-pro, and llama3-70b.

Dataset Humanities Social Sciences STEM Other Average

GPT-4o-mini

MMLU (5-shot) 0.793 0.858 0.689 0.782 0.771
Question Only (5-shot) 0.744 0.792 0.621 0.724 0.710
Answer Only (5-shot) 0.659 0.738 0.602 0.651 0.655
Question and Answer (5-shot) 0.588 0.666 0.531 0.585 0.585

GPT-4o

MMLU (5-shot) 0.880 0.906 0.771 0.854 0.845
Question Only (5-shot) 0.838 0.856 0.702 0.811 0.792
Answer Only (5-shot) 0.764 0.824 0.705 0.760 0.757
Question and Answer (5-shot) 0.708 0.754 0.635 0.712 0.695

Gemini-1.5-pro

MMLU (5-shot) 0.849 0.881 0.802 0.815 0.832
Question Only (5-shot) 0.795 0.836 0.700 0.754 0.764
Answer Only (5-shot) 0.741 0.816 0.747 0.739 0.758
Question and Answer (5-shot) 0.690 0.752 0.670 0.681 0.694

Llama3-70B

MMLU (5-shot) 0.681 0.868 0.697 0.814 0.765
Question Only (5-shot) 0.635 0.812 0.631 0.770 0.712
Answer Only (5-shot) 0.539 0.683 0.565 0.622 0.602
Question and Answer (5-shot) 0.523 0.653 0.536 0.591 0.576

Table 2: Relative percentage drop of accuracy in MMLU-SR compared to MMLU.

Dataset Humanities Social Sciences STEM Other Average

GPT-4o-mini

Question Only (5-shot) 6.18% 7.69% 9.87% 7.42% 7.91%
Answer Only (5-shot) 16.90% 13.99% 12.63% 16.75% 15.05%
Question and Answer (5-shot) 25.85% 22.38% 22.93% 25.19% 24.12%

GPT-4o

Question Only (5-shot) 4.77% 5.52% 8.95% 5.03% 6.27%
Answer Only (5-shot) 13.18% 9.05% 8.56% 11.01% 10.41%
Question and Answer (5-shot) 19.55% 16.78% 17.64% 16.63% 17.75%

Gemini-1.5-pro

Question Only (5-shot) 6.36% 5.11% 12.72% 7.48% 8.17%
Answer Only (5-shot) 12.72% 7.38% 6.86% 9.33% 8.89%
Question and Answer (5-shot) 18.73% 14.64% 16.46% 16.44% 16.59%

Llama3-70B

Question Only (5-shot) 6.75% 6.45% 9.47% 5.41% 6.93%
Answer Only (5-shot) 20.85% 21.31% 18.94% 23.59% 21.31%
Question and Answer (5-shot) 23.20% 24.77% 23.10% 27.40% 24.71%

Fibrosis’, ‘Jump’ as ‘Fragile X Syndrome’, and
‘Zelly’ as ‘Albinism’. The model incorrectly identi-
fied the term ‘Dummy’ as ‘Huntington’s Disease’,
while the correct term is ‘Tay-Sachs Disease’. Both
disorders are indeed genetic, but they are distinct in
their genetic causes and manifestations. It appears
that ChatGPT-4, focusing on the broader category
of ‘genetic disorder’ from the provided definition,
inadvertently linked the description to the wrong

disease. Such misidentification led the model to
persist in incorrectly affirming that choice A (‘Bard’
as ‘Cystic Fibrosis’) was the correct answer (it is
not).

3.4 “Question and Answer” Dataset
Our “Question and Answer” dataset integrates ele-
ments from both the “Question Only” and “Answer
Only” datasets, replacing fundamental terms in
both the questions and answer choices with dummy
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Table 3: Detailed accuracy for different Humanities subjects across different models.

Subject MMLU Question Only Answer Only Question and Answer
GPT Gemini Llama3 GPT Gemini Llama3 GPT Gemini Llama3 GPT Gemini Llama3

Formal Logic 0.730 0.698 0.532 0.603 0.500 0.484 0.643 0.579 0.516 0.556 0.500 0.460
Logical Fallacies 0.902 0.902 0.853 0.883 0.834 0.810 0.853 0.847 0.663 0.834 0.841 0.564
Moral Disputes 0.882 0.832 0.847 0.832 0.806 0.769 0.777 0.830 0.630 0.711 0.749 0.653
Moral Scenarios 0.813 0.760 0.318 0.830 0.774 0.289 0.143 0.199 0.318 0.177 0.167 0.253
Philosophy 0.891 0.865 0.865 0.778 0.724 0.772 0.698 0.756 0.598 0.582 0.611 0.582
World Religions 0.901 0.895 0.906 0.895 0.836 0.895 0.842 0.813 0.696 0.825 0.772 0.684
High School European History 0.903 0.885 0.848 0.885 0.855 0.830 0.897 0.849 0.721 0.861 0.818 0.739
High School Us History 0.946 0.922 0.946 0.917 0.902 0.887 0.897 0.863 0.799 0.863 0.819 0.799
High School World History 0.937 0.920 0.945 0.924 0.920 0.916 0.907 0.865 0.806 0.882 0.827 0.840
Prehistory 0.948 0.901 0.910 0.904 0.836 0.793 0.843 0.803 0.670 0.790 0.769 0.670
International Law 0.942 0.926 0.868 0.901 0.860 0.868 0.934 0.843 0.769 0.835 0.802 0.760
Jurisprudence 0.898 0.861 0.852 0.852 0.861 0.806 0.861 0.806 0.602 0.722 0.750 0.556
Professional Law 0.749 0.666 0.616 0.683 0.627 0.583 0.641 0.585 0.461 0.563 0.544 0.461

Table 4: Detailed accuracy for different Social Science subjects across different models.

Subject MMLU Question Only Answer Only Question and Answer
GPT Gemini Llama3 GPT Gemini Llama3 GPT Gemini Llama3 GPT Gemini Llama3

Econometrics 0.711 0.702 0.693 0.588 0.579 0.570 0.640 0.614 0.561 0.535 0.535 0.421
High School Macroeconomics 0.921 0.880 0.821 0.849 0.785 0.779 0.813 0.785 0.628 0.721 0.715 0.572
High School Microeconomics 0.971 0.929 0.870 0.903 0.870 0.773 0.857 0.815 0.664 0.769 0.744 0.571
High School Government And Politics 0.984 0.974 0.969 0.979 0.943 0.938 0.943 0.922 0.798 0.922 0.845 0.782
Public Relations 0.836 0.746 0.755 0.755 0.755 0.736 0.664 0.682 0.600 0.627 0.646 0.555
Security Studies 0.824 0.841 0.824 0.788 0.792 0.767 0.731 0.796 0.673 0.633 0.714 0.624
Us Foreign Policy 0.930 0.940 0.930 0.920 0.930 0.890 0.870 0.880 0.740 0.810 0.810 0.780
Human Sexuality 0.931 0.893 0.855 0.924 0.855 0.840 0.863 0.847 0.710 0.802 0.756 0.756
Sociology 0.935 0.891 0.920 0.900 0.896 0.841 0.881 0.881 0.806 0.831 0.851 0.786
High School Geography 0.955 0.939 0.924 0.894 0.909 0.833 0.884 0.864 0.737 0.813 0.813 0.662
High School Psychology 0.965 0.938 0.921 0.923 0.917 0.884 0.927 0.912 0.719 0.872 0.859 0.739
Professional Psychology 0.908 0.895 0.845 0.845 0.801 0.788 0.817 0.791 0.627 0.719 0.737 0.601

words followed by their definitions. As illustrated
in Figure 4, ChatGPT-4 successfully interpreted
the original terms for each replaced term in an-
swer choices A through C. However, similar to
the results seen in Figure 3, the model incorrectly
recognized the term in the last answer choice D
(‘Dummy’ for Huntington’s Disease), leading to
an incorrect answer. This outcome contrasts with
Figure 2, where ChatGPT-4 correctly answered
the questions when only the questions were mod-
ified. This illustrates that as complexity in con-
text increases, with terms being replaced in both
questions and answers, the model struggles to ac-
curately identify the correct original term, conse-
quently leading to an incorrect answer choice.

4 Experiments

4.1 Evaluation Protocol

We evaluated seven models across OpenAI,
Gemini, Llama families: gpt-3.5-turbo,
gpt-4o-mini, gpt-4o, gemini-1.0-pro,
gemini-1.5-pro, llama3-8b, and llama3-70b.

The evaluation for GPT and Gemini models was
conducted using the Gemini-benchmark pipeline
(Akter et al., 2023). For these models, we set the
temperature parameter to 0 and utilized carefully
crafted prompts that required responses in the
format of “Answer: Letter of Choice.” This
approach ensures that the generated responses are
directly comparable and suitable for evaluation.
Additionally, both models were evaluated in
the 5-shot setting, using examples from our
development dataset to enhance their contextual
understanding. Llama3 was evaluated using the
lm-evaluation-harness framework (Gao et al.,
2023). This model employed a different evaluation
strategy; it uses log likelihood to determine the
model’s responses. Consistent with the other
models, Llama3 also uses the same 5-shot setting,
ensuring a standardized comparison across all
tests. The complete results of all seven models are
available in Appendix E.
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Table 5: Detailed accuracy for different STEM subjects across different models.

Subject MMLU Question Only Answer Only Question and Answer
GPT Gemini Llama3 GPT Gemini Llama3 GPT Gemini Llama3 GPT Gemini Llama3

Abstract Algebra 0.660 0.690 0.380 0.470 0.550 0.370 0.640 0.730 0.400 0.460 0.520 0.400
College Mathematics 0.490 0.680 0.510 0.420 0.630 0.490 0.440 0.650 0.460 0.410 0.610 0.480
High School Statistics 0.769 0.866 0.699 0.708 0.708 0.657 0.750 0.829 0.620 0.644 0.662 0.597
Elementary Mathematics 0.735 0.921 0.606 0.675 0.786 0.521 0.706 0.900 0.561 0.661 0.825 0.497
High School Mathematics 0.541 0.700 0.422 0.537 0.504 0.356 0.541 0.615 0.426 0.511 0.526 0.367
Astronomy 0.947 0.901 0.921 0.908 0.829 0.849 0.888 0.849 0.697 0.855 0.796 0.684
College Physics 0.686 0.716 0.559 0.559 0.647 0.451 0.618 0.745 0.431 0.480 0.608 0.422
Conceptual Physics 0.911 0.932 0.783 0.804 0.757 0.677 0.791 0.843 0.494 0.685 0.698 0.447
High School Physics 0.748 0.782 0.563 0.649 0.556 0.530 0.589 0.616 0.477 0.543 0.596 0.450
College Chemistry 0.570 0.610 0.580 0.540 0.550 0.570 0.550 0.530 0.480 0.480 0.560 0.470
High School Chemistry 0.759 0.788 0.734 0.709 0.685 0.631 0.670 0.680 0.537 0.586 0.626 0.468
College Biology 0.951 0.868 0.931 0.938 0.882 0.854 0.924 0.861 0.708 0.833 0.826 0.625
High School Biology 0.958 0.929 0.903 0.932 0.893 0.858 0.884 0.858 0.713 0.858 0.829 0.729
College Computer Science 0.790 0.790 0.670 0.690 0.610 0.650 0.760 0.730 0.610 0.670 0.660 0.570
Computer Security 0.840 0.820 0.830 0.830 0.770 0.750 0.760 0.730 0.660 0.760 0.610 0.720
High School Computer Science 0.910 0.920 0.870 0.860 0.880 0.790 0.880 0.910 0.820 0.850 0.870 0.740
Machine Learning 0.777 0.714 0.652 0.661 0.643 0.589 0.643 0.661 0.527 0.580 0.580 0.509
Electrical Engineering 0.841 0.807 0.745 0.752 0.724 0.655 0.655 0.710 0.510 0.566 0.655 0.490

Table 6: Detailed accuracy for different Other subjects across different models.

Subject MMLU Question Only Answer Only Question and Answer
GPT Gemini Llama3 GPT Gemini Llama3 GPT Gemini Llama3 GPT Gemini Llama3

Anatomy 0.911 0.793 0.807 0.874 0.733 0.726 0.815 0.667 0.563 0.726 0.659 0.578
Clinical Knowledge 0.898 0.838 0.849 0.811 0.785 0.740 0.796 0.755 0.638 0.713 0.709 0.608
College Medicine 0.832 0.844 0.757 0.780 0.786 0.740 0.798 0.763 0.647 0.717 0.740 0.659
Human Aging 0.830 0.807 0.807 0.794 0.744 0.758 0.704 0.740 0.457 0.632 0.691 0.471
Medical Genetics 0.960 0.910 0.830 0.900 0.850 0.820 0.840 0.780 0.570 0.830 0.740 0.550
Nutrition 0.899 0.876 0.853 0.863 0.758 0.804 0.798 0.784 0.663 0.699 0.703 0.647
Professional Medicine 0.956 0.864 0.868 0.919 0.776 0.868 0.901 0.783 0.754 0.842 0.735 0.754
Virology 0.578 0.578 0.536 0.548 0.506 0.488 0.524 0.542 0.452 0.524 0.494 0.404
Business Ethics 0.860 0.850 0.750 0.890 0.780 0.720 0.750 0.670 0.500 0.710 0.640 0.480
Management 0.913 0.893 0.913 0.883 0.816 0.903 0.757 0.835 0.728 0.767 0.767 0.650
Marketing 0.949 0.940 0.923 0.906 0.927 0.880 0.838 0.846 0.615 0.808 0.803 0.662
Global Facts 0.650 0.600 0.530 0.540 0.540 0.430 0.580 0.690 0.540 0.520 0.470 0.410
Miscellaneous 0.955 0.955 0.903 0.932 0.877 0.860 0.861 0.847 0.692 0.840 0.791 0.616
Professional Accounting 0.766 0.663 0.638 0.716 0.674 0.596 0.681 0.638 0.514 0.631 0.596 0.489

4.2 Results and Analysis

General Trend. Table 1 shows the accu-
racy of the four models gpt-4o-mini, gpt-4o,
gemini-1.5-pro, and llama3-70b evaluated in
both MMLU and our MMLU-SR. The data high-
lights how each model performs in the Humani-
ties, Social Sciences, STEM, and Other academic
fields, providing average scores for each subset.
We observe consistent drop in model performance
across all subsets when transitioning from the
standard MMLU dataset to the more challenging
MMLU-SR dataset, as evidenced by the decline
in average accuracy from 0.771 on the MMLU
dataset to 0.710, 0.655, and 0.585, on our MMLU-
SR’s “Question Only”, “Answer Only”, and “Ques-
tion and Answer” subsets, respectively, for the
gpt-4o-mini model. This trend of decreased per-

formance is similarly observed in the other models.

We observe a crucial trend in decreasing accu-
racy across datasets: The “Question Only” dataset
experiences the least drop, followed by the “An-
swer Only” dataset, with the most significant
decline occurring in the “Question and Answer”
dataset. This trend can be primarily attributed to
two major reasons: (1) When only the question
is modified, the model retains the original answer
choices, facilitating the inference of the modified
question’s meaning; in contrast, altering the answer
choices removes this contextual aid, challenging
the model’s ability to correctly match the question
with the appropriate answer. (2) Answer choices
are typically more concise and therefore lack the
extensive context found in questions; consequently,
replacing terms in the answers not only introduces
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ambiguity but also demands more complex infer-
ential reasoning, disrupting the model’s learned
pattern-recognition strategies and resulting in a
greater accuracy drop. The observations above also
justify the design of our MMLU-SR on three vari-
ants (i.e., “Question Only”, “Answer Only”, and
“Question and Answer”).

Accuracy Drop in Each Category. Table 2
shows several aspects in the relative percent-
age drop of accuracy in MMLU-SR compared
to that in MMLU across different categories
for gpt-4o-mini, gpt-4o, gemini-1.5-pro, and
llama3-70b:

1. Humanities and Social Sciences. For
gpt-4o-mini and gpt-4o, the accuracy drops
significantly in the Humanities category, with
a slightly lower drop in Social Sciences. The
gemini-1.5-pro shows the smallest perfor-
mance decline in the Humanities and Social
Science categories compared to the other two
models evaluated. llama3-70b exhibits a pat-
tern similar to gpt-4o-mini, with the Human-
ities and Social Sciences categories showing
a moderate percentage drop, though slightly
higher than gpt-4o-mini, in the “Answer
Only” and “Question and Answer” dataset.

2. STEM. For gemini-1.5-pro and
llama3-70b, the STEM category shows a
relatively moderate decrease in accuracy
across the MMLU-SR datasets. Notably,
gemini-1.5-pro experiences the highest
drop of 12.72% in the “Question Only”
dataset, indicating some sensitivity in this
area. llama3-70b demonstrates a similar
trend, with the highest drop of 9.47% in the
STEM category, suggesting both models
retain some robustness in STEM but are
still impacted by symbol replacement. On
the other hand, gpt-4o-mini experiences a
higher drop in the “Answer Only” and “Ques-
tion and Answer” datasets, particularly with
a 22.93% drop in the latter, highlighting its
relative vulnerability in this domain compared
to gemini-1.5-pro and llama3-70b.

3. Other. The Other category generally shows a
significant drop across all models and datasets,
with the highest drops often observed in the
“Question and Answer” dataset. For exam-
ple, gpt-4o-mini experiences a notable drop
of 25.19%, the highest among all categories

and models, indicating a high sensitivity to
contextual changes in this area. Similarly,
llama3-70b follows closely with a 27.40%
drop, which is the highest in the Other cat-
egory for this model. gemini-1.5-pro also
shows a substantial drop of 16.44%, though
slightly less compared to the other models,
suggesting that the “Other” category, like Hu-
manities, might be more context-dependent
and hence more susceptible to performance
degradation when symbols are replaced.

Detailed Accuracy Drop in Each Subject. Ta-
ble 3 shows a detailed comparison of accuracy
scores across different models evaluated on various
subjects in the Humanities category. The MMLU
scores serve as a baseline for comparison. gpt-4o
demonstrates exceptional performance across most
subjects in this category, often leading in accu-
racy, particularly in complex subjects like Philoso-
phy and International Law. gemini-1.5-pro also
shows strong performance, but gpt-4o frequently
matches or exceeds its accuracy. Notably, gpt-4o
performs particularly well in subjects like High
School World History and Jurisprudence. However,
all models continue to struggle with Moral Scenar-
ios, where the accuracy score drops significantly,
particularly for llama3-70b, which shows a dras-
tic decrease, reflecting a higher sensitivity to the
challenges posed by the MMLU-SR datasets

Table 4 shows a detailed comparison of accuracy
across different models evaluated on various sub-
jects in the Social Science category. We observe
that all models perform exceptionally well in Social
Science on MMLU, particularly in High School
Government and Politics, where gpt-4o achieves
an impressive accuracy of 0.984. While there is still
a drop in accuracy from MMLU to MMLU-SR’s
“Question and Answer” dataset, gpt-4o demon-
strates remarkable resilience, maintaining accu-
racy levels around 0.7∼0.9 across most subjects.
This performance significantly outpaces the other
models, particularly in subjects like High School
Psychology and Sociology. The drop in accuracy,
though less pronounced for gpt-4o, still illustrates
how our symbol replacement method increases dif-
ficulty, effectively stress-testing the models’ rea-
soning capabilities versus mere memorization of
pre-trained terms.

Table 5 shows a detailed comparison of accuracy
across various STEM subjects for different models.
Each model demonstrated varying degrees of suc-
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cess across the subjects, with notable difficulties in
some areas. College Mathematics and High School
Mathematics remain challenging for all models, in-
cluding gpt-4o, with accuracy dropping to around
0.4 to 0.5 in MMLU-SR’s “Question and Answer”
dataset. However, gpt-4o shows marked improve-
ment in subjects like Astronomy, College Biology,
and High School Biology, maintaining high ac-
curacy even in the more challenging MMLU-SR
datasets. The subject with the lowest accuracies
among all models is still High School Mathematics,
where llama3-70b struggles the most, especially
in the Answer Only” and “Question and Answer”
datasets. Similarly, College Physics and Abstract
Algebra also show significant drops in accuracy
across all models, highlighting the persistent chal-
lenges in subjects involving extensive calculations
and complex problem-solving.

Table 6 shows a detailed comparison of accuracy
scores across different models evaluated on various
subjects in the Other category. We observe that
gpt-4o performs exceptionally well in MMLU,
with accuracy consistently above 0.9 in most sub-
jects, significantly outperforming other models.
Marketing stands out with a particularly high ac-
curacy of 0.949 for gpt-4o, indicating outstanding
performance in this subject. Professional Account-
ing shows improved performance with gpt-4o,
achieving an accuracy of 0.766 in MMLU. Virol-
ogy remains challenging, but gpt-4o shows im-
provement with an accuracy of 0.578. While there
is still a drop in accuracy from MMLU to MMLU-
SR’s “Question and Answer” dataset, gpt-4o main-
tains relatively high performance, with accuracy
generally staying above 0.7 for most subjects. Even
in challenging areas like Virology and Global Facts,
gpt-4o demonstrates resilience, maintaining accu-
racy levels significantly higher than other models.

CoT and System Instruction. We developed a
simple baseline to test our MMLU-SR dataset on
more recent and sophisticated models like GPT-4.
This involves adding the instruction “Let’s think
step by step” at the end of answer choices to enable
zero-shot CoT prompting. As shown in Table 7
from Appendix A, we also included a system in-
struction informing ChatGPT-4 that the following
questions would involve symbol replacement with
arbitrary definitions. However, the example demon-
strates that despite applying (zero-shot) CoT, the
model still incorrectly interprets the term ‘Dummy’
in choice D as ‘neurodegenerative disorder,’ lead-
ing to the wrong answer, choice A. We applied

this system instruction across the entire MMLU-SR
dataset as well, with results shown in Table 11 from
Appendix C. The results indicate that while the sys-
tem instruction slightly improves accuracy in the
“Question Only” and “Answer Only” datasets, the
model still struggles with the increased complexity
in the “Question and Answer” dataset.

5 Conclusion

We introduced MMLU-SR, a novel benchmark that
challenges LLMs by replacing key terms in ques-
tions with random words followed by their defi-
nitions, aiming to test the models’ reasoning and
comprehension abilities rather than their memoriza-
tion skills. Our evaluation across multiple domains
revealed that popular LLMs suffer from signifi-
cant drops in performance with these modifications,
highlighting their reliance on memorized terms.
MMLU-SR’s unique approach addresses concerns
about overfitting to traditional benchmarks and pro-
vides a more rigorous measure of true language
understanding. This dataset will enable researchers
to better identify and address the reasoning limita-
tions of current LLMs, fostering the development
of more robust and genuinely intelligent models.
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A CoT Examples

Table 7 shows an example of incorrect answer using
zero-shot CoT with a system instruction produced
by the ChatGPT-4 on MMLU-SR’s “Question and
Answer” dataset. The correct answer is choice D,
but ChatGPT-4 responded with choice A.

B Examples of ChatGPT-3.5 Response

Table 8 shows an example of incorrect answer
produced by the ChatGPT-3.5 on MMLU-SR’s
“Question and Answer” dataset. Table 9 shows
an example of incorrect answer produced by the
ChatGPT-3.5 on MMLU-SR’s “Question and An-
swer” dataset. Table 10 shows an example of in-
correct answer produced by the ChatGPT-3.5 on
MMLU-SR’s “Question and Answer” dataset.

C System Instruction Example

Table 11 shows the performance comparison of
gemini-1.0-pro with and without using the sys-
tem instruction “In each of the questions that I ask,
I will replace some of the words that you might
know with a word that is arbitrarily assigned a spe-
cific meaning just for this test. The meaning of
these arbitrary definition may change with every
question.”

D Hard MMLU-SR Example

Table 12 illustrates a challenging example men-
tioned in the “Question and Answer” section in
the main paper. In the question, we substituted
“enzyme assay” with a synonym, “protein”, and
used the original terms from the MMLU dataset
as placeholders in the answer choices, each paired
with a definition. ChatGPT-4 correctly identified
the term “Tay-Sachs Disease” but associated it with
the incorrect answer choice and definition, which
was meant for “Fragile X syndrome.” This exam-
ple demonstrates that ChatGPT-4 can be misled
by the complexity of the dataset, tending to rely
on pre-existing knowledge rather than engaging
in substantive reasoning to align terms with their
definitions.

E Complete Experiment Results

Table 13 shows our complete exper-
iment results of different LLMs in-
cluding gpt-3.5-turbo, gpt-4o-mini,
gemini-1.0-pro, gemini-1.5-pro, llama3-8b

and llama3-70b. The percentage drop of each
model is shown in Table 14.

F Numbers of Human Modified Terms

Figure 5 shows the number of manually modified
term definitions across 41 subject glossaries. These
glossaries were created by consolidating related
topics from the original 57 subjects in the MMLU
dataset. Of the 28,676 terms initially generated
by gpt-3.5-turbo for these 41 subjects, approxi-
mately 1,197 (4.2%) required human modification.
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Table 7: Example of incorrect output using zero-shot CoT with system instruction.

System Prompt In each of the questions that I ask, I will replace some of the words that you
might know with a word that is arbitrarily assigned a specific meaning just
for this test. The meaning of these arbitrary definition may change with every
question.

Input Suppose ‘Hat’ means ‘the name given to any laboratory technique that measures
enzyme activity within a sample.’ Hat can be used to identify carriers of:

A. Suppose ‘Bard’ means ‘An inherited disorder that affects the lungs, digestive
system, and other organs, characterized by the production of thick, sticky
mucus.’ Bard.

B. Suppose ‘Jump’ means ‘A genetic condition causing intellectual disability,
behavioral challenges, and certain physical characteristics, resulting from a
mutation in the FMR1 gene.’ Jump.

C. Suppose ‘Zelly’ means ‘A group of inherited disorders characterized by a lack
of melanin production in the skin, hair, and eyes, leading to light pigmentation.’
Zelly.

D. Suppose ‘Dummy’ means ‘A rare genetic disorder that causes progressive
destruction of nerve cells in the brain and spinal cord, leading to severe neuro-
logical symptoms.’ Dummy.

Let’s think step by step.

Output In this scenario, Hat is used to detect variations or abnormalities in enzyme
levels that might be indicative of certain genetic disorders.

A: Bard refers to cystic fibrosis. Areas of land (Jack) often have boundaries
(Winky) that separate them from other areas.

B: Jump refers to Fragile X syndrome, primarily involves genetic testing to
detect the specific mutation rather than enzyme activity measurements.

C: Zelly refers to conditions such as albinism, which are typically diagnosed
based on pigment absence rather than enzyme activity, although some biochem-
ical tests can be relevant in specific contexts.

D: Dummy could be referring to several neurodegenerative disorders, which
might be associated with enzyme activities related to nerve cell function or
metabolic processes, but generally, such disorders are diagnosed through genetic
markers and neuroimaging rather than enzyme activity alone.

Given these explanations, the best match for ‘Hat’ in terms of being a technique
to measure enzyme activity useful for diagnosis would be A, ‘Bard’ as cystic
fibrosis, due to its direct relationship with enzyme dysfunction and measurement.
✗
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Table 8: Example of incorrect response generated by ChatGPT-3.5 in “Question Only” dataset.

Input Suppose ‘Hat’ means “the name given to any laboratory technique that measures
enzyme activity within a sample.” Hat can be used to identify carriers of:

A. Cystic fibrosis.

B. Fragile X syndrome.

C. Oculocutaneous albinism.

D. Tay-Sachs disease

Output “Hat” in this context refers to an enzyme assay technique rather than a genetic
condition or disease. Therefore, it wouldn’t be used to identify carriers of
genetic disorders like cystic fibrosis, Fragile X syndrome, oculocutaneous
albinism, or Tay-Sachs disease. It’s essential to keep in mind the specific
context in which terms are used in scientific fields! ✗

Table 9: Example of incorrect response generated by ChatGPT-3.5 in “Answer Only” dataset.

Input Enzyme assay can be used to identify carriers of:

A. Suppose ‘Bard’ means ‘An inherited disorder that affects the lungs, digestive
system, and other organs, characterized by the production of thick, sticky
mucus.’ Bard.

B. Suppose ‘Jump’ means ‘A genetic condition causing intellectual disability,
behavioral challenges, and certain physical characteristics, resulting from a
mutation in the FMR1 gene.’ Jump.

C. Suppose ‘Zelly’ means ‘A group of inherited disorders characterized by a lack
of melanin production in the skin, hair, and eyes, leading to light pigmentation.’
Zelly.

D. Suppose ‘Dummy’ means ‘A rare genetic disorder that causes progressive
destruction of nerve cells in the brain and spinal cord, leading to severe neuro-
logical symptoms.’ Dummy.

Output An enzyme assay could be used to identify carriers of Bard, Jump, Zelly, or
Dummy if the specific enzyme associated with each disorder is known and can
be tested for. Enzyme assays are commonly used in genetic testing to detect
the presence or absence of specific enzymes or their activity levels, which can
provide information about an individual’s genetic makeup and potential carrier
status for certain genetic disorders. ✗
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Table 10: Example of incorrect response generated by ChatGPT-3.5 in “Question and Answer” dataset.

Input Suppose ’Hat’ means “the name given to any laboratory technique that measures
enzyme activity within a sample.” Hat can be used to identify carriers of

A. Suppose ‘Bard’ means ‘An inherited disorder that affects the lungs, digestive
system, and other organs, characterized by the production of thick, sticky
mucus.’ Bard.

B. Suppose ‘Jump’ means ‘A genetic condition causing intellectual disability,
behavioral challenges, and certain physical characteristics, resulting from a
mutation in the FMR1 gene.’ Jump.

C. Suppose ‘Zelly’ means ‘A group of inherited disorders characterized by a lack
of melanin production in the skin, hair, and eyes, leading to light pigmentation.’
Zelly.

D. Suppose ‘Dummy’ means ‘A rare genetic disorder that causes progressive
destruction of nerve cells in the brain and spinal cord, leading to severe neuro-
logical symptoms.’ Dummy.

Output Based on the provided definitions:

A. Hat (enzyme activity measurement) can be used to identify carriers of Zelly
(lack of melanin production disorders).

Explanation: Enzyme activity measurements are often used in medical diagnos-
tics to identify various conditions, including genetic disorders. In this case, the
lack of melanin production, as seen in Zelly disorders, can be identified using
enzyme activity tests. ✗

Table 11: Performance comparison of the gemini-1.0-pro model with and without the system instruction.

Dataset Humanities Social Sciences STEM Other Average

Gemini-1.0-pro

Question Only (5-shot) 0.687 0.744 0.539 0.658 0.645
Answer Only (5-shot) 0.619 0.670 0.504 0.591 0.586
Question and Answer (5-shot) 0.582 0.622 0.472 0.544 0.546

Gemini-1.0-pro with System Instruction

Question Only 0.688 0.735 0.535 0.650 0.652
Answer Only 0.619 0.661 0.502 0.576 0.590
Question and Answer 0.570 0.612 0.460 0.537 0.545
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Table 12: Example of a hard version of MMLU-SR.

Input Suppose ‘Protein’ means ‘the name given to any laboratory technique that
measures enzyme activity within a sample.’ Protein can be used to identify
carriers of:

A. Suppose ‘Oculocutaneous albini’ means ‘An inherited disorder that affects
the lungs, digestive system, and other organs, characterized by the production
of thick, sticky mucus.’ Oculocutaneous albini.

B. Suppose ‘Tay-Sachs diseas’ means ‘A genetic condition causing intellectual
disability, behavioral challenges, and certain physical characteristics, resulting
from a mutation in the FMR1 gene.’ Tay-Sachs diseas.

C. Suppose ‘Cystic fibrosi’ means ‘A group of inherited disorders characterized
by a lack of melanin production in the skin, hair, and eyes, leading to light
pigmentation.’ Cystic fibrosi.

D. Suppose ‘Fragile X syndrom’ means ‘A rare genetic disorder that causes
progressive destruction of nerve cells in the brain and spinal cord, leading to
severe neurological symptoms.’ Fragile X syndrom.

Output The given problem seems to involve identifying which condition might be
detected through a laboratory technique measuring enzyme activity. From the
provided definitions, none of the conditions directly indicate an enzyme-related
pathology except for a possible misalignment in the definitions and names:

A: Oculocutaneous albini is defined incorrectly and does not relate to the
production of enzymes.

B: Tay-Sachs disease is a genetic disorder characterized by the destruction of
nerve cells in the brain due to a deficiency of a specific enzyme (Hexosaminidase
A). This is actually a plausible answer if we correct the name to Tay-Sachs
disease, which fits the description of a disease involving enzyme activity.

C: Cystic fibrosis and D: Fragile X syndrome are misdefined and do not relate
to conditions involving measurable enzyme activity relevant to their actual
conditions.

Thus, the most likely answer, B. Tay-Sachs disease (with the corrected definition
and name). ✗
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Table 13: Complete performance of gpt-3.5-turbo, gpt-4o-mini, gpt-4o, gemini-1.0-pro, gemini-1.5-pro,
llama3-8b, and llama3-70b.

Dataset Humanities Social Sciences STEM Other Average

GPT-3.5-turbo

MMLU (5-shot) 0.723 0.770 0.554 0.714 0.677
Question Only (5-shot) 0.661 0.702 0.506 0.641 0.616
Answer Only (5-shot) 0.540 0.595 0.441 0.538 0.520
Question and Answer (5-shot) 0.469 0.523 0.396 0.476 0.459

GPT-4o-mini

MMLU (5-shot) 0.793 0.858 0.689 0.782 0.771
Question Only (5-shot) 0.744 0.792 0.621 0.724 0.710
Answer Only (5-shot) 0.659 0.738 0.602 0.651 0.655
Question and Answer (5-shot) 0.588 0.666 0.531 0.585 0.585

GPT-4o

MMLU (5-shot) 0.880 0.906 0.771 0.854 0.845
Question Only (5-shot) 0.838 0.856 0.702 0.811 0.792
Answer Only (5-shot) 0.764 0.824 0.705 0.760 0.757
Question and Answer (5-shot) 0.708 0.754 0.635 0.712 0.695

Gemini-1.0-pro

MMLU (5-shot) 0.728 0.758 0.596 0.703 0.686
Question Only (5-shot) 0.687 0.744 0.539 0.658 0.645
Answer Only (5-shot) 0.619 0.670 0.504 0.591 0.586
Question and Answer (5-shot) 0.582 0.622 0.472 0.544 0.546

Gemini-1.5-pro

MMLU (5-shot) 0.849 0.881 0.802 0.815 0.832
Question Only (5-shot) 0.795 0.836 0.700 0.754 0.764
Answer Only (5-shot) 0.741 0.816 0.747 0.739 0.758
Question and Answer (5-shot) 0.690 0.752 0.670 0.681 0.694

Llama3-8B

MMLU (5-shot) 0.593 0.757 0.557 0.729 0.651
Question Only (5-shot) 0.546 0.685 0.507 0.668 0.595
Answer Only (5-shot) 0.455 0.599 0.460 0.557 0.510
Question and Answer (5-shot) 0.421 0.538 0.424 0.499 0.465

Llama3-70B

MMLU (5-shot) 0.681 0.868 0.697 0.814 0.765
Question Only (5-shot) 0.635 0.812 0.631 0.770 0.712
Answer Only (5-shot) 0.539 0.683 0.565 0.622 0.602
Question and Answer (5-shot) 0.523 0.653 0.536 0.591 0.576
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Table 14: Complete relative percentage drop of accuracy in MMLU-SR compared to MMLU.

Dataset Humanities Social Sciences STEM Other Average

GPT-3.5-turbo

Question Only (5-shot) 8.58% 8.83% 8.67% 10.22% 9.08%
Answer Only (5-shot) 25.31% 22.73% 20.40% 24.65% 23.27%
Question and Answer (5-shot) 35.12% 32.08% 28.52% 33.30% 32.26%

GPT-4o-mini

Question Only (5-shot) 6.18% 7.69% 9.87% 7.42% 7.91%
Answer Only (5-shot) 16.90% 13.99% 12.63% 16.75% 15.05%
Question and Answer (5-shot) 25.85% 22.38% 22.93% 25.19% 24.12%

GPT-4o

Question Only (5-shot) 4.77% 5.52% 8.95% 5.03% 6.27%
Answer Only (5-shot) 13.18% 9.05% 8.56% 11.01% 10.41%
Question and Answer (5-shot) 19.55% 16.78% 17.64% 16.63% 17.75%

Gemini-1.0-pro

Question Only (5-shot) 5.63% 1.85% 9.56% 6.40% 5.86%
Answer Only (5-shot) 14.96% 11.61% 15.44% 15.91% 14.48%
Question and Answer (5-shot) 20.05% 17.94% 20.81% 22.60% 20.85%

Gemini-1.5-pro

Question Only (5-shot) 6.36% 5.11% 12.72% 7.48% 8.17%
Answer Only (5-shot) 12.72% 7.38% 6.86% 9.33% 8.89%
Question and Answer (5-shot) 18.73% 14.64% 16.46% 16.44% 16.59%

Llama3-8B

Question Only (5-shot) 7.92% 9.51% 8.98% 8.36% 8.69%
Answer Only (5-shot) 23.27% 20.87% 17.41% 23.56% 21.28%
Question and Answer (5-shot) 28.16% 28.93% 23.88% 31.56% 28.63%

Llama3-70B

Question Only (5-shot) 6.75% 6.45% 9.47% 5.41% 6.93%
Answer Only (5-shot) 20.85% 21.31% 18.94% 23.59% 21.31%
Question and Answer (5-shot) 23.20% 24.77% 23.10% 27.40% 24.71%

m
isc

el
la

ne
ou

s

ps
yc

ho
lo

gy

ph
ys

ics

nu
tri

tio
n

vi
ro

lo
gy

bi
ol

og
y

po
lit

ics

hu
m

an la
w

ec
on

om
ics

m
at

h

us
 fo

re
ig

n 
po

lic
y

m
an

ag
em

en
t

an
at

om
y

m
ed

ica
l g

en
et

ics

m
ed

ici
ne

ac
co

un
tin

g

lo
gi

ca
l f

al
la

cie
s

re
lig

io
ns

cli
ni

ca
l

m
ac

hi
ne

 le
ar

ni
ng

el
ec

tri
ca

l e
ng

in
ee

rin
g

ch
em

ist
ry

m
or

al

st
at

ist
ics

m
ed

ici
ne

ph
ilo

so
ph

y

m
ar

ke
tin

g

ge
og

ra
ph

y

hi
st

or
y

ec
on

om
itr

ics

co
m

pu
te

r s
cie

nc
e

ju
ris

pr
ud

en
ce

se
cu

rit
y

as
tro

no
m

y

so
cio

lo
gy

gl
ob

al
 fa

ct
s

bu
sin

es
s e

th
ics

pu
bl

ic 
re

la
tio

ns

co
m

pu
te

r s
ec

ur
ity

fo
rm

al
 lo

gi
cs

Subjects

0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f T
er

m
s

Modified vs Total Terms by Subject
Modified Terms
Total Terms

Figure 5: Comparison of total generated terms (red) and human-modified terms (blue) across 41 subject glossaries

85



Proceedings of the 2nd GenBench Workshop on Generalisation (Benchmarking) in NLP, pages 86–95
November 16, 2024 ©2024 Association for Computational Linguistics

MLissard: Multilingual Long and Simple Sequential Reasoning
Benchmarks

Mirelle Bueno, Roberto Lotufo, Rodrigo Nogueira

School of Electrical and Computing Engineering,
State University of Campinas (UNICAMP),
m174909@dac.unicamp.br, {lotufo,rfn}@unicamp.br

Abstract

Language models are now capable of solv-
ing tasks that require dealing with long se-
quences consisting of hundreds of thousands
of tokens. However, they often fail on tasks
that require repetitive use of simple rules, even
on sequences that are much shorter than those
seen during training. For example, state-of-the-
art LLMs can find common items in two lists
with up to 20 items but fail when lists have 80
items. In this paper, we introduce MLissard, a
multilingual benchmark designed to evaluate
models’ abilities to process and generate texts
of varied lengths and offers a mechanism for
controlling sequence complexity.

Our evaluation of open-source and proprietary
models show a consistent decline in perfor-
mance across all models and languages as the
complexity of the sequence increases. Sur-
prisingly, the use of in-context examples in
languages other than English helps increase
extrapolation performance significantly. The
datasets and code are available at https://
github.com/unicamp-dl/Lissard

1 Introduction

Figure 1: Performance of GPT-4 on the MLissard bench-
mark. See Table 2 for the definition of the bins.

The efficacy of language models, particularly in
reasoning tasks, is significantly impacted by longer
text lengths than those seen in training (Li et al.,
2023b; Liu et al., 2024; Lake and Baroni, 2018).
This phenomenon, referred to as “Length General-
ization” or “Length Extrapolation” in the literature
(Press et al., 2022; Zhao et al., 2023), is also com-
mon in models based on the Transformer architec-
ture (Liška et al., 2018; Lewkowycz et al., 2022;
Delétang et al., 2023; Zhou et al., 2023b). Notably,
even Large Language Models (LLMs), known for
their strong performance in a wide range of tasks
and domains, are not immune to this problem (Anil
et al., 2022; Chen et al., 2023).

Recent research tried to address this challenge by
modifications to the positional embeddings (Press
et al., 2022; Chi et al., 2022, 2023; Li et al., 2023b;
Ke et al., 2021) or by using prompting strategies
such as scratchpad (Nye et al., 2021) and chain-
of-thought reasoning (Wei et al., 2022). Neverthe-
less, there remains a lack of datasets specifically
designed for the systematic evaluation of the prob-
lem.

While benchmarks such as ZeroSCROLLS (Sha-
ham et al., 2023) and InfiniteBench(Zhang et al.,
2024) were designed to evaluate models in nat-
ural language tasks that involve long sequences,
its effectiveness in monitoring model performance
degradation within the context of length general-
ization may be limited by lack of explicit control
of task complexity with respect to sequence length.
For example, when using natural language texts
there is no guarantee that answering a question
about a longer text is harder than responding to one
about a shorter text. This limitation highlights the
need for benchmarks that can explicitly manipulate
and test the impact of sequence length on model
performance. In benchmarks pertaining to dia-
logues (Li et al., 2023a) and multi-document ques-
tion answering (Liu et al., 2024), techniques like
retrieval-augmented generation (RAG) are preva-
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lent, and therefore explicitly isolating the length
extrapolation issue poses a challenge.

To address these aforementioned problems, we
present MLissard, a multilingual benchmark that
offer support for 6 languages (English, German,
Portuguese, Russian, Spanish and Ukrainian) de-
signed to evaluate the ability of models on tasks that
require the use of repetitive simple rules, whose
difficulty increases with respect to the sequence
length. By incorporating varying degrees of diffi-
culty within the same tasks, MLissard facilitates the
identification of a models’ breaking points. Given
the syntactic nature of the datasets, researchers
have the capability to generate new examples and
increase the task difficulty, thus making it more
challenging for newer and more capable models
to be evaluated effectively. This flexibility also
mitigates the contamination problem – where mod-
els may inadvertently be exposed to test datasets
during their training (Ahuja et al., 2023; Li and
Flanigan, 2024) – since synthetic datasets can be
generated as needed, a advantage over traditional,
manually curated datasets. At the time of this re-
search, this is the first multilingual dataset designed
to evaluate the quality of models in extrapolation
via length.

Our analysis, which includes evaluations on pro-
prietary models such as GPT-4 (OpenAI, 2023),
as well as open-source ones like Llama-3 (Dubey
et al., 2024), reveals a common trend among them.
As illustrated in Figure 1, our findings underscore
that irrespective of their architectures and param-
eter counts, all examined models demonstrate a
performance degradation with increasing length,
controlled by the number of key entities (see their
definition in Table 2), required to solve the tasks.
This indicates a common point of failure in gener-
alization for LLMs, even for sequence lengths that
are considerably shorter in terms of tokens than
those seen during their pretraining or fine-tuning
phases.

Our findings further demonstrated that the ef-
fect of extrapolation is not isolated; variables such
as language and model size significantly influence
the outcomes. For instance, despite English be-
ing a high-resource language, its performance was
only average and was surpassed by other languages
such as German. Moreover, ablation tests revealed
improvements in extrapolation performance when
in-context examples comprised a mixture of lan-
guages. This underscores the influence of language
selection on the extrapolation capabilities of lan-

guage models.

2 Related Work

The challenge of length extrapolation in the domain
of natural language processing has been a persistent
and long-standing issue. An array of studies has
demonstrated that neural architectures encounter
difficulties when confronted with sequences of
longer than those they encountered during their
training (Lake and Baroni, 2018; Liška et al., 2018;
Keysers et al., 2019; Dubois et al., 2020; Nogueira
et al., 2021; Welleck et al., 2022; Lewkowycz et al.,
2022; Delétang et al., 2023; Zhou et al., 2023b).
Despite efforts to expand the context window in
LLMs, this issue persists, particularly when tack-
ling tasks involving complex reasoning (Anil et al.,
2022).

Recent endeavors have been undertaken to en-
hance the general performance of LLMs by em-
ploying prompt engineering techniques and by de-
veloping novel decoding methods aimed at expand-
ing their capacity to extrapolate effectively over
lengthy sequences of tokens. For instance, Nye
et al. introduced the concept of a "scratchpad" that
enables the model to generate draft responses in
natural language before producing the final output.
To assess the performance of this method, a range
of tasks were employed, including math and coding
tasks. Moreover, studies by Wei et al. and Zhou
et al. demonstrated improvements by configuring
the model to generate explanations for problem-
solving and breaking down tasks into multiple in-
teractive steps. These enhancements were partic-
ularly noticeable in tasks requiring the ability to
extrapolate, such as SCAN (Lake and Baroni, 2018)
(compositional generalization), and mathematical
reasoning. Additionally, Bueno et al. showed
that utilizing markups tokens as position represen-
tations help the model to generalize to longer se-
quences in tasks related to mathematical addition
and compositional generalization. Han et al. de-
vised a decoding method to improve generalization
over extended sequences.

In addition to techniques for customizing
prompts, recent research has explored modifying
the position encoding function of the original trans-
former architecture to enhance its extrapolation ca-
pabilities (Press et al., 2022; Chi et al., 2022, 2023;
Li et al., 2023b; Qin et al., 2023; Chen et al., 2023).
For instance, Kazemnejad et al. conducted an
evaluation of commonly used positional encoding
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methods, finding that omitting positional encoding
altogether yielded superior results in downstream
tasks.

The studies cited above illustrate multiple meth-
ods designed to address the challenge of extrap-
olation. Nevertheless, there is a notable gap in
research concerning the development of diverse
and standardized datasets specifically for assessing
the generation and synthesis of extended text se-
quences by neural models. This gap is particularly
notable given that many of the traditional datasets
may already have been employed in the training of
large language models.

3 Datasets Description

Our benchmark incorporates a combination of ex-
isting tasks, such as those from BIG-bench (bench
authors, 2023), as well as newly developed ones.
The criteria for selecting tasks were based on their
ease of solution, the ability to expand new exam-
ples of varying lengths via scripting, and their effec-
tiveness in exercising reasoning and memorization.

We intentionally excluded classical datasets (e.g.,
SCAN) from the analysis since their test sets are
publicly available and many solutions have been ex-
tensively detailed in scientific literature, potentially
making them familiar to large language models
(LLMs).

In addition to English (EN), the language set in-
cludes German (DE), Spanish (ES), Portuguese
(PT), Russian (RU), and Ukrainian (UA). We
achieved this expansion by integrating automatic
translation systems and using Python scripts to gen-
erate synthetic data.

The following sections describe the idea of key
entities, tasks, and how evaluation was performed.

3.1 Key entities

The notion of key entities functions as an extrapo-
lation factor within the context of a target task. For
instance, in a task that seeks to identify common
items between two lists, this extrapolation factor is
defined by the number of items the model requires
to analyze. Utilizing this factor allows for the aug-
mentation of task complexity without modifying
its properties. As a result, within specified ranges
(bins), we can identify the model’s breakpoints.

The choice of bins for each task was designed
to reflect different difficulty levels: short, interme-
diate, long, and super long, for example, Bin 1
consists of sequences of shorter length, while Bin

4 comprises sequences of longer length. Table 2
describes the key entities and the respective lengths
in each bin. The values defining the intervals of
each bin vary for each task and were empirically
determined, inspired by BIG-bench tasks.

3.2 Tasks

In total, four tasks were developed, and Table 1 pro-
vides a summary of each one with input and output
examples. Due to the high costs of paid APIs, we
restricted our tests to 300 examples per task and
language. To ensure balanced evaluations across
different length partitions, we randomly selected
75 examples for each bin.

3.2.1 Object Counting
The main goal of this task is to assess the pro-
ficiency in object counting within sequences, as
shown in Table 1. The input to the model is a se-
quence comprising a list of objects paired with their
respective quantities and the expected output is a
string with the total count of objects. Diverging
from the original BIG-bench task that exclusively
encompasses the enumeration of objects from pre-
determined categories like fruits, vegetables, or
musical instruments, our method comprises object
counting across different categories.

Automatic translation systems were used to gen-
erate the multilingual set, in this case, Google
Translate. After this phase, a translation subset was
selected for human analysis of the general quality
of the translation.

3.2.2 List Intersection
The objective of this task is to find common items
in two lists. Items within the lists are composed
of words from a designated target language, with
both the words and their frequencies sourced from
the FrequencyWords1 repository. For each specific
language, stop words and special characters were
eliminated. Following this preprocessing phase, a
random sampling of words was conducted.

The lists have equal sizes, but the number of
overlapping items varies. The target output is the
words in common, sorted alphabetically. If there
are no items in common, "None" must be returned.

3.2.3 Last Letter Concatenation
The Last Letter Concatenation task, as formulated
in the Chain-of-Thought work (Wei et al., 2022),
involves concatenating the last letter of each word

1https://github.com/hermitdave/FrequencyWords/
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Task Input Example Output

Last Letter Concate-
nation

Abil Gaby l y

Repeat Copy Logic Repeat 2 times school school school

Object Counting I have a chair, and an apple. 2

List Intersection A: abil,matt / B: matt, gaby matt

Table 1: Task Summary in the MLissard Benchmark.

Task Key
Entity

Bin
1

Bin
2

Bin
3

Bin
4

LLC Names 1-8 8-15 15-
22

22-
30

RCL Total
Repeti-
tions

1-9 9-17 17-
25

25-
33

OC Objects 1-7 7-12 12-
17

17-
23

LI Items:
lists A
and B

1-46 46-
91

91-
136

136-
181

Table 2: Key task entities: Last Letter Concatenation
(LLC), Repeat Copy Logic (RCL), Object Counting
(OC), and List Intersection (LI) and their respective
ranges in each bin in Figure 1.

within an input sequence comprised of random
names. Table 1 provides an illustrative instance
of the dataset, where the input sequence comprises
randomly selected names obtained through the tar-
get language Name Census2.

In constructing our dataset, we applied a compa-
rable methodology; however, we sampled the most
common names from each target language and ex-
panded the sample length to encompass sequences
with an increase of up to thirty names.

2Portuguese (PT) - https://censo2010.ibge.gov.br/
nomes/#/ranking

Spanish (ES) - https://www.epdata.es/datos/
nombres-apellidos-mas-frecuentes-espana-ine/373

English (EN) - https://www.ssa.gov/cgi-bin/
popularnames.cgi

German (DE) - http://www.firstnamesgermany.com/
Ukrainian (UA) - https://census.name/

ukrainian-name-database/
Russsian (RU) - https://census.name/

russian-name-database/

You are a assistant whose
goal is <task description>

Instruction

Examples

Input: Repeat 3 times school

Output: school school school

.....

You are a assistant whose
goal is <task description>

Instruction

Examples

Input: Repita escola 3 vezes

Output: escola escola escola

EN

Input: Wiederholen Sie 3 Mal die
schule

Output: schule schule schule

PT

DE

EN

EN

(a)

(b)

Figure 2: Template for evaluation. Being (a) Instruction
and examples of tasks in the target language; (b) Instruc-
tion in the target language and multilingual examples.

3.2.4 Repeat Copy Logic
The task proposed by the BIG-bench evaluates lan-
guage models’ ability to comprehend and execute
instructions involving repetitions, text-to-copy, ba-
sic logic, and conditionals, focusing on their ex-
trapolation capabilities.

Our methodology for creating the dataset in-
cludes: i) Collecting responses to all input se-
quences from the BIG-bench repository3; ii) Fil-
tering responses to retain only those correctly an-

3https://github.com/google/BIG-bench/tree/
main/bigbench/benchmark_tasks/repeat_copy_logic
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Figure 3: GPT-4 performance in the MLissard.

swered by GPT-4, which correctly answered 17 out
of 32 original questions. We adopted this method
to scale only the repetition factor; iii) Translating
instructions using Google Translate and review the
subset for accuracy; iv) Generate extrapolations on
selected instructions, varying the repetition factor
from 1 to 33 (see Table 1).

We randomly selected 15 of the 17 correctly
answered questions for this phase.

4 Baseline Methods

The evaluation of each task involved analyzing
responses from GPT-4 (gpt4-0613) and Llama-3
(Llama-3.1-405B-Instruct and Llama-3-instruction-
70B) using greedy decoding. We observed no rep-
etition issues. Each task was preceded by a pre-
defined instruction (description of the task) with
in-context examples: four for “Object Counting,”
“Find Intersection,” and “Last Letter Concat,” and
one for “Repeat Copy Logic” because inputs al-
ready provided sufficient information to perform
the task. Both the instructions and examples were
in the target language of the evaluation. For in-
stance, English tasks used English instructions and
examples (see Figure 2 (a)). For the in-context ex-

amples used during model evaluation, we selected
samples contained in the first bin, as these contain
the smallest lengths.

We utilized the exact match as the primary met-
ric. This methodology is further modified in sec-
tion 5.2, where we discuss the impact of cross-
language inputs on model performance.

5 Results

Figure 3 presents the results obtained via GPT-4
in the target tasks and languages. Overall, there is
a gradual decline in the performance of language
models across tasks as complexity increases, as
measured by the number of key entities in the input
sequence. For instance, in the “Object Counting”
task, when presented with inputs containing 1 to
7 objects, the model achieve approximately 100%
accuracy. However, their accuracy drops below
50% when confronted with sequences with 12 to
17 objects. This behavior is reflected in the target
languages as well, all of which present a loss of
more than 50% when dealing with more complex
input sequences.

We also observed considerable variability in per-
formance between languages depending on the spe-
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Figure 4: Comparison of Llama-3.1-405B vs. GPT-4 performance in the MLissard Benchmark

cific task. For instance, differences ranging from
2.4 to 42 points are observed in the intermediate
bins for tasks such as “Last Letter Concatenation”
and “Repeat Copy Logic”. These variations are
intriguing as there doesn’t appear to be a general
language preference. For example, in the “Last Let-
ter Concatenation” task, German, Portuguese, and
Spanish outperform Russian by a margin of 42.6
points in the 15-22 bin. Conversely, in the “Repeat
Copy Logic” task, Russian outperforms Portuguese
by 42.5 points.

Contrary to the general trend observed in studies
of multilingual models, English did not exhibit ex-
ceptional performance when compared to other lan-
guages. Except for the “List Intersection” task, En-
glish consistently remained at an average or lower
accuracy level across bins.

Generalization performance also varies between
tasks; as demonstrated in Table 3, GPT-4 has
greater difficulty executing the “List Intersection”
and “Repeat Copy Logic” tasks. In the “List In-
tersection” task, the model achieves less than 10%
accuracy in bins 3 and 4. In the “Repeat Copy
Logic” task, accuracy drops to below 25% in the
same bins. Both tasks require extensive memo-
rization and state tracking. We hypothesize that

these challenges, along with the increased sentence
length, have influenced the observed performance
outcomes.

Regarding the performance of open-source mod-
els in the MLissard benchmark, Figure 4 illustrates
that both models performed similarly in bin 1, with
accuracy points ranging between 70 and 100. How-
ever, as task complexity increased from bin 2 on-
wards, differences in performance stood out. Ex-
cept for the "Repeat Copy Logic" task, GPT-4 out-
performed Llama-3.1-405B by 5 to 60 accuracy
points (see Table 3).

On the other hand, in the “Repeat Copy Logic”
task, there is a reverse comparison, where Llama-
3.1-405B outperforms GPT-4 in all bins, with the
difference ranging from 9 points to 16 points of
accuracy.

In relation to language preference behavior, both
the Llama-3.1-405B and GPT-4 models exhibit sim-
ilar task-dependent variations. Llama-3.1-405B
demonstrates more consistent performance across
Portuguese, German, and English.

5.1 Impact of model size

The Llama-3.1-405B model achieved state-of-the-
art results in general NLP task benchmarks com-
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Task Bin 1 Bin 2 Bin 3 Bin 4

Llama GPT-4 Llama GPT-4 Llama GPT-4 Llama GPT-4

OC 100 100 58 63 0.8 38 0.7 24.6
LI 86 76 26 29 0.6 7.7 0.1 4
LLC 95 100 48.6 85.8 0.4 60 0 16
RCL 82 73.3 57 41.3 33 24 15 0.4

AVG 90.7 87 47.4 54.7 8.7 32.4 3.9 11.7

Table 3: Average accuracy of all languages per bin on tasks Object Counting (OC), List Intersection (LI), Last Letter
Concatenation (LLC), and Repeat Copy Logic (RCL). Comparative result between the Llama-3.1-405B and GPT-4
models, highlighting in bold the best system performance in each bin.

Object Counting

Last Letter Concatenation

List Intersection

Repeat Copy Logic

Test set:
Ukraine (UA)

Test set:
English (EN)

Figure 5: Average accuracy considering all bins. Since (1) Baseline - Both the instruction and the examples derive
from the same target language; (2) instruction in the language that performed better or worse and a examples in the
target language; (3) Instruction in target language and multilingual examples.

pared to the Llama-3-70B model. We investigated
whether this performance trend is also evident in
the MLissard benchmarks, especially in relation to
the complexity indicated by the bins.

Table 4 compares the average performance of
each bin (for all MLissard tasks) using the Llama-
3.1-405B and Llama-3-70B models. As expected,
Llama-3.1-405B significantly outperforms Llama-
3-70B across all languages and complexity bins.
The largest differences between the models occur
in bins 1 and 2, with performance gaps ranging
from 16 to 43 points. In contrast, for bins 3 and
4, which involve more complex tasks, the perfor-
mance improvement is less pronounced, with vari-
ations ranging from 0.3 to 11 points. This suggests
that Llama-3.1-405B, like the 70B version, also

struggles with long sequences.

5.2 Can cross language improve extrapolation
performance?

We aim to examine the impact on extrapolation
performance by focusing on two components: 1)
providing instructions in a different language than
the target language, and 2) using mixed-language
few-shot examples (see Figure 2 - (b)). For in-
context examples, we used Portuguese, German,
Ukrainian, and English. For the "Repeat Copy
Logic" task, we provided two contextualized exam-
ples (English and Ukrainian), while for the other
tasks, we provided four examples.

We conducted ablation tests on all tasks in the
MLissard dataset using the GPT-4 model. For com-
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Lang Bin 1 Bin 2 Bin 3 Bin 4

70B 405B 70B 405B 70B 405B 70B 405B

EN 70.6 90 18.6 48 0.1 0.7 0 0.1
PT 79.3 96.6 24 63.3 0.1 11.3 0 6
ES 74 92.6 16.6 60 0.1 5.7 0 6.5
DE 74.6 91.3 16.8 51.3 0.5 8.3 0 0.3
RU 60.6 88 12.2 38 0 0.8 0 0.6
UA 55.3 86.6 10.7 33.9 0.1 0.5 0 0.4

Table 4: Average accuracy across all MLissard tasks was compared between the Llama-3-70B and Llama-3.1-405B
models.

parative purposes, we focused on the languages
that achieved the highest and lowest performance
in each task. We then compared these results with
the baseline (both instructions and examples in the
same language).

Figure 5 presents the experimental results for
each task. As shown in the results, when we gave
prompts in a language different from the test set,
accuracy declined by an average of 2.3 percentage
points. However, when we kept instructions in the
test target language but included paraphrased exam-
ples contextualized in multiple languages, perfor-
mance improved by an average of 6.25 percentage
points. This improvement ranged from 2 points in
the "List Intersection" task to 17 points in the "Last
Letter Concatenation" task and remained consistent
across all evaluated languages. These findings indi-
cate that contextual examples in multiple languages
can improve the quality of extrapolation.

6 Conclusion

We presented a multilingual benchmark to eval-
uate the ability of language models to deal with
long texts across languages. Our approach distin-
guishes itself from existing benchmarks through
the introduction of a control mechanism, which we
refer to as "key entities." This mechanism enables
us to systematically increase task complexity in
tandem with sequence length. Furthermore, the
ability to solve these tasks is predicated on the re-
peated application of simple rules, providing more
control and enabling a detailed analysis of model
performance in relation to the frequency of rule ap-
plication. This contrasts with benchmarks that rely
on lengthy natural language texts, where the rela-
tionship between text length and task difficulty may
become obscured. Despite the apparent simplicity
of these tasks, they reveal significant limitations

in state-of-the-art LLMs concerning the process-
ing and generation of text as lengths increase. Our
findings indicate that language and model size sig-
nificantly affect extrapolation results. Moreover, in-
cluding in-context examples in multiple languages
improves MLissard’s generalization performance.

7 Limitations

Our evaluations were conducted on a set of six lan-
guages, therefore, the findings of this work may
not necessarily extend to other languages, partic-
ularly low-resource ones. Additionally, we solely
employed a standard prompt style for our evalua-
tions, and the performance with more sophisticated
techniques, such as chain-of-thought (CoT) prompt-
ing, remains to be investigated. Finally, given the
limitation of our study to two models (GPT-4 and
Llama-3), the results may not generalize to other
LLMs.
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Abstract

As the capabilities of Large Language Models
(LLMs) expand, it becomes increasingly impor-
tant to evaluate them beyond basic knowledge
assessment, focusing on higher-level language
understanding. This study introduces Multi-
PragEval, the first multilingual pragmatic eval-
uation of LLMs, designed for English, German,
Korean, and Chinese. Comprising 1200 ques-
tion units categorized according to Grice’s Co-
operative Principle and its four conversational
maxims, MultiPragEval enables an in-depth as-
sessment of LLMs’ contextual awareness and
their ability to infer implied meanings. Our
findings demonstrate that Claude3-Opus signif-
icantly outperforms other models in all tested
languages, establishing a state-of-the-art in the
field. Among open-source models, Solar-10.7B
and Qwen1.5-14B emerge as strong competi-
tors. By analyzing pragmatic inference, we
provide valuable insights into the capabilities
essential for advanced language comprehen-
sion in AI systems. The test suite is publicly
available on our GitHub repository at https:
//github.com/DojunPark/MultiPragEval.

1 Introduction

Understanding a language involves not only the
ability to process explicit information but also an
awareness of the context that influences the mean-
ing of each utterance (Sperber and Wilson, 1986).
In human communication, context acts as a critical
element as it provides a foundation upon which dia-
logue participants can understand and interact with
each other more efficiently. With a shared context,
communication becomes more facilitated, allowing
subtle nuances to be successfully conveyed, which
is essential for engaging in meaningful conversa-
tions (Krauss and Fussell, 1996).

With recent advancements in generative AI, cur-
rent LLMs have demonstrated capabilities that ex-

*These authors contributed equally to this work.

Aspect Details
Utterance "There’s the door."
Literal
Meaning

A door is located over there.

Contextual
Implication

Context: An interviewer says it
to the interviewee after finishing
an interview.
Implied Meaning: The interview
has concluded and the intervie-
wee is free to leave the room.

Table 1: Literal and contextual implications of the utter-
ance “There’s the door” in an interview scenario.

tend far beyond traditional natural language pro-
cessing (NLP) tasks (Brown et al., 2020; Achiam
et al., 2023). These models are increasingly be-
coming integral to our daily lives as AI assistants,
closely engaging with human users in diverse con-
versational setups that demand a rapid understand-
ing of the users’ needs and intentions, far sur-
passing mere literal interpretation of text (Roller
et al., 2021). Given the growing importance of
LLMs, accurately evaluating their ability to com-
prehend context-dependent meanings and demon-
strate human-like language comprehension has be-
come crucial (McCoy et al., 2019; Xu et al., 2020).

Pragmatics is a branch of linguistics that stud-
ies how language is used to achieve specific goals,
where the interpretation of utterances depends not
only on their literal meaning but also, crucially, on
the surrounding context (Grice, 1975). Consider
the example in Table 1, which demonstrates both
the literal and implied meanings of the utterance,

“There’s the door.” Literally, this phrase simply in-
dicates the presence of a door in the specified di-
rection. However, from a pragmatic standpoint,
it conveys an additional implied meaning in the
context of its usage by an interviewer to an inter-
viewee after an interview has concluded. In this
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scenario, the speaker is subtly suggesting that the
interviewee is free to leave the room. This example
underscores the critical role that context plays in
shaping the interpretation of human language.

Despite the clear need for studies analyzing the
pragmatic competence of current LLMs, there is
not only a lack of systematic evaluation across var-
ious models (Chang et al., 2024) but also a strong
bias towards English (Guo et al., 2023; Bommasani
et al., 2023), leaving the pragmatic abilities of
LLMs in other languages largely unexplored and
difficult to compare. Such oversight demonstrates a
significant gap in current evaluation practices, par-
ticularly given the multilingual nature of today’s
state-of-the-art LLMs (Kwon et al., 2023).

To address these challenges, our study intro-
duces MultiPragEval, the first multilingual test
suite designed for the pragmatic evaluation of
LLMs in English, German, Korean, and Chinese.
Our suite comprises 300 question units per lan-
guage, totaling 1200 units. These questions are
divided into five categories based on Grice’s Co-
operative Principles and the corresponding four
conversational maxims: quantity, quality, relation,
manner, and an additional category dedicated to
assessing mere literal meaning understanding, in-
dependent of context.

Our main contributions are as follows:

• Development of MultiPragEval: We intro-
duce MultiPragEval, a comprehensive test
suite specifically designed to evaluate the
pragmatic abilities of LLMs across English,
German, Korean, and Chinese.

• Systematic Evaluation of LLMs: We con-
duct a thorough evaluation of 15 state-of-
the-art LLMs, including both proprietary and
open-source models, assessing their contex-
tual awareness and pragmatic understanding
capabilities.

• In-depth Performance Analysis: We offer
a detailed analysis of LLM performance, sys-
tematically categorized according to Grice’s
Cooperative Principle and its maxims, high-
lighting critical patterns and implications for
further enhancements in LLM capabilities.

2 Related Work

Current Practices in LLM Evaluation. Bench-
marks serve as critical tools for standardized eval-
uation in the field of LLM studies, enabling fair

and systematic comparisons across models trained
with diverse architectures and strategies (Guo et al.,
2023). These benchmarks span a wide range of
domains, from general reasoning (Zellers et al.,
2019) to specialized fields such as mathematics
(Cobbe et al., 2021), coding (Chen et al., 2021),
and biomedical sciences (Jin et al., 2019). While
comprehensive, they primarily focus on assessing
knowledge and logical reasoning, emphasizing ex-
plicit semantic meanings over the contextual and
implied meanings that can vary in different scenar-
ios (Sileo et al., 2022).

Leaderboards further enhance the field of LLM
evaluation by providing a transparent platform
where the performance of various models can di-
rectly compete with each other. The Open LLM
Leaderboard (Beeching et al., 2023), featuring a
range of rigorous benchmarks, establishes a venue
for open-source models to showcase their capa-
bilities, thereby fostering engagement in LLM de-
velopment among both individual developers and
tech companies. Meanwhile, Chatbot Arena (Chi-
ang et al., 2024) is gaining recognition as a crowd-
sourced evaluation platform. It leverages real-time
feedback from users who vote on outputs from two
randomly selected models. Models are then ranked
on the leaderboard based on their Elo rating (Elo
and Sloan, 1978), thus filling the gaps left by auto-
matic benchmarks.

Recently, efforts have been made to create bench-
marks specifically targeted at measuring the capa-
bilities of LLMs in languages such as Chinese (Li
et al., 2023) and Korean (Son et al., 2024). This
development contributes to advancing a more in-
clusive multilingual evaluation landscape.

Pragmatic Evaluation of LLMs. As LLMs con-
tinue to evolve, it has become crucial to evaluate
how effectively they consider context, which cru-
cially shapes meanings beyond their literal inter-
pretations. Bojic et al. (2023) examined multiple
LLMs under the framework of Grice’s Cooperative
Principle and its conversational maxims to assess
their capabilities in understanding implicature. The
results demonstrated that GPT-4 (Achiam et al.,
2023) outperformed other models, including hu-
man performance. However, the human partici-
pants were not native English speakers but edu-
cated individuals from Serbia, which potentially
limits the impact of the findings.

di San Pietro et al. (2023) conducted a compa-
rable study focusing on GPT-3.5, leveraging the
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Language Context Utterance MCQ

English While visiting Charlie’s
house, Emily saw a large
pile of oranges in the
kitchen and asked why
there were so many. Char-
lie responded:

"My uncle
lives in
Florida."

Choose the most appropriate meaning of the above utterance from
the following options.
(A) Charlie’s uncle sent the oranges.
(B) Charlie’s uncle resides in Florida.
(C) People in Florida do not like oranges.
(D) Charlie’s uncle lives in a rural house.
(E) None of the above.

German Anna, die Felix besuchte,
sah, dass es bei Felix viel
Wein gab, und als sie
fragte, warum es so viel
Wein gab, wie er zu so
viel Wein komme, sagte
Felix:

"Mein Onkel
betreibt ein
Weingut in
Freiburg."

Wählen Sie die passendste Bedeutung der obigen Äußerung aus den
folgenden Aussagen aus.
(A) Felix hat den Wein von seinem Onkel.
(B) Der Onkel von Felix lebt in Freiburg.
(C) Freiburger lieben keinen Wein.
(D) Der Onkel von Felix wohnt in einem Landhaus.
(E) Keine der obigen Aussagen ist richtig.

Korean 철수 집에 놀러 간 영희
는 주방에 많은 귤이 쌓
여 있는 것을 보고 귤이
왜 이렇게 많은지 물었
고 철수는 다음과 같이
말했다.

"우리 작은
아버지께서
제주도에사
셔."

다음보기에서위발화가갖는가장적절한의미를고르세요.
(A)작은아버지께서귤을보내주었다.
(B)작은아버지의거주지는제주도이다.
(C)제주도사람들은귤을좋아하지않는다.
(D)작은아버지께서전원주택에사신다.
(E)정답없음.

Chinese 王芳去张伟家看到厨
房里堆放着几大袋葡萄
干，便问为什么有这么
多，张伟回答说：

"我叔叔住
在新疆。"

请在以下选项中选择最恰当地表达上述话语含义的选项。
(A)叔叔给张伟邮了葡萄干。
(B)张伟的叔叔住在新疆。
(C)新疆人不喜欢葡萄干。
(D)张伟的叔叔住在乡间别墅里。
(E)没有正确答案。

Table 2: Multilingual test units from the test suite on the maxim of relation, comprising a context, an utterance, and
a multiple-choice question (MCQ) to assess the understanding of implied meanings. Charlie’s response indirectly
addresses Emily’s question, thereby violating the maxim of relation. Assuming adherence to the cooperative
principle, the most appropriate interpretation is option (A), indicating that Charlie’s uncle sent the oranges.

APACS test set (Arcara and Bambini, 2016), which
consists of various subtasks such as interviews, de-
scriptions, and narratives. The tests were conducted
in both English and Italian, with results reported
for Italian due to no notable differences between
the two. The findings indicate that GPT-3.5 comes
close to human ability but reveals weaknesses in
understanding physical metaphors and jokes.

Focusing on Korean, Park et al. (2024) employed
120 test questions aligned with the four Gricean
maxims to further probe the capabilities of vari-
ous LLMs. The findings demonstrate that GPT-4
excelled in both multiple-choice and open-ended
question setups, with HyperCLOVA X (Yoo et al.,
2024), a Korean-specific LLM, closely following.
The study also explored in-context learning, demon-
strating that the few-shot learning technique consis-
tently leads to positive outcomes across all tested
models.

Sravanthi et al. (2024) introduce a comprehen-
sive pragmatic benchmark that evaluates LLMs
across 14 distinct tasks, including implicature, pre-
supposition and deictic detection. Comprising 28k

data points, this benchmark aims to provide a nu-
anced assessment of LLMs’ pragmatic abilities,
marking a substantial contribution to the field. Yet,
there remains a significant need to extend these
evaluations to multiple languages to thoroughly
assess the multilingual capabilities of LLMs.

3 Methodology

3.1 Theoretical Foundations of Pragmatics

To accurately assess the contextual awareness of
LLMs, we primarily focus on implicature, based on
Grice’s theory (Grice, 1975). Implicature refers to
a specific way language is used, in which the literal
meaning of an utterance differs from the intended
meaning of the speaker, requiring the listener to
infer the intended meaning from the surrounding
context. This concept is critical for evaluating how
well LLMs understand human language, particu-
larly in their ability to capture nuanced meanings
beyond the explicit words.

Grice introduced the Cooperative Principle that
explains how speakers and listeners cooperate to
achieve mutual understanding, and its four conver-

98



Maxim Description Specific Cases Covered

Quantity Make your contribution as informative as is re-
quired.

Tautology, insufficient information, excessive informa-
tion, and cases where the maxim is abided by.

Quality Try to make your contribution one that is true. Irony, hyperbole, and misinformation.
Relation Ensure that all the information you provide is

relevant to the current conversation.
Unrelated information and cases where the maxim is
abided by.

Manner Be perspicuous; Be brief and orderly, and avoid
obscurity and ambiguity.

Ambiguity, vagueness, double negation, verbosity, im-
proper order, complicated expressions, and cases where
the maxim is abided by.

Table 3: Grice’s maxims and their principles with related linguistic phenomena

sational maxims, which suggest how an utterance
should desirably be conducted. Detailed in Table 3,
the maxim of quantity requires information to be
as informative as necessary–neither more nor less.
The maxim of quality emphasizes the importance
of offering truthful contributions. The maxim of
relation ensures all information is pertinent to the
current conversation. The maxim of manner de-
mands clarity and brevity, avoiding obscurity and
ambiguity.

Considering the critical role of understanding im-
plicated meanings in communication, this study in-
vestigates LLMs’ comprehension of conversational
implicatures. Specifically, we evaluate LLMs’ ca-
pabilities in inferring implied meanings that arise
from either abiding by or violating these maxims.

3.2 Development of the Test Suite

To develop our test suite, we followed a structured
process divided into three key phases: describing
the initial dataset, expanding its scope, and trans-
lating it into the target languages and verifying the
translations. Table 2 showcases an example of a
test unit focused on the maxim of relation from our
complete test suite, presented in English, German,
Korean, and Chinese.

Initial Dataset. The development of the Multi-
PragEval test suite began with the foundational
work by (Park et al., 2024), who crafted a set of 120
question units designed to assess LLMs in terms
of four conversational maxims. Each maxim was
represented by 30 units, which included a struc-
tured scenario setting the conversational context,
an utterance by a participant, and a set of questions
comprising both a multiple-choice question and an
open-ended question. We adopted the context, ut-
terance, and multiple-choice question components
from this test set as our starting point.

Expansion. Next, we expanded the number of
question units from 120 to 300 to encompass a

broader range of pragmatic contexts. Each conver-
sational maxim, originally represented by 30 units,
was doubled to 60 to deepen the evaluative scope,
including more diverse linguistic phenomena as
shown in Table 3. Additionally, we introduced a
new category specifically designed to assess the un-
derstanding of literal meanings, which allows us to
explore potential trade-offs between performances
in understanding literal versus implied meanings.
To further enhance the complexity of our test suite,
we included units that do not have a correct an-
swer by adding a ‘None of the above’ option to the
multiple-choice setups.

Translation and Verification. In the subsequent
phase, we translated the Korean test set into En-
glish, German, and Chinese using DeepL 1 for the
initial conversion. Then, Korean-native linguistic
experts with CEFR C1 2 level proficiency in the tar-
get languages refined the translations to ensure that
these translations preserved the intended meanings
and nuances. They also adapted cultural elements
by substituting the names of characters and setting
details to reflect the local context of each language.
Finally, native speakers of each target language,
who hold degrees in linguistics and related fields,
conducted a thorough verification of the transla-
tions. This process confirmed that the quality and
accuracy of the translations were on par with the
original Korean versions.

3.3 Experimental Setup
Models. Our study includes 15 LLMs, catego-
rized into two types: proprietary LLMs accessed
via API, and open-source LLMs where we have
direct access to the model weights. As detailed
in Table 4, the proprietary models comprise two
GPT models (Achiam et al., 2023) by OpenAI,

1https://www.deepl.com
2https://www.coe.int/en/web/

common-european-framework-reference-languages/
level-descriptions
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Type Model Version

Proprietary

GPT-3.5 turbo-0125
GPT-4 turbo-2024-04-09
Claude3-Haiku haiku-20240307
Claude3-Sonnet sonnet-20240229
Claude3-Opus opus-20240229
Mistral-small small-2402
Mistral-medium medium-2312
Mistral-large large-2402

Open-Src.

Llama-2-13B chat-hf
Llama-2-7B chat-hf
Llama-3-8B Instruct
Gemma-7B 1.1-7b-it
Solar-10.7B Instruct-v1.0
Qwen-14B 1.5-14B-Chat
Qwen-7B 1.5-7B-Chat

Table 4: Overview of proprietary and open-source
LLMs evaluated in the study

along with three different sizes of both Claude3
(Anthropic, 2024) by Anthropic and Mistral by
Mistral AI 3. We exclude Gemini by Google from
our analysis due to its limited accessibility via API.

Additionally, we evaluate publicly available
open-source models, each with approximately 10
billion parameters. These models were selected
based on two criteria: their architecture (Trans-
former decoder-based models) and their perfor-
mance on publicly accessible benchmarks. The
selected models include three Llama models (Tou-
vron et al., 2023) by Meta, Gemma (Team et al.,
2024) by Google, Solar (Kim et al., 2023) by Ko-
rean company Upstage, and two Qwen models (Bai
et al., 2023) by Chinese firm Alibaba, with con-
sideration also given to the diversity of languages
represented in our study.

LLM Response Generation. To generate an-
swers from each LLM, we set the temperature
hyperparameter at 0.5 across models to balance
coherence and creativity in their responses. For
inference on the open-source LLMs, we utilized a
single H100-80GB unit. Each model was queried
three times to account for the inherent randomness
in responses. We then computed the average score
for each model across these trials to ensure a robust
assessment of performance for each LLM iteration.
Scores were calculated based on the ratio of cor-

3https://mistral.ai/

rect answers to the total number of test units across
all three trials. The actual prompt for the experi-
ment and inter-rater agreement across three trials
are detailed in the Appendix B.

4 Result

4.1 Analysis of LLM Performance

Overall Performance. Table 5 presents the re-
sults from the evaluation of the selected LLMs on
the MultiPragEval test suite. It demonstrates that
Claude3-Opus significantly outperforms all other
models across four languages, with GPT-4 trailing
by approximately 6-10 points. This performance
gap underscores Claude3-Opus’s exceptional abil-
ity to capture the subtle nuances of language that
are highly context-dependent. These findings high-
light its position as the most proficient among the
current state-of-the-art LLMs across English, Ger-
man, Korean, and Chinese.

Mistral-Large and Claude3-Sonnet are closely
matched for the next tier of performance; Mistral-
Large outperforms Claude3-Sonnet in German,
Korean, and Chinese. However, Claude3-Sonnet
achieves a higher score in English, registering
66.39 compared to Mistral-Large’s 61.39. In-
terestingly, while Mistral-Large generally shows
improved scores across languages compared to
Mistral-Medium, it scores lower in English, drop-
ping to 61.39 from the medium-sized model’s
66.25.

Solar-10.7B demonstrates stable performance,
consistently outperforming GPT-3.5 across all four
languages. It is the only open-source model that
surpasses GPT-3.5 in both English and German.
In English, it closely follows Mistral-Large with a
score of 59.31 and is just behind Claude3-Sonnet
in German, with a score of 55.69.

Qwen-14B also stands out among other open-
source LLMs, outperforming its counterparts with
scores of 50.00 in Chinese and 49.72 in Korean. In
contrast, both Llama2-13B and Llama2-7B demon-
strate a strong bias towards literal interpretations
yielding poor scores, while Llama3-8B shows en-
hanced performance compared to its earlier ver-
sions. Notably, Llama2-13B achieves a significant
leap in Korean, scoring 47.50 compared to Llama2-
7B’s 3.06, while exhibiting a more gradual increase
in other languages.

Performance Gap Across Languages. We ob-
served that the models generally achieve higher per-
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English

Quan. Qual. Rel. Man. Avg.
German

Avg.
Korean

Avg.
Chinese

Avg.

GPT-4 65.00 83.89 82.22 70.00 75.28 72.50 81.25 68.75
GPT-3.5 51.11 66.67 52.78 42.89 53.61 52.92 38.89 43.61
Claude3-Opus 81.11 88.89 88.89 81.11 85.00 82.78 87.08 76.67
Claude3-Sonnet 62.22 81.67 67.22 54.44 66.39 60.14 63.33 48.61
Claude3-Haiku 56.67 67.78 58.89 43.33 56.67 45.14 38.47 40.83
Mistral-Large 61.11 71.11 61.11 52.22 61.39 63.75 65.56 54.72
Mistral-Medium 61.11 69.44 72.22 62.22 66.25 53.61 52.92 38.89
Mistral-Small 57.22 57.78 54.44 35.00 51.11 51.11 40.42 33.61

Llama3-8B 54.44 68.89 44.44 45.56 53.33 40.00 32.50 46.81
Llama2-13B 26.67 32.22 16.67 32.22 26.94 16.39 47.50 8.75
Llama2-7B 31.11 26.67 11.11 18.33 21.81 4.44 3.06 4.17
Gemma-7B 37.78 36.67 35.00 30.56 35.00 27.22 20.83 25.28
Solar-10.7B 58.33 65.56 62.22 51.11 59.31 55.69 49.03 46.39
Qwen-14B 52.22 61.67 56.11 43.33 53.33 43.06 49.72 50.00
Qwen-7B 53.89 62.22 47.22 37.78 50.28 39.44 35.14 41.11

Table 5: Performance of LLMs on the MultiPragEval test suite: scores across four languages and by maxims with
overall averages; Leading scores among proprietary and open-source models are highlighted in bold. The scores for
each maxim are color-coded in shades of blue to represent the relative ranking within each model.

formance scores in English than in other languages,
likely due to larger English training datasets en-
hancing reasoning capabilities. Interestingly, flag-
ship proprietary models like GPT-4, Claude-Opus,
and Mistral-large show slightly better performance
in Korean. We believe there could be two possible
reasons for this performance gap. First, it is possi-
ble that the initial Korean dataset, from which we
extended our test suite (Park et al., 2024), was used
in model training, allowing the models to better
understand newly created Korean questions that
follow the same template. Secondly, the gap could
stem from the test suite being initially developed in
Korean and then translated into other languages.
Cultural nuances and conventions embedded in
each language may lead to subtle differences in
how the same expressions are interpreted, with the
implications being understood differently depend-
ing on the language region.

Significant performance discrepancies were also
observed across models. Claude-Haiku scored 56.7
in English but only 38.4 in Korean, while Mistral-
small dropped from 51.1 in English to 33.6 in Chi-
nese. Llama2-13B showed the largest gap, with
scores of 47.5 in Korean versus 8.7 in Chinese.
These differences highlight language-specific bi-
ases in the models, indicating a need for improve-
ments to boost multilingual capabilities.

Closer Look at Individual Maxims. Table 5
also shows the performance scores of LLMs on
individual maxims in the English test suite. We
observe a consistent pattern across LLMs where
scores for the maxim of quality generally rank high-
est, while scores for the maxim of manner rank
lowest. This pattern is not unique to English but
is also observable in other languages, suggesting
a universal trend (see Appendix A). This outcome
is expected because expressions governed by the
maxim of quality, which become untrue statements
when interpreted literally, make it easier for LLMs
to infer the appropriate implied meanings. Con-
versely, the maxim of manner, involving verbose
or ambiguous expressions, poses more subtle chal-
lenges that likewise pose difficulties for humans
(Hoffmann, 2010).

Another noteworthy observation is that as the
overall performance increases, the scores for the
maxim of relation also generally improve. This
pattern is more evident among proprietary models,
where the maxim of relation mostly ranks second.
Similarly, Solar-10.7B and Qwen-14B, which per-
form comparably to GPT-3.5, achieve higher scores
in the maxim of relation compared to those of quan-
tity and manner. Conversely, other open-source
models with lower average scores tend to have
lower rankings in the maxim of relation, falling
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English German Korean Chinese
100

100

Avg. Opt. None Literal Avg. Opt. None Literal Avg. Opt. None Literal Avg. Opt. None Literal
93.75

GPT-4 75.28 90.00 100.00 72.50 90.56 97.22 81.25 75.00 96.67 68.75 79.44 98.33
87.5

GPT-3.5 53.61 55.00 85.56 52.92 69.44 85.56 38.89 31.11 83.33 43.61 62.78 88.33
81.25

Claude3-Opus 85.00 92.78 98.89 82.78 85.00 93.33 87.08 70.56 99.44 76.67 83.33 95.56
75

Claude3-Sonnet 66.39 81.11 91.67 60.14 67.22 91.67 63.33 28.33 84.44 48.61 34.44 87.78
68.75

Claude3-Haiku 56.67 63.89 91.11 45.14 37.22 90.00 38.47 9.44 80.00 40.83 8.33 80.56
62.5

Mistral-Large 61.39 66.11 95.56 63.75 77.22 87.78 65.56 58.33 91.11 54.72 54.44 88.33
56.25

Mistral-Medium 66.25 80.56 98.33 53.61 61.11 91.11 52.92 45.00 86.11 38.89 16.11 81.11
50

50

Mistral-Small 51.11 47.78 92.22 51.11 43.33 87.22 40.42 31.11 85.00 33.61 18.33 82.78
43.75

Llama3-8B 53.33 43.89 85.00 40.00 56.11 87.22 32.50 21.67 80.00 46.81 28.33 89.44
37.5

Llama2-13B 26.94 65.00 70.00 16.39 9.44 69.44 47.50 2.22 67.78 8.75 7.78 64.44
31.25

Llama2-7B 21.81 13.33 70.56 4.44 1.11 45.56 3.06 0.00 42.22 4.17 0.00 49.44
25

Gemma-7B 35.00 23.33 77.22 27.22 7.28 80.00 20.83 0.56 79.44 25.28 0.00 80.00
18.75

Solar-10.7B 59.31 81.11 97.78 55.69 38.33 86.11 49.03 22.22 78.89 46.39 26.67 88.89
12.5

Qwen-14B 53.33 78.33 93.33 43.06 52.78 85.00 49.72 41.67 87.78 50.00 79.44 94.44
6.25

Qwen-7B 50.28 31.67 80.00 39.44 10.00 76.67 35.14 0.00 73.33 41.11 43.33 86.67
0 0

Figure 1: Breakdown of LLM scores for ‘No Correct Answers’ and literal meaning tests across four languages; the
heatmap uses two colors–blue indicating higher scores and yellow indicating lower scores.

below the maxim of quantity. This suggests that
capturing relevancy within the given context plays
a significant role in a more precise interpretation of
implied information, contributing to better overall
performance.

4.2 Assessing the Stability of Pragmatic
Inference

We further explore the stability of LLMs in prag-
matic inference under two specific setups. First, we
evaluate the models on a subset of each category of
maxims, specifically designed where the test ques-
tions lack an appropriate answer. This subset is
intended to be more challenging as it requires the
models to identify incorrect interpretations and se-
lect the option ‘(E) None of the above’ without ref-
erence to a correct meaning. Secondly, we test the
models on additional test units consisting of con-
text, utterance, and question, structured similarly,
but where the context is irrelevant to the utterance.
This setup is designed to assess whether LLMs can
accurately distinguish purely literal meanings from
inappropriate interpretations.

Subset of No Correct Answer. Figure 1 illus-
trates that the scores on the subset without cor-
rect answers (Opt. None) generally align with the

overall scores, yet they reveal subtle differences
in performance details. While Claude3-Opus con-
sistently outperforms GPT-4 by a certain margin
in overall scores across all languages, GPT-4 sur-
passes Claude3-Opus by approximately 5 points in
both German and Korean. This result indicates that
both models are comparably robust in the challeng-
ing setup of pragmatic consideration.

It is evident that models with lower overall
scores exhibit significant declines when tested in
the setup without a correct answer. Among propri-
etary LLMs, Claude3-Haiku, along with medium
and small-sized models by Mistral, notably drop in
scores, indicating their struggles with the task. Sim-
ilarly, 7-billion parameter models such as Llama2,
Gemma, and Qwen also show poor performance,
underscoring the complexity of the task for models
of this size.

Additional Set of Literal Meaning. The scores
on the set asking literal meanings also demonstrate
a general increase along with the overall scores.
While the flagship models of GPT and Claude show
performance close to perfect, GPT-4 demonstrates
a slight edge over Claude-3-Opus for English, Ger-
man, and Chinese. This may suggest a trade-off
between pragmatic and literal focus in their infer-
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Model MultiPragEval
(Eng.)

MMLU
5-shot

MATH
4-shot Arena Elo* ARC

25-shot
HumanEval

0-shot
GSM-8K

8-shot

GPT-4 75.28 86.4 52.9 1252 96.3 67.0 92.0
GPT-3.5 53.6 70.0 34.1 1110 85.2 48.1 57.1
Claude3-Opus 85.0 86.8 61.0 1246 96.4 84.9 95.0
Claude3-Sonnet 66.4 79.0 40.5 1199 93.2 73.0 92.3
Claude3-Haiku 56.7 75.2 40.9 1181 89.2 75.9 88.9
Llama3-8B 53.3 68.4 30.0 1154 60.7 62.2 79.6
Llama2-13B 26.9 47.8 6.7 1065 59.4 14.0 77.4
Llama2-7B 21.8 34.1 3.8 1042 53.1 7.9 25.7
Gemma-7B 35.0 66.0 24.3 1091 61.1 32.3 46.4
Qwen-14B 53.3 69.4 24.8 1119 56.6 32.3 61.3
Qwen-7B 50.3 61.7 11.6 1079 54.2 29.9 51.7

Kendall τ 1.00 0.95 0.92 0.84 0.81 0.80 0.73

Table 6: Performance scores of LLMs across multiple benchmarks and Kendall’s Tau correlation Coefficients
Relative to MultiPragEval.
* The Arena Elo scores are as of May 17, 2024.

ences.
The Llama2 models, particularly Llama2-7B,

show the lowest scores among the others, with
42.22, 45.56, and 49.44 for Korean, German, and
English, respectively. These results generally corre-
late with lower overall scores in both the pragmatic
and no-correct-answer subset questions. We inter-
pret this to mean that these tasks are not indepen-
dent of each other, but instead mutually influence
one another, highlighting the importance of main-
taining a good balance between the sub-tasks.

4.3 Comparison with Existing Benchmarks

To further delve into the implications of our find-
ings, we compare the results from our English
test suite with existing English-based benchmarks.
This analysis encompasses scores from 11 mod-
els, for which other benchmark scores were pub-
licly available. We consider seven popular bench-
marks: MMLU (Hendrycks et al., 2020) and ARC
(Clark et al., 2018) for general reasoning, Hu-
manEval (Chen et al., 2021) for coding, GSM-8K
(Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021) for mathematics, and Chatbot Arena (Chi-
ang et al., 2024), a crowd-sourced evaluation. We
opted to calculate the correlation coefficients us-
ing Kendall’s Tau (Kendall, 1938) due to its better
handling of varying ranges and subtle differences
between benchmarks.

The correlations of MultiPragEval with other
benchmarks consistently show high values, indi-
cating a general trend toward ‘good’ performance
across different benchmarks. This suggests that im-
provements in a model’s performance on one task
generally enhance its performance on other tasks

(Raffel et al., 2020).
MMLU and MATH exhibit the highest corre-

lations among other benchmarks, suggesting that
the abilities assessed by these benchmarks align
closely with those required for pragmatic infer-
ence. It is anticipated that MMLU, which evaluates
the general language understanding capabilities of
LLMs across a broad spectrum of disciplines, re-
flects the ability to consider contextual information
in language, which is a key requirement of Multi-
PragEval.

However, the high correlation observed with
the MATH benchmark is surprising, given its pri-
mary focus on mathematical reasoning. Notably,
the score gap between Claude3-Opus and GPT-4,
which is around 10 points on MultiPragEval, is sim-
ilarly reflected on MATH but not distinctively on
MMLU. This pattern suggests that the sophisticated
mathematical problem-solving required by MATH–
which demands a higher level of logical reasoning
compared to the basic mathematical problems in
GSM-8K–may also tap into core capabilities es-
sential for pragmatic inference. This connection
between mathematical reasoning and high-level
linguistic comprehension indicates an intricate re-
lationship that requires deeper investigation.

5 Conclusion

In this work, we present the first multilingual study
of LLMs’ capabilities of their pragmatic inference,
particularly in the context of Grice’s theory of con-
versational implicature. Our findings demonstrate
the usefulness of MultiPragEval test suite in dis-
tinguishing the levels of comprehension among
various proprietary and open-source models.
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The results reveal that among the models evalu-
ated, Claude3-Opus and GPT-4 particularly stand
out, with Claude3-Opus consistently outperform-
ing GPT-4 by 6 to 10 points across all languages,
affirming its state-of-the-art capability in pragmatic
understanding. Top-performing open-source mod-
els like Solar-10.7B and Qwen-14B demonstrate su-
perior or comparable performance to lite-size pro-
prietary models such as GPT-3.5, Claude3-Haiku,
and Mistral-Small. The performance gaps across
languages within models and individual Grice’s
maxims further highlight language biases and areas
for improvement.

Our findings, with the highest correlations with
MMLU and MATH, suggest that general language
understanding and complex logical reasoning are
intricately linked to pragmatic inference abilities.
This insight guides us towards further research to
empirically demonstrate how these abilities relate
to pragmatic reasoning.

Limitations

While our study provides a comprehensive compar-
ison of 15 proprietary and open-source models, it
does not include a comparison with human perfor-
mance. Including human performance would offer
deeper insights into how closely LLMs approxi-
mate human abilities. Moreover, human perfor-
mance can vary across languages, which would en-
rich our understanding of the LLMs’ multilingual
pragmatic abilities. Recognizing this gap, we aim
to incorporate human performance comparisons in
our future research.

Another limitation of our study is its exclusive fo-
cus on implicature, despite pragmatics encompass-
ing a broader range of phenomena such as speech
acts, presupposition, and politeness. This focus
was chosen due to the increasing role of LLMs as
AI assistants, which often need to interpret human
expressions that are frequently conveyed implicitly.
The ability of LLMs to capture these subtle nu-
ances directly influences human judgments about
the quality of these systems. Furthermore, contex-
tual awareness is critical not only for linguists but
also for NLP engineers who aim to provide reliable
services to users. We believe that our specific focus
on implicature provides valuable insights into how
effectively current LLMs manage the complexities
inherent in interpreting implied meanings, a crucial
aspect of human communication.

Our study set the temperature value to 0.5 to

achieve a moderate balance between consistency
and creativity in responses. However, it is impor-
tant to note that the optimal temperature may vary
for each LLM, and the effect of temperature set-
tings on pragmatic inference remains unclear. Rec-
ognizing the potential influence of temperature on
LLMs’ pragmatic abilities, we suggest that future
studies investigate the relationship between tem-
perature and pragmatic reasoning to gain deeper
insights into how LLMs handle nuanced language
tasks.

Ethics Statement

In this work, we introduce a test suite designed to
evaluate the pragmatic abilities of LLMs. We have
ensured that all data created for this study does
not infringe on any existing intellectual property
rights, while also ensuring it contains no personally
identifiable information. Linguistic experts were
involved in the creation and translation of the test
suite; all contributors were fully informed about
the research’s purpose and the methods employed.
We commit to making the dataset publicly available
to foster transparency and further research in the
field.
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A Demonstration of Test Unit Example

Language Context Utterance MCQ

English A student asks their pro-
fessor if they can extend
the due date of an assign-
ment just a little longer.
The professor relies:

"Rules are
rules."

Choose the most appropriate meaning of the above utterance from
the following options.
(A) The deadline can’t be extended because rules must be followed.
(B) Rules are rules.
(C) Breaking the rules isn’t a big deal, so I’ll give the student a
chance.
(D) The professor discovered a new theory after doing research.
(E) None of the above.

German Ein Student fragt seinen
Professor, ob er den Ab-
gabetermin für eine Auf-
gabe noch ein wenig hin-
auszögern kann.

"Regeln sind
Regeln."

Wählen Sie die passendste Bedeutung der obigen Äußerung aus den
folgenden Aussagen aus.
(A) Die Frist kann nicht verlängert werden, weil die Regeln eingehal-
ten werden müssen.
(B) Regeln sind Regeln.
(C) Ein Verstoß gegen die Regeln ist keine große Sache, also gebe
ich dem Studenten eine Chance.
(D) Der Professor hat durch Nachforschungen eine neue Theorie
entdeckt.
(E) Keine der obigen Aussagen ist richtig.

Korean 학생이교수에게과제의
마감 기한을 조금만 더
늘려 주실 수 없냐고 부
탁하자교수가말한다.

"규칙은 규
칙일세."

다음보기에서위발화가갖는가장적절한의미를고르세요.
(A)규칙은지켜져야만하므로마감기한을늘릴수없다.
(B)규칙은규칙이다.
(C) 규칙을 깨는 것은 큰 문제가 되지 않으므로 학생에게 기회를
주겠다.
(D)교수는연구끝에새로운이론을발견했다.
(E)정답없음.

Chinese 一名学生问教授可不可
以将作业的截止日期再
延长一点，教授说:

"规则就是
规则。"

请在以下选项中选择最恰当地表达上述话语含义的选项。
(A)规则必须遵守，因此不能延长截止期限。
(B)规矩就是规矩。
(C)违反规则没什么大不了的，所以教授会给学生一个机会。
(D)教授经过研究发现了一个新理论。
(E)没有正确答案。

Table 7: Multilingual test unit example on the maxim of quantity. The utterance "Rules are rules" is not sufficiently
informative because it provides less information than necessary. This under-informativeness constitutes a violation
of Grice’s maxim of quantity, which demands that enough information be given to be fully informative. In this
context, "the rules" implicitly refer to the adherence to established guidelines, such as the due date for assignments.
Therefore, the most appropriate interpretation of the professor’s statement is option (A) "The deadline can’t be
extended because rules must be followed," which accurately captures the implied meaning behind the response.
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Language Context Utterance MCQ

English When Emily, a PhD stu-
dent, spoke at length
about the theory she had
studied yesterday, Charlie
said:

"You’re the
professor."

Choose the most appropriate meaning of the above utterance from
the following options.
(A) Emily was hired as a professor.
(B) Emily knows a lot, but she talks too much.
(C) Emily is not good at graduate studies.
(D) Emily lives in a dormitory.
(E) None of the above.

German Als Anna, eine Dok-
torandin, ausführlich über
die Theorie sprach, die sie
gestern untersucht hatte,
sagte Felix:

"Du bist
ja Profes-
sorin."

Wählen Sie die passendste Bedeutung der obigen Äußerung aus den
folgenden Aussagen aus.
(A) Anna wurde zur Professorin ernannt.
(B) Anna weiß eine Menge, aber sie redet zu viel.
(C) Anna ist nicht gut im Studium.
(D) Anna wohnt in einem Studentenwohnheim.
(E) Keine der obigen Aussagen ist richtig.

Korean 박사생인영희가어제공
부한 이론에 대해 길게
이야기하자철수가다음
과같이말했다.

"네가 교수
다."

다음보기에서위발화가갖는가장적절한의미를고르세요.
(A)영희는교수로임용되었다.
(B)영희는아는것이많지만말이너무많다.
(C)영희는대학원공부에소질이없다.
(D)영희는기숙사에살고있다.
(E)정답없음.

Chinese 当博士生王芳详细讲述
她昨天学习的理论时，
张伟说：

"你是教授
吗？"

请在以下选项中选择最恰当地表达上述话语含义的选项。
(A)王芳被任命为教授。
(B)王芳知道很多，但她说得太多了。
(C)王芳不适合读研。
(D)王芳住在宿舍里。
(E)没有正确答案。

Table 8: Multilingual test unit example on the maxim of quality. This example illustrates a violation of Grice’s
maxim of quality, which requires contributions to be true. Although Charlie refers to Emily as "the professor,"
he does not literally mean that she holds this academic position, as she is a PhD student. Instead, this utterance
uses irony to comment on Emily’s detailed and extensive explanation, typical of a professor’s depth of knowledge.
Therefore, the utterance "You’re the professor" acknowledges Emily’s thorough knowledge while subtly critiquing
her for possibly providing more information than necessary in casual conversation. Thus, option (B) "Emily knows
a lot, but she talks too much." best captures the implied meaning of Charlie’s statement.
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Language Context Utterance MCQ

English When Charlie confessed
to Emily that he wanted
to go out with her, she
replied:

"I really like you as a
friend, too, but I don’t
think I’m in the right
frame of mind to meet
someone right now."

Choose the most appropriate meaning of the above utter-
ance from the following options.
(A) Charlie and Emily have a good personality match.
(B) Emily wants to date Charlie’s brother.
(C) Emily doesn’t want to go out with Charlie.
(D) There are no friends between men and women.
(E) None of the above.

German Als Felix Anna gestand,
dass er mit ihr ausgehen
wollte, sagte sie ihm:

"Ich mag dich sehr
als Freund, aber ich
glaube nicht, dass ich im
Moment in der richtigen
Stimmung bin, um
mit jemandem in einer
Beziehung sein."

Wählen Sie die passendste Bedeutung der obigen
Äußerung aus den folgenden Aussagen aus.
(A) Felix und Anna passen charakterlich gut zusammen.
(B) Anna will mit Felix’ Bruder ausgehen.
(C) Anna will nicht mit Felix ausgehen.
(D) Es gibt keine echte Freundschaft zwischen Männern
und Frauen.
(E) Keine der obigen Aussagen ist richtig.

Korean 철수가영희에게사귀자
고고백하자영희가다음
과같이말했다.

"나도 너를 친구로서 정
말좋아하지만내가지금
사람을만날만한마음의
여유가없는것같아."

다음보기에서위발화가갖는가장적절한의미를고
르세요.
(A)철수와영희는성격이잘맞는다.
(B)영희는철수의친오빠와사귀고싶다.
(C)철수와사귀고싶지않다.
(D)남자와여자사이에친구란없다.
(E)정답없음.

Chinese 当张伟向王芳表白，王
芳说：

"作为朋友我真的很喜
欢你，但是我现在状
态不适合和别人在一
起。"

请在以下选项中选择最恰当地表达上述话语含义的
选项。
(A)张伟和王芳性格很合得来。
(B)王芳想和张伟的哥哥约会。
(C)王芳不想和张伟谈恋爱。
(D)男女之间没有朋友。
(E)没有正确答案。

Table 9: Multilingual test unit example on the maxim of manner. Emily’s response to Charlie’s confession is a
classic example of violating Grice’s maxim of manner, which advocates for clarity and brevity in communication.
Instead of a direct answer, Emily’s reply is ambiguously structured, suggesting a rejection without explicitly stating
one. This ambiguity is strategic, preserving social harmony while conveying her feelings indirectly. Given the
content and context of the conversation, options (A), (B), and (D) do not align with the information provided.
Emily emphasizes her current emotional state and her appreciation of their friendship as reasons for not pursuing a
romantic relationship, which implicitly suggests she does not wish to date Charlie. Thus, option (C) "Emily doesn’t
want to go out with Charlie" captures the underlying implication of her response most accurately.
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Language Context Utterance MCQ

English Emily and Charlie are
working on a writing
assignment from class.
Emily asks Charlie when
the writing assignment is
due, and Charlie replies:

"It’s due
next Thurs-
day."

Choose the most appropriate meaning of the above utterance from
the following options.
(A) Charlie is asking Emily for help.
(B) Charlie is not confident in English and wants to postpone the
writing assignment.
(C) Charlie wants to finish the writing assignment today.
(D) The writing assignment is due next Thursday.
(E) None of the above.

German Anna und Felix arbeiteten
an einer schriftlichen Auf-
gabe aus ihrem Unterricht.
Anna fragte Felix, wann
die Schreibaufgabe fällig
sei, und Felix antwortete:

"Sie ist näch-
sten Donner-
stag fällig."

Wählen Sie die passendste Bedeutung der obigen Äußerung aus den
folgenden Aussagen aus.
(A) Er bittet Anna um Hilfe.
(B) Felix ist unsicher in Englisch und möchte die Schreibaufgabe
verschieben.
(C) Er möchte die schriftliche Aufgabe sofort fertigstellen.
(D) Die Schreibaufgabe soll bis zum nächsten Donnerstag fertig sein.
(E) Keine der obigen Aussagen ist richtig.

Korean 영희와철수는수업에서
나온 글쓰기 과제를 하
고 있다. 영희가 철수에
게 글쓰기 과제 마감일
이 언제인지 묻자, 철수
가 다음과 같이 대답했
다.

"다음주 목
요일까지제
출해야해."

다음보기에서위발화가갖는가장적절한의미를고르세요.
(A)철수는영희에게도움을요청하는중이다.
(B)철수는영어에자신이없어서글쓰기과제를미루고싶다.
(C)철수는오늘글쓰기과제를끝내려고한다.
(D)글쓰기과제마감일이다음주목요일이다.
(E)정답없음.

Chinese 王芳和张伟正在完成课
堂上的写作任务。王芳
问张伟什么时候交写作
作业，张伟回答说：

"下 周 四
前 得 交 上
去。"

请在以下选项中选择最恰当地表达上述话语含义的选项。
(A)张伟在向王芳寻求帮助。
(B)张伟对英语没有信心，想推迟写作任务。
(C)张伟想在今天完成写作任务。
(D)下周四之前要交写作作业。
(E)没有正确答案。

Table 10: Multilingual test unit example on the category of literal interpretation. Charlie’s reply is a direct answer
to Emily’s question about the deadline. His utterance does not trigger any implications based on the violation of
Grice’s maxims. It straightforwardly indicates that the due date is next Thursday. Therefore, option (D) "The writing
assignment is due next Thursday" is the most appropriate meaning.
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Language Context Utterance MCQ

English Emily saw Charlie’s
brother in a family photo
and asked Charlie how
old his brother was, to
which he replied:

"He’s 28." Choose the most appropriate meaning of the above utterance from
the following options.
(A) Charlie does not know his brother’s age.
(B) Charlie’s brother is not in college.
(C) Charlie doesn’t have a brother.
(D) Charlie’s brother is unemployed.
(E) None of the above.

German Anna sah Felix’ Bruder
auf einem Familienfoto
und fragte ihn, wie alt
er sei, woraufhin Felix
antwortete:

"Er ist 28." Wählen Sie die passendste Bedeutung der obigen Äußerung aus den
folgenden Aussagen aus.
(A) Felix weiß nicht, wie alt sein Bruder ist.
(B) Felix’ Bruder geht nicht auf eine Universität.
(C) Felix hat keinen Bruder.
(D) Felix’ Bruder ist arbeitslos.
(E) Keine der obigen Aussagen ist richtig.

Korean 영희는철수의가족사진
에서 그의 동생을 보았
고, 동생의 나이를 물었
다. 이에 철수는 다음과
같이대답했다.

"28살이야." 다음보기에서위발화가갖는가장적절한의미를고르세요.
(A)철수는동생나이를알지못한다.
(B)철수의동생은대학생이아니다.
(C)철수는동생이없다.
(D)철수의동생은무직이다.
(E)정답없음.

Chinese 王芳在一张全家福照片
上看到了张伟的弟弟，
并问他几岁了，张伟回
答说：

"他28岁。" 请在以下选项中选择最恰当地表达上述话语含义的选项。
(A)张伟不知道他的弟弟是几岁。
(B)张伟的弟弟不是大学生。
(C)张伟没有弟弟。
(D)张伟的弟弟失业了。
(E)没有正确答案。

Table 11: Multilingual test unit example without correct answer. Charlie’s reply to Emily’s question about his
brother’s age is straightforward and direct, with no implications based on the violation of Grice’s maxims. His
response should thus be interpreted as literal meaning: Charlie’s brother is 28 years old. Since none of the options
(A) to (D) accurately reflect this literal expression, each introducing an unrelated assumption, the correct answer is
(E) "None of the above."
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B Prompt Demonstration and Inter-Rater Agreement Analysis

Prompt

While visiting Charlie’s house, Emily saw a large pile of oranges in the kitchen and asked why there
were so many. Charlie responded: (context)
"My uncle lives in Florida." (statement)

Choose the most appropriate meaning of the above utterance from the following options. (MCQ)
(A) Charlie’s uncle sent the oranges.
(B) Charlie’s uncle resides in Florida.
(C) People in Florida do not like oranges.
(D) Charlie’s uncle lives in a rural house.
(E) None of the above.

Table 12: Example of the prompt using a test unit from our suite. It illustrates how the actual prompt is structured
into a context and a corresponding statement followed by an MCQ with options. The words with parentheses are for
clarification and are not part of the actual prompt.

English German Korean Chinese

GPT-4 0.87 0.86 0.70 0.90
GPT-3.5 0.86 0.85 0.86 0.88
Claude3-Opus 0.92 0.96 0.94 0.86
Claude3-Sonnet 0.93 0.96 0.85 0.90

Proprietary Claude3-Haiku 0.95 0.95 0.90 0.91
Mistral-Large 0.91 0.95 0.88 0.89
Mistral-Medium 0.90 0.90 0.94 0.94
Mistral-Small 0.80 0.84 0.84 0.85

Llama3-8B 0.86 0.91 0.90 0.90
Llama2-13B 0.86 0.89 0.56 0.81
Llama2-7B 0.88 0.86 0.87 0.92

Open-Source Gemma-7B 0.97 0.99 0.96 0.97
Solar-10.7B 0.94 0.92 0.94 0.94
Qwen-14B 0.96 0.95 0.69 0.95
Qwen-7B 0.96 0.97 0.95 0.91

Table 13: Fleiss’ Kappa values representing inter-rater agreement across three trials on the MultiPragEval test suite
for four languages. Most models demonstrate high Kappa values (above 0.80), indicating strong agreement across
trials. However, models such as GPT-4, Llama2-13B, and Qwen-14B exhibit moderate agreement in generating
Korean responses (0.56 to 0.70), suggesting some variability in their performance across the different trials.
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C Score Tables

German

Quan. Qual. Rel. Man. Avg.

GPT-4 70.56 76.67 77.22 65.56 72.50
GPT-3.5 58.89 51.67 53.89 47.22 52.92
Claude-Opus 85.56 87.78 85.00 72.78 82.78
Claude-Sonnet 53.89 70.00 66.11 50.56 60.14
Claude-Haiku 36.67 51.67 52.78 39.44 45.14
Mistral-Large 60.00 70.00 73.33 51.67 63.75
Mistral-Medium 47.22 68.89 56.11 42.22 53.61

Proprietary

Mistral-Small 50.56 53.33 58.89 41.67 51.11

Llama3-8B 35.56 40.00 46.67 37.78 40.00
Llama2-13B 20.00 13.33 15.00 17.22 16.39
Llama2-7B 5.56 3.89 3.33 5.00 4.44
Gemma-7B 29.44 23.89 35.00 20.56 27.22
Solar-10B 56.67 59.44 62.78 43.89 55.69
Qwen-14B 53.89 38.89 45.56 33.89 43.06

Open-Source

Qwen-7B 45.56 37.78 41.11 33.33 39.44

Table 14: Performance scores on the MultiPragEval test suite across four maxims with overall averages for German.
While the maxim of manner generally shows the lowest scores, high scores are more evenly distributed across the
other three maxims.
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Korean

Quan. Qual. Rel. Man. Avg.

GPT-4 81.67 86.67 85.56 71.11 81.25
GPT-3.5 42.22 47.22 37.22 28.89 38.89
Claude-Opus 86.67 87.78 93.33 80.56 87.08
Claude-Sonnet 58.89 74.44 67.78 52.22 63.33
Claude-Haiku 37.22 49.44 37.78 29.44 38.47
Mistral-Large 67.78 68.33 74.44 51.67 65.56
Mistral-Medium 59.44 51.11 53.89 47.22 52.92

Proprietary

Mistral-Small 41.11 52.22 42.78 25.56 40.42

Llama3-8B 34.44 39.44 31.11 25.00 32.50
Llama2-13B 45.00 61.11 42.22 41.67 47.50
Llama2-7B 5.56 5.00 0.00 1.67 3.06
Gemma-7B 30.56 15.00 25.00 12.78 20.83
Solar-10B 52.78 52.22 57.22 33.89 49.03
Qwen-14B 53.33 58.89 44.44 42.22 49.72

Open-Source

Qwen-7B 36.67 35.56 38.33 30.00 35.14

Table 15: Performance scores on the MultiPragEval test suite across four maxims with overall averages for Korean.
The maxim of quality typically achieves the highest rankings, while the maxim of manner consistently records the
lowest scores, reflecting a similar pattern observed in English.
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Chinese

Quan. Qual. Rel. Man. Avg.

GPT-4 59.44 85.00 72.78 57.78 68.75
GPT-3.5 47.22 42.22 43.89 41.11 43.61
Claude-Opus 80.56 82.22 80.56 63.33 76.67
Claude-Sonnet 46.11 63.89 48.33 36.11 48.61
Claude-Haiku 40.00 52.78 40.56 30.00 40.83
Mistral-Large 47.22 60.56 66.67 44.44 54.72
Mistral-Medium 43.89 46.67 36.67 28.33 38.89

Proprietary

Mistral-Small 35.56 41.11 39.44 18.33 33.61

Llama3-8B 45.56 49.44 53.33 38.89 46.81
Llama2-13B 6.67 12.78 3.33 12.22 8.75
Llama2-7B 7.78 3.33 0.56 5.00 4.17
Gemma-7B 29.44 26.67 18.89 25.28 25.28
Solar-10B 49.44 57.78 46.67 31.67 46.39
Qwen-14B 51.67 47.22 58.89 42.22 50.00

Open-Source

Qwen-7B 45.00 46.11 35.56 37.78 41.11

Table 16: Performance scores on the MultiPragEval test suite across four maxims with overall averages for Chinese.
The pattern of rankings mirrors those observed in English and Korean.
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D Example Responses

Id 7 Category Maxim of Quantity Correct Answer A

Question

Charlie and Emily, who are in the same club, got into an argument at a club meeting last week. It’s almost
time for today’s meeting and Charlie hasn’t shown up. Michael, a friend from the club, asks Emily why he
hasn’t shown up. Emily tells him as follows:

"Either he comes or he doesn’t."

Choose the most appropriate meaning of the above utterance from the following options.
(A) Emily doesn’t care if Charlie comes or not.
(B) Charlie may or may not come.
(C) Emily decided to apologize to Charlie.
(D) Emily is not a good speaker.
(E) None of the above.

Answer by
GPT-4

The most appropriate meaning of Emily’s statement "Either he comes or he doesn’t" is:
(B) Charlie may or may not come.

This interpretation is based on the literal meaning of the statement, which indicates uncertainty or
neutrality regarding Charlie’s attendance. It simply states the possibilities without any additional
emotional or situational context.

Answer by
Claude3-Opus

The most appropriate meaning of Emily’s utterance "Either he comes or he doesn’t" is:
(A) Emily doesn’t care if Charlie comes or not.

Explanation:
Emily’s statement suggests indifference towards Charlie’s attendance at the club meeting. By saying
"Either he comes or he doesn’t," she implies that she is not concerned about whether Charlie shows up
or not, likely due to their recent argument.

The other options are less fitting because:
(B) While the statement does suggest uncertainty about Charlie’s attendance, it doesn’t capture Emily’s
indifference.
(C) There is no indication in the given context that Emily has decided to apologize to Charlie.
(D) The statement does not reflect on Emily’s speaking abilities.
(E) Option (A) is the most appropriate interpretation of the given utterance.

Table 17: Responses by GPT-4 and Claude3-Opus on a test unit evaluating the Maxim of Quantity in English. While
Claude3-Opus captures the implied nuance of indifference in the utterance, GPT-4 focuses on a literal interpretation,
leading to an incorrect answer.
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Id 127 Category Maxim of Relation Correct Answer A

Question

At a company dinner, a coworker invited Charlie to have a drink, and Charlie said:

"I drove here."

Choose the most appropriate meaning of the above utterance from the following options.
(A) Charlie will not drink alcohol.
(B) The car is parked in the parking lot.
(C) Charlie plans to drink.
(D) Charlie is planning to move.
(E) None of the above.

Answer by
Llama2-13B

Answer:
(C) Charlie plans to drink.

Explanation:

The statement "I drove here" is often used as a way of saying that one plans to drink alcohol. The speaker
is indicating that they have arrived at the destination (the company dinner) by driving, and that they are
prepared to consume alcohol. Therefore, option (C) is the most appropriate meaning of the utterance.

Answer by
Llama2-7B

Answer: (C) Charlie plans to drink.

Explanation:
The sentence "I drove here" is a common way to indicate that the speaker plans to drink alcohol. It implies
that the speaker arrived at the location by driving, and therefore,
they are not planning to drink. Therefore, option (C) is the most appropriate meaning of the utterance.

Table 18: Responses by Llama2-13B and Llama2-7B on a test unit evaluating the Maxim of Relation in English.
Both models fail to capture the implied meaning of the utterance. While Llama2-7B demonstrates some degree of
adequate inference in its reasoning, it still selects the incorrect option.
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Id 75 Category Maxim of Quality Correct Answer A

Question

Emily, who saw Charlie come to work on Sunday, said:

"He’s not even breathing."

Choose the most appropriate meaning of the above utterance from the following options.
(A) Charlie works hard and diligently.
(B) Charlie doesn’t breathe when he works.
(C) Time passes slowly, as if Charlie is out of breath.
(D) Charlie is a bad sleeper.
(E) None of the above.

Korean Answer
by Llama2-13B

답: ①철수는바쁘게부지런히일한다.

설명:위발화 "쟤는숨도안쉬어"는 "철수는바쁘게부지런히일한다"라는의미를갖고있습니다.
이발화는철수가일요일에나와서일하는것을본영희가철수의열의와힘든일을직감적으로표현
한것입니다.

Translation of
Korean Answer

Answer: ① Charlie works hard and diligently.

Explanation: The utterance "He’s not even breathing." means "Charlie works hard and diligently." This
utterance is Emily’s instinctive expression of Charlie’s enthusiasm and difficulty at work after seeing
him come to work on Sunday.

Chinese Answer
by Llama2-13B 答：B

Translation of
Chinese Answer Answer: B

Table 19: Responses by Llama2-13B on a test unit evaluating the Maxim of Quality in Korean and Chinese. The
model demonstrates a significant performance gap between the two languages. While it selects the correct answer
and provides a well-reasoned explanation in Korean, it chooses the literal interpretation without any explanation in
Chinese.
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Id 169 Category Maxim of Relation Correct Answer E

Question

Charlie and Emily walked into a cafe. As Emily was choosing a beverage from the menu, Charlie said:

"I have a gift card."

Choose the most appropriate meaning of the above utterance from the following options.
(A) Charlie wants Emily to give him a gift card.
(B) Charlie gave Emily a gift card.
(C) Charlie will save the gift card instead of using it.
(D) Charlie used to work part-time at a cafe.
(E) None of the above.

Answer by
GPT-4

The most appropriate meaning of Charlie’s utterance "I have a gift card" in the context provided is:

(E) None of the above.

The correct interpretation, which isn’t listed among the options, is likely that Charlie is indicating he has
a gift card to use at the cafe, possibly suggesting he can pay for the beverages using the gift card. This
interpretation is not explicitly stated in the options provided.

Answer by
Claude3-Opus

The most appropriate meaning of Charlie’s utterance "I have a gift card" is:

(E) None of the above.

In the given context, Charlie mentioning that he has a gift card most likely implies that he intends to use
it to pay for their purchases at the cafe. This suggests that:

- Charlie is offering to treat Emily using his gift card, or
- Charlie is informing Emily that they can use the gift card to save money on their purchases.

The other options (A, B, C, and D) do not accurately represent the meaning of Charlie’s statement in the
given context.

Table 20: Responses by GPT-4 and Claude3-Opus on a test unit where no correct answer is provided. Both models
correctly identify the absence of a correct answer and successfully explain the intended meaning of the utterance in
their responses.
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Abstract

This paper investigates the transparency in the
creation of benchmarks and the use of leader-
boards for measuring progress in NLP, with
a focus on the relation extraction (RE) task.
Existing RE benchmarks often suffer from in-
sufficient documentation, lacking crucial de-
tails such as data sources, inter-annotator agree-
ment, the algorithms used for the selection of in-
stances for datasets, and information on poten-
tial biases like dataset imbalance. Progress in
RE is frequently measured by leaderboards that
rank systems based on evaluation methods, typ-
ically limited to aggregate metrics like F1-score.
However, the absence of detailed performance
analysis beyond these metrics can obscure the
true generalisation capabilities of models. Our
analysis reveals that widely used RE bench-
marks, such as TACRED and NYT, tend to
be highly imbalanced and contain noisy labels.
Moreover, the lack of class-based performance
metrics fails to accurately reflect model per-
formance across datasets with a large number
of relation types. These limitations should be
carefully considered when reporting progress in
RE. While our discussion centers on the trans-
parency of RE benchmarks and leaderboards,
the observations we discuss are broadly appli-
cable to other NLP tasks as well. Rather than
undermining the significance and value of ex-
isting RE benchmarks and the development of
new models, this paper advocates for improved
documentation and more rigorous evaluation to
advance the field.

1 Introduction

We examine the transparency in benchmarks and
leaderboards, focusing on the relation extraction
(RE) task. Our analysis utilises two broadly ac-
cepted RE datasets, TACRED (Zhang et al., 2017)
and NYT (Riedel et al., 2010). While this paper
focuses on the transparency of RE benchmarks and
leaderboards, the observations we discuss are also

relevant to other areas of natural language process-
ing (NLP).

The development of state-of-the-art (SOTA)
models in NLP is heavily reliant on benchmarks
for evaluation. These benchmarks not only serve
as a standard for assessing model performance but
also play a pivotal role in shaping the perceived
progress within the field. However, the current
benchmarks often lack transparency in regard to
their creation process, which can significantly im-
pact the reliability of the evaluations conducted
using them.

Opaque benchmarks and the absence of detailed
performance analysis can obscure the true general-
isation capabilities of models (Gebru et al., 2021;
Dehghani et al., 2021). When benchmarks are not
fully transparent — lacking comprehensive meta-
data, clear articulation of limitations, and rigorous
evaluation reports — their ability to accurately re-
flect a model’s robustness and generalisability is
compromised. This can lead to an overestimation
of progress, as models may appear to perform well
on certain benchmarks but fail to generalise effec-
tively to different or more complex datasets.

To enhance transparency and reproducibility in
the evaluation of models, it is essential to publish
the annotation guidelines and instructions that were
provided to annotators during the creation of bench-
marks. Understanding the exact criteria and proce-
dures used in annotation is critical for interpreting
the results obtained from these benchmarks and for
comparing the performance of different models.

It is also important to recognise that widely used
benchmarks such as TACRED (Zhang et al., 2017),
TACRED-RE (Alt et al., 2020), and NYT (Riedel
et al., 2010) cover only a subset of all possible rela-
tions. This limitation should be considered when
evaluating models, as these benchmarks do not
necessarily capture the full complexity of relation
extraction task.

Additionally, when asserting that a new system
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outperforms existing ones, it is crucial to provide
more granular results beyond aggregate metrics
like weighted average or macro F1-score. These
metrics, while useful, may not be sufficiently infor-
mative, particularly in the context of datasets with
a large number of labels (Dehghani et al., 2021)
and significant class imbalances, such as NYT or
TACRED.

Although this position paper addresses certain
issues with existing RE benchmarks and evaluation
approaches, it does not seek to diminish their signif-
icance or the value of developing new RE models,
which are crucial for advancing the NLP field. In-
stead, it aims to promote improved documentation
of benchmarks and the adoption of more rigorous
evaluation practices for SOTA RE systems.

2 Related Work

Despite the critical role of data in NLP, the doc-
umentation of the creation process of existing
datasets remains scarce, unstandardised, and of-
ten lacks transparency, even for publicly available
datasets (Bender and Friedman, 2018; Gebru et al.,
2021; Peng et al., 2021; Singh, 2023; Kovatchev
and Lease, 2024).

Gebru et al., 2021 addresses the issue of insuffi-
cient transparency in dataset creation by proposing
that dataset creators accompany each dataset with
a datasheet. This datasheet would document essen-
tial information about the dataset’s creation process,
thereby enhancing the reproducibility of machine
learning experiments and helping to mitigate po-
tential biases. They outline seven key stages of
the dataset lifecycle: motivation, composition, col-
lection process, preprocessing/cleaning/labeling,
intended uses, distribution, and maintenance.

The lack of transparency in benchmark cre-
ation significantly impacts the evaluation of models
trained on these benchmarks. As Kovatchev and
Lease, 2024 highlights, many evaluation frame-
works operate under the implicit assumption that
a particular dataset is representative of the task
it is intended to benchmark. However, system-
atic approaches to testing model generalisation re-
main limited (Hupkes et al., 2023). To address
this gap, Kovatchev and Lease, 2024 propose the
use of dataset similarity vectors, which consider
various dimensions of the data, such as noise and
ambiguity features, to more accurately predict the
generalisation capabilities of models trained on
these datasets.

Hupkes et al., 2023 present a comprehensive tax-
onomy of methods for studying the generalisation
capabilities of models and introduce the GenBench
evaluation card template1 to assist researchers in
systematically documenting, justifying, and tracing
their generalisation experiments. Evaluating the
generalisation capabilities of models has become
increasingly complex in the era of large language
models (LLMs), which strive to achieve human-
like generalisation but are trained on vast, uncon-
trolled, and often nontransparent datasets.

To enhance the transparency of model evalua-
tion processes, researchers advocate for testing new
SOTA models in challenging scenarios involving
perturbed instances (Wu et al., 2019; Gardner et al.,
2020; Goel et al., 2021), thereby assessing model
capabilities in more realistic settings than those pro-
vided by traditional test sets. Linzen, 2020, when
discussing the limitations of current evaluation ap-
proaches, particularly in the context of developing
systems with human-like generalisation capabili-
ties, introduces the Generalisation Leaderboards.
These leaderboards evaluate systems on test sets de-
rived from distributions different from those used
during training. This approach addresses the limi-
tation that testing a model on data drawn from the
same distribution as the training set does not neces-
sarily demonstrate the model’s ability to effectively
solve the task; rather, it may merely reflect the
model’s proficiency in capturing statistical patterns
specific to the training data.

In addition to traditional leaderboards, which
often rank SOTA systems based solely on holis-
tic metrics such as aggregate F1-score, Liu et al.,
2021 propose leaderboards that incorporate more
fine-grained metrics and offer functionality for di-
rect analysis of misclassifications. This approach
allows for a more detailed comparison of sys-
tem performance, enabling users to directly iden-
tify the strengths and weaknesses of specific sys-
tems, thereby enhancing the transparency of leader-
boards.

3 Transparency in Benchmark Creation

Current relation extraction benchmarks still lack
transparency in their creation processes, making it
difficult to assert that they generalise well on out-
of-distribution data. For instance, we often lack
detailed information about the text sources used to
create these benchmarks. Transparency in the cre-

1Available at https://genbench.org/eval_cards/.
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ation of RE datasets is crucial not only for mitigat-
ing potential biases but also for facilitating progress
in the field. By better understanding the limitations
of existing RE benchmarks we are able to conse-
quently better understand the limitations of systems
that make use of these data. We examine the prob-
lem of lacking transparency through the lens of
two of the most widely used general-purpose rela-
tion extraction benchmarks, namely NYT (Riedel
et al., 2010) and TACRED (Zhang et al., 2017)
datasets. These benchmarks are broadly accepted
by the NLP community and continue to be widely
used, even in the era of LLMs (Huguet Cabot and
Navigli, 2021; Wang et al., 2021; Tang et al., 2022;
Wang et al., 2022; Efeoglu and Paschke, 2024;
Sainz et al., 2024). Both the NYT and TACRED
datasets address the task of sentence-level relation
extraction.

3.1 Analysis of NYT and TACRED Datasets:
Transparency and Limitations

The NYT dataset contains 24 relation types as well
as a ‘None’ class and is based on a corpus of New
York Times newspaper articles (Riedel et al., 2010).
As Table 1 shows, the dataset includes over 266k
sentences, with 64% of the instances belonging to
the ‘None’ class.

Table 1: NYT Dataset

Type Number of Samples

Positive Samples 96,228
Negative Samples 170,021

Total 266,249

NYT is created through distant supervision, util-
ising corpus of the New York Times articles (Sand-
haus, 2008) and using Freebase (Bollacker et al.,
2008) as the external supervision source. Detailed
information on the included relation types and the
number of instances for each relation can be found
in Table 4 in the Appendix. The NYT dataset is
publicly available. The example in Figure 1 shows
one of the instances from the NYT dataset, which
illustrates the issues associated with using distant
supervision for dataset creation.2

As illustrated by the NYT instance in Figure 1,
the sentence is labeled as containing the relation

2The example in Figure 1 repre-
sents NYT instance with article ID
‘/m/vinci8/data1/riedel/projects/relation/kb/nyt1/docstore/nyt-
2005-2006.backup/1677367.xml.pb’. The NYT dataset can
be found at https://github.com/INK-USC/ReQuest.

Figure 1: Example from the NYT dataset

‘/people/person/nationality’ between the head en-
tity Bobby Fischer and the tail entity Iceland.
However, this relation is not directly mentioned
in text. This issue arises from the distant supervi-
sion method used to create the NYT dataset: when
named entities are connected by a ‘nationality’ re-
lation in Freebase, it though does not necessarily
mean that this relation is explicitly present in the
NYT data. Such interpretations can introduce sig-
nificant biases in relation extraction systems and do
not, for instance, reliably demonstrate a system’s
ability to detect ‘nationality’ relation in general.
Such a reasoning pattern can be questioned as valid
and would probably be labeled as a hallucination in
the era of LLMs. The problem of noise in relation
extraction datasets created using distant supervi-
sion has been discussed in several works, including
Yaghoobzadeh et al., 2017.

The TACRED dataset contains 41 relations as
well as a ‘no_relation’ class. TACRED includes
over 106k instances, though, as shown in Table 2,
80% of the instances belong to ‘no_relation’ class,
making the dataset highly imbalanced.

Table 2: TACRED Dataset

Type Number of Samples

Positive Samples 21,773
Negative Samples 84,491

Total 106,264

The TACRED dataset is a fully supervised
dataset obtained via crowdsourcing, and is based
on the TAC KBP3 corpus, which includes English
newswire and web text. It is distributed under the
Linguistic Data Consortium (LDC) license. De-
tailed information on the included relation types
and the number of instances for each relation in
TACRED can be found in Table 3 in the Appendix.
The example in Figure 2 shows one of the instances
from the TACRED dataset.4

3https://tac.nist.gov/2017/KBP/index.html
4The example in Figure 2 originates from the paper de-
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Figure 2: TACRED example

Compared to the NYT example in Figure 1,
where the relation type cannot be determined solely
from the information provided in the sentence, the
TACRED instance in Figure 2 demonstrates an ex-
plicit relation that can be directly extracted from the
sentence without requiring additional, potentially
biased, reasoning steps. However, the TACRED
dataset restricts each sentence to contain only one
relation, in contrast to the NYT dataset, which al-
lows each sentence to have multiple labels. The for-
mulation of the relation extraction task like in TA-
CRED can lead to many false negatives (Xie et al.,
2021). For instance, the example above contains
relations like ‘per:stateorprovinces_of_residence’,
and ‘per:employee_of’ or ‘per:spouse’, all of which
are part of the TACRED list of relations. Thus, re-
stricting each instance to a single relation is far
removed from the complexity of real-world text
and may significantly mislead the model.

Despite the supplementary material5 provided
additionally to the paper (Zhang et al., 2017), TA-
CRED still lacks transparency regarding the limi-
tations mentioned above, as well as clarity on how
the instances for the dataset were selected from the
TAC KBP corpus. A similar lack of transparency
exists with the NYT dataset, where the selection
process for instances from the NYT corpus (Sand-
haus, 2008) is not clearly documented. Since ac-
cess to the TAC KBP corpus is restricted and the
selection process from the NYT corpus is unclear,
analysing the data included in both datasets and
estimating the generalisation capabilities of mod-
els trained on these datasets becomes even more
challenging.

Additionally, although TACRED instances were
manually annotated by crowd workers, unlike the

scribing TACRED (Zhang et al., 2017).
5Zhang et al., 2017 mention supplementary material to

the main paper describing the dataset, though they do not
provide the direct link to material. It can be assumed they were
referring to information available at https://nlp.stanford.
edu/projects/tacred/ or https://tac.nist.gov/2017/
KBP/ColdStart/guidelines.html, but these sources still
lack precise details on e.g. the data collection process and the
creation of the relations inventory.

NYT instances, the crowdsourced annotations may
still be quite noisy. For instance, Alt et al., 2020
demonstrated that over 50% of the challenging
‘no_relation’ instances in the development and test
sets of TACRED were mislabeled.

As shown in Tables 1 and 2, both NYT and TA-
CRED are highly imbalanced. While it may appear
that the NYT dataset (with 64% of the instances
belonging to the ‘None’ class) is more balanced
compared to TACRED (where 80% of the instances
belong to ‘no_relation’ class), a closer examina-
tion on the number of instances for each of the
24 relation types, as detailed in Table 4 in the Ap-
pendix, reveals a different picture. Nearly half of
the positive instances in the NYT dataset belong to
a single relation type, ‘/location/location/contains’,
and six out 24 relations are represented by fewer
than 50 instances. For instance, the relation ‘/peo-
ple/person/profession’ contains only two instances,
and ‘/business/company/industry’ has just one in-
stance.

In addition to providing precise information on
the data selection process, it is also important to
make the annotation guidelines publicly available
if human annotators were involved, or to describe
the algorithms used if a dataset was created through
distant supervision (e.g., prompts). The publication
of annotation guidelines and dataset description in
general is among others crucial for clarifying am-
biguous relations, whose scope may be understood
in multiple ways, such as ‘per:title’ in TACRED or
‘None’ in NYT. The ‘None’ label in NYT could in-
dicate either that none of the 24 specified relations
apply — implying another, unspecified relation —
or that there is no relation at all between the entities.
These are fundamentally different scenarios, and
conflating them could lead to significant confusion
in the model.

Despite the publicly available TAC KBP guide-
lines6, it remains unclear whether this version of
annotation guidelines was also provided to the TA-
CRED crowd workers. Furthermore, it is still un-
clear how the annotators of the TACRED dataset
were instructed to handle sentences that contained
a relation not listed among the 41 relations, or how
they were to deal with sentences containing multi-
ple different relations, as in Figure 2 above.

To introduce clarity in benchmark creation pro-
cess, it is therefore crucial to publish not only anno-

6https://tac.nist.gov/2014/KBP/ColdStart/
guidelines/TAC_KBP_2014_Slot_Descriptions_V1.4.
pdf
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tation guidelines but also the instructions provided
to the annotators. While Riedel et al., 2010 de-
scribes the process of creating the NYT dataset in
a relatively detailed way, when they mention the
use of human annotators to evaluate a fixed num-
ber of extracted relations in a distant supervision
scenario, they still do not provide details on how
these human annotators were instructed.

3.2 The Need for Standardised Benchmark
Documentation

The analysis of widely used NYT and TACRED RE
benchmarks, along with their available documenta-
tion, underscores the persistent issue of lacking ex-
haustive documentation regarding the creation pro-
cesses of NLP benchmarks. Proper documentation
should be easily discoverable and ideally stored
according to accepted standards. Currently, infor-
mation on NLP benchmarks is dispersed across
many resources and often lacks the necessary de-
tails to make the benchmark creation process fully
transparent which is among others crucial for the
analysis of generalisation capabilities of a particu-
lar dataset. While sources like PaperswithCode7

are helpful, they still miss a significant amount of
information needed to achieve this goal.

Gebru et al., 2021 addresses the issue of insuf-
ficient benchmark transparency and suggests that
each new benchmark should be accompanied by a
datasheet. The suggested datasheet would include
information such as potential sources of noise and
errors in the dataset, to enhance transparency and
allow for more accurate assessments of the dataset
reliability and generalisation capabilities.

The NLP community would greatly benefit from
a standardised approach to benchmark documen-
tation, similar to model cards for model reporting
(Mitchell et al., 2019), but specifically designed
for datasets. This is at least as important as model
metadata. Model cards, which are essentially files
containing metadata with useful information about
a model in question, have proven effective, as seen
in their implementation at HuggingFace.8 A simi-
lar concept for datasets would ensure that critical
information about benchmark creation, potential
biases, and other relevant details are systematically
recorded and easily accessible. While Hugging-
Face provides dataset cards9 (Park and Jeoung,

7https://paperswithcode.com/
8More on model cards at HuggingFace can be found at

https://huggingface.co/docs/hub/en/model-cards
9https://huggingface.co/docs/hub/en/

2022) which are a promising step in this direc-
tion, most datasets shared via HuggingFace cur-
rently have only a fraction of the possible meta-
data filled out. Moreover, while the ecosystem
that HuggingFace provides has undoubtedly con-
tributed significantly to the NLP community, it is
essential to acknowledge that, given the open na-
ture of the platform where anyone can upload mod-
els and datasets, the reliability of sources, including
datasets and their associated metadata, should be
approached with caution. Ideally, comprehensive
documentation of benchmarks should originate di-
rectly from their creators.

A datasheet for benchmarks would ideally in-
clude properties such as descriptive and social
impact metadata (Park and Jeoung, 2022) includ-
ing data provenance, data preprocessing details
(e.g., filtering approach used to obtain relevant sam-
ples), annotation guidelines and other instructions,
dataset size, recommended data split information,
a list of labels, the specific task being addressed,
the method used for creating the benchmark (e.g.,
human annotation or distant supervision), inter-
annotator agreement (if human annotators were
involved), and potential sources of noise (e.g., rep-
resentativeness of the data). In addition to the pro-
posed datasheets for datasets by Gebru et al., 2021,
inspiration can be drawn from dataset templates10

available in the Open Research Knowledge Graph
(Jaradeh et al., 2019). Although these templates
are currently used infrequently by benchmark cre-
ators, and often only a small fraction of the possible
properties are filled out, their wider adoption could
significantly enhance benchmark transparency. For
instance, a centralised, standardised approach to
documenting benchmarks could help establish a
more universal system of labels, making it easier to
compare benchmarks within a particular domain:
e.g., in the case of RE benchmarks, a standardised
set of relations could simplify comparisons across
different datasets and models.

The way we document the benchmark creation
process is becoming increasingly critical in the era
of LLMs, especially as we strive to develop Ar-
tificial General Intelligence (AGI) systems with
human-like reasoning capabilities (Chollet, 2019;
Hendrycks et al., 2021). As we exhaust real-world
data, and with the uncertainty about whether data

datasets-cards
10For instance, the https://orkg.org/template/

R178304 dataset template contains 22 properties like
inter-annotator agreement or data availability.
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presented as human annotations were truly anno-
tated by humans or generated through LLM prompt-
ing, ensuring transparent and thorough documenta-
tion is essential for accurately evaluating the sys-
tems based on these benchmarks.

4 Transparency in Leaderboard
Performance Evaluation

The transparency in the benchmark creation pro-
cess has a direct impact on the ability to adequately
evaluate the system trained on a dataset in question
and therefore analyse its generalisation capabilities.
One of the ways of measuring progress in particular
NLP field are leaderboards. Despite the fact that
leaderboards push the NLP field forward, they also
lack transparency on evaluation process and mostly
are limited to the ranking based on holistic metrics
such as accuracy or F1-score (Liu et al., 2021). For
instance, both TACRED11 and NYT12 leaderboards
on a widely used platform PaperswithCode rely
on F1-score as a holisitic metric to rank the RE
models.

Moreover, not only traditional leaderboards lack
fine-grained metrics in their ranking approach, but
also the papers that report SOTA results follow this
trend, which can lead to an emphasis on achiev-
ing top leaderboard positions rather than genuinely
addressing the underlying task — a phenomenon
known as SOTA-chasing (Rodriguez et al., 2021).

Recent papers reporting SOTA-performance
on NYT, TACRED, and TACRED-RE13

(Huguet Cabot and Navigli, 2021; Wang et al.,
2022; Tang et al., 2022; Efeoglu and Paschke,
2024; Sainz et al., 2024; Orlando et al., 2024) re-
port only aggregate metrics such as micro or macro
f1-score, recall, and precision. Consequently, these
evaluations lack more fine-grained, class-based
metrics, which are crucial for the analysis of RE
systems dealing with a large number of relations
such as the 42 labels in TACRED and the 25 labels
in NYT. In the context of imbalanced datasets like
TACRED and NYT, a system may achieve high
overall metrics by always predicting a ‘no_relation’
class. However, this outcome does not indicate
that the system has indeed effectively learned to

11https://paperswithcode.com/sota/
relation-extraction-on-tacred

12https://paperswithcode.com/sota/
relation-extraction-on-nyt

13TACRED-RE is a revised version of original TACRED,
with a subset of challenging development and test set instances
relabeled by professional annotators (Alt et al., 2020).

solve the relation extraction task across a diverse
set of over 20 labels. Notably, even the original
papers presenting TACRED (Zhang et al., 2017),
TACRED-RE (Alt et al., 2020), NYT (Riedel et al.,
2010) do not contain fine-grained, class-based
metrics. Given the significant class imbalance
reflected in the Tables 1 and 2, as well as the fact
that many relations in both TACRED and NYT
are represented by only a few instances, such as
‘/people/person/profession’ in NYT (see Table 4 in
the Appendix), which contains only two instances,
reporting class-based metrics is essential for
adequately assessing the capabilities of a particular
system to solve the RE task. Without detailed
performance reports, it is difficult to determine
whether a new SOTA system generalises well or
simply creates the illusion of improvement through
SOTA-chasing.

Benchmarks such as NYT, TACRED, and
TACRED-RE lack standardised guidelines for re-
porting results, leading to inconsistencies across
publications that report SOTA results on these
benchmarks (Dehghani et al., 2021). This lack
of agreement can cause discrepancies in leader-
board rankings. For example, there is no consen-
sus on which aggregated score should be used on
platforms like PaperswithCode. The current top-
performing model on the TACRED benchmark
(Efeoglu and Paschke, 2024) reports the micro-
F1 score, which is also used for ranking. In con-
trast, the current second (Wang et al., 2022) and
third (Huang et al., 2022) top-ranked models on
TACRED report the macro-F1 score, which is
also utilised for their ranking on PaperswithCode.
This inconsistency in evaluation metrics raises con-
cerns about the reliability of the leaderboard rank-
ings.

Additionally, there is no overlap between the
top-performing models listed on PaperswithCode
leaderboards for NYT and TACRED, meaning that
all top-performing models for TACRED are dif-
ferent from those for NYT. This further compli-
cates the analysis of these models’ generalisation
capabilities and makes it difficult to assess model
ranking consistency across RE benchmarks. Fo-
cusing exclusively on achieving high performance
on a single benchmark, without considering results
across multiple benchmarks, can result in models
that are overly specialised for specific benchmarks.
This, however, does not necessarily indicate mean-
ingful progress in addressing a particular NLP task
(Dehghani et al., 2021), such as relation extraction.
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Papers reporting SOTA results on RE, includ-
ing the original TACRED (Zhang et al., 2017),
TACRED-RE (Alt et al., 2020), NYT (Riedel et al.,
2010), often do not provide information on whether
the issue of class imbalance was addressed. Such
details should be included in system description
papers, particularly when reporting new SOTA re-
sults. For instance, the authors of the Biographical
RE dataset (Plum et al., 2022) tackled the problem
of large class imbalance by removing some of ma-
jority class relations, thereby equalising them with
the sum of all other relations.

Model performance ceiling (Alt et al., 2020) may
be caused by the presence of noisy data, which can
limit the potential for improvement by new RE
methods. As discussed in Section 3, this noise can
originate from both distantly-supervised datasets,
such as NYT, and fully-supervised crowdsourced
datasets, such as TACRED. Additionally, the way
the task is formulated, whether as a single-label
(TACRED) or multi-label (NYT) classification task,
can contribute to performance limitations. For ex-
ample, an RE model might make a correct predic-
tion, but due to the task being framed as a single-
label classification problem — despite real-world
instances potentially containing multiple relations
— this could lead to misclassification. Such factors
should be considered when reporting new SOTA
results. Moreover, in the era of LLMs, it is possible
that multiple outputs generated by an LLM for an
RE task could be correct (Hendrycks et al., 2021),
a nuance that is not captured by holistic metrics
like aggregate F1-score.

Due to the mentioned limitations of traditional
leaderboards such as the ones utilised on the
PaperswithCode platform, Liu et al., 2021 sug-
gest an ExplainaBoard interactive tool that pro-
vides both holistic and fine-grained metrics as well
as functionality for direct analysis of misclassifi-
cations. Such an extension of traditional leader-
boards enables the direct detection of strengths and
weaknesses of a particular system, as well as of a
benchmark, thereby enhancing the ability to assess
the generalisation capabilities of systems, such as
those used for relation extraction.

Moreover, evaluating model performance on a
test set drawn from the same distribution as the
training set does not necessarily demonstrate a
model’s ability to solve an underlying task (Linzen,
2020), such as relation extraction. To address this
issue, Linzen, 2020 propose Generalisation Leader-
boards, which would evaluate systems on test sets

derived from different distributions than the train-
ing set. For instance, it would be valuable to assess
a system fine-tuned on TACRED data for its ability
to extract the same subset of relations present in
the NYT dataset, as strong performance on one
dataset does not necessarily indicate robust gen-
eralisation capabilities. Additionally, techniques
such as adversarial attacks (Wu et al., 2019; Gard-
ner et al., 2020; Goel et al., 2021) can further test
the true capabilities of RE systems by exposing
their vulnerabilities and resilience to challenging
scenarios.

5 Conclusion and Future Work

In this work, we have highlighted several limi-
tations in the benchmark documentation and use
of traditional leaderboards, particularly those em-
ployed for the relation extraction task. Limitations
in benchmark documentation include the absence
of comprehensive descriptive metadata, such as
the source of the data or details regarding inter-
annotator agreement, as well as an absence of clear
articulation of the dataset’s inherent limitations,
such as large class imbalances and potential noise.
Furthermore, there is often insufficient discussion
on methods to mitigate these issues.

Evaluating systems based on these RE bench-
marks inherently necessitates addressing the prob-
lems associated with insufficient documentation of
the benchmarks. For instance, traditional leader-
boards, such as those on PaperswithCode, that
play a significant role in advancing NLP, typically
rely on holistic metrics like F1-score. However,
these metrics fail to capture the complexity of the
relation extraction task, especially in scenarios in-
volving a large number of labels and highly im-
balanced datasets, such as TACRED, where most
instances belong to a ‘no_relation’ class. Addi-
tionally, papers reporting new SOTA results on
RE benchmarks like NYT and TACRED often fo-
cus exclusively on aggregate metrics, neglecting
class-based metrics, which obscures the nuanced
performance of models across different relation
types.

This paper does not intend to undermine the sig-
nificance and value of existing benchmarks such as
TACRED or NYT, which are crucial for the eval-
uation of models in the field, as well as the devel-
opment of new SOTA approaches. Instead, given
the evolving perspective on data used in training
deep learning models, our objective is to propose
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avenues for improving the documentation of bench-
mark creation processes, which would in turn help
to better assess the generalisation capabilities of RE
models. Additionally, we also aim to motivate the
adoption of more rigorous evaluation practices, en-
couraging researchers to move beyond the limited
scope of only reporting metrics such as aggregate
F1-score, precision, and recall. This is particularly
important in NLP tasks such as relation extraction,
where the complexity is exacerbated by the pres-
ence of a large number of relations.

It is also crucial to recognise that high per-
formance on a specific RE benchmark, such as
TACRED, TACRED-RE, or NYT, reflects only a
model’s ability to handle a subset of all possible
relations. Furthermore, even if a system performs
well on a given subset of relations, it may strug-
gle significantly when extracting the same relations
from out-of-distribution data.

Our focus should not solely be on the devel-
opment of new approaches, but also on critically
analysing our systems and recognising the limita-
tions of the data used for their evaluation. This
critical perspective is essential for advancing the
field and ensuring that our models are robust and
generalisable.

Finally, this work serves as a position paper
that highlights several issues in the creation of RE
benchmarks and the practices surrounding leader-
board evaluations. We acknowledge the limitations
of this work, particularly the lack of extensive quan-
titative evidence. In our future research, we aim to
conduct a comprehensive cross-dataset evaluation
of RE systems on the benchmarks discussed. Such
an evaluation will provide empirical support for the
concerns raised and offer a more reliable assess-
ment of the generalisation capabilities of current
RE systems.
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A Dataset Statistics: Class Distribution

Table 3: TACRED Dataset

Relation # of Samples

no_relation 84,491
per:title 3862
org:top_members/employees 2770
per:employee_of 2163
org:alternate_names 1359
per:age 833
per:countries_of_residence 819
org:country_of_headquarters 753
per:cities_of_residence 742
per:origin 667
org:city_of_headquarters 573
per:stateorprovinces_of_residence 484
per:spouse 483
org:subsidiaries 453
org:parents 444
per:date_of_death 394
org:stateorprovince_of_headquarters 350
per:children 347
per:cause_of_death 337
per:other_family 319
per:parents 296
org:members 286
per:charges 280
org:founded_by 268
per:siblings 250
per:schools_attended 229
per:city_of_death 227
org:website 223
org:member_of 171
org:founded 166
per:religion 153
per:alternate_names 153
org:shareholders 144
org:political/religious_affiliation 125
org:number_of_employees/members 121
per:stateorprovince_of_death 104
per:date_of_birth 103
per:city_of_birth 103
per:stateorprovince_of_birth 72
per:country_of_death 61
per:country_of_birth 53
org:dissolved 33

Positive Samples 21,773
Negative Samples 84,491
Total 106,264

Table 4: NYT Dataset

Relation # of Samples

None 170,021
/location/location/contains 44,490
/location/country/capital 7267
/people/person/nationality 7244
/people/person/place_lived 7015
/location/administrative_division/country 5951
/location/country/administrative_divisions 5851
/business/person/company 5421
/location/neighborhood/neighborhood_of 5082
/people/person/place_of_birth 3133
/people/deceased_person/place_of_death 1914
/business/company/founders 767
/people/person/children 487
/business/company/place_founded 414
/business/company/major_shareholders 282
/business/company_shareholder/major_shareholders 282
/sports/sports_team_location/teams 218
/sports/sports_team/location 218
/people/person/religion 67
/business/company/advisors 45
/people/ethnicity/geographic_distribution 33
/people/ethnicity/people 21
/people/person/ethnicity 21
/people/person/profession 2
/business/company/industry 1

Positive Samples 96,228
Negative Samples 170,021
Total 266,249
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Abstract
Inferences from adjective-noun combinations
like Is artificial intelligence still intelligence?
provide a good test bed for LLMs’ understand-
ing of meaning and compositional generaliza-
tion capability, since there are many combi-
nations which are novel to both humans and
LLMs but nevertheless elicit convergent human
judgments. We study a range of LLMs and find
that the largest models we tested are able to
draw human-like inferences when the inference
is determined by context and can generalize to
unseen adjective-noun combinations. We also
propose three methods to evaluate LLMs on
these inferences out of context, where there is a
distribution of human-like answers rather than a
single correct answer. We find that LLMs show
a human-like distribution on at most 75% of
our dataset, which is promising but still leaves
room for improvement.

1 Introduction

As the pretraining datasets of LLMs grow, it be-
comes increasingly difficult to test whether LLMs
can generalize to unseen instances of linguistic phe-
nomena, since it is hard to systematically exclude
them from the pretraining data (Kim et al., 2022).
Adjective-noun combinations, in particular with so-
called privative adjectives like fake, provide a good
test bed for testing granular language understand-
ing and semantic composition in LLMs, since we
can find many adjective-noun bigrams which are
easy for humans to understand despite being novel
to them, and can further confirm that they are novel
to the LLM by a string search over its pretraining
corpus. Adjective-noun bigrams are naturally as-
sociated with membership inferences which allow
us to test whether LLMs have successfully “com-
posed” their meaning: is an {adjective} {noun} still
a {noun}? This inference is not as straightforward
as it may seem: while a yellow flower is clearly still
a flower (a subsective inference), a fake or coun-
terfeit dollar bill is typically not a dollar bill (a

Figure 1: Membership inferences for adjective-noun
combinations vary by adjective and noun.

privative inference), even though a fake watch is
typically a watch (Martin, 2022; Ross et al., 2024).
In order to draw the correct inference, humans and
LLMs need to grasp not only the effect of the adjec-
tive on the noun’s properties, but also which proper-
ties are required vs. merely typical for membership
in that noun/category. Moreover, like many cases
of meaning, this inference depends on context. For
example, a fake crowd might qualify as a crowd if
it is made up of paid actors, but less so if it is just
painted dummies on a movie set. Nonetheless, hu-
mans derive convergent inferences for many novel
bigrams both with and without context, giving a
ground truth to which we can compare LLMs.

Building on the dataset of English human judg-
ments developed in Ross et al. (2024), we com-
pare LLMs of several sizes with humans for
cases in which the context determines the infer-
ence. We further explore three methods to evaluate
LLMs against the full distribution of human rat-
ings when there is no provided context. We find
that when the context determines the inference, re-
cent larger LLMs closely match human behavior,
while smaller LLMs only sometimes do so. Almost
all LLMs, even smaller ones, are able to handle
novel adjective-noun combinations as well as they
handle known ones, suggesting that they evaluate
these combinations on-the-fly and can generalize
accordingly like humans do. This alignment in
performance on observed and novel combinations
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continues to hold in a setting where no context
is provided. However, we find that even 70B pa-
rameter LLMs are only able to approximate the
distribution of ratings of a population of human
raters for 75% of our dataset or less, struggling
on combinations with high human variance and in-
ferences which are rare for a particular adjective,
such as a homemade cat not necessarily being a
cat. Most LLMs also assign a more positive rat-
ing to the question “Is artificial intelligence still
intelligence?” than most humans (see Figure 5).
In sum, while our generalization results are highly
promising, there is room for improvement on the
task of matching human inferences in this category
overall. We share our code and data on GitHub.1

2 Related work

Most previous computational work on adjective-
noun composition focuses on distributional seman-
tics using word embeddings (Boleda et al., 2013,
2012; Cappelle et al., 2018; Guevara, 2010; Har-
tung et al., 2017; Vecchi et al., 2017). Cappelle
et al. (2018) specifically analyze privative adjec-
tive embeddings, finding no difference between
their embeddings and embeddings of other adjec-
tives. Results for early LLMs are largely nega-
tive: BERT (Devlin et al., 2019) shows no evi-
dence of compositionality for adjective-noun and
noun-noun phrases, relying instead on word over-
lap heuristics for similarity judgments (Yu and Et-
tinger, 2020). Bertolini et al. (2022) study the in-
ferences of adjective-noun combinations for BERT
and RoBERTa (Liu et al., 2019). They divide ad-
jectives into three inference classes—intersective,
subsective and privative—based on previous com-
putational work (Lalisse and Asudeh, 2015; Nayak
et al., 2014), and test whether LLMs can draw the
correct pattern of inferences for adjectives in each
class. However, recent work in linguistics (Pavlick
and Callison-Burch, 2016b; Martin, 2022; Ross
et al., 2024) suggests that Bertolini et al.’s task may
be ill-defined, since adjectives in these “classes”
can license either a subsective or a privative infer-
ence depending on the noun and context. Indeed,
Goodale and Mascarenhas (2023) find that BERT
can distinguish between intersective and subsective
adjectives, which are more clearly distinct.

For the “Is an X a Y” task more broadly, LLMs
from BERT to Llama 2 (Touvron et al., 2023) show

1https://github.com/rossh2/
artificial-intelligence/

some, but limited abilities to judge “Is an X a Y”
for hypernyms, especially with negation (Hanna
and Mareček, 2021; Ettinger, 2020; Ravichander
et al., 2020; Nikishina et al., 2023; Moskvoretskii
et al., 2024). Results from property learning also
show that earlier models struggle to learn what
properties are typical of nouns (Do and Pavlick,
2021; Apidianaki and Garí Soler, 2021; Pavlick
and Callison-Burch, 2016a)—a key part of our task,
since LLMs must know what constitutes a watch
in order to judge whether a fake watch counts as
one. Meanwhile, Lyu et al. (2022) find that BERT
and GPT-3 (Brown et al., 2020) cannot handle in-
ferences on recursive adjectives, such as “Is my fa-
vorite new movie my favorite movie?”, while Sathe
et al. (2024) find that GPT-2 (Radford et al., 2019),
MPT 30B (MosaicML NLP Team, 2023) and other
smaller models struggle to predict whether rare
adjective-noun combinations are acceptable to hu-
mans. However, less is known about the capabili-
ties of newer, larger models in these areas. Recent
work with newer models including Llama 2 and
GPT-3 on noun-noun compounds—whose mean-
ing arises less straightforwardly from their parts
than adjective-noun combination (Hacken, 2016)—
shows that the LLMs do not generalize well in this
case (Ormerod et al., 2024; Coil and Shwartz, 2023;
Rambelli et al., 2024) .

3 Human judgment dataset

Ross et al. (2024) present two datasets of hu-
man judgments on adjective-noun inferences. The
first, which we refer to as NO-CONTEXT, col-
lects human ratings on “Is an {adjective} {noun}
a {noun}?” on a 5-point Likert scale (“Definitely
not”, “Probably not”, “Unsure”, “Probably yes”
and “Definitely yes”) for 798 bigrams, covering
102 nouns crossed with 6 typically-privative and
6 typically-subsective adjectives. (In this paper,
we use “(typically-)privative / subsective adjective”
to refer to adjectives historically classed as such,
which often but not always result in the respective
inference.) 180 of the 798 bigrams are zero fre-
quency in the C4 pretraining corpus (Raffel et al.,
2020), which we take as a proxy for the undisclosed
pretraining corpora of the models we study. We
take these bigrams to be novel to both humans and
LLMs.2 We call a bigram high-frequency if it is in
the top quartile of bigrams studied by Ross et al.

2The dataset was not published when these models were
trained, so there is no danger of it being included in model
pretraining.
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Ross et al. show that this inference depends on
the adjective and noun, with bigrams with “subsec-
tive” adjectives usually (but not always; e.g., home-
made cat) being rated subsective, while bigrams
with “privative” adjectives such as fake crowd elicit
a wide distribution of ratings from privative to sub-
sective, with high variance per bigram. Moreover,
humans converge on inference judgments for many
zero-frequency bigrams, and show similar variance
overall between zero-frequency and high-frequency
bigrams, demonstrating that they can generalize
these inferences.

The second dataset, which we refer to as CON-
TEXT, shows that providing a context with appro-
priate detail is sufficient to determine the infer-
ence for typically-privative adjectives. Participants
first read a short 50-word context and then an-
swer “In this setting, is an {adjective} {noun} a
{noun}?” The dataset contains 56 expert-written
contexts for 28 bigrams, with one privative-biased
and one subsective-biased context for each bigram;
an example is shown in Appendix B.1. 6 bigrams
are zero-frequency in C4 and a further 7 are low-
frequency (below median frequency in the total set).
This dataset is much smaller due to the need for
trained annotators to create the contexts.

4 Experiment 1: In-context meaning
generalization

Typical LLM evaluations assume a single correct
answer for each question. Thus, we begin with the
smaller CONTEXT dataset from Ross et al. (2024)
where the contexts provided are sufficient to de-
termine the inference. Our evaluation focuses on
the following two aspects: (1) whether the LLM is
sensitive to the provided context, and (2) whether
the LLM is able to choose the intended inference
both for high-frequency bigrams it has presumably
seen during pretraining and also for zero-frequency
bigrams which we presume it has not.

4.1 Method

Experiment 1a evaluates the 28 bigrams in CON-
TEXT with no context provided. While there is no
single correct rating in this setting, we can use this
as a baseline to see if providing a context changes
the rating. Experiment 1b evaluates the same bi-
grams but provides the two contexts for each bi-
gram which bias the rating for humans. For both,
we adapt the method used in Ross et al. (2024) as
closely as possible for LLMs. We use the same

question wording, asking “(In this context [1b],)
is an {adjective} {noun} still a {noun}?” with the
same 5-point Likert scale, the only difference being
that the Likert scale is described in words rather
than pictured. We provide 5 few-shot examples
illustrating each rating on the scale.3 We believe
this to be a comparable setup since humans also see
examples during the training phase of the experi-
ment, though humans only see three. The few-shot
examples only demonstrate the use of the Likert
scale with “is-a” judgments, and do not include any
typically-privative adjectives; see Appendix B.2.

To get responses on the Likert scale, we calcu-
late the surprisal of the 5 answers. The model’s
response is whichever of these 5 answers has the
lowest surprisal. This limits us to assessing open-
source models where log-probabilities of the in-
put are available, excluding popular closed-source
models like GPT-4 (OpenAI, 2024). We study the
Llama 2 (Touvron et al., 2023) and Llama 3 series4

(Dubey et al., 2024) in detail, as well as Mixtral
7x8B (Jiang et al., 2024) and Qwen 2 72B (Yang
et al., 2024). We test all sizes of Llama 2 and
Llama 3 to investigate whether generalization abil-
ity improves with model size. We primarily focus
on instruction-tuned models; results for the base
Llama models are shown in Appendix E.

4.2 Results

Firstly, to measure whether the provided biased
contexts have a significant effect on inference
ratings, we compare the results from Experi-
ment 1a and 1b. Detailed results for Experi-
ment 1a are given in Appendix A. We fit the
same ordinal regression as Ross et al. (2024),
Rating ~ ContextBias, in R (R Core Team, 2023;
Christensen, 2022). While Ross et al. (2024) find
that for humans, both the privative and subsective
contexts have a significant effect on ratings com-
pared to rating the bigram with no context, we find
that this is not the case for all LLMs. For all LLMs,
we find that subsective contexts have a significant
effect (p < 0.05) compared to providing no con-
text in Experiment 1a. Privative contexts only have
a significant effect (p < 0.05) for those models
which rate many bigrams with typically-privative
adjectives as subsective without context (see Figure
9 in Appendix A), namely Llama 3 70B Instruct,

3Experiment 1c in Appendix E.5 performs an ablation
study on Experiment 1b with 0-shot prompting.

4In this paper, Llama 3 refers to the original Llama 3
models, not the newly released Llama 3.1 models.
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Figure 2: Accuracy on the context-based inference task (Experiment 1b) overall, in privative vs. subsective contexts,
and for high frequency vs. zero frequency bigrams. Accuracy on the context-based inference task increases with
model parameters for all models except Llama 2 Chat, and all models except Llama 2 70B Chat can generalize to
(perform similarly or better on) zero frequency (novel) bigrams.

Llama 3 8B Instruct and Qwen 2 72B Instruct.
Next, we judge the inference as correct if the

rating is “Definitely/Probably not” in privative-
biased contexts and “Probably/Definitely yes” in
subsective-biased contexts. Figure 2 shows the
accuracy for all language models under this met-
ric, plus a random guessing baseline. The human
results in Figure 2 should be viewed as a ceiling
measuring the effectiveness of the context at fixing
the inference, not human competence at the task.

We see that Llama 3 70B Instruct, Qwen 2 72B
Instruct and Mixtral 7x8B Instruct perform sim-
ilarly to humans on this task, suggesting a good
ability to (a) understand the effect the context has
on the thing described, (b) understand what is nec-
essary to count as an instance of each noun, and (c)
draw the correct inference based on the previous
two steps. For all models except Llama 2 70B Chat,
we see no difference between their accuracy on
high-frequency bigrams and zero-frequency ones.

Likewise, performance scales with model size
for all models except Llama 2 70B Chat. This is
because this metric penalizes use of the “Unsure”
rating, which Llama 2 70B Chat often uses (see Fig-
ure 9), and uses more often for the 6 zero-frequency
bigrams. Llama 2 13B Chat scores higher because
it is more confident, even though it is sometimes
confidently wrong. (Under the softer metric of “ac-
curacy within 1 SD of the human mean”, which
we will introduce in Section 5.1, performance does
indeed scale with model parameters – see Figure
10 in the Appendix.)

4.3 Discussion

While model performance on judging inferences
of adjective-noun combinations given a context

improves with scale, we see that almost all mod-
els behave similarly for high-frequency and zero-
frequency bigrams, despite presumably never hav-
ing seen the zero-frequency bigrams before (or at
least despite the substantial frequency gap). Thus,
we conclude that models do not handle this task by
memorizing inferences of noun membership dur-
ing pretraining and instead assess it dynamically,
thus being able to generalize (whether this process
is a case of genuine adjective-noun meaning com-
position, as humans are presumed to be able to
do in linguistic theory, or some other heuristics).
While this is an exciting result, this is a rather small
dataset. In the next section, we study the larger NO-
CONTEXT dataset from Ross et al. (2024).

5 Experiments 2 and 3: Evaluating
inferences without context

The NO-CONTEXT dataset in Ross et al. (2024)
asks the same inference question “Is an {adjective}
{noun} a {noun}?”, but without providing any addi-
tional context to help determine the inference. This
results in a wide distribution of human ratings for
some (but not all) bigrams involving typically pri-
vative adjectives. For example, a counterfeit dollar
bill is never judged to be a dollar bill. The distribu-
tion also widens for some bigrams with typically
subsective adjectives, such as homemade cat. In
this section, we propose three methods to investi-
gate whether LLMs can match the distribution of
ratings provided by humans in this context, since
there is no longer a single correct answer.

5.1 Method 1: Accuracy within 1 SD

The first method evaluates a single judgment de-
rived from an LLM and asks: Is the LLM sampling
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Figure 3: Accuracy within 1 SD of the human mean on the no-context inference task (Experiment 2) overall, for
typically privative vs. subsective adjectives, and for high vs. zero frequency bigrams. While accuracy is high, a
simple “majority” baseline nearly saturates this metric.

Figure 4: Ratings for select bigrams involving fake for
Llama 3 Instruct 70B, compared to the (rounded) 1 SD
interval around the human mean.

from the same distribution as the humans for each
bigram? A quick but coarse metric to assess this is
whether the LLM’s rating falls within one standard
deviation of the human mean, rounded to the near-
est integer rating (1 corresponds to “Definitely not”,
5 to “Definitely yes”).5 This method is intuitive
and easy to compute, but is also a relatively low bar.
To illustrate, Figure 4 shows the human means with
intervals 1 SD wide for a selection of bigrams of
the form fake {noun}, with the no-context ratings
from Llama 3 Instruct 70B superimposed. For fake
in particular, these intervals are relatively wide and
easy for the LLM to land in, although for subsec-
tive adjectives like useful, these intervals are much
smaller. Conversely, subsective inferences are by
far the most common inference, so we still expect
high performance for subsective adjectives.

5One alternative would be to compute the inter-annotator
agreement (IAA) between the LLM and the other, human
annotators, but existing metrics for IAA either calculate the
agreement between two annotators or the agreement across
the whole group.

Experiment 2 obtains single ratings for each of
the 798 bigrams in NO-CONTEXT using the same
setup as Experiment 1a (Section 4). Figure 3 shows
the scores on this metric, split by adjective type
(typically privative or typically subsective) and bi-
gram frequency. We also compare to three base-
lines: random, “majority”, and analogy. For the
random baseline, we sample 100 ratings from 1–5
for each bigram , calculate whether it is within 1
SD of the human mean for that bigram, and average
the results. The “majority” baseline guesses a fixed
rating depending on the adjective’s underlying cat-
egory as typically subsective or typically privative.
Bigrams with subsective adjectives are rated “Defi-
nitely yes” (5), while bigrams with privative adjec-
tives are rated “Unsure” (3), taking advantage of
the fact that privative adjectives tend to have wide
1-SD intervals that often overlap with 3.

Finally, the analogy baseline attempts to calcu-
late the inference by analogy, imitating reasoning
such as “a fake watch is a watch, and a handbag
is an expensive accessory like a watch, so a fake
handbag must also be a handbag”. Specifically, it
uses the distance between GloVe embeddings (Pen-
nington et al., 2014) to find nearby adjectives and
nearby nouns among all the adjectives and nouns
used in Ross et al. (2024), assembling those into
“nearby bigrams”. It then averages the human in-
ference ratings among those nearby bigrams which
are high-frequency (assumed “known”) to predict
the rating of the new bigram.

We find that most models, with the exception of
Llama 2 7B Chat, perform well under this metric,
but the high performance of the majority baseline
highlights the leniency of this metric. In fact, only
Llama 3 70B Instruct manages to outperform the
majority baseline. That said, the gap between the
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Figure 5: Ratings for “Is artificial/fake intelligence still
intelligence?”, showing the distribution for humans and
the single rating (with no context provided) for LLMs.
Most instruction-tuned LLMs give a more confident
(higher) rating than humans for artificial intelligence.

analogy baseline and the larger models suggests
that models are doing something more sophisti-
cated than simple analogical reasoning to high-
frequency inferences that they have seen before.
This is further borne out by the models’ high per-
formance on zero-frequency bigrams, as in Experi-
ment 1b, showing again that models seem to handle
this task on-the-fly rather than relying on having
seen the combination during pretraining. As in
Experiment 1b, performance scales with size.

For artificial intelligence specifically, we find
that most LLMs answer “Is artificial intelligence
still intelligence?” with “Definitely yes”, while hu-
mans tend to prefer a more conservative “Probably
yes”, as shown in Figure 5.

While this method is appealingly simple, perfor-
mance on this metric is close to saturated by the
majority baseline, making it difficult to evaluate
whether LLMs are performing in a “human-like”
way. We next explore two methods of generating
a distribution of ratings from an LLM, to see if
LLMs can capture the whole human distribution
rather than merely capturing a point within it.

5.2 Method 2: Log-probability distribution

5.2.1 Method

Our second method obtains a distribution of ratings
from the LLM by calculating the log-probabilities
of all 5 answers for each of the 798 bigrams in NO-
CONTEXT in Experiment 2 and converting this into
a probability distribution for each bigram. For each
bigram, we calculate the Jensen-Shannon diver-
gence between the distribution of ratings obtained
from the LLM and the distribution given by the

JS Divergence
Model Priv. Subs. Total

Human 0 0 0
Llama 3 70B Instruct 0.26 0.08 0.17
Qwen 2 72B Instruct 0.33 0.08 0.19
Llama 2 70B Chat 0.18 0.25 0.22
Mixtral 7x8B Instruct 0.32 0.13 0.22
Llama 3 8B Instruct 0.18 0.34 0.26
Llama 2 13B Chat 0.25 0.35 0.30
Uniform baseline 0.20 0.46 0.34
Llama 2 7B Chat 0.29 0.46 0.38
“Majority” baseline 0.71 0.12 0.40

Table 1: Jensen-Shannon divergence between per-
bigram rating distributions for humans and LLM log-
probabilities, for privative vs. subsective adjectives.

Figure 6: Average log-probability distribution for (typ-
ically) subsective vs. privative adjectives for selected
LLMs, compared to the average human distribution.

(normalized) human ratings.6 0 indicates perfect
overlap, while 1 indicates maximal divergence.

5.2.2 Results
Table 1 shows the average Jensen-Shannon diver-
gences, including a uniform distribution baseline
and the “majority” baseline reported in Section
5.1. Llama 3 70B Instruct shows the lowest aver-
age Jensen-Shannon divergence across all bigrams
using this method, with an excellent divergence
of just 0.08 on (typically) subsective adjectives,
matched by Qwen 2 72B. However, not all mod-
els are able to concentrate enough of their log-
probability mass on “Definitely yes” for bigrams
with subsective adjectives, such as Llama 2 70B

6While calculating the Kullback-Leibler divergence would
also let us treat the human ratings as ground truth, we prefer
the Jensen-Shannon divergence because it is bounded between
0 and 1 and thus easier to interpret.
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JS Divergence
Method Priv. Subs. Total

Log-probability 0.26 0.08 0.17
Context generation 0.38 0.11 0.24

Table 2: Jensen-Shannon divergence between per-
bigram rating distributions for humans and Llama 3
70B Instruct using the log-probability and context gen-
eration methods, for privative vs. subsective adjectives.

Chat, even though all models were able to rate
these bigrams as subsective when giving a single
rating (Table 14). Further, all models, especially
the larger ones, struggle with subsective-adjective
bigrams that humans rate as somewhat privative,
such as homemade cat or illegal currency. All mod-
els except Qwen 72B Instruct rate homemade cat
as mostly subsective (5), whereas humans’ ratings
are distributed evenly from 1-4, and Qwen does not
assign enough enough probability mass to these in-
termediate ratings. Figure 8 shows the distribution
for homemade cat for Llama 3 70B Instruct.

For bigrams with privative adjectives, where the
inference is much harder to predict, results are still
promising, but there is room for improvement. Fig-
ure 6 shows that although Llama 3 70B Instruct
has the lowest overall JS divergence for privative
adjectives, it rates them as subsective (5, “Defi-
nitely yes”) too often, and neither it nor Qwen 2
72B make human-like use of the “Unsure” rating
(perhaps a side-effect of their helpfulness training).
Section 5.4 discusses the item-by-item variation in
JS divergence in more detail.

More broadly, it is not clear that model log-
probabilities should map onto a distribution of
how frequent different answers are among humans.
Method 3 investigates a more sophisticated way of
getting a distribution of ratings from LLMs which
may map more closely onto the human distribution.

5.3 Method 3: Context generation

One source of variation in human ratings is that
different humans are likely imagining different in-
stantiations of the bigram, loosely corresponding
to the different contexts in Experiment 1 (though
likely much less well specified), depending on the
priors they each have. They then rate “Is an AN
an N?” given that imagined context. While some
humans may consider multiple instantiations and
form a small distribution which informs their single
answer, the distribution of ratings primarily arises

Figure 7: Distribution of per-bigram Jensen-Shannon
divergences between the rating distributions for humans
and Llama 3 70B when obtained from log-probabilities
vs. by generating contexts. 0 indicates perfect overlap,
while 1 indicates maximal divergence.

from consulting a larger population of humans. A
language model, when prompted with no context,
instead has a single set of priors and has to estimate
the log-probability of each answer given that single
set of priors. The next method investigates whether
we can improve the fit of the model’s distribution
by having it generate a set of contexts and rate “Is
an AN an N?” given each context, imitating this
aspect of the human variation and thought process.

5.3.1 Method

Method 3 asks the model to generate 12 different
“stories” of 50-100 words involving the target bi-
gram which “describe the {bigram} in detail”, giv-
ing three of the contexts used as few-shot prompts
for Experiment 1b as examples. This is somewhat
similar to recent efforts to mimic human survey
results by prompting or having the LLM generate
personas, then generating data with those personas
as context (Bisbee et al., 2024; Argyle et al., 2023;
Chan et al., 2024 i.a.). Experiment 3a generates all
12 stories in one chat using a temperature of 0.6
(see Appendix B.3 for the prompts). Then, Experi-
ment 3b uses the “In this setting, is an {adjective}
{noun} still a {noun}?” design from Experiment
1b to have the model rate the bigram inference in
each of these 12 contexts, yielding 12 ratings per
bigram. We can then calculate the Jensen-Shannon
divergence between this LLM-generated distribu-
tion and the human distribution.

However, this method is computationally expen-
sive: it took us ca. 400 GPU-hours with A100s to
generate the 12 contexts for our 798 bigrams with
Llama 3 70B Instruct. Thus, we conduct this exper-
iment with one model (Llama 3 70B Instruct) and
demonstrate this method as a proof of concept.
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Figure 8: Rating distributions over selected bigrams using log-probabilities vs. context generation, compared to the
human distributions. Both methods successfully capture bigrams like counterfeit dollar, counterfeit watch, and both
fail for false market and homemade bus. While the log-probability method fits most bigrams better, such as fake
lifestyle and useful heart, the context generation method is better for fake crowd and homemade cat.

Context A Context B

The new video game, “Epic Quest,” was about to
be launched, and the developers wanted to create a
buzz around it. They decided to stage a fake crowd
of fans waiting in line outside the game store on
launch night. They hired a team of people to
dress up in costumes and hold signs that read
“I’ve been waiting for 10 hours!” [. . . ]

The small town of Oakdale was hosting its annual
Christmas market, but the organizers were worried
that not enough people would show up. To create
the illusion of a bigger crowd, they set up a fake
crowd of mannequins dressed in winter coats
and hats, and placed them around the market stalls.
[. . . ]

Rating: Definitely yes (subsective) Rating: Probably not (privative)

Table 3: Two intuitive stories generated by Llama 3 70B Instruct about a fake crowd, which yield privative vs.
subsective inferences. We then ask Llama 3 to rate “Is a fake crowd still a crowd?” given these contexts.

5.3.2 Results

Table 3 shows two LLM-written stories illustrat-
ing a privative vs. subsective inference for fake
crowd which successfully capture human intuitions
about two kinds of fake crowd, showing promise
for this method. Appendix D contains additional
examples of generated contexts. Overall, however,
the Jensen-Shannon divergences in Table 2 show
that generating contexts actually fits the human dis-
tribution worse than just taking the log-probability
distribution directly for Llama 3 70B Instruct. Us-
ing a cut-off of 0.25 for JS divergence, we find that
the distributions generated using context genera-
tion are reasonably human-like for only 61.4% of
the 798 bigrams, compared to 75.3% for the log-
probability distributions. One possible explanation
is that we are not generating the right kind, or a
sufficient diversity, of contexts: we place hardly

any constraints on the story generation, but per-
haps e.g. explicitly asking for stories that disam-
biguate the target inference might match human
behavior better, since humans see the “Is an AN an
N?” question when imagining their “contexts”. A
final point of divergence from humans is Llama 3
70B Instruct’s unwillingness to ever use the “Un-
sure” rating, but this may be an issue with this
particular model rather than the method itself. Nev-
ertheless, this method yields well-distributed (often
bimodal) rating distributions, as shown in Figure
8, and, while not as close as the log-probability
distribution overall, still approximates the human
distribution well for many bigrams.

5.4 Distribution method comparison

Both methods of generating a distribution are good
at capturing the narrow subsective distributions of
most subsective adjectives. However, both meth-
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ods struggle for items like homemade bus, which
humans rate as more privative than subsective de-
spite the typically-subsective adjective, resulting
in a thin but long tail of high JS divergences (see
Figure 7, which compares the distribution of JS
divergences per bigram between the two methods).
Interestingly, the context generation method is bet-
ter able to capture this partially privative behav-
ior for certain bigrams, such as homemade cat,
which shows promise: it writes stories focusing
around knitted or cardboard cats, matching human
intuitions. (This yields a JS divergence of 0.33
compared to 1.00 for the log-prob distribution; see
Figure 8 and Appendix D for an example context.)

For the typically-privative adjectives which are
the primary focus of this paper, the log-probability
distributions provide a better fit overall, but not
for all bigrams. For 45 of them, such as fake leg,
context generation provides a better fit: many of the
generated stories are about prosthetics, deemed to
be legs (see Appendix D for an example, and Table
9 in the Appendix for more counts). More broadly,
Figure 7 shows that there is room for improvement
for both methods: both have a thick tail of bigrams
whose human distributions they do not fit well.

We fit linear regressions for JSDivergence ∼
AdjectiveType * HumanMean + HumanSD +
BigramFrequency in R for each method for Llama
3 70B Instruct and find, for each method, a sig-
nificant negative effect of privative adjective type
and human mean on the JS divergence, as well as
a significant positive effect of human SD and a
significant, positive interaction between adjective
type and human mean. We do not find an effect
of bigram frequency. This is an exciting result,
because it shows that Llama 3 70B Instruct is sim-
ilarly adept at modelling the human distribution
of ratings for novel (zero-frequency) bigrams as
it is for high-frequency bigrams, suggesting that
it can generalize beyond its training data. Exact
coefficients and an effects plot are given in the Ap-
pendix in Table 11 and Figure 15. Specifically, the
negative effect of human mean on typically sub-
sective adjectives supports the qualitative finding
that both methods struggle with bigrams involving
typically subsective adjectives with low human rat-
ings, i.e. which have a more privative interpretation.
Interestingly, we see the same effect for privative
adjectives, where JS divergence increases as the
human mean decreases (i.e. as the bigram is rated
more privative). Finally, the significant positive ef-
fect of human SD shows that both methods struggle

to predict the human distribution as human varia-
tion increases. These linear regressions achieve
an R2 of 0.44 (log-probability) and 0.55 (context
generation), meaning there is still variation left un-
explained by these factors. However, we find no
further qualitatively interpretable patterns.

6 Conclusion

In this paper, we study whether LLMs can combine
adjectives and nouns to yield noun membership
inferences both with and without context, for high-
frequency and zero-frequency (presumed novel)
bigrams. We find that when the inference is de-
termined by context, large, recent LLMs make the
expected inferences, while smaller and/or older
LLMs only sometimes do so. All LLMs, even
smaller ones, behave similarly for zero-frequency
bigrams as they do for high-frequency bigrams, sug-
gesting that they do not rely on having seen them
and their associated inference during pretraining.
Instead, they evaluate these combinations on-the-
fly and can generalize accordingly, as humans do.

We investigate three methods to evaluate whether
LLMs can extend this behavior to a setting where
no context is provided, where they either need to
fall within the human distribution of ratings or
match the whole human distribution. While recent
LLMs are able to fall within 1 SD of the human
mean for up to 95% of our dataset, this is a very le-
nient metric. On our stricter metric of matching the
human distribution (either using log-probabilities
or via context generation), we find that these LLMs
are good at capturing the simple distribution of
bigrams like multicolored flower and counterfeit
watch, but are only able to capture up to 75% of
our total dataset. LLMs struggle particularly with
bigrams with unusual inferences for their adjective,
such as homemade cat, and with bigrams with high
human variance. Interestingly, however, LLMs are
still equally able to capture distributions of novel
bigrams in this setting. In sum, our generaliza-
tion results are exciting because they show LLMs
are generalizing beyond their training data even
in this delicate, context-sensitive task, but there is
still room for improvement on the task of capturing
these inferences overall. Further, we hope that the
methods presented in this paper will inspire future
work which moves beyond targeting single correct
answers and begins to target human population dis-
tributions, from meaning and inferences to wider
issues such as opinions and political positions.
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7 Limitations

This paper has a number of limitations, being the
first exploration in this area. Firstly, we only
study English adjective-noun inferences. The set of
typically-privative adjectives and which inference
they trigger with which nouns may vary between
languages and cultures. Secondly, the dataset for
Experiment 1, which determines the inference by
providing an appropriate context, is not very large
(56 bigram/context pairs), resulting in lower than
ideal statistical power.

Third, for fair comparison to human participants,
and since the human data demonstrates that many
judgments are non-binary for this task, we use a 5-
point Likert scale rather than a binary yes/no ques-
tion. This assumes that the model can use the Likert
scale. While there is some previous work which
also uses Likert scales with similar models (Ar-
gyle et al., 2023; Chuang et al., 2024; Abeysinghe
and Circi, 2024), there is no work explicitly show-
ing that models understand Likert scales in gen-
eral. Thus, this design does not let us disentangle
whether the model is struggling with the task itself
or simply with the use of the Likert scale, despite
the 5-shot setting and the use of log-probabilities
to enforce use of the scale. This especially applies
to smaller models that are known to show weaker
instruction-following skills, and to non-instruction-
tuned models. Alternatives such as calculating the
surprisal of e.g. a fake watch is/is not a watch,
however, have their own issues, since LLMs have
been shown to be sometimes insensitive to negation
(Truong et al.; García-Ferrero et al., 2023).

Fourth, for comparison reasons, we use the same
prompts used in the human experiment to evaluate
the LLMs, including few-shot examples; however,
it is possible that this prompt phrasing and exact
choice of few-shot examples introduces artefacts
which adversely affect the LLMs’ performance and
“masks” their underlying ability at the task.

Finally, due to time and compute limitations, we
were only able to run the context generation method
for Llama 3 70B Instruct. In future work, we would
like to extend this method to other models and in-
vestigate which of the differences we see between
the context generation and the log-probability sam-
pling method for Llama 3 70B Instruct should be
attributed to the model vs. to the differences be-
tween the methods.
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Figure 9: Percentage of privative vs. subsective infer-
ences for bigrams in Experiment 1a (no context) for
each model (“Instruct/Chat” omitted for brevity).
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A Experiment 1a: No-context baseline

Figure 9 shows the proportions of bigram ratings
which are privative (“Definitely not” or “Probably
not”), subsective (“Definitely yes” or “Probably
yes”) or neither (“Unsure”) when the LLM (or hu-
man; 12 ratings/bigram for humans) rates these 28
bigrams without context in Experiment 1a. The
exact proportions are shown in Table 4. Each LLM
brings its own bias: Llama 3 70B is evenly bal-
anced, while Qwen 2 72B favors subsective ratings
and Mixtral 8x7B favors privative ratings. For hu-
mans, all of these bigrams have high variance when
rated in this out-of-context setting, which these per-
centages do not reflect.

B Data and prompts

B.1 Context examples from Ross et al. (2024)

To illustrate that the same bigram may be privative
or subsective in different contexts, we provide the
two contexts for fake concert written by Ross et al.
(2024) in Table 5.

B.2 Few-shot examples

The few-shot prompts for Experiment 1b and
Experiment 3b—5 bigrams with contexts, one
for each rating—are shown in Table 6. For the

Model priv. subs. unsure

Human 29.7% 57.4% 12.8%
Qwen 2 72B Instruct 30.8% 69.2% 0.0%
Llama 3 70B Instruct 46.2% 53.8% 0.0%
Llama 2 70B Chat 42.3% 34.6% 23.1%
Mixtral 7x8B Instruct 80.8% 15.4% 3.9%
Llama 3 8B Instruct 57.7% 42.3% 0.0%
Llama 2 13B Chat 84.6% 15.4% 0.0%
Llama 2 7B Chat 69.2% 0.0% 30.8%
Llama 3 70B 69.2% 30.8% 0.0%
Llama 3 8B 38.5% 53.8% 7.7%
Llama 2 70B 19.2% 19.2% 61.5%
Llama 2 13B 0.0% 0.0% 100%
Llama 2 7B 88.5% 11.5% 0.0%

Table 4: Percentage of privative vs. subsective infer-
ences for bigrams in Experiment 1a (no context, 5-shot).

chat/instruction-tuned models, we format the few-
shot prompt as a conversation between the assistant
and the user, where each context and question is
provided by the user and the assistant provides each
answer (without the “Answer” prefix). For the base
models, we concatenate the few-shot examples and
use the “Answer” prefix to indicate the answer. Hu-
mans see only the first three examples along with a
short explanation of the suggested reasoning, and
are encouraged but not required to pick the sug-
gested rating. For Experiment 1a and 2, where
no context is provided, we use the same bigrams,
shown in Table 7.

B.3 Prompts for context generation

We use the sequence of prompts shown in Table 8
to generate 12 contexts (“stories”) in a single chat.
We use three contexts already used in the few-shot
prompts for Experiment 1 as example stories to
help control the style and level of complexity of the
language. We found that providing example stories
was much more effective than trying to control the
output with detailed instructions. {bigram} and
{a/an} are substituted in at runtime.

C Additional qualitative analysis

C.1 Context generation

In addition to the regression in Section 5.4, we
conduct a qualitative error analysis of the bigrams
where the context generation method’s JS diver-
gence from the human distribution is particularly
high. Manual inspection of these bigrams suggests
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Privative-biased context: Subsective-biased context:

A well-known band gets into trouble when it
emerges that they included a fake concert in their
tax returns, which they claim had huge financial
losses (letting them get away with paying very
low taxes), but which never actually happened.

A political party disguises a fundraiser as a con-
cert so that they can hold it at a venue where
political rallies aren’t allowed. They even hire
an up-and-coming band to sing at the event. The
fake concert is a great success and the attendees
enjoy the music as well as networking with the
political candidates.

Table 5: The two contexts in Ross et al. (2024) for fake concert, which bias humans towards a privative vs. subsective
rating respectively. Contexts are carefully constructed to determine the inference without explicitly stating it or
implying it through value judgments.

Context: Sarah asks Leo to go to the store to buy a bell pepper. When he gets there, he realizes she
didn’t say which color pepper he should buy. He buys a green pepper. When he gets home, Sarah is
disappointed, because she prefers the red ones.
Question: On a scale of “Definitely not”, “Probably not”, “Unsure”, “Probably yes” or “Definitely
yes”, in this context, is the green pepper still a pepper?
Answer: Definitely yes

Context: Mark is an expert carver and carves a highly realistic pear out of dark colored wood. He
hides the wooden pear in his fruit bowl among the fruit he bought from the supermarket.
Question: On a scale of “Definitely not”, “Probably not”, “Unsure”, “Probably yes” or “Definitely
yes”, in this context, is the wooden pear still edible?
Answer: Definitely not

Context: Bob has climbing roses growing all up the side of his house, and wants to trim them for
the first time. He needs to find a way to reach the roses higher up. He looks in his shed to see what
he has and finds that he has a small ladder, which he can use to reach the roses halfway up the house,
though not the ones at the very top.
Question: On a scale of “Definitely not”, “Probably not”, “Unsure”, “Probably yes” or “Definitely
yes”, in this context, is the small ladder still useful?
Answer: Unsure

Context: Sam asks Carla to go to the store to buy ice for drinks for their party. Unfortunately, she
leaves it in her car all day and comes back in the evening to find that it has all melted. Carla doesn’t
know what to say to Sam about the melted ice, which he was planning to use in their cocktails.
Question: On a scale of “Definitely not”, “Probably not”, “Unsure”, “Probably yes” or “Definitely
yes”, in this context, is the melted ice still ice?
Answer: Probably not

Context: Jordan’s friend is on the high school basketball team, and is the tallest among her friends.
At the match, Jordan notices that her friend is actually a short basketball player, as most of the other
players are taller than her.
Question: On a scale of “Definitely not”, “Probably not”, “Unsure”, “Probably yes” or “Definitely
yes”, in this context, is the short basketball player still tall?
Answer: Probably yes

Table 6: Few-shot prompts for Experiment 1b and 3b, which give one bigram/context pair for each value on the
Likert scale to demonstrate use of the scale for “is-a” judgments.
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Question: On a scale of “Definitely not”, “Probably not”, “Unsure”, “Probably yes” or “Definitely
yes”, is a green pepper still a pepper?
Answer: Definitely yes

Question: On a scale of “Definitely not”, “Probably not”, “Unsure”, “Probably yes” or “Definitely
yes”, is a wooden pear still edible?
Answer: Definitely not

Question: On a scale of “Definitely not”, “Probably not”, “Unsure”, “Probably yes” or “Definitely
yes”, is a small ladder still useful?
Answer: Unsure

Question: On a scale of “Definitely not”, “Probably not”, “Unsure”, “Probably yes” or “Definitely
yes”, is melted ice still ice?
Answer: Probably not

Question: On a scale of “Definitely not”, “Probably not”, “Unsure”, “Probably yes” or “Definitely
yes”, is a short basketball player still tall?
Answer: Probably yes

Table 7: Few-shot prompts for Experiment 1a and Experiment 2, which give one bigram for each value on the Likert
scale to demonstrate use of the scale for “is-a” judgments.

In this task, you will write short, simple stories of 50-100 words about specific objects or things. The
story should use simple language and describe the object in detail.

Example: Write a short, simple story about a wooden pear.
Story: Mark is an expert carver and carves a highly realistic pear out of dark colored wood. He
hides the wooden pear in his fruit bowl among the fruit he bought from the supermarket. When his
friends come to visit, only one of them noticed the wooden pear hiding among the fruit.

Example: Write a short, simple story about melted ice.
Story: Sam asks Carla to go to the store to buy ice for drinks for their party. Unfortunately, she
leaves it in her car all day and comes back in the evening to find that it has all melted. Carla doesn’t
know what to say to Sam about the melted ice, which he was planning to use in their cocktails.

Example: Write a short, simple story about a short basketball player.
Story: Jordan’s friend is on the high school basketball team, and is the tallest among her friends. At
the match, Jordan notices that her friend is actually a short basketball player, as most of the other
players are taller than her. Even so, her friend does very well in the game and scores six points.

Now, write a short, simple story about {a/an} {bigram}, which includes the phrase “{bigram}” and
describes the bigram in detail. Start your story with “Story:”.

Write another different story about {a/an} {bigram}. Start your story with “Story:”. (repeated 2x)

Great! Write three more stories about {a/an} {bigram}. Number your stories with “Story 1:”, “Story
2:” and “Story 3:”. (repeated 3x)

Table 8: Prompts for Experiment 3a to generate contexts featuring a given bigram in which the inference “Is an
{adjective} {noun} a {noun}?” will later be judged.
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that some issues likely stem from Llama 3 70B In-
struct not picking same the (literal or abstract) noun
meaning as humans: for example, most contexts for
useful heart involve a metaphorical heart (e.g. the
heart of a community), while false market contexts
all involve physical markets rather than economic
markets. In some cases, the model also appears to
interpret the adjective metaphorically or loosely:
judging by the generated contexts, Llama 3 seems
to think that a fake idea is simply a wrong idea or
false idea. While fake can sometimes mean false
and vice versa, this is not the intuition the authors
had about fake idea. Finally, some bigrams also get
misunderstood as noun-noun compounds such as
counterfeit attack in the generated context in Ap-
pendix D, or incorporated into longer noun-noun
compounds, such as useful attack dog or former
attack helicopter.

More broadly, while the LLM generates pleas-
ingly diverse contexts for examples like fake crowd,
other examples such as fake concert are lacking in
diversity, with essentially the same blueprint being
repeated in all 12 stories.

D Generated contexts

To illustrate the qualitative analysis in Section 5.4,
we provide a representative context for homemade
cat and two for fake leg. We further show 9
randomly sampled contexts generated by Llama
3 70B Instruct, one for each of the 6 typically-
privative adjectives, and one context generated
for the typically-subsective adjectives illegal, use-
ful and multicolored. (Contexts for the typically-
subsective adjectives tend to follow an uninterest-
ing, predictable pattern; we stumbled across this
interesting supposedly-privative example involving
multicolored).

1. Context: Ben’s mom is a talented seamstress,
and she helps him make a homemade cat out
of old t-shirts and fabric remnants. They stuff
the cat with polyester fiberfill and add a sweet
face made from felt. Ben names the cat Stitch
and takes it to school for show-and-tell. His
classmates ooh and ahh over Stitch’s colorful
patches and softness.
LLM Rating: Probably not (privative)

2. Context: In the museum of medical history, a
fake leg was on display as part of an exhibit
on the evolution of prosthetics. The fake leg
was made in the 19th century, and was crafted

from wood and leather. It was a crude but
functional device, with a simple hinge at the
knee and a leather strap to hold it in place.
Visitors marveled at the primitive technology,
and were amazed by how far prosthetic design
had come since then. The fake leg was a tes-
tament to the ingenuity and perseverance of
people with disabilities throughout history.
LLM Rating: Probably not (privative)

3. Context: Rachel, a young amputee, was
thrilled to receive her new fake leg from the
hospital. It was her first prosthetic, and she
couldn’t wait to start learning how to walk
again. The fake leg was custom-made to fit
her perfectly, with a soft, cushioned socket
and a sturdy metal limb. With the help of her
physical therapist, Rachel quickly learned to
navigate the fake leg, and soon she was run-
ning and playing with her friends like she used
to.
LLM Rating: Probably yes (subsective)

4. Context: At the sci-fi convention, attendees
are amazed by an artificial painting that ap-
pears to come to life. The painting, created
by a team of digital artists, depicts a fantas-
tical landscape with towering mountains and
glowing forests. As people walk by, the paint-
ing responds by changing color, shape, and
even emitting sounds and scents. The artificial
painting is a huge hit, and people line up to
experience its immersive, interactive magic.
LLM Rating: Definitely yes (subsective)

5. Context: The detective was called to inves-
tigate a counterfeit attack on a popular on-
line shopping website. The hackers had cre-
ated fake websites that looked identical to the
real one, tricking customers into entering their
credit card information. The detective worked
tirelessly to track down the culprits, following
a trail of digital clues that led him from server
to server. Finally, he identified the IP address
of the hackers and worked with the authorities
to shut down the operation, saving thousands
of people from financial loss.
LLM Rating: Definitely yes (subsective)
Authors’ note: The LLM interpreted coun-
terfeit attack as a noun-noun compound here,
not as an adjective-noun combiniation (i.e. it
is an attack involving counterfeits, not an at-
tack that is counterfeit).
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6. Context: Rachel is a set designer for a film
production company. She needs a fake stick
that looks like a real magic wand for an up-
coming fantasy movie. She searches high
and low and finally finds the perfect fake
stick, complete with intricate carvings and
a sparkling crystal at the tip. The fake stick
becomes a key prop in the movie, and the ac-
tors love using it during filming. The movie
goes on to become a huge hit, and Rachel’s
fake stick is praised as one of the most iconic
props in the film.
LLM Rating: Definitely yes (subsective)

7. Context: The antique shop owner was thrilled
to find an old chest in the attic of his newly in-
herited store. As he rummaged through it, he
found a stack of old bills that looked like they
dated back to the 1800s. But as he examined
them closer, he realized they were actually
false currency, likely created by a counter-
feiter from that era. Despite being worthless,
the bills were still a fascinating piece of his-
tory, and the owner decided to display them
in his shop as a curiosity.
LLM Rating: Probably not (privative)

8. Context: Jack’s former reason for going to
the beach every summer was a faded, beach
towel that his family had used for years. The
towel had a fun, colorful design and a soft,
worn-out texture, but it was more than just a
towel - it was a symbol of family vacations
and summer fun. Jack would wrap himself
in it after a long day of swimming, but after
his family stopped going to the beach, the
towel was forgotten in the back of a closet, a
reminder of his former reason for soaking up
the sun.
LLM Rating: Definitely not (privative)

9. Context: Lily’s friend Emma lends her a
knockoff jewel to wear to a formal dance.
The knockoff jewel is a beautiful, long neck-
lace with a big, fake pearl pendant. Lily loves
the necklace and feels like a princess when
she wears it. However, when she tries to re-
turn it to Emma, she realizes that she lost the
clasp and can’t find it anywhere. Emma is
upset, but Lily promises to buy her a new one
to replace it.
LLM Rating: Definitely yes (subsective)

10. Context: In the small village of Ravenswood,
a mysterious illegal currency began to circu-
late. The coins were made of a heavy, dark
metal and featured an image of a raven on
one side and a crescent moon on the other.
They were stamped with a strange symbol
that no one could decipher. At first, the vil-
lagers were wary of the illegal currency, but
as more and more merchants began to accept
it, it became a popular alternative to the offi-
cial coins. However, the village elder warned
that the authorities would soon crack down on
the illegal currency, and those caught using it
would face severe penalties.
LLM Rating: Definitely yes (subsective)

11. Context: In a small village, there lived a re-
spected elder named Nalani who used a useful
fruit - a sweet and nutritious mango with a
yellow skin and creamy flesh. Nalani would
dry mango slices to create a natural sweet-
ener for her traditional recipes, and she would
also use mango oil to nourish her skin and hair.
The villagers would come to Nalani for beauty
tips, and she would share her secrets of using
the mango to promote healthy skin and hair.
Nalani’s wisdom and knowledge of the useful
mango were cherished by the community, and
she was revered as a guardian of traditional
knowledge.
LLM Rating: Definitely yes (subsective)

12. Context: On the beach, Jack builds an intri-
cate sandcastle, topped with a multicolored
image of a dragon. The dragon’s scales glint
in the sunlight, made from tiny shells and
pebbles in shades of green, blue, and pur-
ple. As the tide comes in, Jack watches as
the dragon begins to dissolve, its multicolored
image slowly disappearing into the waves. He
smiles, knowing that the memory of his cre-
ation will stay with him long after the castle
is gone.
LLM Rating: Probably not (privative)

E Additional experiment results

E.1 Tabular numerical results

Detailed numerical results for the figures in the
main body of the paper, including results for the
base models, are shown in Tables 10, 12, 13 and 14.
Table 9 shows thresholded counts for how many
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JS divergence Privative Subsective

Both low (< 0.25) 103 339
Both high (> 0.5) 31 3
Log-prob > context 187 39
Context > log-prob 45 7

Table 9: Number of bigrams with privative vs. subsec-
tive adjectives where Jensen-Shannon divergence is low
(<0.25) for both Method 2 (log-probability) and Method
3 (context generation), high (>0.5) for both, or where
one Method is (<0.5 and) better than the other.

bigrams each method of obtaining a distribution
performs better for.

E.2 Accuracy within 1 SD for Experiment 1b

Figure 12 shows Experiment 1b, which predicts the
inference given the context, using the more lenient
accuracy within 1 SD of the human mean metric
introduced in Section 5.1. This more lenient metric
does not penalise models which use “Unsure”, pro-
vided that that is within human ratings. With this
metric, performance scales uniformly with size for
instruction-tuned models.

E.3 Experiment 1b: Base models

For the inference task where the context is pro-
vided, Experiment 1b, we see in Figure 11 and
Table 12 that Llama 3 70B actually out-performs
its Instruct model overall by 7 points of accuracy.
This is largely due to its high accuracy on priva-
tive contexts (0.93 instead of 0.61), which com-
pensates for its lower accuracy on subsective con-
texts (0.75 instead of 0.93). We see the same pat-
tern for Llama 3 8B, which is better at privative
contexts and worse at subsective contexts than its
instruction-tuned counterpart. One possibility is
that Llama 3 Instruct is generally more biased to
affirmative ratings (i.e. subsective ratings on this
scale) after instruction/helpfulness tuning, thus do-
ing better in the subsective context simply because
a subsective rating is correct there. We can see in
Table 4 that when no context is provided (Experi-
ment 1a), Llama 3 Instruct assigns subsective and
privative ratings roughly evenly across bigrams,
while Llama 3 has a bias (69.2%) towards giving
these bigrams with typically-privative adjectives
privative ratings. For Llama 3, we see scaling with
size for both the accuracy metric and the accuracy
within 1 SD metric, as shown in Figure 11 and
Figure 12.

This pattern does not occur in Llama 2 across the
board - we see a marked improvement for Llama
2 7B over Llama 2 7B Chat in both context types,
but Llama 2 13B Chat is better at privative con-
texts than Llama 2 13B and only slightly worse at
subsective contexts, suggesting no overall pattern
for Llama 2, and no effect of its type of instruction
tuning. Likewise in Table 4, we see that instruction-
tuning Llama 2 70B does not result in a large shift
in the ratio of privative to subsective ratings, but
rather mostly reduces the proportion of “Unsure”
ratings. Notably, we actually see inverse scaling
with size for Llama 2 on all splits of this task (see
Figure 11) when using the accuracy metric, but
regular scaling with size using the accuracy within
1 SD metric, which does not punish the “Unsure”
rating so harshly (Figure 12).

E.4 Experiment 2: Base models

On the inference task where no context is provided,
Experiment 2, we see in Table 14 that Llama 3
70B, Llama 3 8B and Llama 2 70B perform com-
parably to their instruction-tuned counterparts us-
ing the within 1 SD metric. Performance is less
predictable for the smaller Llama 2 models, with
the ranking Llama 2 13B Chat > Llama 2 7B >
Llama 2 13B > Llama 2 7B Chat. As discussed
in the main body of the paper, this metric is quite
lenient – the fact that Llama 2 7B Chat actually
underperforms the random baseline, and that the
smaller Llama 2 models underperform the “major-
ity” baseline by at least 20 points of accuracy), is
itself striking, suggesting a distinct lack of com-
prehension of the task when presented out of the
blue with no context. While some of this difficulty
may be attributed to the Likert scale, even these
small models perform at at least 60% accuracy us-
ing the same metric and Likert scale (Table 13)
when a context is provided, so the difficulty must
lie at least partially with the out-of-the-blue setting.
Perhaps these older, smaller models do not capture
enough information about how the world typically
is from their pretraining (do not have sufficiently
human-like “priors” or world knowledge). Looking
at the distributions they produce, Figure 14 shows
that they distribute their probability mass relatively
evenly across the scale for subsective adjectives,
resulting in a poor fit. Table 10 shows the Jensen-
Shannon divergences, which are relatively low for
subsective adjectives for these models. Interest-
ingly, however, models of all sizes are competitive
for fitting the distribution of typically-privative ad-
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JS Divergence
Model Priv. Subs. Total

Human 0 0 0
Llama 3 70B Instruct 0.26 0.08 0.17
Qwen 2 72B Instruct 0.33 0.08 0.19
Llama 3 70B 0.16 0.21 0.19
Llama 2 70B Chat 0.18 0.25 0.22
Mixtral 7x8B Instruct 0.32 0.13 0.22
Llama 2 70B 0.17 0.30 0.24
Llama 3 8B 0.18 0.32 0.26
Llama 3 8B Instruct 0.18 0.34 0.26
Llama 2 13B Chat 0.25 0.35 0.30
Llama 2 7B 0.20 0.43 0.32
Llama 2 13B 0.21 0.43 0.32
Uniform baseline 0.20 0.46 0.34
Llama 2 7B Chat 0.29 0.46 0.38
“Majority” baseline 0.71 0.12 0.40

Table 10: Jensen-Shannon divergence between per-
bigram rating distributions for humans and LLMs when
sourced from log-probabilities, for privative vs. subsec-
tive adjectives, including base models.

jectives overall, with Qwen 2 72B Instruct, Mixtral
7x8B Instruct and Llama 2 7B Chat scoring the
lowest at around 0.3 JS divergence. Fitting the
human distribution of privative adjectives is not a
function of model size at all.

E.5 Experiment 1c: Zero-shot inferences with
context

Experiment 1c performs an ablation study on Ex-
periment 1b where we run the same experiment of
determining the inference given a biasing context,
but 0-shot instead of with 5-shot examples of “is-a”
inferences on the Likert scale. Table 15 shows the
results of Experiment 1c.

Whether the 5-shot examples help or hinder de-
pend on the individual model. For Llama 3 70B
Instruct, Llama 2 13B Chat, Llama 2 7B Chat and
Mixtral 7x8B Instruct, we see a drop of 3-14 points
in accuracy when we prompt the model 0-shot. For
the other three instruct models, however, Llama 2
70B Chat, Llama 3 8B Instruct and Qwen 2 72B
Instruct, we see a 6-9 point increase in accuracy
when we prompt 0-shot, suggesting that these mod-
els found the 5 examples (which were examples of
using the scale with “is-a” inferences, but were not
exactly the target task which always repeated the
noun) misleading rather than helpful.

Turning to the base models, we see a 4-13 point

Coefficient β̂ p

Log-probability
Intercept 0.61 p < 0.01
Privative -0.40 p < 0.01
Human mean -0.13 p < 0.01
Human SD 0.14 p < 0.01
75th-90th percentile 0.01 p = 0.56
50th-75th percentile 0.02 p = 0.22
25th-50th percentile 0.02 p = 0.25
Zero frequency 0.01 p = 0.36
Privative:Human mean 0.10 p < 0.01

Context generation
Intercept 0.93 p < 0.01
Privative -0.61 p < 0.01
Human mean -0.19 p < 0.01
Human SD 0.15 p < 0.01
75th-90th percentile 0.02 p = 0.38
50th-75th percentile 0.03 p = 0.15
25th-50th percentile 0.03 p = 0.16
Zero frequency 0.03 p = 0.09
Privative:Human mean 0.16 p < 0.01

Table 11: Coefficients for the regressions
JSDivergence ∼ AdjectiveType * HumanMean +
HumanSD + BigramFrequency for each method in
Section 5.4. For the adjective type factor, subsective is
the first level (intercept), for frequency bins, 90th-99th
percentile is the first level (intercept); dummy coding is
used throughout.

drop for all models (Llama 2 70B, Llama 3 8B,
Llama 2 13B, Llama 2 7B) except Llama 2 70B
when prompted 0-shot instead of 5-shot. Llama
2 70B shows a 38 point increase in accuracy on
this task when prompted 0-shot. This is because its
very low score on the 5-shot task is largely caused
by it answering “Unsure” for many bigrams, which
is always considered incorrect under this metric.
Without an example where “Unsure” is used, even
though “Unsure” is mentioned as a scale item,
Llama 2 70B uses this rating far less often and
is able to score much higher on this task. This is in
part an artefact of how this metric is scored – recall
from Figure 12 that Llama 2 70B still scores well
on the more lenient accuracy within 1 SD metric,
which includes “Unsure” for many bigrams.

E.6 Regression details for Section 5.4
Table 11 and Figure 15 show the coefficients and
effects plots for the two regressions in Section 5.4.
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Accuracy
Model Privative context Subsective context High freq. Zero freq. Total

Human 0.78 0.81 0.80 0.79 0.79
Llama 3 70B 0.93 0.75 0.85 0.83 0.84
Qwen 2 72B Instruct 0.68 0.93 0.80 0.83 0.80
Llama 3 70B Instruct 0.61 0.93 0.80 0.75 0.77
Mixtral 7x8B Instruct 0.79 0.68 0.80 0.75 0.73
Llama 2 7B 0.82 0.61 0.60 0.92 0.71
Llama 3 8B 0.54 0.86 0.75 0.67 0.70
Llama 3 8B Instruct 0.29 0.96 0.60 0.58 0.63
Llama 2 13B Chat 0.89 0.36 0.60 0.67 0.63
Llama 2 70B Chat 0.50 0.68 0.70 0.42 0.59
Llama 2 13B 0.64 0.39 0.55 0.42 0.52
Llama 2 7B Chat 0.75 0.25 0.50 0.50 0.50
Llama 2 70B 0.29 0.36 0.25 0.42 0.32
Random baseline 0.4 0.4 0.4 0.4 0.4

Table 12: Accuracy on the (5-shot) context-based inference task (Experiment 1) overall, by bigram frequency and
by context bias.

Figure 10: Accuracy within 1 SD of the human mean on the context-based inference task for instruction-tuned
models (5-shot). Under this more lenient metric, accuracy increases with model size for all models.

Figure 11: Accuracy on the context-based inference task for base models (5-shot). Accuracy increases with
parameters for Llama 3, but drops for Llama 2. However, accuracy within 1 SD on this task increases with model
parameters – see Figure 12.
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Accuracy
Model Privative context Subsective context High freq. Zero freq. Total

Human 0.91 0.91 0.92 0.89 0.90
Llama 3 70B 0.93 0.86 0.85 1.00 0.89
Llama 2 70B Chat 0.89 0.86 0.85 0.83 0.88
Qwen 2 72B Instruct 0.79 0.93 0.85 0.83 0.86
Llama 2 70B 0.86 0.79 0.75 0.83 0.82
Llama 3 70B Instruct 0.61 1.00 0.80 0.92 0.80
Llama 3 8B 0.71 0.86 0.80 0.75 0.79
Llama 2 13B 0.89 0.61 0.65 0.75 0.75
Mixtral 7x8B Instruct 0.75 0.64 0.70 0.67 0.70
Llama 3 8B Instruct 0.46 0.89 0.65 0.67 0.68
Llama 2 7B Chat 0.79 0.57 0.55 0.83 0.68
Llama 2 7B 0.79 0.57 0.55 0.83 0.68
Llama 2 13B Chat 0.93 0.36 0.60 0.75 0.64
Random baseline 0.64 0.43 0.40 0.50 0.54

Table 13: Accuracy within 1 SD of human mean on the (5-shot) context-based inference task (Experiment 1) overall,
by bigram frequency and by context bias.

Accuracy (µ± 1σ)
Model Privative Subsective High frequency Zero frequency Total

Human 0.903 0.960 0.939 0.933 0.933
Qwen 2 72B Instruct 0.886 0.995 0.946 0.967 0.944
Llama 3 70B Instruct 0.778 0.995 0.892 0.911 0.892
Llama 3 70B 0.815 0.960 0.907 0.928 0.891
“Majority” baseline 0.781 0.993 0.881 0.912 0.885
Llama 2 70B 0.870 0.886 0.882 0.850 0.878
Llama 2 70B Chat 0.831 0.767 0.824 0.722 0.797
Mixtral 7x8B Instruct 0.653 0.914 0.803 0.756 0.791
Llama 3 8B 0.765 0.795 0.806 0.783 0.781
Llama 3 8B Instruct 0.833 0.679 0.735 0.789 0.752
Llama 2 13B Chat 0.455 0.776 0.706 0.517 0.624
Llama 2 7B 0.336 0.807 0.649 0.472 0.584
Analogy baseline 0.648 0.431 0.527 0.567 0.534
Llama 2 13B 0.772 0.317 0.566 0.433 0.533
Random baseline 0.610 0.325 0.464 0.456 0.460
Llama 2 7B Chat 0.447 0.252 0.394 0.267 0.345

Table 14: Accuracy within 1 SD of the human mean on the (5-shot) no-context inference task (Experiment 2) by
bigram frequency and by adjective type (typically-privative or typically-subsective).
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Figure 12: Accuracy within 1 SD of the human mean on the context-based inference task for base models (5-shot).
Under this more lenient metric, overall accuracy increases with model size, though still not in every category for
Llama 2.

Figure 13: Accuracy within 1 SD of the human mean on the no-context inference task (Experiment 2) by bigram
frequency and by adjective type (typically-privative or typically-subsective) for base models (5-shot).

Figure 14: Average log-probability distribution for (typically) subsective vs. privative adjectives for base LLMs,
compared to the average human distribution.
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Accuracy
Model Privative context Subsective context High freq. Zero freq. Total

Human 0.78 0.81 0.80 0.79 0.79
Qwen 2 72B Instruct 0.79 0.93 0.85 0.83 0.86
Llama 3 70B Instruct 0.86 0.82 0.80 0.83 0.84
Llama 3 70B 0.86 0.57 0.70 0.58 0.71
Llama 3 8B Instruct 0.64 0.75 0.70 0.67 0.70
Llama 2 70B 0.68 0.71 0.65 0.67 0.70
Mixtral 7x8B Instruct 0.75 0.64 0.70 0.67 0.70
Llama 2 70B Chat 0.82 0.53 0.55 0.83 0.68
Llama 2 7B Chat 0.89 0.39 0.55 0.75 0.64
Llama 2 7B 0.57 0.64 0.45 0.67 0.61
Llama 3 8B 0.89 0.25 0.40 0.75 0.57
Llama 2 13B Chat 0.93 0.21 0.50 0.58 0.57
Llama 2 13B 0.89 0.07 0.45 0.50 0.48
Random baseline 0.4 0.4 0.4 0.4 0.4

Table 15: Accuracy on the zero-shot context-based inference task (Experiment 1c) overall, by bigram frequency and
by context bias.

(a) Log-probability (b) Context generation

Figure 15: Effects plots for the regressions JSDivergence ∼ AdjectiveType * HumanMean + HumanSD +
BigramFrequency for each method in Section 5.4. There is no significant effect of bigram frequency.
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Abstract

The evaluation of generative models in Ma-
chine Reading Comprehension (MRC) presents
distinct difficulties, as traditional metrics like
BLEU, ROUGE, METEOR, Exact Match, and
F1 score often struggle to capture the nuanced
and diverse responses. While embedding-based
metrics such as BERTScore and BARTScore
focus on semantic similarity, they still fail to
fully address aspects such as recognizing addi-
tional helpful information and rewarding con-
textual faithfulness. Recent advances in large
language model (LLM) based metrics offer
more fine-grained evaluations, but challenges
such as score clustering remain. This paper in-
troduces a multi-aspect evaluation framework,
CHIE, incorporating aspects of Correctness,
Helpfulness, Irrelevance, and Extraneousness.
Our approach, which uses binary categorical
values rather than continuous rating scales,
aligns well with human judgments, indicating
its potential as a comprehensive and effective
evaluation method.

1 Introduction

Evaluating generative models in machine reading
comprehension (MRC) presents distinct challenges,
as traditional n-gram-based metrics like BLEU (Pa-
pineni et al., 2002), ROUGE (Lin, 2004), Exact
Match (EM), and F1 score often prove inadequate.
These metrics are typically limited in their ability to
assess the generalization capabilities of generative
models, which are characterized by their produc-
tion of diverse and nuanced responses.

To address the n-gram matching problem,
embedding-based metrics, i.e., BERTScore (Zhang
et al., 2020) and BARTScore (Yuan et al., 2021),
focus on semantic similarity assessments of the
ground truth and prediction. Moreover, various
evaluation criteria have been proposed to assess
model outputs for generalized evaluation methods.

∗Equal Contributions.

For instance, USR (Mehri and Eskenazi, 2020)
evaluates dialogue responses based on fluency,
relevance, and knowledge conditioning using a
RoBERTa-base model (Liu et al., 2019). Similarly,
UniEval (Zhong et al., 2022) employs T5 (Raffel
et al., 2020) to assess QA tasks from multiple per-
spectives, encoding texts as questions and answers
and scoring them across various dimensions. How-
ever, these methods typically require datasets for
fine-tuning, which can limit their applicability.

Recent advances in large language models
(LLMs) based metrics, such as a GPT-based met-
ric for translation (Kocmi and Federmann, 2023),
summarization (Liu et al., 2023), and dialogue (Lin
and Chen, 2023) tasks, offers more fine-grain eval-
uations using continuous rating scales. Despite
these improvements, challenges like score cluster-
ing remain. This is because generative answers
produced by LLMs require more generalized mea-
surements than extractive ones. Moreover, these
evaluation methods have mainly been used for
high-resource languages like English. For low-
resource languages, current research has not been
thoroughly tested, creating a gap in understanding
their performance in these languages.

In this paper, we propose a multi-aspect eval-
uation framework to assess the generalization of
in-context learning called CHIE comprising four
aspects: Correctness, Helpfulness, Irrelevance,
and Extraneousness. Our work distinguishes itself
from existing evaluation metrics, such as F1 and
BERTScore, as illustrated in Figure 1. In particu-
lar, we introduce a multi-aspect evaluation scheme
that delivers a more comprehensive and detailed
analysis of a model’s ability to present informa-
tion. Unlike other LLM-based evaluations, such as
LLM-EVAL, which provides a single numeric out-
put (e.g., three on a 1-5 scale) that lacks explainabil-
ity and can be challenging for human interpretation,
our approach uses binary categorical values with
objectively defined classes. Our method ensures
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Figure 1: A comparison between our proposed CHIE framework and different evaluation metrics.

explainability and human-interpretable scoring and
is specifically designed for the MRC task.

To demonstrate the generalization of our evalua-
tion method, we evaluate Machine Reading Com-
prehension (MRC) capabilities in a multilingual
environment. In particular, we evaluate six mod-
els on three languages compared to two evaluation
metrics using XQuAD (Artetxe et al., 2020). Our
findings reveal that commonly used metrics, such
as F1, EM, and BERTScore, lack generalizability
and do not accurately reflect the robustness of the
evaluated models. In contrast, our experiments
show that CHIE consistently aligns with human
judgments, indicating its potential as a more re-
liable alternative for evaluating model responses.
Furthermore, models evaluated using our proposed
metric exhibit improved generalization compared
to previous methods, suggesting that CHIE is more
effective at capturing performance nuances across
diverse scenarios. This is particularly significant
in complex and ambiguous cases where traditional
metrics fall short, underscoring the need for more
sophisticated evaluation frameworks.

In summary, our main contributions are as fol-
lows:

• We introduce CHIE, a new automatic evaluation
framework for machine reading comprehension
with large language models, leveraging multi-
dimensional aspects within a single prompt.

• We provide experimental evidence demonstrating

that our designed binary categorical values align
well with human evaluations.

• We show that CHIE can be applied to support
MRC evaluations across different languages.

2 Related Work

2.1 N-gram-based Metrics

Metrics such as BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), METEOR (Banerjee and
Lavie, 2005), Exact Match (EM) and F1 score were
primarily designed to rely on the n-gram overlap be-
tween model outputs and reference answers. These
metrics often fall short when applied to generative
models, which produce diverse and contextually
nuanced responses. They can overlook subtleties in
language use, creativity, and the overall coherence
of the generated text. Thus, there is a pressing need
to develop and adopt more sophisticated evaluation
metrics to capture the multifaceted nature of gener-
ative model outputs, ensuring that these models are
assessed more accurately and comprehensively.

2.2 Embedding-based Metrics

To enhance the semantic similarity between gener-
ated and reference texts, embedding-based metrics
utilizing word embeddings have been proposed.
BERTScore (Zhang et al., 2020) computes the se-
mantic similarity between the reference and the
target text using a pre-trained BERT model, while
BARTScore (Yuan et al., 2021) evaluates gener-
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ated text as a text generation task via a pre-trained
BART model. However, embedding-based and n-
gram-based methods exhibit inherent limitations
due to their reliance on reference texts, restricting
their applicability in tasks where a reference is un-
available. Additionally, they may fail to adequately
capture important aspects of overall quality, such
as fluency, faithfulness, coherence, and adherence
to specific instructions.

2.3 Multi-aspect Evaluation
Multiple aspects have been proposed to evaluate
various model output dimensions. For instance,
summarization tasks require consistency or nat-
uralness assessment, while dialogue tasks must
assess fluency and coherence. USR (Mehri and
Eskenazi, 2020) proposes evaluating dialogue re-
sponse generation across multiple aspects, such as
fluency, relevance, and knowledge conditioning,
using a RoBERTa-base model (Liu et al., 2019).
UniEval (Zhong et al., 2022) suggests training a
model to evaluate QA tasks from different perspec-
tives using T5. This is achieved by encoding both
source and target texts as questions and answers
and then computing a score. It can manage differ-
ent aspects of evaluation by modifying the question
format. Unlike these approaches, CHIE employs
LLMs as the base model with a single prompt, pro-
viding interoperability and eliminating the need for
model fine-tuning.

2.4 LLM-based Metrics
As LLMs become increasingly sophisticated, re-
cent studies have developed LLM-based metric
approaches for assessing natural language genera-
tion (NLG) outputs. Researchers have recognized
the limitations of traditional metrics and proposed
several novel methods to better evaluate genera-
tive models. GPTScore (Fu et al., 2023) outlines
a general framework to evaluate different aspects
of generated outputs based on posterior probabil-
ity. However, they are not focused on in-context
QA applications. Their score albeit showing high
correlation with human judgement, is not easily
interpretable, just like how perplexity is harder to
understand compared to accuracy. Kocmi and Fe-
dermann (2023) propose a GPT-based metric for
assessing translation quality. They utilized a contin-
uous rating scale ranging from 0 to 100 or a 1 to 5-
star ranking and found that their approach achieves
state-of-the-art accuracy, outperforming traditional
automatic metrics. However, the comprehensive

assessment by task-specific aspects remains insuf-
ficiently explored. In a similar vein, Liu et al.
(2023) propose G-EVAL, a framework using Large
Language Models (LLMs) with chain-of-thought
(CoT) reasoning and a form-filling paradigm, feed-
ing task-specific views as prompts in evaluation cri-
teria. However, their study observed that LLMs typ-
ically produced integer scores even when explicitly
prompted to provide decimal values. This tendency
resulted in numerous ties in the evaluation scores.
Subsequently, Lin and Chen (2023) introduced
LLM-Eval, a comprehensive multi-dimensional au-
tomatic evaluation for open-domain conversations
with LLMs. This method employs a single prompt
alongside a unified evaluation schema encompass-
ing various dimensions of evaluation with a contin-
uous rating scale.

3 Proposed Method

In this section, we discuss an LLM-based evalua-
tor covering multiple aspects of MRC called CHIE.
We first describe the desired Features in Section 3.1.
Second, we provide evaluation criteria for MRC
evaluations in Section 3.2. Last but not least, Sec-
tion 3.3 explains the components of CHIE-based
prompting.

3.1 Desired Features

As shown in Figure 2, we propose an evaluation
that goes beyond rewarding the answer to correct-
ness by assessing additional information accompa-
nying the answer as follows.

Reward relevant and helpful information.
The method should recognize and reward responses
that are not only accurate but also provide compre-
hensive and relevant information. This encourages
models to generate answers that are both correct
and rich in content.

Penalize unconnected information. While
helpful additional information is welcome, we want
to keep the response concise. The method should
penalize additional information that does not im-
prove the understanding of the question or answer.
This criterion also discourages the model from

“cheating” by excessively including phrases from
the context to increase the chance of obtaining a
reward from the previous criterion.

Penalize out-of-context information. The
method should penalize the inclusion of out-of-
context information, even if factually correct. This
criterion aligns with the spirit of reading compre-
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Figure 2: An illustration of our proposed CHIE framework: multi-aspects evaluation using a single prompt

hension assessment since we want to evaluate the
model’s capability to grasp and interpret the ques-
tion. Furthermore, by encouraging the response to
stick to the context, we also mitigate the risks of
hallucination.

3.2 Designed Evaluation Criteria For MRC

Our proposed method follows the traditional MRC
evaluation where each assessment consists of four
components: context, question, reference answer,
and response, as shown in Figure 2.
• Correctness: Assess whether the model’s re-

sponse is accurate wrt. the reference answer
(↑ higher is better).

• Helpfulness: Determine whether the model’s re-
sponse provides additional relevant details from
the context (↑ higher is better).

• Irrelevancy: Check whether the model’s re-
sponse contains irrelevant details from the con-
text (↓ lower is better).

• Extraneousness: Verify whether the model’s
response includes out-of-context information
(↓ lower is better).

3.3 CHIE-based Prompting

Our proposed method, CHIE, is a prompt-based
evaluator consisting of three main components:
• Task Instruction: This component guides a

LLM to do the required task.
• Evaluation Criteria: This component uses

agree-disagree questions to evaluate four specific
aspects of the model.

• Form-input Structure: This component pro-
vides a template for filling in the necessary infor-
mation for evaluation.
We concatenate the three components into a sin-

gle prompt (full prompt shown in Appendix A.2).
CHIE can efficiently generate multi-dimensional
binary classifications for the responses without re-
quiring multiple prompts. Ratings are then post-
processed by assigning “Agree” as 1 and “Disagree”
as 0. The large language model is invoked only
once, directly providing evaluation scores for each
dimension according to the defined schema.

4 Experimental Settings

Data. We focus on Thai, English, and Chinese
by leveraging the XQuAD dataset (Artetxe et al.,
2020). To ensure feasibility within resource con-
straints, including limited GPT-4 API access and
budget for human evaluators, we employ a subset
of the first 100 rows from the Thai XQuAD dataset.
Models. We evaluate openly released LLMs with
multilingual capabilities:
• OpenThaiGPT-7B (OpenThaiGPT, 2023): A

Llama2 and continues pretraining on a Thai cor-
pus with the application of supervised fine-tuning
(SFT).

• SeaLLM-7B V2 (Nguyen et al., 2023): A
Mistral-based model that continues pretrain-
ing on a Southeast Asia corpus, utilizing
both SFT and Direct Preference Optimization
(DPO) (Rafailov et al., 2023).

• WangchanLion-7B (Phatthiyaphaibun et al.,

157



2024): A MPT-based model that Sealion con-
tinues pretraining on a Southeast Asia corpus
and employs SFT.

• Llama-3-8B Instruct (Dubey et al., 2024): An
instruction model of Llama 3 from Meta that
utilizes both SFT and DPO.

• Llama-3.1-8B Instruct (Dubey et al., 2024): An
instruction model of Llama 3.1 that improved
the performance from Llama 3 by expanded mul-
tilingual support, an increased context window,
enhanced synthetic data generation capabilities,
and specialized fine-tuning for tool utilization.

• Llama-3-8B SEA-LION instruct (Singapore,
2024): An Llama 3.1 based model that continued
pre-training on the Llama 3 architecture, specif-
ically focused on Southeast Asian languages.
This model has been fine-tuned with approxi-
mately 100,000 English instruction-completion
pairs, along with a smaller set of around 50,000
pairs from various ASEAN languages, including
Indonesian, Thai, and Vietnamese.

English Prompts vs Native Prompts. We also
compared the evaluation performance of English
vs Native (i.e., Thai) prompts detailed in Appendix
A.3. The results suggest that English prompts yield
superior performance. This result conforms with
the literature (Lai et al., 2023).
Human Response Collection. The human re-
sponse annotation phase consists of three steps:
training, screening, and deployment. In the training
step, candidates were given 15 sample responses
with expected assessments to familiarize them-
selves with the task. Seven candidates partici-
pated in this step. In the screening step, candi-
dates were given 10 sample responses that they
needed to answer. The training and screening sam-
ples were obtained from questions 1 to 100 from
the Thai subset in the XQuAD dataset. In the de-
ployment step, we selected candidates who scored
more than 80% as our annotators. We obtained
five annotators as a result. These five annotators
were assigned to assess responses from three mod-
els, OpenThaiGPT, SeaLLMs, and WangchanLion,
answering 100 Questions in the XQuAD Dataset.
LLM candidates. We select robust and general-
ized LLMs to be the judge model: GPT-41, GPT-
4o2, GPT-3.5 Turbo3, and Gemini Pro 1.04.

1gpt-4-0613
2gpt-4o-2024-05-13
3gpt-3.5-turbo-0125
4gemini-1.0-pro-002

5 Experimental Results

In this section, we report experimental results from
three studies. Section 5.1 compares our multi-
aspect approach, CHIE, with two single-aspect met-
rics, F1 and BERTScore. Section 5.1 explores the
possibility of automating multi-aspect evaluations
using an LLM. Section 5.3 provides a component-
wise analysis of CHIE through A/B preference eval-
uation using humans and an LLM.

5.1 Single-Aspect vs Multi-Aspect Evaluations

Table 1 displays a comparison between the two sin-
gle aspect measures, F1 and BERTScore (BRTSc),
and the multi-aspect assessments, CHIE. We can
see that the BERTScore and F1 agree with each
other in the sense that WangchanLion has the high-
est F1 and BERTScore, while SeaLLM V2 has the
lowest F1 and BERTScore. For the multi-aspect
part, we employed five human evaluators and com-
puted the majority vote as the assessment result.
Interestingly, the multi-aspect results show a dis-
agreement with BERTScore and F1 in terms of cor-
rectness (C). SeaLLM V2 has the highest C score,
suggesting the superior capability to produce cor-
rect responses with respect to the reference answers.
Furthermore, SeaLLM V2 also exhibits the highest
helpfulness (H) score, suggesting the capability to
add useful information to the main answer while
staying within the context.

Single-Aspect Multi-Aspect
Model F1 BRTSc C ↑ H ↑ I ↓ E ↓

OpenThaiGPT 34.96 75.95 60 38 30 32
SeaLLM V2 14.00 63.10 80 80 20 45

WangchanLion 50.12 81.27 67 19 23 5

Table 1: Comparison between single-aspect evaluation
techniques, F1 and BERTScore (BRTSc), and our CHIE
multi-aspect summation measurements on three differ-
ent LLMs.

BRTSc Range C ↑ H ↑ I ↓ E ↓ Avg. Len.
Low 58 58 36 45 30.58

Medium 64 51 27 26 16.87
High 85 28 10 11 5.81

Table 2: BERTScore vs. CHIE summation measure-
ments vs. average answer length for different ranges of
BERTScore.

Table 2 provides a further analysis of the re-
lation between BERTScore (BERTSc) and each
of the CHIE aspects. The table shows three
BERTScore (BRTSc) ranges: the lowest, middle,
and highest BERTScore terciles of the responses
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Assessor
Correctness (C) ↑ Helpfulness (H) ↑ Irrelevancy (I) ↓ Extraneousness (E) ↓ Overall
P R F1 P R F1 P R F1 P R F1 P R F1

Gemini 97.35 88.89 92.93 85.11 29.20 43.48 65.38 23.29 34.34 69.23 32.93 44.63 89.04 52.73 67.00
GPT-3.5 91.67 95.65 93.62 72.26 81.75 76.71 63.64 28.77 39.62 44.87 42.68 43.75 75.93 73.35 74.62
GPT-4 98.99 94.69 96.79 94.20 47.45 63.11 51.14 61.64 55.90 77.61 63.41 69.80 84.83 71.74 77.74

GPT-4o 100.00 77.29 87.19 94.74 52.55 67.61 29.41 20.55 24.19 74.36 35.37 47.93 84.66 55.31 66.91

Table 3: LLMs-automated evaluation compared to human evaluation. P, R , and F1 denote as precision, recall, and
F1 score computed by comparing the evaluation outputs of each LLM compared to human majority responses.

Assessor
Correctness (C) ↑ Helpfulness (H) ↑ Irrelevancy (I) ↓ Extraneousness (E) ↓ Overall
P R F1 P R F1 P R F1 P R F1 P R F1

Human 4 97.06 96.12 96.59 97.98 46.86 63.40 71.11 37.21 48.85 89.83 61.63 73.10 93.37 64.96 76.61
Human 5 88.94 97.57 93.06 87.50 54.11 66.87 88.46 53.49 66.67 65.48 63.95 64.71 84.49 70.77 77.02

GPT-4 98.99 95.15 97.03 94.20 31.40 47.10 62.50 63.95 47.10 82.09 63.95 71.90 87.91 63.42 71.90

Table 4: Agreement between Human 4, Human 5, and GPT-4 answers using F1 score.

to 100 XQuAD questions from OpenThaiGPT,
SeaLLM V2, and WangchanLion, bringing the to-
tal of responses to 300. Therefore, each tercile
contains exactly 100 responses. We can see that
the high BERTScore range is associated with a
higher correctness (C) score. This is because, like
BERTScore, the correctness aspect (C) assesses
whether the model’s response conveys the same
meaning as the reference answer. We can also see
that low BERTScores are associated with higher H,
I, and E counts since agreement to these questions
involves the inclusion of additional information
beyond the reference answer.

These results show that while a high BERTScore
indicates semantic faithfulness to the reference
answer, a low BERTScore can mean many dif-
ferent things: an incorrect answer, an inclusion
of helpful information, a verbose response, or an
out-of-context response. In other words, a re-
sponse can be both correct and helpful but obtain
a low BERTScore due to the semantic discrep-
ancy with respect to the reference answer. Further-
more, since we use the XQuAD reference answers
for BERTScore similarity determinations, higher
BERTScores tend to have shorter answers. In ap-
plications demanding contextually rich responses,
BERTScore may not be indicative of desired re-
sponses. These results highlight the merit of our
multi-aspect assessment approach in comparison
to single-aspect measures like BERTScore or F1.

5.2 LLMs as Multi-Aspect Evaluators

Let us now explore the possibility of automating
the CHIE evaluation using an LLM. We identified

four state-of-the-art LLM candidates: Gemini Pro
1.0 (Team, 2024), GPT-3.5 Turbo, GPT-4, and GPT-
4o. For consistency, we use the same prompt for
all LLMs. Details are given in Appendix A.2.

As shown in Figure 3, this study contains two
analyses: LLM-to-LLM and LLM-to-Human com-
parisons.

Figure 3: Overview of our analyses comparing LLMs
and human assessors.

Analysis 1: LLM-to-LLM Comparisons. For
ground truths, we use the same voting results from
the five human evaluators as explained in Section
5.1. We then compared the assessments from four
LLMs, Gemini, GPT-3.5, GPT-4, and GPT-4o. Ta-
ble 3 shows that GPT-4 outperforms other models
in terms of Correctness, Irrelevancy, and Extrane-
ousness. In the aspect of Helpfulness, GPT-3.5
demonstrates superior performance. Overall, GPT-
4 provides the highest F1 score among the evalu-
ated models. Consequently, we selected GPT-4 as
the LLM evaluator for the rest of the presentation.
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Subset Model
Single-Aspect Multi-Aspect

Tokens (avg)
F1 BRTSc C ↑ H ↑ I ↓ E ↓

Thai

OpenThaiGPT-7B 34.96 75.95 58 13 28 31 10.35
SeaLLM-7B V2 14.08 63.10 76 48 32 31 27.81
WangchanLion-7B 50.12 81.27 64 8 28 5 5.50
Llama-3-8B Instruct 13.03 61.69 88 68 9 8 27.76
Llama-3.1-8B Instruct 41.21 73.02 85 19 12 8 12.67
Llama-3-8B SEA-LION instruct 51.22 78.07 93 34 5 0 12.53

English

OpenThaiGPT-7B 18.12 76.61 42 8 54 52 24.59
SeaLLM-7B V2 22.86 84.03 96 33 6 12 19.98
WangchanLion-7B 26.40 85.09 68 20 30 22 13.64
Llama-3-8B Instruct 19.80 83.68 94 59 4 6 21.13
Llama-3.1-8B Instruct 24.18 84.26 88 41 12 14 18.78
Llama-3-8B SEA-LION instruct 42.14 87.58 94 34 5 12 11.58

Chinese

OpenThaiGPT-7B 5.63 54.28 26 12 61 62 147.75
SeaLLM-7B V2 19.04 58.27 88 39 16 12 24.86
WangchanLion-7B 44.55 73.28 52 4 27 21 18.53
Llama-3-8B Instruct 12.12 53.52 86 66 9 7 47.91
Llama-3.1-8B Instruct 42.00 68.76 91 17 3 2 10.66
Llama-3-8B SEA-LION instruct 30.95 63.74 88 28 13 8 14.69

Table 5: The result of CHIE evaluation across three different languages (Thai, English, and Chinese) and six
LLMs (OpenThaiGPT-7B, SeaLLM-7B V2, WangchanLion-7B , Llama-3-8B Instruct, Llama-3.1-8B Instruct and
Llama-3-8B SEA-LION instruct).

Analysis 2: LLM-to-Human Comparisons.
We used three human evaluators to compute the
ground truths, as shown in Figure 3. The other
two evaluators were left out for performance com-
parison with GPT-4. Table 4 shows that GPT-4’s
evaluations align closely with human evaluators,
achieving an overall F1 score of 71.90. This dif-
fers by only 4.71 points from the fourth human
evaluator and by 5.12 points from the fifth human
evaluator. Thus, given the time and cost of hu-
man evaluation, GPT-4 is a viable alternative for
assessing the MRC task.

5.3 Human vs LLM Preferences

Due to the extractive nature of the MRC task, we
aimed to verify whether humans prefer longer or
shorter responses. To investigate this, we con-
ducted a head-to-head comparison by manually
creating new XQuAD answers that encapsulate var-
ious aspects of our criteria:
• C vs CH: Whether humans or GPT-4 prefer an-

swers that contain only the Correctness aspect
(C) or those that encompass both Correctness and
Helpfulness aspects (CH).

• C vs CI: Whether humans or GPT-4 prefer an-
swers that contain only the Correctness aspect

(C) or those that include both Correctness and
Irrelevancy aspects (CI).

• CH vs CHI: Whether humans or GPT-4 prefer
answers with Correctness and Helpfulness (CH)
or those with Correctness, Helpfulness, and Irrel-
evancy (CHI).
We instructed five human evaluators to identify

their preferred answers in Thai as detailed in Ap-
pendix A.1. For comparison, we also used GPT-4
for evaluation following the instructions outlined
in Appendix A.1. From Table 6, we found that
humans exhibited a strong preference for shorter
answers, i.e., preferring C to CH and CI and CH
to CHI. For GPT-4, on the other hand, CH was
preferred to C. We can also see that although GPT-
4 preferred C to CI and CH to CHI, like humans,
the score differentials are not as strong. This re-
sult conforms with the observation presented by
Zheng et al. (2023) that LLMs such as Claude-v1
and GPT-4 tend to prefer longer responses.

Case Humans GPT-4
A B Tie A B Tie

C vs CH 91 4 5 15 83 2
C vs CI 99 1 0 60 40 0
CH vs CHI 98 1 1 67 27 6

Table 6: A/B preference evaluation conducted by hu-
mans and GPT-4 as evaluators.
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5.4 CHIE on generalizability across languages

After identifying GPT-4 as the most effective eval-
uation model, we expanded our study to include
additional languages from the XQuAD dataset to
assess behavior generalization across languages.
We added English and Chinese, ensuring that the
questions matched the same question IDs. Table 5
presents the results for 100 questions from the
XQuAD dataset in Thai, English, and Chinese, eval-
uated across six diverse models. The experiments
reveal the following:
• F1 and BERTScore (BRTSc) with Correct-

ness (C) and Helpfulness (H): Higher F1 and
BERTScore values are positively correlated with
higher Correctness (C) and Helpfulness (H)
scores. This means that models with better
overall performance, as indicated by F1 and
BERTScore, are more likely to generate re-
sponses that are accurate and useful.

• Token length can have both positive and neg-
ative effects: Longer token lengths generally
correlate with higher Correctness (C) and Help-
fulness (H). This suggests that longer responses
tend to be more thorough and accurate. How-
ever, as token length increases, there is a risk of
higher Irrelevancy (I) and Extraneousness (E).
This indicates that overly lengthy responses are
more likely to include irrelevant or unnecessary
content.

• Irrelevancy (I) and Extraneousness (E) with
F1 and BERTScore: Lower F1 and BERTScore
values are associated with higher Irrelevancy (I)
and Extraneousness (E) scores. This means that
models with poorer performance tend to produce
more irrelevant or extraneous information.

6 Conclusion

We present CHIE, a novel automatic evaluation
framework using GPT-4 for assessing MRC model
responses. In comparison to single-aspect mea-
sures such as BERTScore, CHIE provides a more
holistic means of assessing MRC responses by as-
sessing the helpfulness of the answer and screening
for irrelevancy and out-of-context information in
addition to correctness.

We also explore the possibility of using LLMs
as evaluators. The results demonstrate potential
for further development for using an LLM in a
completely automated evaluation process or as an
evaluator to reduce the human evaluation workload.

Limitations

• Although CHIE improves the comprehensiveness
in assessing MRC responses, its usefulness heav-
ily relies on the nature of underlying benchmark
questions. While XQuAD is an excellent re-
source for assessing MRC capabilities, due to
its extractive nature, its questions do not test the
commonsense reasoning capability or the abil-
ity to integrate world knowledge into the answer.
For future work, we plan to apply CHIE to other
benchmarks for richer assessments.

• In terms of preference, results from human eval-
uation contradict those from GPT-4. As a result,
it is still inconclusive whether the helpfulness as-
pect should be considered as a desired feature or
not. One possible explanation lies in the extrac-
tive nature of XQuAD questions that can be an-
swered with a short text sequence. Consequently,
the inclusion of additional information may not
always improve the desirability of responses. For
future work, we plan to compose our own bench-
mark for CHIE.

• CHIE uses an LLM for evaluation, which may
introduce bias into the framework and result in a
loss of interpretability.

Ethical Statement

The human annotators who participated in this
study were fairly compensated according to the
applicable labor laws.
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A Appendix

A.1 Instruction for Preferred Answers

Thai:

English translation:
“Which answer is better? You shall act as a

judge and evaluate the quality of the responses to
the user question provided by two AI assistants.
You should choose the assistant that follows the
user’s instructions and answers the user’s question
better. Your evaluation should consider factors
such as correctness, conciseness, relevancy, and
helpfulness.”

A.2 Evaluation Prompt

Please evaluate these answers based on
their accuracy and relevance to the pro-
vided passage based on the Criteria:

Q1. The Answer is Correct concerning
the Reference Answer. Do you agree or
disagree? Determine if the given answer
accurately matches the reference answer
provided. The correctness here means
the answer must directly correspond to
the reference answer, ensuring factual
accuracy.

Q2. The Answer Includes Relevant, Addi-
tional Information from the Context. Do
you agree or disagree? Determine if the
given answer accurately Assess whether
the answer provides extra details that are
not only correct but also relevant and en-
hance the understanding of the topic as
per the information given in the context.

Q3. The Answer Includes Additional, Ir-
relevant Information from the Context.
Do you agree or disagree? Check if the
answer contains extra details that, while

related to the context, do not directly per-
tain to the question asked. This informa-
tion is not necessary for answering the
question and is considered a digression.

Q4. The Answer Includes Information
Not Found in the Context. Do you agree
or disagree? Evaluate if the answer in-
cludes any correct information that is
not included in the context. This infor-
mation, even if correct, is extraneous as
it goes beyond the provided text and may
indicate conjecture or assumption.

Passage: {C}
Question: {Q}
Reference Answer: {R}
Prediction Answer: {O}

A.3 Thai prompt vs English prompt
Table 7 shows the English prompt is better than
the Thai prompt in GPT-4.
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Prompt
Correctness (C) Helpfulness (H) Irrelevancy (I) Extraneousness (E) Overall

P R F1 P R F1 P R F1 P R F1 P R F1

English 98.99 94.69 96.79 94.20 47.45 63.11 51.14 61.64 55.90 77.61 63.41 69.80 84.83 71.74 77.74

Thai 99.49 94.69 97.03 94.44 37.23 53.40 65.08 56.16 60.29 67.27 45.12 54.01 88.08 65.13 74.88

Table 7: Agreement between English prompt and Thai prompt.
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Abstract

Generalization refers to the ability of machine
learning models to perform well on dataset dis-
tributions different from the one it was trained
on. While several pre-existing works have char-
acterized the generalizability of NLP models
across different dimensions, such as domain
shift, adversarial perturbations, or composi-
tional variations, most studies were carried out
in a stand-alone setting, emphasizing a single
dimension of interest. We bridge this gap by
systematically investigating the generalizability
of pre-trained language models across differ-
ent architectures, sizes, and training strategies,
over multiple dimensions for the task of natu-
ral language inference and question answering.
Our results indicate that model instances typ-
ically exhibit consistent generalization trends,
i.e., they generalize equally well (or poorly)
across most scenarios, and this ability is corre-
lated with model architecture, base dataset per-
formance, size, and training mechanism. We
hope this research motivates further work in
a) developing a multi-dimensional generaliza-
tion benchmark for systematic evaluation and
b) examining the reasons behind models’ gen-
eralization abilities. 1

1 Introduction

A machine learning model’s generalization capa-
bility is defined as its capacity to apply encoded
knowledge and strategies from previous experience
to new situations. This is a key desideratum of all
machine learning models, but NLP models are par-
ticularly interesting as the generalization scenario
in NLP goes beyond the simple train-test split.

We present a comprehensive study of the gener-
alization abilities of common models used in NLP.

*The first two authors contributed equally.
Work done at the University of Michigan.

1 code + data for analysis: https://github.com/
sagnik/md-gen-nlp, Trained models: https://
huggingface.co/varun-v-rao.

Figure 1: Hupkes et al. (2023) categorizes the generalization
scenarios in NLP into six types. We chose three that cover
many important scenarios. We trained models on SNLI and
SQuAD, and tested them on various datasets corresponding
to these dimensions. The datasets were chosen so as not to
confound the dimensions. For example, the compositional
test dataset for MRC (MusiQue) is a derivative of the source
dataset SQuAD – there is no domain shift, and the dataset
does not contain robustness testing perturbations.

Following Hupkes et al. (2023), we consider three
types of generalization: 1. Domain; 2. Robustness;
and 3. Compositional. These three multi-faceted
aspects cover many scenarios with practical signifi-
cance (Figure 1).

The most common type of generalization is do-
main generalization, where the model is trained
on one domain and tested on another. Generally,
domains in NLP are associated with sources as
text from different sources have different linguistic
styles (Lee, 2001).

Many standard NLP datasets have data points
that can be solved by superficial cues, i.e., rea-
soning strategies unrelated to the expected causal
mechanism of the task at hand. For example, in
SNLI, Gururangan et al. (2018) shows that a nega-
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Figure 2: Our framework: we train 72 models on 2 base
datasets, test them on 15 datasets corresponding to different
dimensions of generalization, and analyze the results.

tion operator in the premise is a strong predictor
of the “contradiction” class, or in many cases, the
models can use the hypothesis alone to predict the
class label. Likewise, Sen and Saffari (2020) ob-
served that the answer phrase could be found in the
first sentence of the context for several instances in
popular extractive machine reading comprehension
(MRC) datasets such as SQuAD (Rajpurkar et al.,
2016) or HotpotQA(Yang et al., 2018). Zhang et al.
(2020) and Ribeiro et al. (2020) also show that
models are sometimes thrown off by semantics
preserving perturbations that do not fool humans.
Models also need to generalize to these instances –
we refer to this as robustness generalization.

The final type of generalization we explore is
compositional. A model demonstrates composi-
tional generalization when it can methodically com-
bine previously learned components to correctly
solve new inputs composed of these components.
Lake and Baroni (2018) presents a classic exam-
ple – if a model understands that “doxing” refers
to jumping up and “daxing” refers to moving left,
would it realize that “dox then dax” refers to jump-
ing up and moving left?

We train 3 instances each of the base and
large versions of 4 models from 3 architecture
families: encoder-only (EO), decoder-only (DO),
and encoder-decoder (ED) on two representative
datasets of two NLU tasks: SNLI for natural lan-
guage inference (NLI) and SQuAD for machine
reading comprehension (MRC) using full-training
and parameter efficient fine-tuning or PEFT (Ding
et al., 2023) in §2. Subsequently, we test them
on 15 datasets from these tasks that correspond to

different types of generalizations in §3. With this
extensive setup, we ask the following questions:

• RQ1: Do certain model instances 2 generalize
well across all types? Our goal is to see if the
generalization ability of a model instance is gen-
eralization type-independent, i.e., it generalizes
well across all scenarios. This question is asked
at the instance level because McCoy et al. (2020a)
has shown that model instances with similar test
performances show wide differences when tested
on different datasets.

• RQ2: We answer RQ1 affirmatively (§3.1) and
find that the model instances from different seeds
do not show large variances. This leads to a
follow-up question (§3.2): are certain model con-
figurations (architecture-size-training strategy)
better at generalization than others?

• RQ3: How does model architecture (EO vs. DO
vs. ED), size, or training strategy correlate with
generalization? Is it type-dependent? We can
expect over-parameterized models to generalize
better (Belkin et al., 2019), as well as the PEFT
models, as they have lower parameter changes
than fully trained models and, consequently, less
forgetting. While the first hypothesis holds, the
second one does not.

• RQ4: Finally, we investigate whether certain gen-
eralization types are more challenging than the
others. How is the target performance correlated
with generalization dimensions (§3.4)?

Previous work has studied generalization in
stand-alone cases, e.g., the datasets we have used
here. Methods have been proposed to improve the
generalization ability of both fully tuned and PEFT
models by meta-learning (Lake and Baroni, 2023)
or multi-task learning (Pfeiffer et al., 2021). Bench-
marks such as Unified QA (Khashabi et al., 2020)
have also been developed to test generalization.

Despite this rich history, less effort has been
spent on developing a systematic categorization of
generalization and studying how models general-
ize across such categories. Models need to gener-
alize across all scenarios, and not just be robust
against domain shift or compositional variations.

21. model instance: a particular instance of a trained
model, e.g., a T5base model with LoRA trained on SNLI
with a seed of 42. 2. architecture: model architecture, e.g.,
RoBERTa, T5. 3. model configuration: a combination of
architecture-size-training strategy (T5base fully fine-tuned).
4. architecture family: types of architectures – encoder only
(BERT, RoBERTa)/decoder-only (OPT).
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This work is a step in this direction. Our compre-
hensive analysis highlights that model instances
exhibit consistent generalization prowess across
the board and that models from certain architec-
tures or sizes are more generalizable than others.
This is certainly not comprehensive, questions re-
main open about the choice and size of the base
dataset, new model architectures, and most impor-
tantly, the reason behind a model’s generalization
ability which we defer for future work.

2 Tasks, Datasets & Models

We consider two representative NLU tasks: NLI
and MRC. The NLI task involves determining if
the meaning of one text fragment (hypothesis) can
be inferred from another (premise). Independent
of any specific application, this task is designed to
encapsulate the essential inferences about the vari-
ability of semantic expression frequently required
for various settings (Dagan et al., 2006). MRC is
another common task – many NLU tasks have been
formulated as MRC (He et al., 2015) or models
trained on MRC format data have shown good per-
formance on NLU tasks (McCann et al., 2018). We
use the extractive version of MRC, where the input
consists of a context (passage) and a question, and
the answer has to be extracted from the context.

2.1 NLI Datasets
We consider SNLI (Bowman et al., 2015) as the
source dataset, which is annotated with the labels
corresponding to whether the hypothesis entails, is
neutral, or contradicts the premise.

• Domain: We use both the matched and mis-
matched splits of the Multi-Genre NLI (MNLI)
dataset (Williams et al., 2018) to test the gen-
eralization of an SNLI-trained model to differ-
ent domains. We also use the TaxiNLI dataset
(Joshi et al., 2020) that provides a hierarchical
taxonomy of a subset of the MNLI dataset and
categorizes the data points based on whether they
require linguistic, logical, or world knowledge.

• Robustness: We cover the robustness scenarios
by testing the models on four datasets. SNLI-H
(Gururangan et al., 2018) is a set of SNLI test
instances that common heuristics can not clas-
sify. The SNLI-CF dataset (Kaushik et al.,
2019) comprises of “counter-factual” perturba-
tions, where the annotators are asked to make
minimal changes to an instance such that the la-
bel changes – a model can only classify these

instances correctly if it understands the reason-
ing behind the NLI task. SNLI-BT is gener-
ated by back-translating the original SNLI test
instances from En->Pt->En using a pre-trained
multi-lingual BART model – this tests the mod-
els’ ability to generalize against adversarial per-
turbations. Finally, HANS (McCoy et al., 2020b)
is built from templates constituting different syn-
tactic heuristics in NLI, such as lexical overlap
or common subsequences between the premise
and hypothesis.

• Compositionality: It is non-trivial to meaning-
fully combine SNLI instances, but in a composi-
tional NLI dataset such as MoNLI (Geiger et al.,
2020) all words or phrases of a composed in-
stance come from SNLI. Consider a sentence
from SNLI “The children are holding plants”.
Assume the phrase “flowers”, which is a hy-
ponym (per Wordnet) to the phrase “plants”, ap-
pears in SNLI. Now the pair (premise: “The chil-
dren are holding flowers”, and hypothesis: “The
children are holding plants”) will have an entail-
ment relation as every flower is a plant. Conse-
quently, the label would change to neutral when
the premise and hypothesis are reversed. Since
the phrase that determines this relation exists
in SNLI, the new dataset is merely a composi-
tion of the known constituents.3 CONJNLI (Saha
et al., 2020) focuses on conjunctive sentences –
premises and hypotheses vary through the addi-
tion, removal, or substitution of conjuncts such as
“and," “or”, “but”, and “nor” alongside elements
like quantifiers and negations. This also presents
a challenge in compositional generalization.

2.2 MRC Datasets
We train the MRC models on a popular extractive
dataset SQuAD (Rajpurkar et al., 2016).

• Domain: NewsQA is a crowd-sourced dataset
of approximately 100K human-generated QA
pairs, where the context comes from 10K news
articles from CNN. In SQuAD contexts are
paragraphs from Wikipedia articles, therefore
NewsQA presents a significant domain shift.

• Robustness: Adversarial Squad (Adv-SQuAD)
is a robustness challenge set built on SQuAD in-
sofar it adds a sentence that contains a phrase

3This is the PMoNLI part of the dataset. Negations would
change the direction of the monotone operator: not holding
plants ⇒ not holding flower, but not the other way around.
These instances comprise the NMoNLI dataset, which we do
not use.
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that a shortcut-dependent model (eg., one that
chooses a phrase that is proximal to a key phrase
from the question) would select (Jia and Liang,
2017). The HotpotQA dataset (Yang et al., 2018)
was designed to test the multi-hop reasoning abil-
ities of MRC models, i.e., a model should only
be successful if it understands relations between
entities that span multiple sentences. Similar to
Jia and Liang (2017), Jiang and Bansal (2019)
built a challenge set (Adv-HotpotQA) by adding
a new passage to the context with a fake answer.
The modifications in both Adv-HotpotQA and
Adv-SQuAD do not change the original answer.
Therefore, a model using the expected reasoning
strategies would still be able to answer correctly,
but a model dependent on shortcuts would fail.

• Compositionality: MusiQue (Trivedi et al.,
2022) is designed to test compositionality in read-
ing comprehension. The dataset is built on multi-
ple MRC datasets (SQuAD, HotpotQA and three
others) in a “bottom-up" approach. Pairs of con-
nected single-hop questions are combined to cre-
ate 2-hop questions first and are subsequently
combined to produce k-hop questions recursively.
We only choose the questions that are produced
by combining SQuAD questions.

We use the validation or test (when available)
split of the generalization datasets. In NLI, most
datasets for compositional and robustness general-
ization are derivatives of the SNLI dataset itself,
except for HANS and CONJNLI. They come from
non-SNLI sources, but the distribution is not sig-
nificantly different. This allows us to not confound
different dimensions of generalizability. This is
true for MRC as well, Adv-SQuAD and MusiQue
(the portion we use) come from the base dataset
SQuAD, and both Adv-HotpotQA and SQuAD
come from the same domain. HANS has 2 labels
(as opposed to 3 for SNLI), so the predicted la-
bels of neutral and contradiction are merged. For
consistency, we only use instances with a max to-
kenized sequence length of 512 (see the appendix
for details).

2.3 Models & Training
We explore three popular families of transformer-
based neural architectures, i.e., encoder-only (EO),
decoder-only (DO), and encoder-decoder (ED)
models. As the most popular/powerful represen-
tative for each architecture, we include RoBERTa
(Liu et al., 2019) and BERT (Devlin et al., 2019)

for EO, OPT (Zhang et al., 2022) for DO, and T5
(Raffel et al., 2020) for (ED).

NLI is modeled as a sequence classification prob-
lem, and a linear layer is used as the classifier over
the base encoders. MRC is modeled as a token
classification problem with a linear layer, and the
models are trained to predict a token’s probability
for being the start and end of an answer phrase
(Devlin et al., 2019). We use the base and large
versions for each model, and specifically for BERT
these are the cased ones.

The models are trained by changing the full
parameters as well as a fraction of them using
two PEFT methods: Bottleneck adapters (Houlsby
et al., 2019) and LoRA (Hu et al., 2021). Adapters
introduce bottleneck feed-forward layers in each
layer of a transformer model as the only trainable
parameters. These adapter layers consist of a down-
projection matrix W down : (dhidden, dbottleneck), a
RELU non-linearity (f ) and an up-projection ma-
trix W up : (dbottleneck, dhidden), with the final equa-
tion: h ← W up · f(W down · h). We use a reduc-
tion factor ( dhidden

dbottleneck
) of 16 for all models. Sim-

ilar to Bottleneck adapters, LoRA injects train-
able low-rank decomposition matrices into the
layers of a pre-trained model. Any linear layer
of the form (h = W0x) is re-parameterized as:
h = W0x + α

rBAx where (A ∈ Rr×k) and
(B ∈ Rd×r) are the trainable decomposition ma-
trices and r is the low-dimensional rank of the
decomposition. We set the rank at 16 and α at 32.

Each model is initialized with three seeds, and
the training data sequence is shuffled. The models
are trained with AdamW (Loshchilov and Hutter,
2019) optimizer, batch sizes varying between 32
and 64, and a learning rate of 2e-5 with a stepwise
learning rate decay (Howard and Ruder, 2018) us-
ing the HuggingFace Transformers library (Wolf
et al., 2019) (see the Appendix for details).

3 Results

3.1 RQ1: Does one model instance generalize
well across generalization dimensions?

Our first hypothesis is a model instance generalizes
well across different types. We test this by investi-
gating whether the rankings of model instances are
consistent, i.e. are well-correlated, across datasets
that characterize different types of generalization.

We evaluate 72 model instances on each dataset
corresponding to a task. Subsequently, for a given
dataset pair in a task, we compute Spearman’s
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Figure 3: Spearmann’s Rank Correlation ρ between the source and the target datasets for NLI and MRC on a per-instance basis.

rank correlation coefficient (ρ) of the correspond-
ing model instances’ scores (accuracy for NLI and
F1-Score for MRC) for the two datasets. We are
more interested in the rankings (relative perfor-
mance) of model instances than the absolute scores
since the datasets are not well calibrated amongst
themselves. We present a heatmap of the correla-
tion scores between pairs of datasets for NLI and
MRC in Figures 3a and 3b, respectively.

We observe a strong to very-strong correlation
(ρ ≥ 0.6) 4 for all dataset pairs for both NLI and
MRC tasks. For each of these comparisons, the cor-
relation was statistically significant with a p-value
lower than 0.05, implying that we can reject the
null hypothesis that the performances of model
instances are not monotonically correlated.

For NLI, the datasets derived from the same
source, e.g., SNLI-CF, SNLI-BT, and PMoNLI
from SNLI, or datasets that are created in a simi-
lar fashion like matched and mismatched splits of
MNLI exhibit very strong correlation (ρ ≥ 0.90).
On the other hand, datasets derived from a different
source like Wikipedia for CONJNLI or constructed
in a templatized fashion like HANS demonstrate
a more uniform correlation. We thus infer that
the rankings of model instances depend more on
the source than the type of generalization for NLI.
For example, although PMoNLI and CONJNLI both
test compositionality, the instances have the lowest
correlation score (ρ = 0.67).

However, this observation is not as pronounced
for MRC, where the model rankings correlate
more with the generalization type than the dataset

4https://www.statstutor.ac.uk/
resources/uploaded/spearmans.pdf

source. For example, we observe a higher corre-
lation between Adv-HotpotQA and Adv-SQuAD
(ρ = 0.90) than between Adv-SQuAD and SQuAD
(ρ = 0.75). We also note a higher correlation across
domains for MRC (ρ = 0.92 between SQuAD and
NewsQA) than for NLI (ρ ≈ 0.8 between MNLI
and SNLI).

Having ranked the model instances in decreas-
ing order of performance for each of the 10 NLI
datasets, we can obtain a global (or unified) ranked
list by aggregating these individual rankings. We
employ the MC4 algorithm of Dwork et al. (2001)
that constructs the ranking preferences based on a
simple majority vote across the individual rankings
to obtain the aggregated ranked list of instances.
We do the same for the 5 datasets to create an ag-
gregate ranked list for MRC. Spearmann’s rank
correlation coefficient between these two aggre-
gated ranked lists for MRC and NLI is 0.93, which
implies that the model instances also exhibit high
correlation across tasks.

3.2 RQ2: Do model configurations generalize
well across scenarios?

We extend our previous hypothesis to investigate
whether certain model configurations (a combi-
nation of model architectures, scale, and training
strategies) generalize well across different scenar-
ios. We start by averaging the performance of
a model configuration (architecture-size-training
strategy combination) across three seeds and report
the results in Tables 1 and 2 for NLI and MRC, re-
spectively. Interestingly, we do not see a significant
variation across instances from different seeds (as
evidenced by low standard deviations) – a finding
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Table 1: Performance of NLI models when trained on the SNLI and evaluated on different datasets in terms of accuracy. We
report the mean and standard deviation across three seeds. The best model is highlighted in bold, the second-best model is
underlined, and the worst model is highlighted in red. Adap and LoRA refers to the adapter and LoRA training strategies.

ID OOD Robustness Compositionality

Model SNLI MNLI-m MNLI-mm TaxiNLI SNLI-BT SNLI-CF SNLI-H HANS ConjNLI PMoNLI

BERTbase+ Adap 85.1±0.1 65.1±0.1 68.0±0.1 64.7±0.1 80.0±0.1 68.5±0.1 71.0±0.2 50.0±0.0 52.2±0.7 91.7±1.1
BERTbase+ LoRA 81.3±0.2 59.2±0.5 61.1±0.1 54.6±0.6 76.6±0.2 64.2±0.3 65.7±0.5 50.0±0.0 49.1±1.4 85.9±0.5
BERTbase 90.6±0.1 73.5±0.4 73.6±0.2 73.4±0.1 84.3±0.2 76.1±0.2 80.2±0.1 58.1±1.2 58.6±0.6 95.1±0.3

BERTlarge+ Adap 88.8±0.2 72.8±0.8 73.2±0.8 72.8±1.0 83.1±0.2 73.3±0.2 77.3±0.3 50.3±0.4 56.7±1.1 96.1±0.3
BERTlarge+ LoRA 86.2±0.4 68.3±0.5 69.2±0.7 67.7±1.5 80.9±0.1 69.3±0.4 73.1±0.6 50.1±0.2 54.3±1.5 94.7±1.2
BERTlarge 91.1±0.1 76.6±0.1 76.2±0.3 76.5±0.4 84.7±0.1 77.4±0.3 81.7±0.2 58.1±1.2 61.1±0.8 97.6±0.4

RoBERTabase+ Adap 88.3±0.1 75.8±0.6 75.9±0.3 74.4±0.2 83.0±0.0 72.9±0.2 76.1±0.2 50.3±0.1 54.8±0.6 95.1±0.1
RoBERTabase+ LoRA 87.1±0.0 73.6±0.0 74.9±0.1 72.3±0.3 81.8±0.0 71.8±0.2 75.2±0.1 50.1±0.0 52.2±0.9 94.4±0.2
RoBERTabase 91.4±0.0 80.2±0.2 79.9±0.2 80.1±0.2 85.2±0.1 77.9±0.1 82.1±0.1 65.9±2.0 60.8±0.4 96.6±0.2

RoBERTalarge+ Adap 91.7±0.0 83.8±0.4 83.0±0.4 83.9±0.1 85.4±0.0 79.9±0.5 82.4±0.1 67.8±1.4 61.4±0.2 98.5±0.1
RoBERTalarge+ LoRA 90.8±0.1 81.7±0.4 81.8±0.2 81.1±0.5 84.5±0.1 78.8±0.2 81.0±0.1 65.3±0.8 58.5±0.9 98.0±0.2
RoBERTalarge 92.6±0.0 85.0±0.0 84.3±0.1 85.0±0.1 85.7±0.0 81.3±0.2 84.7±0.0 73.7±1.0 65.5±0.3 98.5±0.1

OPTbase+ Adap 82.8±3.0 56.7±1.8 57.5±1.9 55.2±3.7 77.5±2.8 66.7±2.4 68.6±3.1 52.3±3.3 49.2±4.3 88.4±2.3
OPTbase+ LoRA 78.1±3.7 53.8±1.5 55.7±2.3 52.8±1.1 72.4±4.0 63.2±2.3 65.0±2.9 50.4±0.6 47.4±1.9 86.6±3.1
OPTbase 89.6±0.1 71.3±0.7 72.9±0.9 71.3±0.9 83.7±0.2 74.5±0.3 78.8±0.1 59.1±4.2 57.5±0.3 95.6±0.8

OPTlarge+ Adap 88.6±0.2 66.6±1.3 69.2±0.8 66.0±2.1 81.9±0.5 73.4±0.3 77.5±0.2 61.7±6.8 55.4±1.0 90.9±1.5
OPTlarge+ LoRA 83.6±2.2 63.5±3.6 65.0±3.4 60.7±4.7 78.0±2.5 69.5±1.2 71.4±2.1 60.1±2.3 56.7±3.1 91.9±3.0
OPTlarge 90.4±0.4 75.5±0.4 77.3±0.3 75.4±0.3 84.1±0.3 76.5±0.8 80.7±0.5 65.8±0.6 60.7±1.3 95.2±2.0

T5base+ Adap 88.6±0.0 80.1±0.1 80.3±0.1 80.3±0.3 82.9±0.0 74.8±0.2 77.7±0.1 60.2±0.1 64.0±0.9 94.6±0.4
T5base+ LoRA 85.8±0.0 80.6±0.4 80.9±0.3 80.6±0.5 80.7±0.2 72.8±0.2 74.1±0.3 57.2±0.7 65.2±0.7 92.1±0.8
T5base 89.7±0.1 81.4±0.1 80.9±0.2 81.2±0.1 83.7±0.1 75.9±0.2 79.5±0.1 63.3±0.3 65.2±0.9 95.3±0.3

T5large+ Adap 91.8±0.0 86.2±0.1 85.5±0.3 86.6±0.4 85.4±0.1 80.3±0.3 82.7±0.1 68.2±1.1 66.0±0.1 98.1±0.2
T5large+ LoRA 90.5±0.0 87.5±0.1 87.5±0.3 87.8±0.3 84.2±0.0 79.4±0.1 81.0±0.1 64.7±0.1 66.3±0.5 98.1±0.1
T5large 92.1±0.1 87.3±0.1 86.8±0.2 87.9±0.2 85.5±0.0 81.0±0.2 83.3±0.1 71.6±0.6 67.2±0.3 98.0±0.1

different from prior work of McCoy et al. (2020a).
We also compute the Spearman’s rank correla-

tion coefficient between two dataset pairs for NLI
and MRC in Figures 13a and 13b (appendix), re-
spectively. The heatmaps indicate a strong positive
correlation (ρ ≥ 0.7) between all dataset pairs and
inform us that the relative performance of these
model configurations remains consistent across the
target datasets and domains.
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Figure 4: Fraction of cases where one model is significantly
better, worse, or as good as the other on different target
datasets. We consider two scenarios, (i) where one of the
models was already significantly better on the source dataset
(M1 > M2) and (ii) where the models had similar source
performance (M1 = M2).

We further carry out a pair-wise comparison of
model configurations to investigate whether the rel-

ative performance of a model pair on the source
dataset (SNLI and SQuAD for NLI and MRC, re-
spectively) persists across different target datasets.
Simply put, if the performance of a model M1 is
significantly better than M2 on the source dataset,
does the situation remain the same across other tar-
gets? We adopt the non-parametric paired bootstrap
test of Berg-Kirkpatrick et al. (2012) to check for
statistical significance (p-value≤ 0.05) in line with
prior work (Dror et al., 2018). We note that M1

has a similar performance with M2 if we cannot re-
ject the null hypothesis that one has a significantly
higher performance than the other.

Figure 4 illustrates the fraction of cases where
the relative performance of a model architecture
pair is better, worse, or the same on the target
datasets compared to the original source conditions.
We observe that the models retain their relative per-
formance for a majority of cases for both NLI and
MRC, i.e. if M1 is significantly better than M2 on
the base dataset, it will follow a similar trend across
targets and vice versa. The notable exceptions are
the PEFT-tuned versions of T5 model which ex-
hibit significantly higher performance than other
models (such as BERT or OPT variants) on the tar-
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Figure 5: Fraction of times the given architecture configuration or training strategy is statistically better, equal, or worse for the
two tasks of NLI and MRC.

get datasets for NLI despite a significantly worse
performance on the SNLI source dataset. A similar
finding holds for the fully-tuned OPT models that
significantly outperform others (such as BERT and
T5-PEFT variants) on MRC datasets.

3.3 RQ3: Architecture, Scale, and PEFT

Model Architecture: From Tables 1 and 2, we
see that when controlled for the model size (base v
large) and training strategy (full vs PEFT), certain
models almost always perform better than the oth-
ers, e.g., in NLI, the base versions of T5 models
(ED) are better than RoBERTa (EO) models in 7
out of 9 datasets, and RoBERTa is better than OPT
(DO) in 8 out of 9. To formalize this, we compare
the performance of a pair of models from differ-
ent architectures (e.g., T5base vs. OPTlarge) for a
given dataset. Each architecture has instances from
all sizes and training strategies, so we do not have
to control for them explicitly.

We adopt the paired bootstrap test to compute
the fraction of datasets where models correspond-
ing to one family (say EO) are significantly better,
worse, or equal compared to models of another
family (say ED). Overall, we observe (Figure 5a)
that ED models outperform both the EO and DO
significantly on both tasks. On the other hand, mod-
els corresponding to the EO fare better for NLI as
opposed to DO and vice-versa for MRC.

Scale: We compute the fraction of cases where
the large variant of a model architecture is signifi-
cantly better, worse, or equal to the corresponding
base variant for a given dataset and task while con-
trolling for the training strategy. Figure 5b shows
that for both tasks, the large variants of models are
significantly better than their corresponding base
variants in a huge majority of cases. In fact, the
base variant is never significantly better, although
there are a few ties. This performance gain is also

significantly higher in the generalization datasets
compared to the base ones.

Parameter efficient fine-tuning (PEFT): We
also explore whether PEFT models (i.e., Adapters
and LoRA) are more adept at generalization than
the corresponding fully fine-tuned (FT) variants.
For each model pair, we compute the fraction of
cases where the PEFT variant, i.e., Adapter vs. FT
or LoRA vs. FT, was significantly better, equal,
or worse than the corresponding fine-tuned vari-
ant. Figure 5c shows that PEFT models are indeed
significantly worse. Moreover, this poorer perfor-
mance is more pronounced for the LoRA models
than for Adapters, such that adapter models are sig-
nificantly better than LoRA models for both tasks.

3.4 RQ4: Difficult types of generalization

We inspect the absolute generalization perfor-
mance of models on different datasets to inves-
tigate whether certain generalization categories or
dimensions are more challenging than others. We
characterize a dataset to be challenging for a given
model based on the relative drop in performance of
the model on the dataset compared to its’ source
performance (e.g., the performance of a model on
SNLI and SQuAD respectively). We coin this per-
formance difference as normalized source drop or
NSD (Calderon et al., 2023) defined below, where
Ms and Mt correspond to the performance of the
model on the source and the target, respectively.

NSD =
Mt −Ms

Ms

We carry out a two-way ANOVA analysis with
NSD as the dependent variable with the general-
ization category (OOD, robustness, composition-
ality, or in-domain), architecture type (EO, ED, or
DO), scale (large or base), and training strategy
(FT, LoRA, or Adapter) as the independent covari-
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Table 2: Performance of MRC models when trained on the
SQuAD (ID) and evaluated on different datasets. We report
the mean F1 score across three seeds (the stds vary between
0.0 and 3.2). The best model is highlighted in bold, the second-
best is underlined, and the worst is highlighted in red. OOD,
Rob, and Comp imply generalization across domains, robust-
ness, and compositionality, respectively. Adap and LoRA
refers to the adapter and LoRA training strategies.

OOD Rob Comp ID
Model NQA AHQ ASQ MsQ SQ

BERTbase+ Adap 52.7 22.9 45.5 41.1 77.8
BERTbase+ LoRA 12.8 9.7 17.9 12.8 24.7
BERTbase 62.2 34.7 61.8 50.2 87.6

BERTlarge+ Adap 60.1 25.0 64.3 50.2 85.6
BERTlarge+ LoRA 42.2 17.0 46.3 37.0 67.1
BERTlarge 65.2 39.4 72.5 62.2 90.7

RoBERTabase+ Adap 55.0 26.3 63.5 51.5 85.8
RoBERTabase+ LoRA 43.6 22.2 50.2 47.3 78.7
RoBERTabase 63.3 39.0 73.0 61.4 92.0

RoBERTalarge+ Adap 66.8 46.6 82.5 65.5 93.4
RoBERTalarge+ LoRA 54.3 34.8 70.7 57.8 88.7
RoBERTalarge 70.0 51.4 84.1 74.6 94.6

OPTbase+ Adap 48.4 31.0 64.5 40.9 75.2
OPTbase+ LoRA 47.5 25.9 61.8 41.0 71.9
OPTbase 58.9 37.7 78.6 59.0 83.6

OPTlarge+ Adap 55.1 34.7 79.0 47.0 83.5
OPTlarge+ LoRA 57.9 33.5 79.0 45.6 83.3
OPTlarge 62.4 42.0 81.6 68.7 85.9

T5base+ Adap 67.2 37.8 74.2 61.1 90.3
T5base+ LoRA 64.8 33.6 69.8 57.8 87.5
T5base 67.5 38.6 74.8 64.0 90.9

T5large+ Adap 69.7 46.5 82.3 69.9 93.7
T5large+ LoRA 69.5 42.8 79.6 68.4 92.8
T5large 69.9 47.9 84.1 73.6 93.9

ates. We observe a significant association for all
the covariates (p-value≤ 0.05), with the generaliza-
tion category exhibiting the greatest significance,
followed by the architecture type, training strategy,
and scale for MRC. NLI exhibits a similar trend,
with the only difference being that the scale is more
significant than the training strategy.

Considering the in-domain category (i.e., per-
formance on the base dataset) as the baseline, we
observe a negative correlation for all the other gen-
eralization categories. The robustness category is
the most challenging (with a larger negative coef-
ficient), followed by compositionality and OOD
for MRC. For NLI, the robustness category again
incurs the highest negative correlation, followed
by OOD and compositionality. We hypothesize
that the general prowess of models on the PMoNLI
dataset, surpassing even the ID performance, is re-
sponsible for the skewed trend. We also observe
positive coefficients for the larger model variant,
the ED model family, and the fully fine-tuned (FT)
training strategy which is consistent from our past

observations. We present the intercept values of
our analysis in Table 3.

Category NLI MRC

Intercept -0.052 -0.015
Gen-type: Comp -0.132 -0.354
Gen-type: ROB -0.170 -0.388
Gen-type: OOD -0.158 -0.313
Arch-family: ED 0.073 0.023
Arch-family: EO 0.024 -0.047
Fine-tuning: FT 0.023 0.047
Fine-tuning: LoRA -0.00 -0.020
Scale: Large 0.028 0.047

Table 3: Coefficients for the ANOVA analysis for NLI and
MRC.

4 Related Work

Previous work has examined the generalization
ability of NLP models in different scenarios, and
developed strategies for improving their capabil-
ities. Hupkes et al. (2023) provides a categoriza-
tion of generalization types, of which we have dis-
cussed three that cover most datasets, but other
types exist. Cross-task (CT) generalization mea-
sures a model’s ability to generalize to new tasks.
Instruction-tuned LLMs trained on massive crowd-
sourced instruction datasets that contain task de-
scriptions have shown strong CT generalization
(Zhang et al., 2023). Recent LLMs such as GPT-3
(Brown et al., 2020) or LLama2 (Touvron et al.,
2023) are zero-shot cross-task models, but possi-
ble data contamination raises concerns about their
true generalization abilities (Li and Flanigan, 2024).
Syntactic generalization involves generalization to
new syntactic structures or unknown elements in
known syntactic structures (Jumelet et al., 2021).

Among the categories of generalization we have
considered, Ramponi and Plank (2020); Naik et al.
(2022) presents a survey of neural models for do-
main generalization. For robustness generalization,
many papers have proposed adversarial attacks to
perturb the input to fool the model. These attacks
can be white-box (Ebrahimi et al., 2018), i.e., the
attacker has access to the model parameters or not
(black-box (Jin et al., 2020), see Goyal et al. (2023)
for a survey). However, not all of these attacks
produce meaningful sentences, and more impor-
tantly, they do not test for a model’s propensity to-
ward shortcut learning (Geirhos et al., 2020), which
our datasets do. Compositional generalization has
been studied in machine translation (Dankers et al.,
2022), semantic parsing (Kim and Linzen, 2020),
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and question answering over databases (Keysers
et al., 2020). However, there hasn’t been a system-
atic attempt to create new datasets by composing
existing datasets with exceptions such as MusiQue
(MRC) and SETI (Fu and Frank, 2023) (NLI).

Common strategies for improving a model’s do-
main adaptation ability include: a) gradual fine-
tuning with a mixture of data from different do-
mains (Xu et al., 2021) – an approach motivated
by curriculum learning, and b) domain adversarial
training (Wright and Augenstein, 2020). To im-
prove robustness generalization, researchers have
trained on augmented data (Li et al., 2019), added
a regularizer in the loss function (Goodfellow et al.,
2015), and used a generator-discriminator setup
(Kang et al., 2018). Neuro-symbolic methods
(Gupta et al., 2020) and meta-learning (Lake, 2019)
have been traditionally used to improve composi-
tional generalization, and newer methods include
better prompting strategies for in-context learning
(Press et al., 2023). In contrast to previous work,
our goal is not to provide a better algorithm/model
for generalization but to examine existing models
across different axes.

5 Conclusion & Future Work

We present a systematic study on the multi-
dimensional (domain, robustness, and composi-
tional) generalization abilities of common models
used in NLP. Our main conclusions are: 1. Gen-
eralizability is a model instance characteristic and
not generalization type-dependent – an instance
typically does not generalize well in one dimension
and poorly in others. 2. It is well correlated with
model size, and certain architectures and training
strategies generalize better than others. 3. Certain
dimensions of generalization is harder to achieve
compared to the others. We hope to inspire future
work that looks further into the multi-dimensional
aspect of generalizability and tries to understand
why certain models generalize better than others.

Limitations

The conclusions of this study are dependent on the
base datasets, models, and training methods used.
There are many potential choices for these aspects,
and while both the appropriateness and popularity
inform our selections of the datasets or algorithms,
we admit the conclusions might differ if we use al-
ternatives. More base datasets and/or models would
certainly improve the robustness of the conclusions,

but these would exponentially increase the scale
of the study. Other potential directions include
investigating the amount of data needed for gener-
alization, i.e., few-shot models, and cross-lingual
generalization, but both are beyond the scope of
the study. We have made empirical observations
about generalization but have not investigated the
theoretical reasons behind it. While that is beyond
the scope of the study, we recognize this limitation.

Ethical Concerns

In this work, we train 72 models on the two datasets
and further evaluate them on 15 datasets, which suf-
fer from a combinatorial problem in terms of the
necessary computing infrastructure. Our work con-
sumed roughly two-thirds a month of GPU time (≈
500 hours). Combined with the size of the models,
this limits the accessibility of this vein of research,
especially if we were to expand to other datasets,
model architectures, and few-shot training scenar-
ios. More effort in understanding how to narrow
down the choice of datasets before studying trans-
fer would go a long way towards alleviating this
issue. While we find that models generalize well
across different scenarios, this should not be taken
as an indication of their deployment eligibility in
real-life scenarios. These models have not been
tested for their propensity to generate toxic, biased,
and offensive content.
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Premise: The little boy in jean shorts kicks the soccer
ball.
Hypothesis: A little boy is playing soccer outside.
Label: Neutral

Premise: The little boy in jean shorts kicks the soccer
ball in the house.
Hypothesis: A little boy is playing soccer outside.
Label: Contradiction

Figure 6: A sample instance for robustness in NLI from
SNLI-CF. The addition (in red) causes the label to change.

Premise: An Asian woman cutting the stems of a green
leafy cabbage at a market.
Hypothesis: An Asian woman cutting the stems of a
green leafy vegetable at a market.
Label: Entailment

Figure 7: A sample instance for compositionality in NLI. The
label is entailment because every cabbage is a vegetable. Both
“cabbage” and “vegetable” tokens appear in SNLI, but not
in the same instance – this is a composed instance of these
“constituents”.

Premise: They’re made from a secret recipe handed
down to the present-day villagers by their Mallorcan
ancestors, who came here in the early 17th century as
part of an official repopulation scheme.
Hypothesis: The recipe passed down from Mallorcan
ancestors is known to everyone.
Label: Contradiction

Figure 8: A sample instance for testing domain generalization
in NLI from MNLI-matched.

Appendix

Datasets, models, hyperparameters, and
training
We use publicly available datasets and modify them
as needed. We present the dataset details in Table
4. Some instances are shown in Figures 6 to 11.

See Table 5 for the number of parameters in the
used models.

For fully-tuned models, we use the Hug-
gingFace Transformers library 5. For EO
models, we tokenize both NLI and MRC in-
stances as pairs. For ED and DO models,
we concatenate the premise and hypothesis as
premise: <> hypothesis: <> for NLI
instances. Similarly, for MRC instances, we con-
catenate the question and context as question:
<> context: <>.

5https://github.com/huggingface/
transformers

Context: Peyton Manning became the first quarterback
ever to lead two different teams to multiple Super Bowls.
He is also the oldest quarterback ever to play in a Super
Bowl at age 39. The past record was held by John Elway,
who led the Broncos to victory in Super Bowl XXXIII
at age 38 and is currently Denver’s Executive Vice Presi-
dent of Football Operations and General Manager.
Question: What is the name of the quarterback who was
38 in Super Bowl XXXIII?
Answer: John Elway

Context: Peyton Manning became the first quarterback
ever to lead two different teams to multiple Super Bowls.
He is also the oldest quarterback ever to play in a Su-
per Bowl at age 39. The past record was held by John
Elway, who led the Broncos to victory in Super Bowl
XXXIII at age 38 and is currently Denver’s Executive
Vice President of Football Operations and General Man-
ager. Quarterback Jeff Dean had jersey number 37

in Champ Bowl XXXIV.
Question: What is the name of the quarterback who was
38 in Super Bowl XXXIII?
Answer: John Elway

Figure 9: A sample instance for testing robustness generaliza-
tion in MRC (Adv-SQuAD). Models are often fooled by the
addition (red) and predict a different answer.

Context: One of Africa’s brightest young writers, 31-
year-old Chimamanda Adichie has already been recog-
nised for her talent; her debut novel was shortlisted for
the Orange Fiction Prize in 2004. The Nigerian novelist
talks to CNN about her craft, her country and identity.
Question: What award has the novelist been nominated
for?
Answer: Orange Fiction Prize

Figure 10: A sample instance for testing domain generaliza-
tion in MRC (NewsQA)

For LoRA models, we use the implementation
from the HuggingFace PEFT library 6. The hyper-
parameters are:

• r = 16

• α = 32

• dropout = 0.05

• bias = None.

For Bottleneck adapters, we use the implemen-
tation from the adapters library in Adapter-hub 7

for all models except the OPT ones. The hyper-
parameters are:

• reduction_factor = 16

6https://github.com/huggingface/peft
7https://github.com/adapter-hub/

adapters
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Table 4: Details of the dataset used. We provide HuggingFace datasets public uris when available. For the datasets we
created/modified, we provide a local copy.

dataset name hf datasets link split size

SNLI snli train, validation, test train: 550152, validation: 1000, test: 10000
MNLI-matched multi_nli validation_matched 9815
MNLI-mismatched multi_nli validation_mismatched 9832
HANS hans validation 30000
SNLI-CF local test 2000
SNLI-BT local test 18044
SNLI-H au123/snli-hard test 3261
CONJNLI local dev 624
TaxiNLI local dev 7728

SQuAD rajpurkar/squad train, validation train: 87285, validation: 10485
Adv-SQuAD local validation footnote 3560
NewsQA local validation 1070
Adv-HotpotQA local validation 2828
MusiQue local validation 868

Context: During his bid to be elected president in 2004, Kerry frequently criticized President George W. Bush for the Iraq
War. While Kerry had initially voted in support of authorizing President Bush to use force in dealing with Saddam Hussein,
he voted against an $87 billion supplemental appropriations bill to pay for the subsequent war. His statement on March
16, 2004, “I actually did vote for the $87 billion before I voted against it,” helped the Bush campaign to paint him as a
flip-flopper and has been cited as contributing to Kerry’s defeat.
Question: Why did Kerry criticize Bush during the 2004 campaign?
Answer: for the Iraq War

Context: In the lead up to the Iraq War, Kerry said on October 9, 2002; “I will be voting to give the President of the United
States the authority to use force, if necessary, to disarm Saddam Hussein because I believe that a deadly arsenal of weapons
of mass destruction in his hands is a real and grave threat to our security.” Bush relied on that resolution in ordering the
2003 invasion of Iraq. Kerry also gave a January 23, 2003 speech to Georgetown University saying “Without question, we
need to disarm Saddam Hussein. He is a brutal, murderous dictator; leading an oppressive regime he presents a particularly
grievous threat because he is so consistently prone to miscalculation. So the threat of Saddam Hussein with weapons of
mass destruction is real.” Kerry did, however, warn that the administration should exhaust its diplomatic avenues before
launching war: “Mr. President, do not rush to war, take the time to build the coalition, because itś not winning the war
that’s hard, it’s winning the peace that’s hard.”
Question: When did Bush declare the Iraq War?
Answer: 2003

Context: During his bid to be elected president in 2004, Kerry frequently criticized President George W. Bush for the Iraq
War. While Kerry had initially voted in support of authorizing President Bush to use force in dealing with Saddam Hussein,
he voted against an $87 billion supplemental appropriations bill to pay for the subsequent war. His statement on March
16, 2004, “I actually did vote for the $87 billion before I voted against it,” helped the Bush campaign to paint him as a
flip-flopper and has been cited as contributing to Kerryś defeat. In the lead up to the Iraq War, Kerry said on October 9,
2002; “I will be voting to give the President of the United States the authority to use force, if necessary, to disarm Saddam
Hussein because I believe that a deadly arsenal of weapons of mass destruction in his hands is a real and grave threat to
our security.” Bush relied on that resolution in ordering the 2003 invasion of Iraq. Kerry also gave a January 23, 2003
speech to Georgetown University saying “Without question, we need to disarm Saddam Hussein. He is a brutal, murderous
dictator; leading an oppressive regime he presents a particularly grievous threat because he is so consistently prone to
miscalculation. So the threat of Saddam Hussein with weapons of mass destruction is real.” Kerry did, however, warn that
the administration should exhaust its diplomatic avenues before launching war: “Mr. President, do not rush to war, take the
time to build the coalition, because it’s not winning the war that’s hard, it’s winning the peace that’s hard.”
Question: When did Bush declare the war causing Kerry to criticize him during the 2004 campaign?
Answer: 2003

Figure 11: A sample instance for testing compositionality in MRC (MusiQue) – The last question is a composition of the two
questions above.
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Table 5: Number of parameters in the used models.

model name #params
base large

BERT 110M 345M
RoBERTa 110M 345M
OPT 350M 1.3B
T5 220M 770M

• non_linearity = relu

We do not use residual connections. For the OPT
ones we implemented our own following (Hu et al.,
2023). The hyper-parameters are kept the same.

We use the HuggingFace Transformers library
for training the models, and the hyper-parameters
are as follows:

• Number of epochs: 3

• learning rate: 2e-5

• weight decay: 0.01

Results
Spearman’s rank correlation coefficient between
two dataset pairs for NLI and MRC –Figures 13a
and 13b.

180



Co
nj

NL
I

HA
NS

M
NL

I-m

M
NL

I-m
m

PM
oN

LI

SN
LI

SN
LI

-B
T

SN
LI

-C
F

SN
LI

-H

Ta
xi

NL
I

dataset2

ConjNLI

HANS

MNLI-m

MNLI-mm

PMoNLI

SNLI

SNLI-BT

SNLI-CF

SNLI-H

TaxiNLI

da
ta

se
t1

1.00 0.76 0.89 0.89 0.67 0.74 0.72 0.82 0.77 0.90

0.76 1.00 0.76 0.76 0.69 0.82 0.79 0.86 0.84 0.76

0.89 0.76 1.00 0.99 0.82 0.82 0.83 0.90 0.84 0.99

0.89 0.76 0.99 1.00 0.80 0.81 0.81 0.89 0.83 0.99

0.67 0.69 0.82 0.80 1.00 0.90 0.91 0.89 0.89 0.81

0.74 0.82 0.82 0.81 0.90 1.00 0.99 0.97 0.99 0.83

0.72 0.79 0.83 0.81 0.91 0.99 1.00 0.96 0.99 0.83

0.82 0.86 0.90 0.89 0.89 0.97 0.96 1.00 0.98 0.90

0.77 0.84 0.84 0.83 0.89 0.99 0.99 0.98 1.00 0.85

0.90 0.76 0.99 0.99 0.81 0.83 0.83 0.90 0.85 1.00 0.70

0.75

0.80

0.85

0.90

0.95

1.00

(a) NLI Datasets: Spearman’s ρ

Ad
v-

HP
QA

Ad
v-

SQ
uA

D

M
us

iQ
uE

Ne
ws

QA

SQ
uA

D

dataset2

Adv-HPQA

Adv-SQuAD

MusiQuE

NewsQA

SQuAD

da
ta

se
t1

1.00 0.90 0.93 0.89 0.89

0.90 1.00 0.83 0.79 0.75

0.93 0.83 1.00 0.91 0.92

0.89 0.79 0.91 1.00 0.93

0.89 0.75 0.92 0.93 1.00

0.80

0.85

0.90

0.95

1.00

(b) MRC Datasets: Spearman’s ρ

Co
nj

NL
I

HA
NS

M
NL

I-m

M
NL

I-m
m

PM
oN

LI

SN
LI

SN
LI

-B
T

SN
LI

-C
F

SN
LI

-H

Ta
xi

NL
I

dataset2

ConjNLI

HANS

MNLI-m

MNLI-mm

PMoNLI

SNLI

SNLI-BT

SNLI-CF

SNLI-H

TaxiNLI

da
ta

se
t1

1.00 0.75 0.88 0.88 0.69 0.71 0.69 0.82 0.77 0.87

0.75 1.00 0.71 0.71 0.59 0.69 0.62 0.81 0.77 0.71

0.88 0.71 1.00 1.00 0.85 0.85 0.85 0.92 0.88 0.99

0.88 0.71 1.00 1.00 0.85 0.86 0.85 0.92 0.88 0.99

0.69 0.59 0.85 0.85 1.00 0.90 0.90 0.89 0.90 0.85

0.71 0.69 0.85 0.86 0.90 1.00 0.99 0.95 0.98 0.86

0.69 0.62 0.85 0.85 0.90 0.99 1.00 0.92 0.95 0.85

0.82 0.81 0.92 0.92 0.89 0.95 0.92 1.00 0.98 0.92

0.77 0.77 0.88 0.88 0.90 0.98 0.95 0.98 1.00 0.89

0.87 0.71 0.99 0.99 0.85 0.86 0.85 0.92 0.89 1.00 0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(c) NLI Datasets: Pearson’s r

Ad
v-

HP
QA

Ad
v-

SQ
uA

D

M
us

iQ
uE

Ne
ws

QA

SQ
uA

D

dataset2

Adv-HPQA

Adv-SQuAD

MusiQuE

NewsQA

SQuAD

da
ta

se
t1

1.00 0.91 0.92 0.87 0.80

0.91 1.00 0.88 0.89 0.87

0.92 0.88 1.00 0.92 0.89

0.87 0.89 0.92 1.00 0.95

0.80 0.87 0.89 0.95 1.00 0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

(d) MRC Datasets: Pearson’s r

Co
nj

NL
I

HA
NS

M
NL

I-m

M
NL

I-m
m

PM
oN

LI

SN
LI

SN
LI

-B
T

SN
LI

-C
F

SN
LI

-H

Ta
xi

NL
I

dataset2

ConjNLI

HANS

MNLI-m

MNLI-mm

PMoNLI

SNLI

SNLI-BT

SNLI-CF

SNLI-H

TaxiNLI

da
ta

se
t1

1.00 0.57 0.72 0.73 0.49 0.58 0.57 0.63 0.61 0.73

0.57 1.00 0.58 0.57 0.51 0.65 0.61 0.69 0.68 0.58

0.72 0.58 1.00 0.94 0.63 0.66 0.66 0.74 0.67 0.95

0.73 0.57 0.94 1.00 0.59 0.64 0.65 0.72 0.65 0.93

0.49 0.51 0.63 0.59 1.00 0.72 0.73 0.73 0.72 0.62

0.58 0.65 0.66 0.64 0.72 1.00 0.95 0.87 0.94 0.67

0.57 0.61 0.66 0.65 0.73 0.95 1.00 0.84 0.90 0.67

0.63 0.69 0.74 0.72 0.73 0.87 0.84 1.00 0.90 0.74

0.61 0.68 0.67 0.65 0.72 0.94 0.90 0.90 1.00 0.68

0.73 0.58 0.95 0.93 0.62 0.67 0.67 0.74 0.68 1.00
0.5

0.6

0.7

0.8

0.9

1.0

(e) NLI Datasets: Kendall’s τ

Ad
v-

HP
QA

Ad
v-

SQ
uA

D

M
us

iQ
uE

Ne
ws

QA

SQ
uA

D

dataset2

Adv-HPQA

Adv-SQuAD

MusiQuE

NewsQA

SQuAD

da
ta

se
t1

1.00 0.74 0.78 0.71 0.74

0.74 1.00 0.67 0.62 0.60

0.78 0.67 1.00 0.75 0.80

0.71 0.62 0.75 1.00 0.78

0.74 0.60 0.80 0.78 1.00 0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(f) MRC Datasets: Kendall’s τ

Figure 12: Correlation between the source and the target datasets for NLI and MRC on a per-instance basis for different kinds of
correlation.
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(f) MRC Datasets: Kendall’s τ

Figure 13: Correlation between the source and the target datasets for NLI and MRC on a per-architecture basis for different
kinds of correlation.
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Abstract

We introduce OmniDialog — the first tri-
modal comprehensive benchmark grounded in
a knowledge graph (Wikidata) to evaluate the
generalization of Large Multimodal Models
(LMMs) across three modalities. Our bench-
mark consists of more than 4,000 dialogues,
each averaging 10 turns, all annotated and
cross-validated by human experts. The dia-
logues in our dataset are designed to prevent
shortcut learning by incorporating various for-
mats and misleading or irrelevant multimodal
cues. We also evaluate both multimodal and
unimodal models to gain insights into how they
process modality inputs introduced in the con-
versation.

1 Introduction

Multimodal dialogue systems became a focal point
in research, drawing significant attention of both
academia and industry. This surge of interest stems
from their potential to contribute to more natu-
ral and nuanced human-computer interactions by
seamlessly integrating text, audio, and visual cues
(Zhu et al., 2023; Liu et al., 2023b; Koh et al.,
2023b,a). Yet, the complexity of these systems
has led to challenges in their evaluation. Existing
benchmarks, in many instances, fall short in cap-
turing the intricacies of the real-world interactions,
lacking the necessary depth and diversity to eval-
uate the true capabilities of multimodal dialogue
systems (Huang et al., 2024).

In response, we introduce the OmniDialog
benchmark, a multimodal, multi-turn benchmark
designed to evaluate the generalization abilities
of Large Multimodal Models (LMMs). Specifi-
cally, our benchmark assesses their capability to
support multi-turn conversations, process modality
injections at random points within the dialogue,
and operate with three modalities simultaneously
(text, visual, and audio). It stands out by grounding
on Wikidata knowledge graph and encompasses

a vast array of more than 4,000 dialogues, each
with an average of 10 turns. To ensure the highest
quality, our human annotators designed these
dialogues from scratch and then cross-validated
them to ensure accuracy and consistency. The
uniqueness of OmniDialog lies in its design: it
requires deep understanding of three modalities –
text, visual, and audio. Moreover, to ensure that
systems truly understand the context rather than
exploit shortcuts, we present dialogues in various
formats.

Our contributions are as follows:

• We introduce OmniDialog — the first compre-
hensive benchmark for evaluating multimodal
dialogue models, where questions are based
on Wikidata KG facts and incorporates three
modalities: text, visual, and audio. This offers
a robust, diverse, and challenging platform for
assessment.

• We provide comprehensive evaluation of the
existing multimodal dialogue systems against
this new benchmark.

The primary data for OmniDialog is sourced
from Wikipedia1 and Wikidata2, ensuring both
the authenticity and generalization ability of the
dialogues. The datasets and evaluation code
will be released under an open source licence at
https://github.com/ai-forever/OmniDialog.

2 Related Work

In this section, we provide a brief description of
popular multimodal datasets and state-of-the-art
multimodal transformer architectures.

1https://www.wikipedia.org/
2https://www.wikidata.org
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Figure 1: Examples of dialogues from the OmniDialog dataset.

2.1 Multimodal Dialogue Datasets

Dialogue datasets that merge various modalities
play a crucial role in training and evaluating mul-
timodal systems. There are two key aspects that
such datasets need to consider: first, the strength
and the robustness of relationships among different
modalities, and second, the ability to identify user’s
query and to follow instructions.

Significant progress in cross-modal benchmark-
ing has been achieved recently. Specifically, com-
binations like language and vision have tackled
challenges in image captioning, visual question an-
swering (VQA), and visual reasoning (Young et al.,
2014; Chen et al., 2015; Krishna et al., 2016; Goyal
et al., 2016). Language and audio studies have em-
phasised audio captioning and classification (Kim
et al., 2019; Drossos et al., 2019; Gemmeke et al.,
2017), while language and video research has con-
centrated on video series description and visual
grounding (Li et al., 2021; Chen et al., 2023; Sig-
urdsson et al., 2016) among other tasks. The vast
majority of these datasets are focused on one spe-
cific domain - a natural language description of the
modality. In contrast, substantially fewer works
have addressed a relatively new field of multimodal
dialogue systems benchmarking.

Early works in this area considered evaluating
multimodal dialogue systems via QA approach on
vision-language based tasks (Goyal et al., 2016;
Johnson et al., 2016; Gurari et al., 2018). Other
studies further aim to estimate the ability of visual
instruction following (Dai et al., 2023; Liu et al.,
2023b; Xu et al., 2022), visual grounding (Chen

et al., 2022; Kazemzadeh et al., 2014). Several
benchmarks emphasise the incorporation of com-
mon knowledge bases in unstructured form and re-
trieval techniques into the general VQA setup (Yu
et al., 2023; Marino et al., 2019; Schwenk et al.,
2022). Besides the visual-text dialogues type, there
are also datasets for the joint evaluation of text
and audio in both Spoken QA (SQA) (Lee et al.,
2018b,a) and audio captioning tasks (Kim et al.,
2019; Drossos et al., 2019; Zhao et al., 2023). How-
ever, all of these benchmarks suffer from a single
drawback: due to the question-answering problem
setting, they put very little attention to the model’s
ability to maintain the long context of the dialogue
in order to further rely on it for later response gen-
eration and do not focus on interaction of several
modalities (e.g. image + audio).

Only in recent time due to the significant success
of OpenAI GPT4 and GPT4-V (OpenAI, 2023a,b),
along with open-source LLMs (Li et al., 2023a;
Awadalla et al., 2023; Dai et al., 2023; Shuster et al.,
2020) to carry on complete visually-augmented
conversations, there were taken steps towards ad-
vanced multimodal dialogue datasets design. These
datasets bring together the visual conditioning with
the instructionally formulated questions, with re-
liance upon dialogue context and requirement of
extensive domain and world knowledge (Das et al.,
2016; de Vries et al., 2016; Mostafazadeh et al.,
2017; Johnson et al., 2016; Shuster et al., 2018;
Meng et al., 2020; Huang et al., 2023b; Liu et al.,
2024). However, the scope of their application
is constrained since they focus on using only two
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modalities — visual and text ones. Other modali-
ties, therefore, remain relatively unexplored in the
dialogue setting.

In contrast to the above mentioned works, our
benchmark fuses the data from three modalities:
text, visual, and audio, and enables building com-
plex relationships on their basis. Furthermore, to
the best of our knowledge, OmniDialog is the first
benchmark to merge all three modalities together
in a single dialogue setup. Our benchmark de-
mands multiple knowledge forms, such as basic
factual world knowledge and scientific knowledge
in historical, physical, and biological domains. The
underlying factual evidence in the OmniDialog
benchmark is derived from the WikiData knowl-
edge graph, therefore, it is precise and reliable.
Dialogs are constructed based on a random subset
of entities and images from Wikidata.

2.2 Visual-Audio-Language Models
One straightforward approach to embed the abil-
ity to understand other modalities into pre-trained
LLMs is to use specialised out-of-the-box visual,
audio, etc. based models as external tools (Schick
et al., 2023; Yang et al., 2023; Li et al., 2023b).
This means that the language model serves as a
skills orchestrator, invoking "expert" models of par-
ticular modality via language calls in order to com-
plete certain tasks when necessary. However, these
methods suffer from weak connectivity and limited
interaction between modalities, resulting in a loss
of significant cross-modal information.

More recently, end-to-end multimodal language
models have gained considerable interest. Some of
the early studies embedded visual data understand-
ing into LMs via additional parameters augmenta-
tion and further joint cross-modal training (Alayrac
et al., 2022; Wang et al., 2022; Gong et al., 2023).

As opposed to training from scratch, follow-up
research has focused on integration of pre-trained
visual and language models. The dominant ap-
proach was to implement a trainable projection
layer between the pre-trained modality feature ex-
tractor and the LLM. This setup leads to the in-
jection of high-quality modality embeddings into
the language context, which is perceived as a "for-
eign language" by the language model. More-
over, keeping the number of tunable parameters
small, improves the computational efficiency of the
cross-modal training. So far, a variety of different
network architectures and learning strategies have
been proposed to fuse different vision and language

models in a single multimodal system (Liu et al.,
2023b; Koh et al., 2023b; Zhang et al., 2023; Gao
et al., 2023).

However, these approaches are limited to using
mostly image content as input. Only a handful of
works have attempted to broaden the model’s in-
put feature space by incorporating other modalities
(Huang et al., 2023a; Girdhar et al., 2023; Wang
et al., 2023; Zhao et al., 2023).

3 OmniDialog

In this section, we describe OmniDialog — a bench-
mark for evaluating multimodal dialogue systems
in English. Our dataset is distinguished by its diver-
sity in dialogue types, human annotation, and strict
evaluation metrics. It is grounded to knowledge
graphs, which means that the discussed facts, im-
ages, and audios in dialogs are taken from Wikidata.
Our benchmark comprised of more than 4,000 dia-
logues, each averaging 10 turns, with data and facts
sourced primarily from Wikipedia and Wikidata.

3.1 Dialog Types
OmniDialog consists of four main types of dia-
logues: text-text, visual-text, audio-text, and tri-
modal dialogues. Each of these is designed to test
the system’s ability to generalise across different
modalities and comprehend information retaining
general knowledge from an LLM.

3.1.1 Text Dialogues
Most contemporary generative pre-trained mod-
els come with a conversational counterpart. Even
though many multimodal conversational systems
possess a robust linguistic foundation, understand-
ing how multimodal tuning impacts unimodal ca-
pabilities is crucial. Consequently, OmniDialog
incorporates a strictly textual segment.

These dialogues aim to gauge solely language-
based, in-context comprehension. Hence, models
must rely exclusively on linguistic understanding
to navigate the dialogue. For a cohesive integration
between textual and multimodal dialogues, we em-
ploy Wikidata facts as our primary dialogue ques-
tion source, emphasizing factual discourse over
creative content.

For constructing textual dialogues, we selected
topics and extracted corresponding random Wiki-
data entities, including films, writers, actors, ani-
mals and food. Human annotators then crafted dia-
logues based on the relationships and facts (Wiki-
data triples) associated with these entities. Recog-
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Dataset Multi-turn Interleaved #Dialogs #Turns #Images #Audio KG Annotation
CLEVR-Dialog (Johnson et al., 2016) Yes No 425.0 k. 4250.0 k. 85.0 k. No No Synthetic
OpenViDial (Meng et al., 2020) No No 1100.0 k. 1100.0 k. 1100.0 k. No No Synthetic
DialogCC (Lee et al., 2022) Yes Yes 92.9 k. 930.0 k. 651.0 k. No No Synthetic
SparklesEval (Huang et al., 2023b) Yes No 6.5 k. 26.0 k. 10.9 k. No No Synthetic
MPCHAT (Ahn et al., 2023) Yes Yes 15.0 k. 42.5 k. 153.0 k. No No Synthetic
LLaVA (Liu et al., 2023b) Yes No 56.7 k. 514.0 k. 56.7 k. No No Synthetic
PhotoBook (Haber et al., 2019) Yes No 2.5 k. 164.6 k. 0.4 k. No No Human
VisDial (Das et al., 2016) Yes No 133.0 k. 1200.0 k. 133.0 k. No No Human
GuessWhat?! (de Vries et al., 2016) Yes No 155.0 k. 821.0 k. 66.0 k. No No Human
IGC (Mostafazadeh et al., 2017) Yes No 4.2 k. 25.3 k. 4.2 k. No No Human
Image-Chat (Shuster et al., 2018) No No 201.8 k. 401.0 k. 201.8 k No No Human
MMD (Saha et al., 2017) Yes Yes 151.6 k. 6400.0 k. 4200.0 k. No No Human
PhotoChat (Zang et al., 2021) Yes Yes 12.3 k. 156.0 k. 10.9 k. No No Human
MMDialog (Feng et al., 2022) Yes Yes 1800.0 k. 4920.0 k. 1530.0 k. No No Human
VDialogUE (Li et al., 2023c) Yes Yes 1080.0 k. 4900.0 k. 1530.0k. No No Human
MMDU Benchmark (Liu et al., 2024) Yes Yes 110 1.6 k. 421 No No Human
OmniDialog (Ours) Yes Yes 4.0 k. 27.0 k. 2.4 k. 1.0 k. Yes Human

Table 1: Comparison of OmniDialog with existing multi-modal English-language dialogue datasets.

Modality Dialogue Type # Dialogues # Questions (KG-based) # Questions (General)
Text General dialogues 1 455 2,000 6 492

Single Image 1 794 6 506 5 552
Visual Clarifying Image 400 1 349 1 420

Misleading Image 220 290 396
Single Audio 283 2 366 1 334

Audio Clarifying Audio 500 2 109 1 471
Dual Audio 100 499 203

Trimodal General dialogues 165 0 2 000

Table 2: Statistics of dialogues in the OmniDialog, categorized by modality and dialogue type.

nizing that Wikidata might occasionally offer lim-
ited information, annotators were advised to sup-
plement dialogue content using relevant Wikipedia
articles.

3.1.2 Visual Dialogues

Visual dialogues in OmniDialog are designed to
assess the model’s capacity to integrate visual pro-
cessing with natural language understanding. In
each dialogue, a single image is employed (not
necessarily in the initial dialog turn), and at least
four facts from WikiData are utilized. The visual
dialogues are divided into three categories, each
with its unique structure and purpose:

1. Single Image Dialogues: In this format, the
user introduces a single image and poses ques-
tions related to it. These questions encompass
both intricate queries oriented towards facts
from WikiData and straightforward inquiries
regarding the content of the image. A sample
dialogue is illustrated in Figure 1.

2. Clarifying Image Dialogues: This dialogue
structure begins with the user posing a ques-
tion that cannot be answered without addi-
tional clarifying information. The user then
provides an image to supplement the dialogue
and to facilitate further discussion.

3. Misleading Image Dialogues: In this sce-
nario, the user poses a question along with an
image that, while thematically related, is irrel-
evant. The model must identify the image’s
irrelevance and respond accurately, followed
by a discussion about the image. Some base-
line multimodal LLMs tend to shift focus on
the image, ignoring its irrelevance to the query.
This dialogue type is designed to address such
tendencies, encouraging models to balance
attention between visual and textual inputs
mitigating such shortcut behaviors.

3.1.3 Audio Dialogues
Audio and textual modalities have been fused
within dialogues in OmniDialog in a way that al-
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lows a better understanding of the model’s sound
comprehension ability’s contribution to its multi-
modal dialogue performance.

The audio-text OmniDialog dialogues were used
to evaluate the role of the model’s sound compre-
hension in its multimodal conversation skills. To
ensure the diversity of different sound types and
the balance between the factual reliability and the
realism of the discussion, we defined the following
rules: 1) the same audio should be used in dia-
logues only once; 2) each dialogue should contain
at least 2 and no more than 4 facts; 3) non-factual
knowledge questions should be as simple that a
5-year-old child would be able to answer.

Based on the collected sound files and Wikidata
textual facts, we also identified three categories
within the structure of the dialogues:

1. Single Audio Dialogues: In this split, first
turn of conversation contains an audio record-
ing and a question about its content. In the
further dialogue progression, both evidence-
based questions referring to the WikiData en-
tity and sound based questions are used.

2. Clarifying Audio Dialogues: Within this dia-
logue type, the user sends an audio recording
along with an accompanying question in the
middle of the discussion. In this case, the
audio serves as a clarification to one of the
evidence-based questions. The subsequent di-
alogue is built around the audio content, with
a variety of relevant questions about it.

3. Dual Audio Dialogues: Two audio recordings
are used simultaneously in these dialogues,
setting them apart from the other types. Con-
versations include both questions about con-
tent of audios and evidence-based ones that
pertain to the related entities recognized on
audio. The dialogues should emphasise the
connection between the sounds, whether by
questioning their characteristics or compar-
ing the entities they are associated with. The
purpose of this dialogue type is to examine
the model’s ability to differentiate and remem-
ber various audio information throughout the
conversation.

3.1.4 Trimodal Dialogues
Trimodal dialogues in OmniDialog aim to gauge
the model’s capability to process and combine in-
formation from three modalities: text, visual, and

audio ones. Within these dialogues, models are
expected to integrate and act on the information
derived from all sources to provide accurate an-
swers. We have curated 100 high-quality trimodal
dialogues, categorized into four distinct scenarios:

1. Image-sound Matching: The model is asked
to match an object’s sound from the audio
with its visual representation in an image to
identify the subject of discussion.

2. Multimodal Navigation: The audio clarifies
the object, concept, or event depicted in the
image. Subsequent questions focus on this
audio-visual correspondence.

3. Audio-based Continuation: These dialogues
start with an image showing a certain situation.
The task is to understand how this situation
might change considering the given audio.

4. Misleading Dialogues: The dialogues con-
tain unrelated audio and visual prompts. Mod-
els must adeptly shift attention between these
different sources of information to respond
accurately.

3.2 Human Annotation
Multimodal dialogue creation is a nuanced task
demanding attention to the details. To ensure the
integrity of the data, we implemented a rigorous
protocol:

Annotation Protocol:

• Develop comprehensive guidelines with illus-
trative examples.

• Host training sessions to resolve annotators’
doubts.

• Enforce a rigorous verification process for all
dialogues.

Media Criteria:

• Ensure audio and images align with articles
and provide multiple facts.

• Maintain a minimum duration of 4 seconds
for audio clips.

Dialogue Rules:

• Keep dialogues between 4 and 20 messages.

• Base multimodal questions on Wikidata facts
or clear links between articles.
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• Root text dialogues in Wikipedia data.

• Limit user questions to 2-15 words and an-
swers to 1-10 words.

Synonyms: Include synonyms in dialogues
when alternate answers exist. Ensure they fully
address the user’s questions. They are essential for
text and audio dialogues.

Negative examples: Negative examples are re-
quired for multiple choice evaluation setup to be
passed as answer options along with ground truth
answer. So they have been added to all questions,
including names, dates, numbers, yes/no, and oth-
ers. Along with negative examples, neutral options
"can’t answer", "not enough information" were al-
ways added.

Challenges: We faced issues like repetitive facts
and overly concise answers. Solutions included
rephrasing, adding comparative elements, and vary-
ing sentence structures.

Team Workflow: Our six-member team pro-
duced 20-25 dialogues each day. Validation was
quicker, taking about 40% of the dialogue creation
time.

3.3 Evaluation and Metrics

Evaluating generative models is inherently chal-
lenging. The evaluation method can alter both
numerical results and leaderboard rankings dras-
tically. While OmniDialog was initially designed
for open-ended generative responses, this design
posed evaluation complexities. The variability in
training can result in models producing diverse or
brief responses, making it essential for ground truth
options to account for such variability.

Given our benchmark’s focus on factual ques-
tions, we aim to prioritize answer correctness over
stylistic variations. To this end, we convert dia-
logues into multiple-choice questions and deter-
mine accuracy based on the selected response.

The given answer is recorded, but for conse-
quential questions the correct answer to the current
question is used in the previous context to enforce
model capabilities and fair comparison between
multimodal and text-only models. For evaluation
details, please refer to Appendix A.2.

The final score is reported as the mean accuracy
of model answers. Total stands for mean of accu-
racies reported on benchmark subsets.

Text-Only

Visual Type 1

Visual Type 2

Visual Type 3

Audio Type 1

Audio Type 2

Audio Type 3

Trimodal

81.85

83.58

84.49

58.25

65.66

68.15

72.44

82.63

Gemini 1.5 Flash
LLaVA-1.6-34B
InternVL2-1B
InternVL2-40B
GPT4-o-mini-2024-07-18
Qwen2-Audio

Figure 2: Comparison of models: Radar plot of baseline
evaluation against different dialog types.

4 Baselines

Given that the most progress has been achieved
for the combination of visual and textual modali-
ties, we have adapted several recently introduced
models to process the dialogue input. The base-
lines include not only the trimodality models but
also bimodal (visual-text) and unimodal models
(language-only) models. The latter are evaluated
using the corresponding part of OmniDialog.

Trimodal. Gemini (Team, 2024) serves as a
baseline model supporting all three modalities.

Visual-Language. Several (near) state-of-the-
art models are assessed on the language-only
and visual-language OmniDialog parts: series of
LLaVA models (Liu et al., 2023a), series of In-
ternVL 2.0 (Chen et al., 2024) chat models with
the LLM backbones of various size (from 1B
to 40B parameters) and strong vision encoder
(InternViT-6B and its distilled version InternViT-
300M), and Idefics2 8B (Laurençon et al., 2024)
vision-language model trained with the interleaved
data.

These models ignore audio data during the eval-
uation process and only encode images with pro-
posed visual adapter architectures.

Language-only. GPT-4-mini is used as a
language-only baseline reference for OmniDialog.
No encoding of visual or audio data is performed
during the evaluation and model solely reasons
from previosly answered questions.

188



Model Text-Only Visual Audio Trimodal Total
Type 1 Type 2 Type 3 Type 1 Type 2 Type 3

Random Guessing 16.41 26.68 26.18 26.54 17.85 18.90 15.56 40.08 22.16
Trimodal Models

Gemini 1.5 Flash (Team, 2024) 72.36 79.01 82.34 57.58 57.55 57.83 63.90 77.27 68.48
Visual-Language Models

LLaVA-v1.5-7B (Liu et al., 2023a) 68.45 69.23 64.15 44.11 54.58 59.25 59.23 69.26 61.03
LLaVA-v1.5-13B 69.74 73.22 72.39 46.46 55.26 60.11 63.01 75.05 64.40

LLaVA-v1.6-Mistral-7B 69.47 73.92 73.44 48.15 59.59 62.90 62.45 75.05 65.62
LLaVA-1.6-34B 81.85 80.77 83.70 53.20 65.66 68.15 72.44 81.16 73.37

Idefics2-8B (Laurençon et al., 2024) 66.45 65.86 69.85 54.21 59.16 62.67 63.58 71.47 64.16
InternVL2-1B 45.36 60.42 57.06 44.44 43.63 44.44 48.51 63.89 50.97
InternVL2-2B 50.30 65.79 63.45 46.56 49.13 47.66 51.33 69.58 55.47
InternVL2-8B 70.02 78.63 78.44 56.90 60.71 61.51 65.75 78.00 68.74

InternVL2-26B 71.45 79.90 79.40 53.20 56.25 56.96 53.20 78.42 66.1
InternVL2-40B 80.43 83.58 84.49 58.25 64.48 64.46 58.25 82.63 72.07

GPT4-o-mini-2024-07-18 (OpenAI, 2023a,b) 78.85 76.67 79.61 55.56 55.40 58.92 61.72 80.56 68.41
Audio-Language Models

Qwen2-Audio (Chu et al., 2024) 53.84 44.90 48.25 41.33 55.87 55.87 49.63 47.79 49.69
Language-only Models

GPT4-o-mini-2024-07-18 - 26.61 30.14 34.68 - - - 42.55 -

Table 3: Performance evaluation results across different categories of models on our OmniDialog benchmark. Best
in each dialogue category is highlighted id bold.

5 Discussion

We discuss result of OmniDialog benchmark evalu-
ation presented in Table 3.

1. Influence of the LLM Backbone on Perfor-
mance. There is a strong correlation between
the evaluation results and the performance of the
model’s LLM backbone. Models with more power-
ful backbones consistently achieve higher results
across all image types. For instance, there is a sig-
nificant performance gap of over 20% between the
InternVL2 40B and InternVL2 1B models across
all dialogue types. Similarly, the difference be-
tween LLaVA-1.6 34B and 7B models averages
nearly 8%. The dialogs in OmniDialog are con-
structed using Wikipedia and WikiData entities.
Hence, the LLM’s knowledge of Wikipedia content
helps multimodal models based on these backbones
generalize better across multimodal information.

2. Challenges in Visual Type-3 Dialogues. The
lowest performance in visual-language models is
observed in Type 3 visual dialogues, where mis-
leading images are introduced into the dialogue
context. Although models can answer textual ques-
tions correctly, they struggle with questions related
to the image modality, especially when the question
is distant from the image. This challenge may arise
from the typical training process, where models are
used to encountering the image and accompanying
question in a strict sequence. LLaVA-based models
experience an average performance drop of 20% in

visual Type 3 dialogues compared to visual Types
1 and 2.

All benchmarked models do not generalize well
on questions not matching context of the distracting
image. We show the example of Type 3 visual
dialogue in Section A Figure 7.

3. Challenges in Audio Dialogues. The most
challenging modality type of dialogue in the bench-
mark is audio dialogues. Visual-language models
struggle to guess the correct answer to questions,
even with the teacher-forcing approach, leading
to lower performance compared to other dialogue
types. It is evident that models adapted to the au-
dio domain, such as Qwen-Audio 7B, show lower
metrics on audio datasets compared to stronger
baselines that do not process audio.

4. High Results on Multimodal Inputs. The
teacher-forcing of context introduced in 4 reduces
the influence of modality input, enabling models to
provide correct answers even when they struggle
to process a specific modality. Reinforcing past
context with correct answers leads to a significant
performance boost in tasks with added modalities.
Thus, strong visual-language models without audio
perception (such as LLaVA-v1.6 34B) perform well
on audio-based dialogues.

If we switch to a mode where specific model an-
swers are added as the continuation of the dialogue
for further assessment, the results might differ. We
leave this type of evaluation for further research.
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Figure 3: Bigram word pairs in user questions.
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Figure 4: Distribution of word lengths in user ques-
tions with an average of 6 words.

Figure 5: Wordcloud of assistant answers.
Figure 6: Distribution of word lengths in assistant
answers with an average of 4.5 words

6 Benchmark Statistics

Figures 3 - 4 show characteristics of the OmniDia-
log dataset in terms of textual analysis of the repli-
cas. We explore key elements such as the word bi-
gram distribution in user questions, the word cloud
of required assistant responses as well as the length
distributions for both of them.

7 Conclusion

We introduced OmniDialog, a diverse and com-
prehensive benchmark for multimodal dialogue
systems, comprising more than 4,000 dialogues
based on entities, facts, and media from Wikidata
knowledge graph. These dialogues, designed to
prevent shortcut learning, offer a unique challenge

for multimodal systems with various formats and
misleading cues. The knowledge graph founda-
tion of OmniDialog makes it a valuable resource
for comparing multimodal models based on factual
information.

We also analyze several baselines, both open-
source and proprietary, with respect to their gen-
eralization across various modalities and types of
dialogues introduced with OmniDialog. Following
the teacher-forcing evaluation, we compared mod-
els operating with different modalities. We believe
that the creation of multimodal benchmarks will
motivate the community to develop dialogue assis-
tants further and enhance their evaluation. We also
aim to build upon this work by providing various
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types of assessments using LLM oracles, both with
and without teacher forcing, which may result in
a fairer comparison of the quality of multimodal
models.

Limitations

While Wikidata is generally considered a reliable
source of information, it carries an inherent risk of
bias, as it may contain its own biases, errors, and
inconsistencies. Since OmniDialog is focused on
English, using this source limits our ability to fairly
evaluate the multilingual generalization of models.
Additionally, the potential for human errors dur-
ing annotation and editing cannot be overlooked,
which might introduce further discrepancies or in-
accuracies into the dataset.

Ethical Statement

We acknowledge the importance of diversity and
representation in data sources. Our aim with Om-
niDialog was to ensure a broad and diverse rep-
resentation in dialogues, striving to avoid poten-
tial biases where certain cultures might be under-
represented.
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A Appendix

A.1 Misleading Image example
In Figure 7, we present the evaluation of the visual-
language model on a visual dialogue containing a
misleading image. Although the model success-
fully answered the textual questions, it failed to
provide the correct answer related to the image in
the subsequent conversation.

A.2 Evaluation pipeline
In this section we clarify how teacher forced evalu-
ation is performed. Past context is obtained from
ground truth labels for previous questions.

System Prompt

You are an expert whose job is to answer
questions from the user possibly using im-
ages and audios and previous questions with
given answers.
First, reason about the correct answer. Then
write the answer in the following format
where X is exactly one of English letters
(A,B,C,...): "ANSWER: X".
If you are uncertain of the correct answer,
guess the most likely one.

Context

User: What is the country of origin of the
film "Addicted to Plastic?"
A) Canada.
B) Colombia.
C) Australia.
D) France.
E) China.
F) Russia.
G) Argentina.
Assistant: Answer: A

User: Can you Tell me the director’s name?
A) Stanley Kubrick.
B) It’s Ian Connacher.
C) Akira Kurosawa.
D) Alfred Hitchcock.
E) John Ford.
F) Ingmar Bergman.

G) Martin Scorsese.
Assistant: Answer: B

User: What genre?
A) Gothic film.
B) Biographical film.
C) Historical film.
D) Gangster film.
E) It’s a documentary film.
F) War film.
G) Detective film.
Assistant: Answer: E

User: Who composed the music?
A) Ian Connacher.
B) Richard Wagner.
C) Siegfried Ochs.
D) Antonio Vivaldi.
E) Pyotr Tchaikovsky.
F) Franz Schubert.
G) Frederic Chopin.
Assistant: Answer: A

User: What year did it come out?
A) In 2009.
B) In 2007.
C) In 2005.
D) In 2010.
E) In 2001.
F) In 2006.
G) In 2008.
Assistant: Answer: G

User: Answer, what is its duration?
A) 85 minutes.
B) 86 minutes.
C) 99 minutes.
D) 88 minutes.
E) 89 minutes.
F) 87 minutes.
G) 91 minutes.

Model Generation

Assistant: Answer: A
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Visual Dialogue (Type-3): Misleading Image

User: In which country is the city of Berlin located?

Choices:

A. Spain
B. Italy
C. France
D. Germany

Assistant: D. Germany
Ground Truth: D. Germany

Continuation

User: In which country is the city of Berlin located?
Assistant: Germany
User: What time of day is shown in the picture?
Choices:

A. It is nighttime
B. It is daylight hours
C. It is sunset
D. It is sunrise

Assistant: D. It is sunrise
Ground Truth: B. It is daylight hours

Continuation

User: In which country is the city of Berlin located?
Assistant: Germany
User: What time of day is shown in the picture?
Assistant: It is daylight hours
User: What country is shown in the picture?
Choices:

A. United States
B. Saudi Arabia
C. China
D. Brazil

Assistant: A. United States
Ground Truth: B. Saudi Arabia

Figure 7: Example of visual Type 3 with the misleading image
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Abstract

Emotion recognition in text is a complex and
evolving field that has garnered considerable
interest. This paper addresses the pressing
need to explore and experiment with new cor-
pora annotated with emotions. We identified
several corpora presented since 2018. We re-
stricted this study to English single-labeled
data. Nevertheless, the datasets vary in source,
domain, topic, emotion types, and distribu-
tions. As a basis for benchmarking, we con-
ducted emotion detection experiments by fine-
tuning a pretrained model and compared our
outcomes with results from the original pub-
lications. More importantly, in our efforts to
combine existing resources, we created a uni-
fied corpus from these diverse datasets and
evaluated the impact of training on that cor-
pus versus on the training set for each cor-
pus. Our approach aims to streamline re-
search by offering a unified platform for emo-
tion detection to aid comparisons and bench-
marking, addressing a significant gap in the
current landscape. Additionally, we present a
discussion of related practices and challenges.
Our code and dataset information are avail-
able at https://github.com/a-koufakou/
EmoDetect-Unify. We hope this will enable
the NLP community to leverage this unified
framework towards a new benchmark in emo-
tion detection.

1 Introduction

Detecting emotions in language, such as anger,
joy, or sadness, is a powerful application of Nat-
ural Language Processing (NLP) with significant
interest, especially in recent years (Mohammad
et al., 2018; Oberländer and Klinger, 2018; Dem-
szky et al., 2020; Lamprinidis et al., 2021; Plaza-
del Arco et al., 2024). Emotion detection is some-
times confused with Sentiment Analysis, a much
simpler task that focuses on detecting polarity of
sentiments or opinions (Mohammad, 2022). Auto-

mated emotion detection is considerably more nu-
anced and complex due to the subjective and intri-
cate nature of emotions.

NLP-based emotion detection uses datasets an-
notated with emotions. There is great variability
in emotion annotation, including differences in an-
notation levels (e.g., basic vs. detailed) and label-
ing schemes (e.g., single vs. multi-label). An even
more important challenge is which emotions to use
in order to annotate data. Various emotion tax-
onomies or theories have been presented. Ekman
(1992) provided 6 basic emotions: anger, disgust,
fear, joy, sadness, surprise. Plutchik (1984) pro-
posed a wheel of 8 emotions, adding trust and an-
ticipation to Ekman’s, also presenting dyads (feel-
ings composed of two emotions). Shaver et al.
(1987) identified 6 basic emotions: love, joy, anger,
fear, sadness, surprise, on which they also pro-
vided secondary and tertiary levels in a tree-like
structure, later refined in Parrott (2001). The
Appraisal theory (Scherer, 1999; Lazarus, 1991)
linked emotions to a persons interpretation of a
situation or event. Recently, Cowen and Keltner
(2017) identified 27 distinct categories based on
videos, facial expressions etc., revised by Dem-
szky et al. (2020) for text-based emotion recog-
nition. Despite the variety of theories available,
many efforts have concentrated on single-labeled
corpora with a limited set of basic emotions such
as Ekman (Plaza-del Arco et al., 2024), likely be-
cause these are typically easier for NLP models
to handle. Nevertheless, the presence of multiple
theories allows different approaches to emotion an-
notation, making it complicated to unify different
datasets for comparisons and benchmarking.

In recent years, numerous emotion-annotated
corpora have been introduced from diverse sources
and domains, such as social media posts given
specific tags or essays on specific topics. Any
such available corpora are found in separate repos-
itories and articles, making it challenging for re-
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searchers to be aware of all available resources in
order to fully investigate their use. It is noteworthy
that a few corpora are well-known, e.g., GoEmo-
tions (Demszky et al., 2020) or TweetEval (Barbi-
eri et al., 2020) with more than 700 citations each,
in contrast to others such as Github-love (Imran
et al., 2022) with around 20 citations.1

As a result, many studies have relied on a sub-
set of available resources, and there has been
limited work towards benchmarking. The work
by Oberländer and Klinger (2018) stands out:
they analyzed and aggregated 14 popular emotion-
annotated corpora into a unified framework, in
2018. They used their unified corpus for bench-
mark results with in-corpus and cross-corpus ex-
periments. The unified framework available on-
line2 facilitated comparisons of the different cor-
pora. Recent surveys (Alswaidan and Menai,
2020; Acheampong et al., 2020; Nandwani and
Verma, 2021; Deng and Ren, 2023; Kusal et al.,
2023) do not cover many of the corpora we present
in this paper. Very recently, an excellent recent pa-
per by Plaza-del Arco et al. (2024) reviewed over
150 ACL papers (2014-2022), and offered a de-
tailed overview of practices, gaps, and guidelines
for emotion analysis in text. Still, their paper did
not provide a unified framework or experimenta-
tion results.

To address this gap, our paper introduces a uni-
fying framework of text corpora annotated with
emotions, as presented in the literature since 2018.
We chose 2018 because: (a) it was the most recent
year when a unifying framework was presented
(Oberländer and Klinger, 2018), and (b) it marked
a notable increase in the number of related stud-
ies (Plaza-del Arco et al., 2024). Specifically, we
identified 11 publicly available emotion-annotated
text corpora: we focused our experimentation to
English and single-labeled data.3 While this may
seem limited, it serves as a good representation
for a significant portion of existing datasets in this
area (Plaza-del Arco et al., 2024). More impor-
tantly, our primary aim is to explore how to unify
(combine) various datasets annotated with differ-
ent emotions into a single framework, which is not
as straightforward.

We conducted classification experiments with

1Per Google scholar, last checked Aug. 2024.
2https://github.com/sarnthil/

unify-emotion-datasets
3Our work uses GoEmotions, which is multi-labeled. We

transformed it into single-labeled for this study.

these datasets, while comparing our results with
the results reported in the original articles. Based
on these corpora, we introduce a unified corpus
built by mapping original emotions in the corpora
to a common set of emotions. Finally, we present
baseline benchmarking results for emotion classi-
fication with our unified corpus. The ultimate goal
is to aid researchers in the field of text-based emo-
tion recognition by providing a unified resource
built on a comprehensive set of recent data, which
they can access in one repository. Our secondary
goal is to furnish a classification baseline bench-
mark with valuable insights they can use while
conducting their own experiments.

The following sections provide descriptions of
the corpora (Section 2), details of the unified cor-
pus we created (Section 3), results of our emotion
classification experiments (Section 4), and a dis-
cussion of findings and observations (Section 5),
followed by our concluding remarks and future re-
search directions (Section 6).

2 Corpora

Table 1 summarizes the corpora used in this paper.
Table 2 shows which emotions are represented in
each corpus. In the following, we provide a brief
description of each dataset. We then provide an
overview of the datasets and their characteristics.
We renamed certain datasets due to unclear or long
names.

CARER Saravia et al. (2018) collected tweets
with a set of hashtags they constructed, e.g. #de-
pressed, #grief for sadness, or #fear, #worried for
fear. These hashtags were used to annotate the
data (distant supervision). The dataset posted on
Hugging Face is labeled with Shaver, and it is a
variant of the dataset presented in the article.

Covid-worry This dataset contains survey re-
sponses collected in UK over 2020-22, start-
ing with the first COVID-19 lockdown (Klein-
berg et al., 2020). Participants wrote short and
long texts, along with demographic data and self-
ratings for several emotions. They also chose
one emotion among anger, anxiety, disgust, desire,
fear, happiness, relaxation, sadness. In 2023, the
authors presented a 3-year dataset (van der Vegt
and Kleinberg, 2023).

EmoEvent Plaza-del-Arco et al. (2020) col-
lected tweets related to events in 2019, and then
followed certain steps to select a subset of affec-
tive tweets. The resulting tweets in English and
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dataset source # emotions size reference avail.
CARER tweets 6 417* (Saravia et al., 2018) HG
Covid-worry essays 8 5.2 (van der Vegt and Kleinberg, 2023) G,O
EmoEvent tweets 6+1 7.3 (Plaza-del-Arco et al., 2020) G
enISEAR self-written 8 1 (Troiano et al., 2019) O
Github-love github 6 1.7 (Imran et al., 2022) HG
GoEmotions reddit 27+1, 6+1 58* (Demszky et al., 2020) G
GoodNews headlines 15+1 5 (Oberländer et al., 2020) Uni
StackOv-GS stack overflow 6 4.8 (Novielli et al., 2018) G
TweetEval tweets 4 5 (Barbieri et al., 2020) G
Universal Joy facebook 5 284* (Lamprinidis et al., 2021) G
WASSA-21 essays 6+1 2.6 (Tafreshi et al., 2021) Cd, Rq

Table 1: Summary of datasets used in this paper. Size in thousands (rounded to the closest hundred; if corpus has
multiple languages, it refers to English; * denotes that we used a smaller sample of this dataset for our experiments).
‘+1’ in ‘# emotions’ column denotes additional class for neutral/no emotion/other(s). ‘avail.’ is data availability:
Cd=Codalab, G=Github, HG=Hugging Face, Kg=Kaggle, O=Other, Rq=By Request (the URLs are provided in
our online repository).

in Spanish were annotated by Amazon MTurkers
using Ekman plus other.

enISEAR Troiano et al. (2019) provided Ger-
man (deISEAR) and English (enISEAR) corpora,
using a framework similar to earlier ISEAR (Inter-
national Survey on Emotion Antecedents and Re-
actions) (Scherer and Wallbott, 1994). A question-
naire instructed annotators (by crowdsourcing) to
give a description of an event for which they felt
a particular emotion. Each record was annotated
with Ekman plus guilt and shame.

Github-love Imran et al. (2022) collected
GitHub comments on pull requests/issues for pop-
ular repositories, annotated by the authors using
Shaver. Besides these basic emotions, they also
used detailed levels of emotions (Shaver et al.,
1987), where they added some of the emotions pre-
sented by Demszky et al. (2020), e.g. approval or
confusion. Note that the dataset available online
has basic emotion labels, not the detailed levels in
the paper.

GoEmotions Demszky et al. (2020) collected
Reddit comments with crowdsourced annotations
for 27 emotions or neutral, revised from Cowen
and Keltner (2017). They also provided an Ek-
man mapping from their detailed emotions. This
dataset is multi-labeled and we transformed it into
single-labeled for the purposes of this study (see
Section 3 for details).

GoodNews Oberländer et al. (2020) collected
English news headlines and annotated them via
crowdsourcing (named GoodNewsEveryone in the
original article). Annotations were provided for

emotions (extended Plutchik) and their intensity,
as well as semantic roles (such as experiencer or
cause), and reader interpretation of the headline.

StackOv-GS Novielli et al. (2018) collected
Stack Overflow questions, answers and comments
for the ‘StackOverflow Gold Standard’. They
were annotated by volunteers with Shaver.

TweetEval Barbieri et al. (2020) created a
unified twitter dataset with seven heterogeneous
Twitter-specific classification tasks. Among those,
they included Affect in Tweets (Mohammad et al.,
2018) only keeping single-label records and drop-
ping rare emotions. This resulted in records la-
beled with anger, joy, optimism, sadness.

Universal Joy Lamprinidis et al. (2021) pre-
sented a dataset with anonymized public Facebook
posts that were originally collected in 2014 in 18
languages. The authors labeled the records with
anger, anticipation, fear, joy, sadness.

WASSA-21 This dataset was part of a shared
task in the 11th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment & Social De-
tection and Emotion Classification (WASSA), sum-
marized by Tafreshi et al. (2021). It contains es-
says written to express the authors empathy and
distress in reaction to news articles related to harm.
The emotion labels (Ekman) were first predicted
by Neural Networks and then post-annotated by
crowdsourcing workers and a PhD student.

Overview Out of the 11 datasets in Table 1,
5 came from social media (X/Twitter, Facebook,
Reddit), 2 came from software-related websites
(GitHub and Stack Overflow), 1 was with news
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dataset annotation A Ant D F J Ne Sa Su T other emotions
CARER Shaver ✓ – – ✓ ✓ – ✓ ✓ – love

Covid-worry Other ✓ – ✓ ✓ ✓ – ✓ – – anxiety, desire, relaxation

EmoEvent E+Ne ✓ – ✓ ✓ ✓ ✓ ✓ ✓ –
enISEAR Ext. E ✓ – ✓ ✓ ✓ – ✓ – – shame, guilt

Github-love Shaver ✓ – – ✓ ✓ – ✓ ✓ – love

GoEmotions E+Ne, ✓ – ✓ ✓ ✓ ✓ ✓ ✓ – 27 fine-grained emotions

Revised CK
GoodNews Ext. P ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ annoyance, guilt, love,

pride, shame

StackOv-GS Shaver ✓ – – ✓ ✓ - ✓ ✓ – love

Tweeteval Other ✓ – – – ✓ – ✓ – – optimism

Universal Joy Mod. P ✓ ✓ – ✓ ✓ – ✓ – –
WASSA-21 E+Ne ✓ – ✓ ✓ ✓ ✓ ✓ ✓ –

Total 11 2 6 10 11 3 11 7 1

Table 2: The emotions in each corpus. E=Ekman, P=Plutchik, and CK=Cowen & Keltner; Mod.=modified,
Ext.=extended. “–” means the emotion is not in that corpus. Emotions: A-Anger, Ant-Anticipation, D-Disgust,
F-Fear, J-Joy, Ne-Neutral or no emotion or other, Sa-Sadness, Su-Surprise, and T-Trust.

headlines, and 3 were self-reported (for exam-
ple, self-written responses to questions and self-
ratings of emotions in Covid-worry). The data that
were based on online posts or comments were usu-
ally annotated by humans (volunteers, experts or
crowdsourcing workers), though CARER used the
hashtags as noisy labels. The self-reported var-
ied: in Covid-worry, essays were written by sur-
vey participants related to their current situation,
while in enISEAR the statements were written by
crowdsourcing workers: they were given an emo-
tion, and were asked to describe a related event.

As far as size, most corpora are small; the two
smallest are enISEAR and Github-love. There are
3 larger datasets: CARER and Universal Joy (hun-
dreds of thousands) and GoEmotions (about 58K).
Finally, all corpora follow basic emotion annota-
tion, except GoEmotions and GoodNews.

Based on Table 2, we observed that all or most
corpora contain anger, fear, joy, and sadness; fre-
quently represented emotions are disgust and sur-
prise; love is represented in fewer than half of the
corpora; the anticipation and trust emotions fol-
lowed by neutral, no emotion, other are the least
represented in the data.

Finally, the distribution of emotions varies
across the corpora. Some corpora exhibit a range
of dominant emotions versus very low representa-
tion of certain emotions. For instance, CARER is
primarily dominated by joy, followed by sadness,
and it has a very low sample of surprise. Uni-
versal Joy is heavily dominated with anticipation

and then joy, while low on anger and fear. Covid-
worry is led by anxiety and fear, with joy trailing
behind, and it has a very low number of records
with disgust or anger. StackOV-GS is led by love,
followed by anger. EmoEvent is predominantly
neutral (‘other’), followed by joy. Both Emo-
Event and StackOV-GS are very low in fear and
surprise. Finally, disgust has very low representa-
tion in most datasets. As an exception, enISEAR
is balanced as crowdsourcing workers were asked
to write a certain number of statements for each of
the emotions.

3 Creating a Unified Corpus

First, for any corpus we downloaded, we spent
effort reading instructions and exploring file for-
mats, features, labeling schemes, etc. For exam-
ple, some data had integers as labels, which we
had to map to emotions per author instructions;
some data came with many features so we had to
extract text/labels. Many sets were well-organized
and documented, with a couple of exceptions that
were harder to understand and transform. In short,
we spent significant effort to integrate diverse cor-
pora into the unified corpus with the goal to save
other researchers time and effort.

Based on the emotions in Table 2 and previous
work (Oberländer and Klinger, 2018; Demszky
et al., 2020), we defined a scheme roughly follow-
ing Plutchik and Shaver as our common emotion
label set. Specifically, we used anger, anticipation,
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unified original
anger anger, annoyance, annoyed,

shame
anticipation anticipation, neg. or pos.

anticipation
disgust disgust
fear fear, anxiety
joy joy, happiness, happy, desire,

optimism, optimistic, pride,
relaxation

love love, love incl. like
neutral neutral, none, noemo, other
sadness sadness, sad, guilt
surprise surprise, neg. surprise,

pos. surprise
trust trust

Table 3: The mapping we followed for mapping origi-
nal labels to unified labels. We roughly follow the mod-
els by Plutchik (1984) and Shaver et al. (1987).

disgust, fear, joy, love, sadness, surprise, trust, and
neutral; we kept neutral due to its relatively good
representation in certain corpora (e.g., it was about
33% of the records in GoEmotion).

We mapped original emotions from the data to
the emotions in the common set as shown in Table
3. We decided on the mappings based on previous
literature, and by observing sample records from
each corpus. For example, Oberländer and Klinger
(2018) used a very similar set: their list had the
same emotions as ours except they included confu-
sion and not love. Also, Demszky et al. (2020)
mapped annoyance to anger and optimism and
pride to joy. For GoEmotions (a multi-labeled cor-
pus with detailed emotions), we kept only records
with a single label or if the multiple labels mapped
to the same label in our common set of emotions
(note that the creators provided Ekman mappings
of their detailed labels). This resulted in a dataset
with 43,975 records. For Covid-worry, we com-
bined all surveys from 3 years. Finally, due to our
resources, we downsampled CARER and Univer-
sal Joy to a more manageable size for our experi-
ments, keeping emotion distribution the same as in
the original corpora. As a result, in our experiment
there were 62,522 records for CARER, and 84,695
for Universal Joy (about 30% of the original size).

3.1 Unified Corpus Properties

Our unified corpus addresses the following proper-
ties important for generalization testing as shown

by Hupkes et al. (2023). In all the points below
we refer the reader to the dataset descriptions in
the earlier sections and Tables 1 and 2.

Platform Shift: The datasets that were collected
from online sources were sourced from differ-
ent platforms: Twitter, Reddit, Facebook, Github,
StackOverflow.

Language Shift: Even though most datasets
came from social media or online forums, there
were also datasets that contain self-written state-
ments or news headlines.

Topic Shift: The datasets were collected for
different reasons and topics, for example, Covid-
19 (Covid-worry), events (EmoEvent), or software
(code) questions and comments (StackOv-GS).

Emotion Shift: The emotions represented in
each corpus as well as their distributions vary,
for example some corpora are heavily dominated
by positive emotions (CARER or Universal Joy),
while others by negative emotions (Covid-worry
or WASSA-21).

4 Experiments and Results

4.1 Experimental Setup

We used Google colab4 to run all our experiments.
For our classification experiments, we selected to
use distilroberta-base:5 it is a distilled ver-
sion of RoBERTa (Robustly optimized BERT ap-
proach) (Liu et al., 2019), with 6 layers, 768
dimension and 12 heads, resulting in a total of
82M parameters (compared to 125M parameters
for RoBERTa-base). We fine-tuned the model for
2 Epochs, with learning rate of 1e−5, maxlen of
256 and batch of 8, based on early trials. If the
corpus came with a train/test set (e.g., WASSA-
21), we used those sets, otherwise we used an 80-
20 stratified split. We repeated each experiment 5
times and reported the average f1-score. In total,
we performed 110 experiments, either fine-tuning
the model on each single corpus (5 runs × 11 cor-
pora = 55 total experiments, see results in Section
4.2 and 4.3), or fine-tuning on the Unified train
set (also 55 total, see results in Section 4.4). We
also performed some additional cross-corpus ex-
periments as examples (see Section 4.5).

4https://colab.research.google.com/
5https://huggingface.co/distilroberta-base
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Corpus Ours Previous work (OA = Original Article)
CARER 91% OA used larger and/or different version of the corpus, different models:

max f1-macro 79%.
Covid-worry 46% No previous work used combined data from all 3 surveys.
EmoEvent 34% OA used SVM with 32% f1-macro.
enISEAR 48% OA used MaxEnt with 47% f1-micro.
Github-love 44% OA used various models (non-transformers) with max f1-macro of 44%.
GoEmotions 65% OA used BERT-base with 64% f1-macro on their Ekman taxonomy

version, 46% on data with their own taxonomy.
GoodNews 26% We could not find previous results for emotion detection.
StackOv-GS 44% We could not find previous results for emotion detection.
TweetEval 80% OA used RoBERTa-base with 76% f1-macro.
Universal joy 63% OA had multiple-sized data, ours is downsampled. Their mBERT results

showed 46-63% f1-macro.
WASSA-21 31% Results for shared task in OA ranged in 31-55%. Top ranking teams used

ensembles/augmented with GoEmotions.

Table 4: A comparison of our f1-macro results for each corpus in our benchmark versus existing results from the
original literature on their datasets. See Table 1 for references (Original Article) related to each corpus.

4.2 Overall Performance and Comparison
with Previous Work

We first show our f1 macro-averaged over all emo-
tions for each corpus versus the results for each
specific corpus as shown in the related literature.
The reader should keep in mind that there were
differences between some of the datasets we used
in this work versus the ones in previous work
in the literature: for example, we downsampled
very large datasets such as CARER, and we com-
bined 3 surveys in Covid-worry (the same survey
was given in 3 consecutive years, see section 2).
Also, the experimental setup (such as train-test
split or the (hyper-)parameters of a model) in ex-
isting work usually varies from our work. Nev-
ertheless, we understand that such a comparison
might be beneficial to show a ‘bigger’ picture for
the reader. Therefore, we provide comparative re-
sults in Table 4. Finally, even though we concen-
trated on original work that presented the datasets,
if that work did not have emotion detection results,
we also looked in the recent literature. For exam-
ple, we previously applied RoBERTa-based on the
first survey from Covid-worry resulting in 49% f1-
macro (Koufakou et al., 2022), but, to our knowl-
edge, no previous work has used all 3 surveys.

Overall, CARER had the best performance
(91% f1-macro), followed by TweetEval (80%
f1-macro), Universal Joy and GoEmotions (f1-
macros in the 60’s). The rest of the datasets had f1-
macro values ranging from high 40’s to low 30’s.

Our baseline’s f1-macros are largely similar to pre-
vious literature results. In certain cases, our re-
sults are lower than the literature, e.g. for WASSA-
21: the top ranking teams in that shared task aug-
mented the train set with GoEmotions, and usu-
ally also employed ensembles of models. In other
cases, our f1-macros are higher, e.g. for CARER:
they used a different version of their dataset in
their article as opposed to the one publicly shared.

4.3 Results per Emotion
Figure 1a depicts the f1-score per emotion for each
corpus as a heatmap. Per emotion, CARER had
the best f1-score, except for the emotions it did
not contain (disgust and neutral): GoEmotion had
the best f1-score for those.

Looking at specific emotions, the hardest emo-
tions to detect were disgust, fear, surprise, and
trust, depending on the dataset. First, as also ob-
served by Oberländer and Klinger (2018), emo-
tions with low frequency were harder to detect. As
an example, in Covid-worry, disgust had the low-
est frequency by far. When we inspected a result-
ing confusion matrix, disgust was mostly confused
with anger and fear. In other sets, rarest emotions
were mispredicted completely: disgust and neutral
in WASSA-21, fear and surprise in StackOv-GS
and in EmoEvent. Several of these corpora are
imbalanced and have been shown to benefit from
techniques such as data augmentation. The win-
ner in WASSA-21 showed that augmenting their
training with GoEmotions improved classification
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(a) Own train set

(b) Unified train set

Figure 1: Heatmaps with f1-score per emotion (x-axis) for each corpus (y-axis) with fine-tuning either (a) using
the train set of the corpus or (b) using the Unified train set. Empty cell: dataset does not contain that emotion.

(Mundra et al., 2021). In that vein, we show the
results of fine-tuning the model with the Unified
train set in section 4.4, and a few cross-corpus ex-
periments in Section 4.5.

Besides imbalanced distribution, annotation of
the emotions plays a role. For example, Plaza-
del-Arco et al. (2020) observed that annotators for
EmoEvent had trouble with fear, disgust and sur-
prise, and distinguishing between anger and dis-
gust (complementary emotions). In Github-love,
joy was mispredicted many times as love. We ex-
amined random comments and found that some
were so similar that a human would struggle to
distinguish between them: e.g., “This will answer
your question: Good luck!" (love) and “excellent,
good luck!" (joy).

4.4 Results from Fine-Tuning on the Unified
Train Set

First, we created a ‘Unified train’ set from merging
all train sets from all unified corpora: this was af-
ter each corpus had been transformed to the same
format and our common label set. This results in
a train set of about 180.6K records. We observed
that the Unified train set is heavily skewed towards
joy (about 34%), then sadness and anticipation
(about 16% each). These emotions are heavily rep-
resented in the larger sets (CARER, Universal Joy,
then GoEmotions). For the experiments in this
Section, we fine-tuned the model on that Unified
train set and predicted the labels of the test set
from each corpus. The overall results (f1-macro)
from fine-tuning the model on this Unified train
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corpus own unified ∆

CARER 91% 91% 0%
Covid-worry 46% 46% 0%
EmoEvent 34% 44% 10%
enIsear 48% 67% 19%
Github-love 44% 56% 12%
GoEmotion 65% 64% -1%
GoodNews 22% 31% 9%
StackOv-GS 44% 62% 18%
TweetEval 80% 80% 0%
Universal Joy 64% 63% -1%
WASSA-21 31% 44% 13%

Table 5: f1-macro after fine-tuning the model on its
own train set versus on the Unified train set, followed
by the difference (∆). Both were tested on the same
test set. Bold: improvement larger than 5%.

set versus only on the original train set from each
corpus are shown in Table 5.

To summarize, CARER, Covid-Worry, GoEmo-
tions, TweetEval and Universal Joy did not show
an improvement when training on the Unified train
versus just training on the original train set. Most
of these datasets already had highest results (see
Fig. 1a and Table 4). For example, CARER was a
large dataset with 91% f1-macro, so there was lit-
tle room for improvement. However, Covid-worry
still had low f1-macro in Table 5: our observation
is that corpus is largely dominated by worry and
anxiety which is not represented well in the other
corpora. We did map anxiety to fear in order to
create the Unified corpus; still, the emotions in
Covid-worry do not seem to translate well to the
ones in the rest of the corpora.

On the other hand, 6 out of 12 corpora showed
improvements ranging in 9-19% (see the ∆ col-
umn in Table 5). Specifically, the f1-macro im-
provement was around 10% for 4 corpora (Emo-
Event 10%, Github-love 12%, GoodNews 9%, and
WASSA-21 13%) and about 20% for two corpora
(enISEAR 19% and StackOv-GS 18%).

We can also look at specific emotions shown as
a heatmap in Figure 1b. For example, in StackOv-
GS, fear and surprise were not detected at all (0%
for own train set in Fig. 1a) versus f1-scores of
66% and 32% respectively (Unified train in Fig.
1b). Overall, we observed from the two heatmaps,
there were improvements for disgust, fear and sur-
prise, which were either relatively rare or they
overlapped, as discussed in earlier sections.

4.5 Additional Experiments

Due to our constraints of time and resources, we
were not able to conduct a full cross-corpus ex-
perimentation. This could mainly consist of train-
ing on the train set of one corpus and then test-
ing on the test set of another corpus or, following
(Oberländer and Klinger, 2018), training on one
(entire) corpus and evaluating on a different (en-
tire) corpus. Nevertheless, we performed some ini-
tial cross-corpus experiments, briefly summarized
here as potential ideas for this unified resource.
The reader is directed to Table 4 for f1-macro re-
sults when training on each original train set, for
comparison purposes.

For instance, one could explore the effect of
data source. As an example, we trained on the
GoEmotion train set (social media posts), then
tested on the EmoEvent test set (also social media
posts) and on the WASSA-21 test set (self-written
essays). The f1-macro for EmoEvent was 34%,
which matched the results based on its own train
set. The f1-macro for WASSA-21 was 38%, better
than training on its own train set by 7%. A chal-
lenge in the cross-domain setup is handling the dif-
ferences in emotion labels across datasets which
are combined in these experiments (also true for
the Unified train in Section 4.4).

As an example of exploring datasets with match-
ing original emotion labels, we trained on the
CARER train set and tested on GitHub-love and
StackOv-GS (all featuring Shaver emotions orig-
inally). Both tests yielded f1-macro in the mid-
30s, compared to mid-40s when training on their
respective train sets. It is noteworthy that CARER
consists of tweets, while the other two datasets
have code-related comments. Also, the most fre-
quent emotion for all three datasets is positive
(joy or love), but the second most frequent emo-
tion in CARER is sadness (29%), versus anger in
GitHub-love and StackOv-GS (20-30% depending
on the dataset).

5 Discussion

In this paper, we started by selecting 11 recently in-
troduced datasets with emotion-annotated records
in order to introduce a new unified framework for
benchmarking emotion detection in NLP. We de-
scribed the characteristics of these datasets, which
vary in size, topic, source, emotions and distribu-
tions. Nevertheless, one could question the selec-
tion of the specific datasets. It would be benefi-
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cial to explore earlier datasets or datasets we did
not include, and how they compare/connect to cor-
pora in this work: we leave this for future work.
Moreover, we focused on English corpora, unfor-
tunately, a common limitation in NLP: a multi-
lingual study is thus needed, e.g. see a multi-
lingual sentiment analysis study by Rajda et al.
(2022). Specifically for emotion detection, one
should consider linguistic and cultural differences
for emotions (De Bruyne, 2023).

We combined the datasets into one unified
framework by mapping to a common set of emo-
tions. We followed a simple emotion scheme for
this: each record gets assigned a single label out
of n emotions, similar to earlier work (Oberländer
and Klinger, 2018). Many of the available corpora
only have a few basic emotions to start with (Ober-
länder and Klinger, 2018; Plaza-del Arco et al.,
2024). In reality, though, emotions are complex
and an individual’s writings may encapsulate mul-
tiple emotions. This is even more prevalent in es-
says with multiple sentences (Tafreshi et al., 2021).
To more accurately reflect human emotions, fine-
grained emotion annotations are often preferred
over coarse ones (Demszky et al., 2020).

Our review of the datasets and related literature
revealed several limitations and issues similar to
those identified in previous work, such as incon-
sistencies in annotation practices or inadequate re-
porting of the annotation process (Stajner, 2021;
Plaza-del Arco et al., 2024). These issues under-
score the need for a more thorough analysis of
practices and benchmarking within available cor-
pora. Good examples in other areas include a sys-
tematic review in hate speech detection by Poletto
et al. (2021). Also, we found research in general-
ized offensive language identification by Dmonte
et al. (2024): they used relatively basic labels, e.g.
Offensive or Non-offensive. In contrast, as we have
shown in this paper, emotion-annotated data in-
volves more complexity and thus additional chal-
lenges. Additionally, automated emotion recog-
nition carries ethical considerations as shown by
Mohammad (2022), who proposed an ethics sheet
outlining 50 ethical considerations. For instance,
the need to account for both the speaker’s and the
reader’s perspectives, which can vary significantly
from one individual to another.

While this paper represents considerable effort,
there is still more work to match the underlying
complexity of this study. Our classification ex-
periments offer a baseline rather than a complete

benchmark. Our published code and list of dataset
links will enable anyone to recreate and further uti-
lize the unified , and even possibly extend it. The
research community is welcome to use these re-
sources and employ various models and/or explore
the effect of different hyper-parameters on the re-
sults.

6 Conclusions

This paper answers the imperative need for study-
ing recent text-based corpora annotated for emo-
tion detection. Our investigation into diverse cor-
pora sourced from various domains and introduced
since 2018 summarizes and gives insights into
their characteristics, such as source, topic, size,
emotion and distributions, etc. Furthermore, we
constructed a unified framework built from these
corpora by mapping their emotions to a common
set of labels. We used these resources to conduct
emotion detection experiments, and compared the
effect of fine-tuning a pretrained model to the train
set of each corpus versus to the unified train set.
This consolidated platform will be a valuable re-
source for researchers, streamlining efforts and
providing the basis for a practical emotion classifi-
cation benchmark.

While this paper represents considerable effort,
there is still more work to match the underlying
complexity of this study. Future directions include
expanding this work to additional datasets, includ-
ing multi-lingual and multi-label settings, while
also conducting additional experiments (e.g. cross-
corpus or various classifiers) and delving deeper
into annotation practices and methodologies.

7 Limitations and Ethical Considerations

This work included datasets presented since 2018,
all in English and all represented as single-labeled.
As we discussed in Section 5, the dataset selec-
tion for benchmarking should be more expansive,
not only in terms of languages and emotion label-
ing but also regarding data sources and topics. In
the realm of emotion recognition using NLP, the
linguistic and cultural diversity of emotions high-
lights the need for more inclusive and representa-
tive datasets. Furthermore, additional experimen-
tation, especially cross-corpus, is essential to es-
tablish the unified framework as a valuable bench-
mark.

Our work did not collect or annotate any
datasets, and instead used publicly available
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datasets. Nevertheless, it is important that any
such research in the field of automated emotion
recognition, including the curation of emotion an-
notated datasets, should consider ethical questions
such as the ones by Mohammad (2022).

References
Francisca Adoma Acheampong, Chen Wenyu, and

Henry Nunoo-Mensah. 2020. Text-based emotion
detection: Advances, challenges, and opportunities.
Engineering Reports, 2(7):e12189.

Nourah Alswaidan and Mohamed El Bachir Menai.
2020. A survey of state-of-the-art approaches for
emotion recognition in text. Knowledge and Infor-
mation Systems, 62(8):2937–2987.

Francesco Barbieri, Jose Camacho-Collados, Luis Es-
pinosa Anke, and Leonardo Neves. 2020. TweetE-
val: Unified benchmark and comparative evaluation
for tweet classification. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020,
pages 1644–1650, Online.

Alan S Cowen and Dacher Keltner. 2017. Self-report
captures 27 distinct categories of emotion bridged by
continuous gradients. Proceedings of the national
academy of sciences, 114(38):E7900–E7909.

Luna De Bruyne. 2023. The paradox of multilingual
emotion detection. In Proceedings of the 13th Work-
shop on Computational Approaches to Subjectivity,
Sentiment, & Social Media Analysis, pages 458–466.
Association for Computational Linguistics.

Dorottya Demszky, Dana Movshovitz-Attias, Jeong-
woo Ko, Alan Cowen, Gaurav Nemade, and Sujith
Ravi. 2020. Goemotions: A dataset of fine-grained
emotions. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4040–4054.

Jiawen Deng and Fuji Ren. 2023. A survey of textual
emotion recognition and its challenges. IEEE Trans-
actions on Affective Computing, 14(1):49–67.

Alphaeus Dmonte, Tejas Arya, Tharindu Ranasinghe,
and Marcos Zampieri. 2024. Towards generalized
offensive language identification. arXiv preprint
arXiv:2407.18738.

Paul Ekman. 1992. An argument for basic emotions.
Cognition & emotion, 6(3-4):169–200.

Dieuwke Hupkes, Mario Giulianelli, Verna Dankers,
Mikel Artetxe, Yanai Elazar, Tiago Pimentel, Chris-
tos Christodoulopoulos, Karim Lasri, Naomi Saphra,
Arabella Sinclair, et al. 2023. A taxonomy and re-
view of generalization research in nlp. Nature Ma-
chine Intelligence, 5(10):1161–1174.

Mia Mohammad Imran, Yashasvi Jain, Preetha Chatter-
jee, and Kostadin Damevski. 2022. Data augmenta-
tion for improving emotion recognition in software
engineering communication. In Proceedings of the
37th IEEE/ACM International Conference on Auto-
mated Software Engineering, pages 1–13.

Bennett Kleinberg, Isabelle van der Vegt, and Maximil-
ian Mozes. 2020. Measuring emotions in the covid-
19 real world worry dataset. In Proceedings of the
1st Workshop on NLP for COVID-19 at ACL 2020.

Anna Koufakou, Jairo Garciga, Adam Paul, Joseph
Morelli, and Christopher Frank. 2022. Automati-
cally classifying emotions based on text: A compar-
ative exploration of different datasets. In 34th Inter-
national Conference on Tools with Artificial Intelli-
gence (ICTAI). IEEE.

Sheetal Kusal, Shruti Patil, Jyoti Choudrie, Ketan
Kotecha, Deepali Vora, and Ilias Pappas. 2023. A
systematic review of applications of natural lan-
guage processing and future challenges with special
emphasis in text-based emotion detection. Artificial
Intelligence Review, pages 1–87.

Sotiris Lamprinidis, Federico Bianchi, Daniel Hardt,
and Dirk Hovy. 2021. Universal joy a data set and
results for classifying emotions across languages. In
Proceedings of the Eleventh Workshop on Computa-
tional Approaches to Subjectivity, Sentiment and So-
cial Media Analysis, pages 62–75, Online.

Richard S Lazarus. 1991. Progress on a cognitive-
motivational-relational theory of emotion. Ameri-
can psychologist, 46(8):819.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Saif Mohammad, Felipe Bravo-Marquez, Mohammad
Salameh, and Svetlana Kiritchenko. 2018. Semeval-
2018 task 1: Affect in tweets. In Proceedings of the
12th international workshop on semantic evaluation,
pages 1–17.

Saif M Mohammad. 2022. Ethics sheet for automatic
emotion recognition and sentiment analysis. Com-
putational Linguistics, 48(2):239–278.

Jay Mundra, Rohan Gupta, and Sagnik Mukherjee.
2021. WASSA@IITK at WASSA 2021: Multi-task
learning and transformer finetuning for emotion clas-
sification and empathy prediction. In Proceedings of
the 11th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 112–116, Online. ACL.

Pansy Nandwani and Rupali Verma. 2021. A review on
sentiment analysis and emotion detection from text.
Social Network Analysis and Mining, 11(1):1–19.

205



Nicole Novielli, Fabio Calefato, and Filippo Lanubile.
2018. A gold standard for emotion annotation in
stack overflow. In Proceedings of the 15th inter-
national conference on mining software repositories,
pages 14–17.

Laura Ana Maria Oberländer, Evgeny Kim, and Roman
Klinger. 2020. Goodnewseveryone: A corpus of
news headlines annotated with emotions, semantic
roles, and reader perception. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 1554–1566.

Laura Ana Maria Oberländer and Roman Klinger. 2018.
An analysis of annotated corpora for emotion clas-
sification in text. In Proceedings of the 27th in-
ternational conference on computational linguistics,
pages 2104–2119.

W Gerrod Parrott. 2001. Emotions in social psychol-
ogy: Essential readings. psychology press.

Flor Miriam Plaza-del Arco, Alba A. Cercas Curry,
Amanda Cercas Curry, and Dirk Hovy. 2024. Emo-
tion analysis in NLP: Trends, gaps and roadmap for
future directions. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 5696–5710, Torino, Italia.
ELRA and ICCL.

Flor Miriam Plaza-del-Arco, Carlo Strapparava, L. Al-
fonso Urena-Lopez, and M. Teresa Martin-Valdivia.
2020. EmoEvent: A Multilingual Emotion Corpus
based on different Events. In Proceedings of the
12th Language Resources and Evaluation Confer-
ence.

Robert Plutchik. 1984. Emotions: A general psy-
choevolutionary theory. Approaches to emotion,
1984(197-219):2–4.

Fabio Poletto, Valerio Basile, Manuela Sanguinetti,
Cristina Bosco, and Viviana Patti. 2021. Resources
and benchmark corpora for hate speech detection: a
systematic review. Language Resources and Evalu-
ation, 55:477–523.

Krzysztof Rajda, Lukasz Augustyniak, Piotr Gramacki,
Marcin Gruza, Szymon Woźniak, and Tomasz Ka-
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