@inproceedings{luthra-nijman-2024-lost,
title = "Lost in Translation? Approaches to Gender Representation in Multilingual Archives",
author = "Luthra, Mrinalini and
Nijman, Brecht",
editor = "Savoldi, Beatrice and
Hackenbuchner, Jani{\c{c}}a and
Bentivogli, Luisa and
Daems, Joke and
Vanmassenhove, Eva and
Bastings, Jasmijn",
booktitle = "Proceedings of the 2nd International Workshop on Gender-Inclusive Translation Technologies",
month = jun,
year = "2024",
address = "Sheffield, United Kingdom",
publisher = "European Association for Machine Translation (EAMT)",
url = "https://aclanthology.org/2024.gitt-1.5",
pages = "42--55",
abstract = "The GLOBALISE project{'}s digitalisation of the Dutch East India Company (VOC) archives raises questions about representing gender and marginalised identities. This paper outlines the challenges of accurately conveying gender information in the archives, highlighting issues such as the lack of self-identified gender descriptions, low representation of marginalised groups, colonial context, and multilingualism in the collection. Machine learning (ML) and machine translation (MT) used in the digitalisation process may amplify existing biases and under-representation. To address these issues, the paper proposes a gender policy for GLOBALISE, offering guidelines and methodologies for handling gender information and increasing the visibility of marginalised identities. The policy contributes to discussions about representing gender and diversity in digital historical research, ML, and MT.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="luthra-nijman-2024-lost">
<titleInfo>
<title>Lost in Translation? Approaches to Gender Representation in Multilingual Archives</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mrinalini</namePart>
<namePart type="family">Luthra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brecht</namePart>
<namePart type="family">Nijman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd International Workshop on Gender-Inclusive Translation Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Beatrice</namePart>
<namePart type="family">Savoldi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Janiça</namePart>
<namePart type="family">Hackenbuchner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luisa</namePart>
<namePart type="family">Bentivogli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joke</namePart>
<namePart type="family">Daems</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eva</namePart>
<namePart type="family">Vanmassenhove</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jasmijn</namePart>
<namePart type="family">Bastings</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Association for Machine Translation (EAMT)</publisher>
<place>
<placeTerm type="text">Sheffield, United Kingdom</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The GLOBALISE project’s digitalisation of the Dutch East India Company (VOC) archives raises questions about representing gender and marginalised identities. This paper outlines the challenges of accurately conveying gender information in the archives, highlighting issues such as the lack of self-identified gender descriptions, low representation of marginalised groups, colonial context, and multilingualism in the collection. Machine learning (ML) and machine translation (MT) used in the digitalisation process may amplify existing biases and under-representation. To address these issues, the paper proposes a gender policy for GLOBALISE, offering guidelines and methodologies for handling gender information and increasing the visibility of marginalised identities. The policy contributes to discussions about representing gender and diversity in digital historical research, ML, and MT.</abstract>
<identifier type="citekey">luthra-nijman-2024-lost</identifier>
<location>
<url>https://aclanthology.org/2024.gitt-1.5</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>42</start>
<end>55</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Lost in Translation? Approaches to Gender Representation in Multilingual Archives
%A Luthra, Mrinalini
%A Nijman, Brecht
%Y Savoldi, Beatrice
%Y Hackenbuchner, Janiça
%Y Bentivogli, Luisa
%Y Daems, Joke
%Y Vanmassenhove, Eva
%Y Bastings, Jasmijn
%S Proceedings of the 2nd International Workshop on Gender-Inclusive Translation Technologies
%D 2024
%8 June
%I European Association for Machine Translation (EAMT)
%C Sheffield, United Kingdom
%F luthra-nijman-2024-lost
%X The GLOBALISE project’s digitalisation of the Dutch East India Company (VOC) archives raises questions about representing gender and marginalised identities. This paper outlines the challenges of accurately conveying gender information in the archives, highlighting issues such as the lack of self-identified gender descriptions, low representation of marginalised groups, colonial context, and multilingualism in the collection. Machine learning (ML) and machine translation (MT) used in the digitalisation process may amplify existing biases and under-representation. To address these issues, the paper proposes a gender policy for GLOBALISE, offering guidelines and methodologies for handling gender information and increasing the visibility of marginalised identities. The policy contributes to discussions about representing gender and diversity in digital historical research, ML, and MT.
%U https://aclanthology.org/2024.gitt-1.5
%P 42-55
Markdown (Informal)
[Lost in Translation? Approaches to Gender Representation in Multilingual Archives](https://aclanthology.org/2024.gitt-1.5) (Luthra & Nijman, GITT-WS 2024)
ACL