
Team Quabynar at the GermEval 2024 Shared Task 1 GerMS-Detect
(Subtasks 1 and 2) on Sexism Detection

Kwabena Odame Akomeah
University of Regensburg

kwabena-odame.akomeah@ur.de

Udo Kruschwitz
University of Regensburg
udo.kruschwitz@ur.de

Bernd Ludwig
University of Regensburg
bernd.ludwig@ur.de

Abstract

While large language models such as Chat-
GPT and GPT-3.5 Turbo offer impressive ca-
pabilities, their use can be costly and may not
always be advisable, particularly for specific
types of tasks. As part of our involvement in
the GerMS-Detect challenge we observe that
traditional, more cost-effective language mod-
els such as BERT are able to achieve better
results than GPT-3.5 Turbo, a very robust LLM,
when applied to sexist text classification. This
suggests that for certain types of tasks and con-
texts, using BERT models may be a plausible
alternative to state-of-the-art LLMs. This paper
hightlights our approach to predicting anno-
tator binary and soft labels using transformer
models and an LLM in GermEval 2024 GerMS-
Detect’s open and closed subtasks of sexism
detection.

1 Introduction

In an era where social media conversations and
text proliferates exponentially (Guo et al., 2022),
the need for vigilant moderation has gained much
attention. As more people engage online, the chal-
lenge of identifying hate speech, toxic comments,
and other harmful content has become increasingly
urgent (Ayele et al., 2023). While much research
has focused on English, the impact of harmful con-
tent extends beyond language barriers (Jahan and
Oussalah, 2023). The link between hate speech
and the spread of sexism is profound as the for-
mer can be explained in the later (Sen et al., 2022).
Hate speech often perpetuates negative stereotypes
and harmful ideologies, reinforcing societal norms
that can lead to marginalization and oppression
(Richardson-Self, 2021). This creates a feedback
loop where sexist attitudes are normalized and dis-
seminated through various channels, including so-
cial media, public discourse, and interpersonal in-
teractions (Fox et al., 2015). The impact of this
dynamic is far-reaching, influencing not only indi-

vidual behaviors and beliefs but also institutional
policies and cultural narratives (Richardson-Self,
2021). Understanding this connection is crucial for
developing effective strategies to combat both hate
speech and sexism, promoting a more inclusive and
equitable society. Sexism can incite targeted hate or
even violence against specific groups based on sex
orientatation and identification (Sen et al., 2022).
Thus, identifying content that warrants scrutiny is
as crucial as identifying outright hate speech.

GermEval 2024 GerMS-Detect is part of a series
of shared task evaluation campaigns that focus on
Natural Language Processing (NLP) for the Ger-
man language. This year’s GerMS-Detect subtasks
specifically target sexism detection in German on-
line news fora, building upon previous years’ ef-
forts on detecting various texts with hate speech
(Risch et al., 2021). GerMS-Detect goes beyond
toxicity identification. It also delves into classify-
ing annotated data by several annotators and com-
bining them in different ensemble formats to attain
both binary and soft labels aiming to foster health-
ier conversations online.

The goal of subtask 1 was to predict labels for
each text in a dataset, with these labels derived
from the original annotations made by multiple
human annotators. In contrast, subtask 2 sought
to predict the label distribution for each text in the
same dataset, with this distribution based on the
original allocation of labels predicted in subtask
1. These two subtasks were interrelated, as both
aimed to accurately reflect the human annotators’
evaluations, with subtask 1 focusing on discrete
label prediction and subtask 2 on capturing the
nuanced distribution of these labels.

Our participation in GermEval 2024 involved
tackling two subtasks both in the closed and open
competitions. Leveraging transformer-based model
architectures from the huggingface repository, we
specifically employed different BERT embeddings
and finetuned with Pytorch for the closed compe-



tition and an LLM for the open competition. In
the following sections, we will examine the dataset
employed, discuss the selected model architectures
in detail, and evaluate their performance on the
designated subtasks. To support reproducibility the
complete codebase for our experiments is available
as a Github repository 1

The dataset used in GerMS-Detect were deliv-
ered sequentially in 3 different sections namely the
trial, development and competition phases where
the later was a consolidation of all the dataset from
the other two phases. The data used for training
and testing with 5,998 labeled texts for training
and 1,986 unlabeled for testing annotated by 10
human annotators sporadically. The distribution of
annotations is uneven across the annotators. Three
annotators (A002, A012, A010) have annotated
all 5,998 texts, while others have annotated fewer,
with the least being A001, who annotated 970 texts.
Submissions were made on Codabench 2

2 Model architectures

As set out in the shared task guidelines, our ap-
proach for the closed competition exclusively em-
ployed untrained transformer models that had not
been exposed to any sexism or hate speech data.
The models utilized in our study included Google’s
German BERT cased, multilingual BERT and
Deepset’s German BERT base.

General Approach. The data was loaded and
preprocessed by aggregating all annotators into a
unified dictionary of separate annotator dataframes.
This new dataframe constituted the columns, ids,
text and labels labels texts for each annotator in
the dictionary. The initial data which was in JSON
format had lists of annotators in one column and
labels in another for each distinct id and text.

1 {'A001':
id \

2

3 0 a733e8a47708ce1d77060266d365e5b5
4 1 bf45fc2ac6742a7f75d5863c3338d59d
5 2 e1e80ff680f874d49ddfe33ac846a454
6 3 4689 b9ccb5d79f222ba110f389cf1fb6
7 4 a8d04dfc8e63b67f4587b04524605e3e
8 .. ...
9 965 b13f0c202385d74b54f1fac4ea297510

10 966 f3bc2e041355ab9c1bba465a004f0631
11 967 841 b039088a4edc7a14df7b231fd2f85
12 968 2414 c1c9fd116539262aba5ee58de650
13 969 075 cfd6f6dacfb11cc0a919bb21d70d2
14

1https://github.com/kaodamie/
Quabynar--GermDetect-2024

2https://www.codabench.org/competitions/

15 text
16 0 Wen man nicht reinlä ß t,...
17 1 Und eine Katze die schnurrt ...
18 2 Des Oaschloch is eh scho ...
19 3 Trump hat 2 Dinge übersehen :...
20 4 Mit der Fox÷e hat er sich ...
21 ..
22 965 was hat Zadic dazu veranlasst ...
23 966 Uninteressant.
24 967 dem Islam die Frauenfeindl ...
25 968 vielleicht spitzt sie jetzt ...
26 969 Die Geschichte mit Astra ...
27

28 label label_text
29 0 0 -Kein
30 1 0 -Kein
31 2 0 -Kein
32 3 0 -Kein
33 4 4 -Extrem
34 ..
35 965 3 -Stark
36 966 0 -Kein
37 967 0 -Kein
38 968 0 -Kein
39 969 2 -Vorhanden
40 [970 rows x 4 columns],
41 'A002':

id \
42 0 a733e8a47708ce1d77060266d365e5b5
43 1 bf45fc2ac6742a7f75d5863c3338d59d
44 2 e1e80ff680f874d49ddfe33ac846a454
45 3 4689 b9ccb5d79f222ba110f389cf1fb6
46 4 a8d04dfc8e63b67f4587b04524605e3e
47 ...
48 text
49 0 Wen man nicht reinlä ß t,...
50 1 Und eine Katze die schnurrt ...
51 2 Des Oaschloch is eh scho ...
52 3 Trump hat 2 Dinge übersehen :...
53 4 Mit der Fox÷e hat er sich ...
54

55 label label_text
56 0 0 -Kein
57 1 0 -Kein
58 2 3 -Stark
59 3 3 -Stark
60 4 4 -Extrem
61 ...
62 [5998 rows x 4 columns],
63 ... }
64

Listing 1: A sample of the dictionary of annotator
dataframes

Subsequently, the texts within the JSON file
were regrouped by annotators and placed in con-
tainer dataframes. The dataset was then partitioned
into training and validation sets using a 90/10 per-
centage split for each annotator dataframe. This
reason for ratio of 90:10 was ensure that majority
of the dataset was included in the training rather
than validation.

The dataset was then tokenized using the vari-
ous BERT tokenizers implemented under the API
Transformers and prepared for training with a batch

https://github.com/kaodamie/Quabynar--GermDetect-2024
https://www.codabench.org/competitions/
https://github.com/kaodamie/Quabynar--GermDetect-2024
https://github.com/kaodamie/Quabynar--GermDetect-2024
https://www.codabench.org/competitions/


size of 16, a threshold that was appropriate for the
GPU memory available. It is important to note that
different BERT models have their corresponding
tokenizers and it is advisable to stick to a matching
tokenizer as this can affect training significantly.
The BERT tokenizer is a tool that processes and
converts input text into tokens, which are the basic
units of text that the BERT model can use for vari-
ous NLP tasks (Devlin et al., 2019). The BERT tok-
enizer is based on a specific tokenization technique
called WordPiece (Devlin et al., 2019). Due to the
training structure, which involved looping over sev-
eral annotators, a significant amount of memory
was required. With a GPU RAM of 12GB running
PyTorch CUDA 12.0, the memory constraints were
adequately managed.

Throughout the training process, metrics includ-
ing accuracy, precision, recall, and F1 score were
monitored and recorded for each iteration. The
training loop was designed to iteratively adjust the
model parameters, optimizing the learning rate and
minimizing the loss function. Additionally, early
stopping criteria with a patience of 3 epochs was
implemented to prevent overfitting, ensuring the
model maintained its generalization capability on
the validation set and to save time taken to train
the dataset. The model only stops and saves best
weights when training metrics being tracked for
each epoch does not improve after 3 additional
epochs.

Post-training, the model’s performance was eval-
uated using the unseen test data to confirm its ro-
bustness and reliability on codabench as per the
regulations of the shared tasks. This was the only
testing done due to the dataset size. Further split-
ting of the training dataset would have resulted in a
smaller size for training that would have impacted
the training results and model’s capabilities. We
observed that with this approach, testing results did
what was achieved during training.

Subtask 1: Binary and Multi Labels
Strategy

The objective of subtask 1 was to predict labels
for each text in a dataset, where these labels are
derived from those initially assigned by multiple
annotators. The annotators, following certain an-
notation guidelines (Krenn et al., 2024), evaluated
the presence and intensity of misogyny or sexism
in the texts using the following labels:

• 0-Kein: No sexism or misogyny present

• 1-Gering: Mild sexism or misogyny

• 2-Vorhanden: Sexism or misogyny present

• 3-Stark: Strong sexism or misogyny

• 4-Extrem: Extreme sexism or misogyny

Consequently, the degree of strength assigned
to a text deemed sexist is largely subject to the
annotator’s personal judgment. Subtask 1 involved
predicting labels based on various strategies for
aggregating the multiple annotations into a single
target label. The strategies are as follows:

• bin_maj: Predict 1 if the majority of annota-
tors assigned a label other than 0-Kein. Pre-
dict 0 if the majority assigned a label of 0-
Kein. If there is no clear majority, both labels
1 and 0 are accepted for evaluation.

• bin_one: Predict 1 if at least one annotator
assigned a label other than 0-Kein, and 0 oth-
erwise.

• bin_all: Predict 1 only if all annotators as-
signed labels other than 0-Kein, and 0 other-
wise.

• multi_maj: Predict the majority label. If no
majority label exists, any of the assigned la-
bels are considered correct for evaluation.

• disagree_bin: Predict 1 if there is any dis-
agreement among annotators and 0 otherwise.

The strategy for multi_maj was slightly modified
to predict non-zero labels which was useful on the
test data if there was no clear majority as follows:
multi_maj: Predict the majority label. If no major-
ity label exists, if non-zero labels exist, any of the
assigned labels that are non-zeros are considered
correct for evaluation otherwise predict zero. It
was observed to be a more effective approach to
attaining a much higher score on the leader-boards
for both subtasks.

After this only text ids with the predictions of
the test set were saved in .tsv format and uploaded
for scoring.

Subtask 2: Predicting Annotator
Distributions

For the subtask of predicting annotator distribu-
tions, only 2 runs were submitted to achieve a high
score of 0.29 over the Shannon-Jensen evaluation



of soft labels topping the leaderboard on subtask 2.
The models employed in subtask 2 were Google’s
BERT mulitlingual cased and German BERT cased
model. They were both fine-tuned over a GPU with
a RAM of 12GB using PyTorch CUDA 12.0 with
the same hyperperparameters discussed in subtask
1. In effect, the models were trained once for both
subtasks and binary labels attained in subtask 1
were consequently converted to soft labels to fit
subtask 2. Two types of distributions considered
are binary score and multi-score distributions. Each
set of distribution summed to 1.

• dist_bin_0: Represents the proportion of an-
notators who labeled the text as ’not-sexist’
(0-Kein).

• dist_bin_1: Represents the proportion of an-
notators who labeled the text as ’sexist’, which
includes any of the labels 1-Gering, 2-Vorhanden,
3-Stark, or 4-Extrem.

• dist_multi_0: The proportion of annotators
labeling the text as 0-Kein.

• dist_multi_1: The proportion of annotators
labeling the text as 1-Gering.

• dist_multi_2: The proportion of annotators
labeling the text as 2-Vorhanden.

• dist_multi_3: The proportion of annotators
labeling the text as 3-Stark.

• dist_multi_4: The proportion of annotators
labeling the text as 4-Extrem.

The strategy for prediction involved basing the
distributions described above on the predicted bi-
nary labels from subtask 1 and applying the rules
defined for substask 2 in subtask 2. This approach
achieved a final score of 0.29 . See Table 2

All models were trained using the AdamW opti-
mizer, initialized with the model’s parameters and
a learning rate of 2e-5. AdamW is a variant of
the Adam optimizer that includes weight decay
for better regularization. The loss was computed
from the model’s outputs. This loss quantifies how
well the model’s predictions match the target val-
ues. These were calculated over the accuracy of
logits. Precision, recall and weighted F1 scores
were carefully monitored per each epoch run for
each model. The backward loss computed dloss/dx
for every parameter x. These are accumulated into

a gradient variable for every parameter x. The
optimizer then updated the value of x using the gra-
dient calculated above. This process was achieved
by setting parameters using the "BertForSequence-
Classification" definition in the transformer API.
It was applied for each annotator in a loop, and
the best weights were selected with early stopping
over a total of 10 epochs, with a patience threshold
of 3 epochs per annotator. See documentation at
Huggingface.3

3 Open Subtask- Improving Training and
Considerations for LLMs

The open competition was permitted for both sub-
tasks 1 and 2 as specified in the terms and agree-
ment of the competition. They allowed for models
that had already been pretrained on sexism data and
the use of additional dataset provided all informa-
tion are open-source and results can be replicated.
It was unrestricted and open to the use of models
such as LLMs.

We applied few-shot learning on OpenAI’s GPT
3.5 Turbo. We designed our model to select only
the top 5 entries iteratively for each annotator. The
model is also designed to preprocess a given text
by truncating it to a specified length of 512 char-
acters and then generate a short-length prediction
using the GPT-3.5-turbo model with a 5 learning
prompt. The truncate procedure ensures the input
text remains within the length constraints, while
a generate prediction function constructed an ap-
propriate prompt and makes an API call to the lan-
guage model to obtain a prediction. The parameters
used were as follows:

Initialization. An instance of the OpenAI client
is created using a provided API key. This client
will be used to interact with the OpenAI API for
generating text completions. Usage of OpenAI’s
models come at a cost based on the model and total
tokens queried into the API.

Prompting. Prompting was conducted in En-
glish while instructing the LLM to analyze and re-
spond to texts in German for the selected few-shot
examples. The inclusion of the prompt message
"You are a helpful assistant." in the API call serves
to establish the context for the model, directing it
to adopt a cooperative and helpful tone throughout
the interaction.

This preliminary instruction is crucial as it sets
3https://huggingface.co/transformers/v3.0.2/

model_doc/bert.html

https://huggingface.co/transformers/v3.0.2/model_doc/bert.html
https://huggingface.co/transformers/v3.0.2/model_doc/bert.html


Model bin maj f1 bin one f1 bin all f1 multi
maj f1

disagree
bin f1

Final
Score

BERT Multilingual Cased 0.6579 0.7158 0.5091 0.2393 0.6022 0.5448
German BERT Cased 0.6698 0.7344 0.6091 0.3423 0.6175 0.5946
German BERT Base 0.6981 0.7290 0.6428 0.3706 0.6139 0.6109
*GPT 3.5 Turbo *0.4751 *0.5586 *0.4849 *0.1967 *0.5455 *0.4522

Table 1: Subtask 1 Scores of Models. *Subtask 1 Open Results. Scores in green are our best scores attained for
subtask 1

the expectation for the assistant’s behavior, aiming
to enhance the overall quality and relevance of the
responses. By providing a clear and explicit direc-
tive on the assistant’s role, the model is better posi-
tioned to deliver accurate, contextually appropriate,
and user-friendly outputs, thereby improving the
effectiveness of the interaction. This approach en-
sures that the assistant not only processes the given
examples accurately but also maintains a consistent
and supportive demeanor in its responses.

1 def generate_prediction(text ,
few_shot_prompt , max_tokens =50):

2 text = truncate_text(text) #
Truncate the text to avoid exceeding
the context length

3 prompt = few_shot_prompt + f"Text: {
text}\ nLabel: "

4 response = client.chat.completions.
create(

5 model="gpt -3.5- turbo",
6 messages =[
7 {"role": "system", "content"

: "You are a helpful assistant."},
8 {"role": "user", "content":

prompt}
9 ]

10 ...
11

12 def format_few_shot_prompt(examples ,
max_examples =5):

13 prompt ="The following texts are in
German. Assign a label from 0 (not
offensive) to 4 (most offensive):\n\
n"

14 for example in examples [:
max_examples ]:

15 prompt += f"Text: {example['text
']}\ nLabel: {example['label ']}\n\n"

16 return prompt

Listing 2: Code snippet

API Parameters. These parameters (max to-
kens as 50, n as 1 and a temperature of 0.3) are
used in the API call to fine-tune the behavior and
output of the model to best fit the task of classify-
ing the offensiveness of the texts. By limiting the
response to 50 tokens, we ensure that the output
is concise and stays within a manageable length.
This helps to control the cost and speed of the API

call, as well as to avoid overly verbose answers.
A lower temperature value (closer to 0) makes the
output more deterministic and focused, while a
higher value (closer to 1) makes it more random
and creative. Setting the temperature to 0.3 made
the model to provide more consistent and reliable
predictions, which is generally suitable for tasks
requiring accuracy. By setting n to 1, the function
requests a single response from the model. This
is useful for straightforward tasks where only one
prediction is needed. If n were greater than 1, mul-
tiple responses would be generated, which could
be useful for tasks requiring multiple perspectives
or for ensemble methods.

Although the LLM’s results were not actively
explored by the team, there is room for much im-
provement in the technique by which training of the
dataset was done. Selecting first 5 examples and
sequentially prompting for each annotator in a loop
may not necessarily ensure a balanced example
text.

Effective prompting strategies and the inherent
capabilities of large language models (LLMs) have
in recent times been very popular in many different
tasks and text generation (Liu et al., 2023). How-
ever, for this particular task, there are ways to fur-
ther enhance the training process and considera-
tions that need to be made regarding the use of
LLMs in such future tasks in order to enhance re-
sults.

Annotated Data Quality. Ensuring that the data
annotated by different users is of high quality and
accurately represents the categories being predicted
can significantly improve model performance (Li,
2024).

Data Diversity. Increasing the diversity of the
training data by incorporating a wider range of ex-
amples from different contexts can help the model
generalize better to unseen data (Chung et al., 2023).
This includes expanding the dataset to cover vari-
ous dialects, jargon, and situational contexts.



Contextual Prompts. Utilizing more sophis-
ticated prompting techniques that provide better
context and clearer instructions can help models
like GPT-3.5 generate more accurate responses. Ex-
perimenting with different prompt formats and iter-
atively refining them based on feedback can lead
to better outcomes (Zhou et al., 2023).

Hybrid Models. Exploring approaches that com-
bine the strengths of different models, such as us-
ing BERT for initial feature extraction and GPT-3.5
Turbo for generating refined predictions, can lever-
age the advantages of each model type (Veeramani
et al., 2024).

Ensemble Methods. Implementing ensemble
methods that aggregate predictions from multiple
models can enhance robustness and accuracy, par-
ticularly when dealing with complex or ambiguous
inputs (García-Díaz et al., 2023).

4 Results

The results after prediction were put together in-
dexing the ids of the various texting and joining the
annotators and their corresponding predicitons in
different sets over 2 columns. This new dataframe
was saved as a compressed tsv file which was then
submitted on Codabench. The performance of the
system on all five predicted labels were evaluated
using the F1 macro score across all classes before
averaging the results as the final ranking. See Table
1.

The performance in subtask 2 were assessed us-
ing the Jensen-Shannon (JS) distance. This evalua-
tion is applied to both the prediction of the binary
distribution and the prediction of the multi-score
distribution. The final score was determined by
taking the unweighted average of the JS distances
for both the binary and multi-score distribution pre-
dictions. See Table 2

For our final submission, the model fine-tuned
on Deepset’s German BERT base achieved a score
of 0.61 on the test set for the binary subtask 1 (See
Table 1) placing third whereas the model fine-tuned
on Google’s German BERT cased obtained a score
of 0.29 over the Shannon-Jensen evaluation topping
the leaderboard for subtask 2 on Codabench. See
Table 2

Considering the results derived for the test set,
the F1 scores for the multi majority were fairly low
following an imbalance coverage in annotation by
annotators. We believe much better metrics can
be achieved given a much balanced dataset. This

incomplete coverage suggests that some texts were
annotated by only a subset of annotators, leading
to potential biases or inconsistencies in the label-
ing process impacting model’s training and testing,
as the diversity of annotations for each text varies.
These insights highlight the importance of analyz-
ing annotator contributions and ensuring a fair and
comprehensive annotation process for more robust
ensemble model development in future.

5 Conclusion

While GPT-3.5 Turbo and similar LLMs have shown
promise, particularly due to advancements in prompt-
ing and tokenization, it is crucial to evaluate their
cost-effectiveness and suitability for specific tasks.
BERT models, with their strong performance in
this subtask, highlight the importance of selecting
the right model based on task requirements. Fu-
ture training improvements that focus on enhancing
data quality, refining prompting strategies, optimiz-
ing tokenization, and exploring hybrid approaches
through the implementation of ensemble methods
that aggregate predictions from multiple models
can potentially enhance robustness and accuracy,
particularly when dealing with complex or ambigu-
ous inputs. Ultimately, the choice of model should
be guided by a careful assessment of the task at
hand, resource availability, and the desired balance
between performance and cost (Yang et al., 2024).

6 Future work

The findings from our current study emphasize sev-
eral key areas for future work in leveraging large
language models (LLMs) like GPT-3.5 Turbo and
other top performing LLMs not mentioned in this
study. Randomizing and balancing few-shot exam-
ples and comparing them accross various LLMs,
adopting different fine-tuning approaches to few-
shot and ensemble approaches with both LLMs and
transformers are worth exploring. By addressing
these areas, future work can build on the promising
results of current LLMs, leading to more robust,
accurate, and cost-effective applications in natural
language processing and beyond.

References
Abinew Ali Ayele, Skadi Dinter, Seid Muhie Yimam,

and Chris Biemann. 2023. Multilingual racial hate
speech detection using transfer learning. In Proceed-
ings of the 14th International Conference on Recent
Advances in Natural Language Processing, pages

https://aclanthology.org/2023.ranlp-1.5
https://aclanthology.org/2023.ranlp-1.5


Model JS Dist Bin JS Dist Multi Final Score
BERT Multilingual Cased 0.2646 0.3517 0.3081
German BERT Cased 0.2479 0.3361 0.2920
*GPT-3.5 Turbo *0.3661 *0.4521 *0.4091

Table 2: Subtask 2 Evaluation scores for different models. *Subtask 2 Open results. Scores in green are our best
scores attained for subtask 2

41–48, Varna, Bulgaria. INCOMA Ltd., Shoumen,
Bulgaria.

John Chung, Ece Kamar, and Saleema Amershi. 2023.
Increasing diversity while maintaining accuracy:
Text data generation with large language models and
human interventions. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 575–593,
Toronto, Canada. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jesse Fox, Carlos Cruz, and Ji Young Lee. 2015. Perpet-
uating online sexism offline: Anonymity, interactiv-
ity, and the effects of sexist hashtags on social media.
Computers in human behavior, 52:436–442.

José Antonio García-Díaz, Camilo Caparros-laiz, Án-
gela Almela, Gema Alcaráz-Mármol, María José
Marín-Pérez, and Rafael Valencia-García. 2023.
UMUTeam at SemEval-2023 task 12: Ensemble
learning of LLMs applied to sentiment analysis for
low-resource African languages. In Proceedings of
the 17th International Workshop on Semantic Eval-
uation (SemEval-2023), pages 285–292, Toronto,
Canada. Association for Computational Linguistics.

Zhijiang Guo, Michael Schlichtkrull, and Andreas Vla-
chos. 2022. A survey on automated fact-checking.
Transactions of the Association for Computational
Linguistics, 10:178–206.

Md Saroar Jahan and Mourad Oussalah. 2023. A sys-
tematic review of hate speech automatic detection
using natural language processing. Neurocomputing,
546:126232.

Brigitte Krenn, Johann Petrak, Marina Kubina, and
Christian Burger. 2024. GERMS-AT: A sexis-
m/misogyny dataset of forum comments from an
Austrian online newspaper. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Eval-
uation (LREC-COLING 2024), pages 7728–7739,
Torino, Italia. ELRA and ICCL.

Jiyi Li. 2024. A comparative study on annotation qual-
ity of crowdsourcing and llm via label aggregation.
In ICASSP 2024-2024 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 6525–6529. IEEE.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1–35.

Louise Richardson-Self. 2021. Hate speech against
women online: Concepts and countermeasures. Row-
man & Littlefield.

Julian Risch, Anke Stoll, Lena Wilms, and Michael
Wiegand. 2021. Overview of the GermEval 2021
shared task on the identification of toxic, engaging,
and fact-claiming comments. In Proceedings of the
GermEval 2021 Shared Task on the Identification
of Toxic, Engaging, and Fact-Claiming Comments,
pages 1–12, Duesseldorf, Germany. Association for
Computational Linguistics.

Indira Sen, Mattia Samory, Claudia Wagner, and Is-
abelle Augenstein. 2022. Counterfactually aug-
mented data and unintended bias: The case of sex-
ism and hate speech detection. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 4716–4726,
Seattle, United States. Association for Computational
Linguistics.

Hariram Veeramani, Surendrabikram Thapa, and Usman
Naseem. 2024. MLInitiative@WILDRE7: Hybrid
approaches with large language models for enhanced
sentiment analysis in code-switched and code-mixed
texts. In Proceedings of the 7th Workshop on Indian
Language Data: Resources and Evaluation, pages
66–72, Torino, Italia. ELRA and ICCL.

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiao-
tian Han, Qizhang Feng, Haoming Jiang, Shaochen
Zhong, Bing Yin, and Xia Hu. 2024. Harnessing the
power of llms in practice: A survey on chatgpt and
beyond. ACM Trans. Knowl. Discov. Data, 18(6).

Wenxuan Zhou, Sheng Zhang, Hoifung Poon, and
Muhao Chen. 2023. Context-faithful prompting
for large language models. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2023, pages 14544–14556, Singapore. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/2023.acl-long.34
https://doi.org/10.18653/v1/2023.acl-long.34
https://doi.org/10.18653/v1/2023.acl-long.34
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2023.semeval-1.38
https://doi.org/10.18653/v1/2023.semeval-1.38
https://doi.org/10.18653/v1/2023.semeval-1.38
https://doi.org/10.1162/tacl_a_00454
https://doi.org/10.1016/j.neucom.2023.126232
https://doi.org/10.1016/j.neucom.2023.126232
https://doi.org/10.1016/j.neucom.2023.126232
https://aclanthology.org/2024.lrec-main.683
https://aclanthology.org/2024.lrec-main.683
https://aclanthology.org/2024.lrec-main.683
https://aclanthology.org/2021.germeval-1.1
https://aclanthology.org/2021.germeval-1.1
https://aclanthology.org/2021.germeval-1.1
https://doi.org/10.18653/v1/2022.naacl-main.347
https://doi.org/10.18653/v1/2022.naacl-main.347
https://doi.org/10.18653/v1/2022.naacl-main.347
https://aclanthology.org/2024.wildre-1.10
https://aclanthology.org/2024.wildre-1.10
https://aclanthology.org/2024.wildre-1.10
https://aclanthology.org/2024.wildre-1.10
https://doi.org/10.1145/3649506
https://doi.org/10.1145/3649506
https://doi.org/10.1145/3649506
https://doi.org/10.18653/v1/2023.findings-emnlp.968
https://doi.org/10.18653/v1/2023.findings-emnlp.968

	Introduction
	Model architectures
	Open Subtask- Improving Training and Considerations for LLMs
	Results
	Conclusion
	Future work

