@inproceedings{hackenbuchner-etal-2024-shall,
title = "You Shall Know a Word{'}s Gender by the Company it Keeps: Comparing the Role of Context in Human Gender Assumptions with {MT}",
author = "Hackenbuchner, Jani{\c{c}}a and
Daems, Joke and
Tezcan, Arda and
Maladry, Aaron",
editor = "Savoldi, Beatrice and
Hackenbuchner, Jani{\c{c}}a and
Bentivogli, Luisa and
Daems, Joke and
Vanmassenhove, Eva and
Bastings, Jasmijn",
booktitle = "Proceedings of the 2nd International Workshop on Gender-Inclusive Translation Technologies",
month = jun,
year = "2024",
address = "Sheffield, United Kingdom",
publisher = "European Association for Machine Translation (EAMT)",
url = "https://aclanthology.org/2024.gitt-1.4",
pages = "31--41",
abstract = "In this paper, we analyse to what extent machine translation (MT) systems and humans base their gender translations and associations on role names and on stereotypicality in the absence of (generic) grammatical gender cues in language. We compare an MT system{'}s choice of gender for a certain word when translating from a notional gender language, English, into a grammatical gender language, German, with thegender associations of humans. We outline a comparative case study of gender translation and annotation of words in isolation, out-of-context, and words in sentence contexts. The analysis reveals patterns of gender (bias) by MT and gender associations by humans for certain (1) out-of-context words and (2) words in-context. Our findings reveal the impact of context on gender choice and translation and show that word-level analyses fall short in such studies.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hackenbuchner-etal-2024-shall">
<titleInfo>
<title>You Shall Know a Word’s Gender by the Company it Keeps: Comparing the Role of Context in Human Gender Assumptions with MT</title>
</titleInfo>
<name type="personal">
<namePart type="given">Janiça</namePart>
<namePart type="family">Hackenbuchner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joke</namePart>
<namePart type="family">Daems</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arda</namePart>
<namePart type="family">Tezcan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aaron</namePart>
<namePart type="family">Maladry</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd International Workshop on Gender-Inclusive Translation Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Beatrice</namePart>
<namePart type="family">Savoldi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Janiça</namePart>
<namePart type="family">Hackenbuchner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luisa</namePart>
<namePart type="family">Bentivogli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joke</namePart>
<namePart type="family">Daems</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eva</namePart>
<namePart type="family">Vanmassenhove</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jasmijn</namePart>
<namePart type="family">Bastings</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Association for Machine Translation (EAMT)</publisher>
<place>
<placeTerm type="text">Sheffield, United Kingdom</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we analyse to what extent machine translation (MT) systems and humans base their gender translations and associations on role names and on stereotypicality in the absence of (generic) grammatical gender cues in language. We compare an MT system’s choice of gender for a certain word when translating from a notional gender language, English, into a grammatical gender language, German, with thegender associations of humans. We outline a comparative case study of gender translation and annotation of words in isolation, out-of-context, and words in sentence contexts. The analysis reveals patterns of gender (bias) by MT and gender associations by humans for certain (1) out-of-context words and (2) words in-context. Our findings reveal the impact of context on gender choice and translation and show that word-level analyses fall short in such studies.</abstract>
<identifier type="citekey">hackenbuchner-etal-2024-shall</identifier>
<location>
<url>https://aclanthology.org/2024.gitt-1.4</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>31</start>
<end>41</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T You Shall Know a Word’s Gender by the Company it Keeps: Comparing the Role of Context in Human Gender Assumptions with MT
%A Hackenbuchner, Janiça
%A Daems, Joke
%A Tezcan, Arda
%A Maladry, Aaron
%Y Savoldi, Beatrice
%Y Hackenbuchner, Janiça
%Y Bentivogli, Luisa
%Y Daems, Joke
%Y Vanmassenhove, Eva
%Y Bastings, Jasmijn
%S Proceedings of the 2nd International Workshop on Gender-Inclusive Translation Technologies
%D 2024
%8 June
%I European Association for Machine Translation (EAMT)
%C Sheffield, United Kingdom
%F hackenbuchner-etal-2024-shall
%X In this paper, we analyse to what extent machine translation (MT) systems and humans base their gender translations and associations on role names and on stereotypicality in the absence of (generic) grammatical gender cues in language. We compare an MT system’s choice of gender for a certain word when translating from a notional gender language, English, into a grammatical gender language, German, with thegender associations of humans. We outline a comparative case study of gender translation and annotation of words in isolation, out-of-context, and words in sentence contexts. The analysis reveals patterns of gender (bias) by MT and gender associations by humans for certain (1) out-of-context words and (2) words in-context. Our findings reveal the impact of context on gender choice and translation and show that word-level analyses fall short in such studies.
%U https://aclanthology.org/2024.gitt-1.4
%P 31-41
Markdown (Informal)
[You Shall Know a Word’s Gender by the Company it Keeps: Comparing the Role of Context in Human Gender Assumptions with MT](https://aclanthology.org/2024.gitt-1.4) (Hackenbuchner et al., GITT-WS 2024)
ACL