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Abstract

This paper presents our approach to the Germ-
Eval 2024 task, "Statement Segmentation in
German Easy Language (StaGE)," address-
ing both subtasks: predicting the number of
statements and identifying statement spans.
We introduce a novel method integrating part-
of-speech information with pre-trained BERT
models, achieving leading performance in both
the subtasks. For the statement count predic-
tion (subtask 1), our model achieved a preci-
sion of 0.65, a recall of 0.68, and an F1-score
of 0.65, with a Mean Absolute Error (MAE) of
0.36 and Mean Squared Error (MSE) of 0.43.
For statement span annotation (subtask 2), we
adapted our BERT model (used for subtask 1)
to perform token-level classification, achieving
a chrF score of 0.36 and a Jaccard similarity of
0.29. We also detail our exploration of alterna-
tive approaches to the shared task, including a
rule-based system, LLMs, and traditional ma-
chine learning models. These machine learn-
ing models used a comprehensive feature set,
combining Abstract Meaning Representation
(AMR) features to capture deep semantic struc-
tures, part-of-speech (POS) tags for syntactic
information, and other linguistic features.

Keywords: Automatic Text Simplification, Le-
ichte Sprache, Statement Segmentation, German
Easy Language.

1 Introduction

Easy Language is a simplified linguistic form that
excludes complex grammatical and lexical features
(Maaß and Bredel, 2017). Using German Easy
Language, or: Leichte Sprache named in original
German concepts, offers substantial advantages to
a diverse range of users. A recent LEO study found
that 6.2 million Germans have a low literacy level
and struggle with reading simple sentences (Bud-
deberg and Grotlüschen, 2020). This includes, for
example, individuals who are not native speakers

of German or those with learning disabilities. How-
ever, other groups may also benefit from Easy Lan-
guage: educators and therapists may find these
adaptations beneficial in making educational mate-
rials more accessible and engaging. Furthermore,
governmental entities sharing complex legal or bu-
reaucratic information can leverage these tools to
ensure their communications are comprehensible
to a broader audience, potentially enhancing civic
participation and adherence to regulations. Since
2011, German regulatory frameworks have man-
dated that governance bodies ensure their online
content conforms to higher accessibility standards
(Bundesministerium des Innern und für Heimat,
2011). This includes mandatory German Easy Lan-
guage information on the main contents of the web-
site, notes on navigating the website, and further
information available in German Sign Language
and in Easy Language.

Developing an algorithm capable of annotating
statements in Easy Language could significantly
streamline the process of composing and reviewing
such texts, simplifying the publication of German
Easy Language materials. Additionally, this tech-
nology could increase the quality of these texts
by providing authors with deeper insights into the
prevalence of specific statements within a text.

To foster this development, the "Statement Seg-
mentation in German Easy Language (StaGE)"
workshop from this year’s GermEval task is com-
prised of two sub-tasks. The first task (subtask 1)
involves predicting the number of statements for
the given dataset, while the second task (subtask 2)
asks to predict the position of the statement spans.
The data for this task consists of Easy Language
sentences sampled from Hurraki1, an encyclopedia
similar to Wikipedia for German Easy Language.
For subtask 1, our submitted model achieved a 0.35
mean accuracy error (precision: 0.66, recall: 0.68,

1https://hurraki.de/wiki/Hauptseite
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f1-score: 0.66) on the provided evaluation set. For
the subtask 2, our submitted model achieved a chrF
score of 0.36 and a Jaccard similarity of 0.29.

Our main contributions are: 1) We presented a
multi-faceted approach to the shared task, using
rule-based parser, machine learning classifiers with
various linguistic features, Large Language Models
(LLMs) and fine-tuning pretrained language model.
2) Integration of part-of-speech (POS) information
with pre-trained language model for both subtasks.
3) We approached the statement span annotation
task (subtask 2) as a token-level classification prob-
lem. This allowed the model to leverage transfer
learning from the broader statement-level classifi-
cation task (subtask 1).

All the code and data are available on GitHub2.

2 Background

Text simplification has been an ongoing task attract-
ing joint efforts from researchers of various disci-
plines across the globe (Shardlow, 2014). Although
initially conceptualized as a method reducing the
processing load of NLP systems by reducing text
complexity (Chandrasekar and Srinivas, 1997), the
application areas of Easy Language have expanded
to assisting individuals with low literacy and read-
ing comprehension difficulties, enhancing L2 lan-
guage acquisition and facilitating the integration of
migrants (Al-Thanyyan and Azmi, 2021; Steinmetz
and Harbusch, 2022; Bock, 2014).

In the German context, governmental mandates
aimed at improving public accessibility have led to
the widespread availability of German Easy Lan-
guage texts, known as Leichte Sprache, on the In-
ternet (Ebling et al., 2022; Asghari et al., 2023).
This has also led to the creation of text-based cor-
pora such as, the document-level aligned corpus
created by Gonzales et al. (2021), which contains
full articles paired with simplified summaries col-
lected from Swiss news magazine 20 Minuten, and
sentence-level aligned Simple German dataset cu-
rated by Toborek et al. (2023).

Early approaches to automatic text simplification
in German focused on rule-based methods, such as
the system developed by Suter et al. (2016), which
primarily used syntactic transformation rules. Sub-
sequent studies introduced discourse-based tech-
niques (Niklaus et al., 2019) and lexical simplifica-
tion strategies (Siegel et al., 2019).

More recent research viewed text simplification
2https://github.com/ansost/easy-to-read

as a sequence-to-sequence task, where the input
is a complex text and the output is a simplified
version of the same text. For instance, Säuberli
et al. (2020); Spring et al. (2021); Ebling et al.
(2022) used transformer-based (Vaswani et al.,
2017) sequence-to-sequence models. Gonzales
et al. (2021) further extended this approach by fine-
tuning mBART (Liu et al., 2020) model. Addi-
tionally, prompting techniques have been explored
by Ryan et al. (2023) and Alva-Manchego et al.
(2021), while Mallinson et al. (2020) used few-
shot and zero-shot learning using BLOOM model
(Scao et al., 2023). A thorough evaluation of the
neural approaches is presented in Stodden (2024),
providing a comprehensive comparison of their per-
formance.

Despite these advancements, the automatic text
simplification for German texts remains a persitent
challenge (Schomacker et al., 2023). A major chal-
lenge in automatic text simplification is accurately
identifying individual statements within complex
sentences, a crucial step in improving the effective-
ness of current simplification methods.

3 Task

The following section briefly outlines the "State-
ment Segmentation in German Easy Language
(StaGE)" task at GermEval 2024 (Schomacker
et al., 2024).

3.1 Annotation guidelines

A sentence in German Easy Language differs from
regular language in a couple of ways and should
adhere to its own set of rules. Ideally, a sentence
in Leichte Sprache contains three arguments: sub-
ject, object, and verb. Additional information will
be regarded as extra statements. The provided an-
notation guidelines3 follow the recommendations
drafted in the DIN SPEC 334294.

3.2 Dataset

For the task, four datasets are provided by the orga-
nizers, three reserved for development (train, trial,
and test) and one for evaluation (eval). The trial set
is the smallest split with 26 sentences, followed by
test with 416, and finally, training with 1,530 sen-
tences. The number-of-statement counts for each

3https://german-easy-to-read.github.io/
statements/annotations/

4https://www.dinmedia.de/de/
technische-regel-entwurf/din-spec-33429/
364785446. Last accessed: 2nd August, 2024.
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split can be seen in Table 1.
The small trial set was available at the start of

the task for a general overview. Train data was then
published for initial model development. Then the
test set was released to enhance the development.
Finally, eval was made public for blind model eval-
uation and scoring.

The train set has a token count of 5,093 with an
average sentence length of 7.59. The token count
and average sentence length of the test set are 1,142
and 7.35. Sentences in the eval set contain 7.54
tokens on average.

n. statements trial train test eval
0 1 449 - -
1 15 1530 258 437
2 9 732 123 332
3 1 191 28 89
4 - 38 6 14
5 - 3 1 5
6 - 1 - 1

Table 1: Distribution of number of statements in trial,
test and train.

4 Methodology

In this section, we describe different methods used
in our study. We begin by explaining the Rule-
based parser (Section 4.1), features used for ma-
chine learning classifiers (Section 4.2), BERT (Sec-
tion 4.3) and finally the Large Language Models
(LLMs) (Section 4.4).

4.1 Rule-based

We built a rule-based parser based on the anno-
tation guidelines provided by the organizers. We
used the German language model from SpaCy’s
de_dep_news_trf 5, which was trained on a dataset
of German news articles. We began by perform-
ing a token-level analysis, where we iterated over
each token in the sentence. For each token, we
extracted the part-of-speech tag, dependency label,
and morphological features using the parser men-
tioned above. Tokens in parentheses were counted
as separate statements. Adjectives with noun heads
were also counted, and they functioned as separate
statements. Conversely, quantifiers, filler words,
comparatives, and superlatives did not constitute
independent statements.

5https://spacy.io/models/de

In the next step, we checked for the existence of
propositional phrases and their positioning in a sen-
tence to see whether they added a new statement or
not. For example, if a propositional phrase was part
of a larger composite phrase, we counted it as one
statement instead of multiple separate statements.
Similarly, trivial propositions were not counted as
separate statements. A sentence with date and year
was treated as a distinct statement.

We then grouped tokens into clauses based on
their dependencies and part-of-speech tags. We
analyzed each clause to determine if it contained a
subject, verb, or object. The clauses that met this
criteria were treated as separate statements.

4.2 Feature-based

In order to experiment with classical feature-based
machine learning approaches, a set of features has
been extracted.

4.2.1 Feature extraction
The features were chosen to cover a spectrum of
linguistic characteristics as broad and diverse as
possible. This includes features extracted from
syntax trees, features of meaning representations,
simple length features and embedding vectors con-
textualized by a LLM. Some features have been
inspired by our previous work on judging text sim-
plicity (Arps et al., 2022) and on machine generated
text detection (Ciccarelli et al., 2024). Altogether,
we extracted 3,968 features, of which we kept only
those 1,310. which applied to at least five items
from the union of the train and the trial data.

Dependency tree features We parsed the
phrases using the dependency tree parser with
Spacy’s de_core_news_sm6 language model (the
small model was used due to computational lim-
itations). For each dependency tree, we have ex-
tracted all maximal paths, starting from the root
node. From these, we extracted as features: 1) all
dependency sequences of the maximal paths and
their prefixes and 2) all pairings of maximal de-
pendency paths with the POS tag of their nodes.
Figure 1 (appendix) illustrates the extracted fea-
tures. Furthermore, we included some more gen-
eral features like minimal/maximal/average length
of dependency chains, number of roots and number
of root childs. All this resulted in 2,146 depen-
dency tree features (of which 388 were kept as they
apply to at least five items in train and trial).

6https://spacy.io/models/de

https://spacy.io/models/de
https://spacy.io/models/de


AMR features To capture semantic features as
well, we decided to use abstract meaning repre-
sentations (AMRs) as a further source of features.
AMR is a semantic representation framework that
abstracts the meaning of a text by focusing on
predicate-argument structure rather than surface
form. It was first introduced in Langkilde and
Knight (1998), and due to strict format specifica-
tions, it became one of the most influential repre-
sentation formats for semantic parsing (Banarescu
et al., 2013). Due to availability and performance,
we have opted for the amrlib library for English.7

Therefore we translated all texts to English us-
ing GoogleTranslator from the deep-translator li-
brary8. The translated texts were then parsed into
AMRs. Similar to the dependency trees, we tra-
versed the AMR, starting from the root node and
collecting attribute paths as features. The main
difference is that AMRs are not trees but general
acyclic graphs. The following features have been
collected (see Figure 2 in Appendix A for illustra-
tion): a) all attribute sequences starting at the root;
b) each maximal path additionally paired with the
instance types of its leave. Altogether this resulted
in 1,776 AMR-features (888 apply to at least five
items in train and trial).

Additional linguistic features Furthermore, we
collected additional linguistic features. These fea-
tures include simple counting features like number
of tokens, mean number of characters per word,
or number of punctuation counts and counts of
important part-of-speech tags obtained via Spacy
verb|de_dep_news_trf|; Spacy ver. 3.7.5;9 Honni-
bal and Montani (2020).

For further syntactic features, we used the Berke-
ley Neural Parser (Kitaev et al., 2019; Kitaev and
Klein, 2018)10. The direct results returned by the
parser are NLTK tree forms (see Figure 3).

Based on the tree form of each sentence we ex-
tracted multiple features based on pre-defined rules
for training the classifiers: 1) For NPs that contain
more than two words (not only article and noun
root), we count each occurrence within the sen-
tence, so if a sentence has five such NPs, we record
the big NP count as 5; 2) For Prepositional Phrases
(PPs) that contain more than three words, we count
each occurrence within the sentence, so if a sen-

7https://github.com/bjascob/amrlib
8https://pypi.org/project/deep-translator/
9https://spacy.io/models/de#de_dep_news_trf

10https://github.com/nikitakit/
self-attentive-parser

tence has two such PPs, we record the big PP count
as 2; 3) If neither “(S” nor “(V” is present in the
tree form, the current instance is not a sentence,
i.e., 0-statement;.

Additionally, two readability formulas defined
in the textstat library, namely Flesch and of the
Wiener Sachtextformel (variant 1), have been ap-
plied to the phrases11. These formulas try to es-
timate how easy a text is to read on the basis of
words per sentence and syllable or character per
word counts. Both measures are specially designed
to estimate the readability of German texts.

We also used a language complexity classifica-
tion pipeline, which classifies texts into four lan-
guage complexity classes and assigns them a score.
Only the score was used as a feature 12.

Finally, the predictions on the number of state-
ments made by the rule-based account as described
in Section 4.1 has been added as an additional fea-
ture as well. Altogether, this group of additional
features consists of 32 features (25 are kept, as they
apply to at least five items in train and trial).

BERT features The BERT model bert-base-
german-cased has been used without any finetun-
ing to extract the last hidden state of the CLS token
that can be seen as an embedding of the phrase.13

Uniform Manifold Approximation and Projection
(UMAP) has been used to reduce the number of di-
mensions to 10. The resulting 10 dimensions were
used as additional features.

4.2.2 Data augmentation
In order to account for the unbalanced training set,
in which more than 60% of the data belongs to
the class ‘1 statement’, we have decided to aug-
ment the data by round-trip translation. There-
fore, all items with more than one statement have
been translated into Finnish and back using Google
Translator, and all examples with more than two
statements have additionally been translated into
Mandarin and back. Finnish and Mandarin were se-
lected to maximize contrast with German. Neither
language belongs to the Indo-European language
family, and they represent opposite ends of the
morphological spectrum. While Chinese is an iso-
lating language, Finnish is agglutinative, providing
a stark contrast to the inflectional nature of German.

11https://pypi.org/project/textstat/
12https://huggingface.co/krupper/

text-complexity-classification
13https://huggingface.co/dbmdz/

bert-base-german-cased
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The idea is that this contrast in language structure
reveals the underlying semantic content through
roundtrip translations. It turned out that cases in
which the re-translation matched the original were
rare enough (for Finnish 6.6%, for Mandarin 3%)
to be ignored. Thus, by the round-trip translation
method new trainings data with differing feature
values could be gained. We assumed that the num-
ber of statements is not affected by the translations.

4.3 BERT

We use BERT (Bidirectional Encoder Represen-
tations from Transformers) (Devlin et al., 2019)
specifically bert-base-german-cased14. We further
adapted this model by fine-tuning it for the sub-
tasks, explained in Sections 5.1 and 5.2.

4.4 LLMs

Since Large Language Models are already finding
various applications in the area of text simplifica-
tion Tan et al. (2024); Baez and Saggion (2023),
we wanted to explore how LLMs perform for an-
notating statements in simplified language.

We used LLaMA-3-70B-Instruct 15 for our anal-
ysis. To design the prompt, we started out with a
simple one-shot prompt: "How many statements
does this sentence have?". This prompt was then
iteratively improved. One of the first changes we
made was adding few-shot prompting and provid-
ing the model with example annotations from the
training data in the prompt.

We also tested multiple ways of providing the an-
notation guidelines and specific rules from those an-
notation guidelines to the model. Automatic chain
of thought prompting was also added since it has
been shown to improve LLM performance in the
past (Wei et al., 2022; Zhang et al., 2022). Initially,
the prompts were given over Huggingchat16, but an
API provided faster and more reproducible results.
This way, it allowed us to provide one sentence at
a time instead of chunks of the dataset, which also
improved performance. We also incorporated both
system and user-level prompts and instructed the
LLM to return the data in a specific format for eas-
ier analysis of the results. We used LLaMA model
through an API endpoint provided by the KISSKI
AI Service Centre for Sensitive and Critical Infras-

14https://huggingface.co/google-bert/
bert-base-german-cased

15https://huggingface.co/meta-LLaMA/
Meta-LLaMA-3-70B-Instruct

16https://huggingface.co/chat/

tructures17. All queries were made using a seed to
ensure reproducibility. Models, scripts, prompts,
and hyperparameters can be found on our GitHub.

5 Experiments

In this section, we provide a detailed evaluation of
our approach to the shared task, specifying how we
built the rule-based parser, different machine learn-
ing classifiers, and used Large Language Models
(LLMs) (mentioned in Section 4).

5.1 Subtask 1: Determining the number of
statements

The performance results of our models tackling
subtask 1, as described in Section 4, are stated
in Table 2 and compared to a most frequent class
dummy classifier (MFC, model 0).

Nr Model Data MAE Acc
Most frequent class dummy classifier
0 MFC ttt 0.655 0.499
Rule-based parser
1 RuleParser tt 0.891 0.336
Feature-based (baselines)
2 MLP+allFeat ttt 0.426 0.622
3 SVM+allFeat ttt 0.449 0.618
4 LR+allFeat ttt 0.376 0.663
5 RF+allFeat ttt 0.377 0.67
Feature-based (feature subsets + augmented data)
6 LR+allFeat ttt+au 0.367 0.67
7 RF+allFeat ttt+au 0.354 0.688
8 RF+BERTFeat ttt 0.625 0.498
9 RF+AMRFeat ttt 0.559 0.544
10 RF+DepTreeFeat ttt 0.419 0.634
11 RF+addFeat ttt 0.39 0.646
12 LR-75-per-type ttt+au 0.331 0.698
13 LR-200-overall ttt+au 0.328 0.698
LLMs
14∗ LLMPrompting tt −− 0.668
15 BERT+POStags 90%ttt 0.36 0.689

Table 2: Performance comparison of different models
tested on the eval data for subtask 1 (models marked
by ∗ are trained and tested only on the original data
sets). Training data differs (ttt: original train, trial and
test data, ttt+au: ttt plus augmented data as described
in Section 4.2.2). The feature-based approaches have
been trained on all (allFeat) or a subset of the features
as described in Section 4.2.

Rule-based parser Our initial approach to the
task involved developing a rule-based parser that
followed the annotation guidelines provided by the
organizers (refer Section 4.1). The parser was then
trained on the provided training dataset of 2,989
samples. It achieved an accuracy of 57% on the
test dataset (consisting of 417 samples).

17https://kisski.gwdg.de/
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Feature-based classifiers We tested four dif-
ferent machine learning classifiers implemented
in Scikit-Learn (Pedregosa et al., 2011): Ran-
dom Forest (RF), Support-Vector-Machine (SVM),
Multilayer-Perceptron (MLP) and a logistic regres-
sion (LR) model (see Table 2, model 2-5). All
classifier parameters have been set to the default
values (for the MLP one hidden layer of size 128
was chosen).

Each classifier was trained on the combined train,
trial and test set and evaluated against the eval set.
Zero-statements were removed from all splits. In
the training all features described in Section 4.2
have been used if they were attested for at least 5
phrases in the train and trial set. Table 2 shows that
all classifiers beat the dummy baseline (MFC) and
that RF and LR perform best of the baselines by
outperforming MFC by 0.17 for accuracy (Acc.)
and 0.28 for mean absolute error (MAE).

As on the original train and test data provided
by the organizers, RF slightly outperformed LR
all further experiments have been done with RF.
Augmentating the training data did improve the
results only slightly (compare model 7 to 5 and
model 6 to 4 in Table 2). Additionally, we tested
how different subsets of the feature set influence
the performance (models 8-11 in Table 2). The ad-
ditional linguistic features (‘Add.’) performed best,
followed closely by the dependency tree features
(DepTreeFeat). Significantly worse are the AMR
and the BERT features (in this order).

To get a better grip on our features we have ex-
tracted from a Random Forest classifier the impor-
tance rankings for the features. Tables 3, 4 and 5 in
Appendix show the 10 most important features for
the first three classes. The 20 most important fea-
tures over all classes can be seen in Table 6. It turns
out that length features (length of the AMR repre-
sentation, length of the maximal dependency chain,
number of tokens, . . . ) are the most important fea-
tures for classification. That was to be expected as
longer sentences tend to include more statements.
Interestingly, although a classifier trained solely
on the BERT features (Table 2, model 7) does not
perform very well, all 10 BERT features (UMAP0
up to UMAP9) belong to the overall top 20 features
(see Table 6).

Based on the feature importance scores we
trained LR models on feature subsets. As data aug-
mentation lead at least to a slight improvement, we
included the augmented data into our training data.
First, we selected for each feature type class the n

most important features (if available). We tested
for n between 5 and 150 of which n=75 turned out
best (see model 12 in Table 2). Second, we consid-
ered all features at once and selected the n overall
most important features testing for n between 5 and
1,000. Here, n=200 turned out best (see model 13
in Table 2).

Thus, for the LR model MAE can be reduced
by data augmentation by 0.01 (compare model 6
to 4) and by feature selection by an additional 0.04
(compare model 13 to 6). The accuracy improved
by 3.5 percentage points.

LLM prompting We also experimented with
LLaMA for this task. We tested its performance for
a) annotating the number of statements, b) predict-
ing the statement spans, and c) identifying whether
a specific rule in the annotation guidelines applied
to a sentence. An example of this is to predict
whether the adjectives in this sentence constitute a
new statement or not. This approach was primarily
exploratory, but we still want to share our results.
An example prompt can be found in Appendix B.

Out of all of these applications, LLMs worked
best for predicting the number of statements with
an accuracy of 66.83% on the test set. However,
this accuracy is mainly due to LLaMA over predict-
ing sentences with one statement. LLaMA strug-
gled with predicting statement spans, presumably
because this is a much more complex task, where
a mistake in the first reasoning step easily leads to
errors down the line. To test the individual rules
in the annotation guidelines, we crafted a set of
sentences and manually annotated whether the spe-
cific rule we wanted to test was true or not. Due
to the manual nature of this part, we tested on a
smaller set of samples for the annotation rules, so
the results should be viewed as more of an initial
investigation. Out of all the rules, LLMs seemed to
perform well at deciding whether an adjective adds
a new statement or not and moderately well for
predicting zero statements. For the other rules, its
predictions were hardly better than chance. With a
fine-tuned model and larger example sets, results
might increase. However, given the lower explain-
ability of LLMs compared to our other methods
and since their accuracy did not match that of our
other approaches, we decided not to pursue this
method further.



5.1.1 Submission

We extend the BERT architecture (refer Section
4.3) to incorporate part-of-speech (POS) informa-
tion alongside the contextual embeddings gener-
ated by BERT. This model consists of three main
components: a pre-trained German BERT model,
a POS encoder that transforms POS tags into
dense representations, and a classifier that com-
bines BERT outputs with encoded POS features.
By encoding POS tags, the model potentially gains
access to extra syntactic knowledge that might not
be fully captured in BERT’s learned representations
alone.

The model’s forward pass begins by processing
the input text through the BERT model to get the
contextual embeddings. We then extract the [CLS]
token representation from BERT’s last hidden state.
After that, we get the POS tags for each input
text using the SpaCy de_core_news_lg18 language
model and encode the POS tags using a simple one-
hot encoding. At the same time, the POS tags are
encoded using a linear layer to create dense repre-
sentations. The BERT [CLS] token representation
and the encoded POS features are concatenated and
passed through a final linear classifier to predict the
number of statements. We use the Adam optimizer
(Kingma and Ba, 2014) with a learning rate of 2e-5
and train the model for 100 epochs with a batch
size of 16.

We combine the trial, train, and test datasets
provided by the organizers (for details, see Sec-
tion 3.2), remove zero-statement sentences, and get
2,937 samples. We split this dataset into 90% train-
ing and 10% test datasets by randomly shuffling
the samples. In the end, the training set and test
set consist of 2,643 and 294 samples, respectively.
On this test set, the model achieved an accuracy of
80%.

On the evaluation dataset provided by the orga-
nizers, our model achieved a precision of 0.65, a
recall of 0.68, and an F1-score of 0.65. In terms
of prediction accuracy, the model achieved a Mean
Absolute Error (MAE) of 0.36, indicating that, on
average, our predictions deviate by approximately
0.36 units from the true values. The Mean Squared
Error (MSE) is 0.43, which is slightly higher than
MAE, but the difference (0.07) is quite low, which
means our model is generally consistent and has
very few large outliers in the predictions.
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5.2 Subtask 2: Annotating the statement
spans

The goal of the task is to identify and annotate
distinct statements within a sentence, particularly
when a sentence contains multiple statements. We
approach this sequence labeling problem as a to-
ken classification task. This approach allowed
us to adapt the BERT model used for subtask 1
(see Section 5.1.1), which is already fine-tuned
for statement-level classification, to perform token-
level predictions. In this framework, we transform
the original attention span labels into token-level
classifications. We use the tokenized phrase pro-
vided in the dataset (see Section 3.2), and each to-
ken is assigned a label corresponding to its position
within the statement span. For example, consider
the tokenized phrase, [‘Alcopop’, ‘ist’, ‘ein’,
‘süßes’, ‘Getränk.’] which has the attention span
of [[0, 1, 4], [3]] and is converted to [1, 1, 0, 2, 1],
since ‘Alcopop’, ‘ist’ and ‘Getränk.’ belongs to the
first span (labeled as 1), ‘ein’ belongs to none of
the spans (labeled as 0) and ‘süßes’ belongs to the
second span (labeled as 2).

5.2.1 Submission
The fine-tuned BERT used for subtask 1 (refer
Section 5.1.1) is further fine-tuned for this token
classification task. This approach leverages trans-
fer learning, allowing the model to build upon
the knowledge gained from the broader statement-
level classification to perform the more specific
token-level classification. We modify the top lay-
ers of the already fine-tuned model by retaining the
pre-trained BERT layers, adding a part-of-speech
(POS) encoder to incorporate syntactic informa-
tion, and implementing a new classification layer
for token-level predictions.

In the forward pass, the model first processes
the input (tokenized phrase) through BERT, obtain-
ing the last hidden state. It then encodes the POS
tags using the POS encoder. These two outputs are
concatenated along the last dimension, combining
contextual information from BERT with the POS
information. Finally, this combined representation
is passed through the classifier to produce logits
for each token. The loss is computed on the flat-
tened logits and labels, treating each token as an
independent classification problem (padded tokens
are ignored).

We then fine-tuned this adapted model on the
evaluation dataset (provided by the organizers) fol-
lowing the same split as subtask 1 (90% train and
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10% test split), but the sentences were shuffled. We
use the Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 2e-5 and train the model for
ten epochs with a batch size of 16.

Our model’s performance was evaluated using
two key metrics: chrF and Jaccard similarity. The
chrF score indicates the model’s ability to capture
character-level n-gram similarities between the pre-
dicted and reference texts (Popović, 2015). The
Jaccard similarity is a statistical measure used to
gauge the similarity and diversity of sample sets.
The model achieved a chrF score of 0.36 and a
Jaccard similarity of 0.29 on the evaluation dataset
provided by the organizers.

6 Conclusion and Future work

Our experiments focused on both detecting the
number of statements and subsequently detecting
the annotation spans of Simple German sentences,
namely both subtasks 1 and 2 of the GermEval
"Statement Segmentation in German Easy Lan-
guage (StaGE)" shared task.

In subtask 1 of detecting the number of state-
ments (Section 5.1), the submitted model that ex-
tended the BERT architecture by incorporating
POS features scored a 0.65 precision, 0.68 re-
call, and 0.65 F1-score on the evaluation dataset.
The Mean Absolute Error (MAE) and the Mean
Squared Error (MSE) were 0.36 and 0.43, respec-
tively. The relatively small difference between
MAE and MSE suggests consistent performance
without significant outliers.

For the Subtask 2 of statement span annotation
(Section 5.1), we adapted the BERT model used
for subtask 1 to perform token-level classification.
This approach achieved a chrF score of 0.36 and
a Jaccard similarity of 0.29. While these scores
indicate room for improvement, they demonstrate
the model’s ability to identify and annotate distinct
statements within a sentence.

These results provide encouraging evidence for
the effectiveness of our approach, particularly us-
ing BERT with POS information for both sub-
tasks. Moreover, our exploration of various meth-
ods, from rule-based systems to fine-tuning lan-
guage models, allowed us to gain insights into the
strengths and limitations of different approaches
for both subtasks.

6.1 Future work

Based on the results and approach described, we
would like to propose some potential directions for
future work.

We would like to investigate a multi-task learn-
ing approach, where the model is trained simulta-
neously on both statement identification and span
annotation tasks, which could provide an improved
performance across both tasks by using shared lin-
guistic knowledge.

We plan to compare the performance of our
BERT architecture with other pre-trained language
models like RoBERTa (Liu et al., 2019), XLNet
(Yang et al., 2019) or T5 (Raffel et al., 2020) or
mBART (Liu et al., 2020). This will help us iden-
tify the most effective base model for the given
tasks. With regard to the LLaMA approach, it
would be interesting to explore fine-tuned mod-
els and integrate the LLM’s judgment with other
approaches, for example, rule-based.

Limitations

We acknowledge a few limitations in our approach.
A significant limitation is that we did not perform
hyperparameter tuning for our extended BERT
model for both tasks. We focused on extending
BERT but did not explore other pre-trained models.
We did not conduct any analysis on how the POS
information influences the model’s decision. We
did not conduct ablation studies to understand the
individual contribution of different components of
our model, such as the POS encoder or specific
layers of our BERT architecture.
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Appendix

A Extracted Features

Viele 

DET
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NOUN

haben 

AUX
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ADP
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DET

Hund 

NOUN

berichtet. 

VERB

nk sb

op

nk

nk

oc
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Figure 1: Dependency tree of phrase ‘Viele
Zeitungen haben über den Hund berichtet.’
The following features are extracted from this
tree: ’max_dep_length’, ’mean_dep_length’,
’min_dep_length’, ’num_dep_paths’, ’num_root’,
’num_root_childs’, ’oc#’, ’oc#op#’, ’oc#op#nk#’,
’oc#op#nk#nk#’, ’oc#op#nk#nk#DET’, ’punct#’,
’punct#PUNCT’, ’sb#’, ’sb#nk#’, ’sb#nk#DET’

(r / report-01
:ARG0 (n / newspaper

:quant (m / many))
:ARG1 (d / dog))

Figure 2: AMR of phrase ‘Many newspapers
have reported about the dog.’ The following
features are extracted from this AMR: ’arg0:’,
’arg0:instance:’, ’arg0:quant:’, ’arg0:quant:instance:’,
’arg0:quant:instance:many’, ’arg1:’, ’arg1:instance:’,
’instance:’

((S
(ADV Leider)
(VVFIN bekomme)
(PPER ich)
(NP (PIAT keine) (NN Katze)))

($, ,))

Figure 3: An example of NLTK tree forms

B LLM prompts

The following is an example of an LLM prompt we
used. Text in bold was not part of the prompt but
is included here to illustrate the different prompt
levels. For the sake of clarity, the prompt is slightly
shortened, the full prompt can be found in our
GitHub repository.

System prompt
You are an expert in German Easy
Language.
User prompt
Give the statement spans of the sentence
below.
For your decisions rely on the
annotation guidelines provided below.
Provide your output in the form of
a nested list. Return nothing but
that list or the string “None” if the
sentence only has one statement or zero
statements.
Think step by step.
Three example sentences:
sentence: Eine sehr bekannte Alchemisten
war Maria die Jüdin
statements: 1, statement spans: None;
(We provided two more examples but did
not include them here for the sake of
brevity.)

The sentence you should annotate is the

following:

{sentence}

Annotation guidelines:

{annotation_guidelines}
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C Feature Importance

Features Importance
attr-arg1:attr-instance: 0.0088
amr_length 0.0084
attr-arg1: 0.0083
attr-arg2: 0.0077
attr-arg0:attr-instance: 0.0076
attr-arg2:attr-instance: 0.0075
attr-(mod):attr-instance: 0.0074
attr-(mod): 0.0074
attr-arg0: 0.0073
attr-time:attr-instance: 0.0071

Table 3: Ranked 10 most important AMR-features

Feature Importance
max_dep_length 0.1012
mean_dep_length 0.0869
num_dep_paths 0.0787
num_root_childs 0.0523
sb#PRON 0.0137
sb#nk#DET 0.0134
sb#nk# 0.0123
mo#ADV 0.0108
num_root 0.0101
oa# 0.0089

Table 4: Ranked 10 most important dependency tree
features

Feature Importance
token_count 0.1738
mean_chars_per_word 0.0956
wiener_sachtextformel 0.0946
flesch_reading_ease 0.0814
num_compound 0.0725
num_nouns 0.0584
verb_count 0.0472
num_PP 0.0464
class_score 0.0395
num_S 0.0381

Table 5: Ranked 10 most important additional linguistic
features

Feature Importance
token_count 0.06
max_dep_length 0.0328
num_dep_paths 0.0328
mean_dep_length 0.0256
num_compound 0.0211
UMAP2 0.0179
UMAP4 0.0176
UMAP1 0.0176
UMAP0 0.0168
UMAP8 0.0166
UMAP9 0.0161
UMAP5 0.0161
UMAP7 0.016
verb_count 0.016
UMAP3 0.0158
flesch_reading_ease 0.0155
num_S 0.0154
wiener_sachtextformel 0.0153
UMAP6 0.0146
mean_chars_per_word 0.0146

Table 6: Ranked 20 most important features (over all
feature classes)
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