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Abstract

Interpretability tools that offer explanations
in the form of a dialogue have demonstrated
their efficacy in enhancing users’ understand-
ing (Slack et al., 2023; Shen et al., 2023), as
one-off explanations may fall short in providing
sufficient information to the user. Current solu-
tions for dialogue-based explanations, however,
often require external tools and modules and
are not easily transferable to tasks they were not
designed for. With LLMCHECKUP1, we present
an easily accessible tool that allows users to
chat with any state-of-the-art large language
model (LLM) about its behavior. We enable
LLMs to generate explanations and perform
user intent recognition without fine-tuning, by
connecting them with a broad spectrum of Ex-
plainable AI (XAI) methods, including white-
box explainability tools such as feature attribu-
tions, and self-explanations (e.g., for rationale
generation). LLM-based (self-)explanations
are presented as an interactive dialogue that
supports follow-up questions and generates sug-
gestions. LLMCHECKUP provides tutorials for
operations available in the system, catering to
individuals with varying levels of expertise in
XAI and supporting multiple input modalities.
We introduce a new parsing strategy that sub-
stantially enhances the user intent recognition
accuracy of the LLM. Finally, we showcase
LLMCHECKUP for the tasks of fact checking
and commonsense question answering.

1 Introduction

To unravel the black box nature of deep learning
models for natural language processing, a diverse
range of explainability methods have been devel-
oped (Ribeiro et al., 2016; Madsen et al., 2022;
Wiegreffe et al., 2022). Nevertheless, practition-
ers often face difficulties in effectively utilizing

*Equal contribution
1https://github.com/DFKI-NLP/LLMCheckup

Figure 1: LLMCHECKUP dialogue with data augmenta-
tion and rationalization operations on a commonsense
question answering task (ECQA). Boxes (not part of the
actual UI) indicate the original instance from the dataset
as well as its prediction (cyan) and the explanation re-
quested by the user (orange).

explainability methods, as they may not be aware
of which techniques are available or how to inter-
pret results provided. There has been a consen-
sus within the research community that moving
beyond one-off explanations and embracing con-
versations to provide explanations is more effective
for model understanding (Lakkaraju et al., 2022;
Feldhus et al., 2023; Zhang et al., 2023) and helps
mitigate the limitations associated with the effec-
tive usage of explainability methods to some extent
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(Ferreira and Monteiro, 2020; Slack et al., 2023).
In the field of NLP, two dialogue-based inter-

pretability tools, INTERROLANG (Feldhus et al.,
2023) and CONVXAI (Shen et al., 2023), have been
introduced. Both tools employ multiple, separately
fine-tuned LMs to parse user intents and dedicated
external LMs to provide explanations.

By contrast, our framework, LLMCHECKUP,
only requires a single LLM and puts it on “quadru-
ple duty”: (1) Analyzing users’ (explanation) re-
quests (§2.1, §5.1), (2) performing downstream
tasks (§4), (3) providing explanations for its out-
puts (§3), and (4) responding to the users in natu-
ral language (§2.3). Instead of using many differ-
ent LMs to explain the behavior of another LLM,
LLMCHECKUP allows us to directly employ the
same LLM used for user intent recognition to self-
explain its own behavior. The advantage of a single-
model approach is that it simplifies the engineering
aspect of building an XAI system without multiple
external modules and separately fine-tuned models.
At the same time, we consistently achieve good
performance even with a single model, as modern
LLMs are very powerful and can handle a wide
range of tasks including user intent recognition
and explanation generation. Thus, LLMCHECKUP

provides a unified and compact framework that
is useful for future user studies in the context of
human-computer interaction and explainability.

2 LLMCHECKUP

LLMCHECKUP is an interface for chatting with
any LLM about its behavior. We connect several
white-box and black-box interpretability tools (§3),
s.t. LLMCHECKUP takes into account model inter-
nals, datasets and documentation for generating
self-explanations. User requests for explanations
are recognized via a text-to-SQL task performed
by the LLM under investigation (§2.1-2.2).

We showcase a short dialogue between the user
and LLMCHECKUP in Figure 1 and a longer dia-
logue featuring different operations in Appendix
B. LLMCHECKUP can answer various questions
related to the data as well as the model’s behav-
ior. For example, in Figure 1 the user is interested
in the rationale for a specific prediction and the
model generates an explanation to justify the as-
signed label. LLMCHECKUP also suggests to have
a look at another related operation (token-level im-
portance scores) that can help explain model’s be-
havior (§2.4), but the user asks for a modified (aug-

mented) version of the same instance instead. As a
result, the model paraphrases the original question
which can be then treated as a new sample and the
user can further examine it by using the custom
input functionality of LLMCHECKUP (§2.4).

2.1 System architecture

Figure 2 illustrates the interaction flow of LLM-
CHECKUP. When a user asks a question, it will
be parsed as an SQL-like query by the LLM.
E.g., the first user question in Figure 1 will be
parsed as filter id 26 and rationalize. The
corresponding parsed operation (i.e., filter and
rationalize in our example, see Table 1 for the
full list of operations) will then be matched and
executed. For response generation, the explanation
provided by the underlying interpretability method
is converted into a natural language output using a
template-based approach (Slack et al., 2023; Feld-
hus et al., 2023) and is then displayed to the user.

2.2 Parsing

To recognize users’ intents, the deployed LLM
transforms a user utterance into a SQL-like query.
The SQL-based approach is needed to formally rep-
resent the available operations (see Table 1) and
their “semantics” including all necessary attributes.
For user intent recognition, we employ two meth-
ods: Guided Decoding and Multi-prompt Parsing.

2.2.1 Guided Decoding
Guided Decoding (GD) ensures that the generated
output adheres to predefined grammatical rules and
constraints (Shin et al., 2021) and that parses of the
user requests align with predefined operation sets
(Slack et al., 2023). GD is generally more suitable
for smaller LMs, since in-context learning may
encounter instability attributed to the fluctuations
in the order of provided demonstrations, and the
formats of prompts (Ma et al., 2023).

2.2.2 Multi-prompt Parsing
As an alternative to GD, we propose and imple-
ment a novel Multi-prompt Parsing (MP) approach.
While GD pre-selects prompts based on the embed-
ding similarity with user input, the model does not
see all the available operations at once and the pre-
selection may not include the examples for the ac-
tual operation required. With MP, we test whether
showing all possible operations in a simplified for-
mat (i.e., without any attributes such as instance
ID or number of samples) and then additionally
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Figure 2: On the left, a dialogue example asking for explanation in natural language about a ECQA-like customized
question. The workflow of LLMCHECKUP is shown on the right side.

Fi
lte

r filter(id) Access single instance by its ID
includes(token) Filter instances by token occurrence

Pr
ed

ic
tio

n predict(instance)∗ Get the prediction for the given instance
randompredict(number) Precompute a subset of instances at random
mistakes
show|count(subset)

Count or show incorrectly predicted in-
stances

score(subset, metric) Determine the relation between predictions
and labels

D
at

a show(list) Showcase a list of instances
countdata(list) Count number of instances in the dataset
label(dataset) Describe the label distribution across the

dataset

M
et

a data() Information related to the dataset
model() Metadata of the model

A
bo

ut function() Inform about the functionality of the system
self() Self-introduction of LLMCHECKUP
qatutorial(op_name) Provide explanation for the supported oper-

ations (tutorial)

E
xp

la
in nlpattribute(inst.,

topk, method_name)∗
Provide feature attribution scores

rationalize(instance)∗ Explain the output in natural language

N
L

U keywords() Show common keywords in the data
similarity(instance,
number)∗

Output top k similar instances in the dataset
Pe

rt
. cfe(instance)∗ Generate counterfactuals

augment(instance)∗ Augment the input text

L
og

ic and(op1, op2) Concatenation of multiple operations
or(op1, op2) Selection of multiple filters

Table 1: All operations (mappings between a partial SQL-type query and a function) facilitated by LLMCHECKUP,
including all explainability methods mentioned in §3 and other supplementary operations. Operations marked with
(∗) support the use of custom inputs (see more details in App. A).

prompting the model to fill in more fine-grained
attributes can improve performance.

As a first step, MP queries the model about
the main operation (see list of operations in Ta-
ble 1). Next, depending on the chosen operation,
MP selects the operation-specific prompts with 2-7
demonstrations2 (user query and parsed outputs ex-
amples) to generate the full parses that may include
several attributes. E.g., for the user input "What
are the feature attributions for ID 42 based on
the integrated gradients?", we start by generating
nlpattribute and then augment the parse with
the second prompt and transform it into filter id
42 and nlpattribute integrated_gradient.

Since the output of the model is not constrained,
unlike in GD, in the MP setting we need to check
whether the model’s output matches any of the
available operations and if there is no exact match
we employ SBERT3 to find the best match based
on the embedding similarity. We also implement
checks to avoid possible hallucinations, e.g., if the

2The number of demonstrations depends on the difficulty
of operation, e.g., how many attributes it may have.

3https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

model outputs an ID that is not present in the input
we remove it from the parser output. §5.1 evaluates
the performance of both parsing approaches.

2.3 Interface

LLMCHECKUP provides a user interface (Figure 3)
including a chat window to enter questions and
settings on the right panel, including XAI exper-
tise level selection, custom inputs, prompt editor
and export functionality for the chat history. It is
implemented in Flask and can be run as a Docker
container. LLMCHECKUP provides a chat window
(Slack et al., 2023), a dataset viewer (Feldhus et al.,
2023), a custom input history viewer and ques-
tion suggestions for different operations. Together,
these UI elements facilitate dataset exploration and
provide sample questions for all available opera-
tions to inspire users to come up with their own
questions.

On the right side of the window, there is a Prompt
Editor with different options for prompt modifica-
tion (§3.2). The icons associated with each strategy
describe them in detail, including the correspond-
ing prompts that can be appended after the default
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Figure 3: LLMCHECKUP interface with welcome message, free-text rationale and sample generator buttons. Expert
XAI level and OPRO strategy are selected. For example multi-turn dialogues, see Table 5 and Table 6.

system prompt.

2.4 Key features

Supported NLP models Out of the box, we in-
clude five auto-regressive LLMs representative of
the current state-of-the-art in open-source NLP
(as indicated in the left column of Table 2) avail-
able through Hugging Face TRANSFORMERS (Wolf
et al., 2020). The diverse choice of models demon-
strates that our framework is generalizable and
supports various Transformer-type models. While
Falcon-1B (Penedo et al., 2023) and Pythia-2.8B
(Biderman et al., 2023) are available for users with
limited hardware resources (RAM/GPU), it is gen-
erally not recommended to use them due to their
small model size, which may negatively affect per-
formance and user perception. Llama2-7B (Tou-
vron et al., 2023) and Mistral-7B (Jiang et al.,
2023) are both mid-sized with 7B parameters,
while Stable Beluga 2 (Mukherjee et al., 2023)

is a fine-tuned version of Llama2-70B. To facilitate
the deployment of large models in a local envi-
ronment, LLMCHECKUP offers support for various
forms of LLMs. This includes quantized models
through GPTQ (Frantar et al., 2023), loading mod-
els in 4-bits with the assistance of BITSANDBYTES

(Dettmers et al., 2022), and the implementation of
a peer-to-peer solution using PETALS (Borzunov
et al., 2023), enabling efficient deployment on a
custom-level GPU.

Tutorial To help non-experts get background
knowledge in XAI, we introduce a tutorial func-
tionality. It is based on prompting with different
roles corresponding to levels of expertise in XAI
(Figure 3) and enables us to provide tailored meta-
explanations of supported operations to individuals.
For example, at the beginner level, we add a system
prompt hinting at the expertise: “As a NLP begin-
ner, could you explain what data augmentation is?”
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(Figure 4). In such a way, all users can receive
meta-explanations according to their expertise.

Customized inputs & prompts In comparison to
TALKTOMODEL (Slack et al., 2023), which was lim-
ited to three datasets, LLMCHECKUP offers users
the freedom to enter custom inputs (e.g. modi-
fied original samples or even completely new data
points, see the Custom Input box on the right panel
in Figure 3), going beyond just querying instances
from specific provided datasets. In addition, in-
spired by PROMPTSOURCE (Bach et al., 2022), a
Prompt Editor (see Prompt modification section on
the right panel in Figure 3) supports inserting both
pre-defined and fully customized prompts, allow-
ing the users to control how downstream tasks and
rationalization (§3.2) are performed. All custom
inputs are saved and can be inspected and reused
later via a dedicated custom input history viewer.

Suggestion of follow-up questions To guide the
user through the conversation, we implemented a
suggestions mode. The user receives suggestions
for related operations that LLMCHECKUP can per-
form based on the dialogue context, e.g., if the user
asks about the top k attributed tokens for a specific
sample, they will receive a suggestion to have a
look at the generated rationales since both oper-
ations belong to the “Explanation" category also
displayed in the user interface. The suggestions
are grouped into several categories as specified in
Table 1 (see Appendix F for more detail).

2.5 Add-on features
External information retrieval Since LLMs
may sometimes generate incorrect responses
(Welleck et al., 2020), LLMCHECKUP allows users
to access information by conducting search through
external knowledge bases, promoted by the integra-
tion of GOOGLE SEARCH4 (Figure 5). In particular,
it provides an external link that contains informa-
tion relevant to the input sample(s). Users can
cross-reference the retrieved information with the
provided explanations, thereby achieving a more
comprehensive understanding.

Multi-modal input format Motivated by Malan-
dri et al. (2023), LLMCHECKUP not only accepts
text input from users but also provides support for
other modalities such as images and audio. To
facilitate this, we integrate packages and models
tailored to each modality. For optical character

4https://github.com/Nv7-GitHub/googlesearch

recognition (OCR), we use EASYOCR5. For au-
dio recognition, we employ a lightweight fairseq
S2T6 model (Wang et al., 2020) trained on Auto-
matic Speech Recognition (ASR).

Dialogue sharing LLMCHECKUP offers the func-
tionality to export the dialogue history between the
user and the deployed LLM as a JSON file that
contains the user’s questions and the corresponding
generated responses. This simplifies data collection
and sharing of conversation logs between users.

3 NLP explainability tools

While we introduce each explainability method in-
dividually, these methods can be interconnected
through follow-up questions from users or sugges-
tions provided by LLMCHECKUP to preserve con-
text. Table 5 and Table 6 show examples of expla-
nations for each supported explainability method
by LLMCHECKUP.

3.1 White-box
Feature attribution Feature attribution methods
quantify the contribution of each input token to-
wards the final outcome. In LLMCHECKUP, we
deploy various auto-regressive models (§2.4), for
which INSEQ (Sarti et al., 2023) is used to deter-
mine attribution scores. We support representative
methods from INSEQ, including Input x Gradient
(Simonyan et al., 2014), Attention (Bahdanau et al.,
2015), LIME (Ribeiro et al., 2016), and Integrated
Gradients (Sundararajan et al., 2017)7.

Embedding analysis By calculating the cosine
similarity between the sentence embeddings of the
instances in datasets, we can retrieve relevant exam-
ples (Cer et al., 2017; Reimers and Gurevych, 2019)
and present them for contextualizing the model be-
havior on the input in question.

3.2 Black-box
Data augmentation Augmentation involves syn-
thesizing new instances by replacing text spans of
the input while preserving the semantic meaning
and predicted outcomes (Ross et al., 2022). Data
augmentation can be achieved by LLM prompting
with or without providing a few demonstrations
(Dai et al., 2023). Alternatively, NLPAUG8 can be

5https://github.com/JaidedAI/EasyOCR
6https://huggingface.co/facebook/

s2t-small-librispeech-asr
7Details on the INSEQ integration are described in App. C.
8https://github.com/makcedward/nlpaug
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used to substitute input words with synonyms from
WORDNET (Miller, 1995). Augmented texts can
offer valuable insights into model behavior on per-
turbation tasks and prediction differences between
them and their original texts.

Counterfactual generation Unlike data augmen-
tation, counterfactuals manifest as input edits caus-
ing the predicted outcome to be different (Wu et al.,
2021; Chen et al., 2023). Counterfactuals are gen-
erated by prompting LLMs with manually crafted
demonstrations.

Rationalization Rationalization aims to provide
free-text explanations that elucidate the prediction
made by the model (Camburu et al., 2018; Wiegr-
effe et al., 2022) (an example is shown in Figure 1).
The use of Chain-of-Thought (CoT) prompting en-
hances the reasoning capabilities of LLMs by en-
couraging the generation of intermediate reasoning
steps that lead to a final answer (Wei et al., 2022;
Wang et al., 2023b). Different CoT strategies can
be applied depending on users’ preferences, in-
cluding Zero-CoT (Kojima et al., 2022), Plan-and-
Solve (Wang et al., 2023a), and Optimization by
PROmpting (OPRO) (Yang et al., 2023) (Figure 3).

4 Use cases

In this paper, we demonstrate the workflow of
LLMCHECKUP on two typical NLP tasks: Fact
checking and commonsense question answering.
Figure 1 and Appendix B show sample dialogues
where user asks questions regarding rationalization,
data augmentation and other operations based on
the ECQA data (Aggarwal et al., 2021) for com-
monsense question answering. The LLMCHECKUP

repository includes all the necessary configuration
files for different LMs and our use cases. They
can be easily adopted to many other downstream
tasks, data and Transformer-type models, demon-
strated in a tutorial which will be available with the
camera-ready version of our repository.

4.1 Fact checking
The importance of fact checking has grown sig-
nificantly due to the rapid dissemination of both
accurate information and misinformation within
the modern media ecosystem (Guo et al., 2022).
COVID-Fact (Saakyan et al., 2021) is a fact-
checking dataset that encompasses various claims,
supporting evidence for those claims, and contra-
dictory claims that have been debunked by the pre-
sented evidence.

Model Size Strategy Accuracy

Nearest Neighbor - - 42.24

Falcon 1B GD 47.41
Pythia 2.8B GD 51.72
Llama2 7B GD 64.71
Mistral 7B GD 55.88

Stable Beluga 2 70B GD 67.23

Falcon 1B MP 64.15
Pythia 2.8B MP 75.91
Llama2 7B MP 82.35
Mistral 7B MP 84.87

Stable Beluga 2 70B MP 88.24

Table 2: Exact match parsing accuracy (in %) for dif-
ferent models. GD = Guided Decoding prompted by
20-shots; MP = Multi-Prompt parsing.

4.2 Commonsense question answering

Unlike question answering, commonsense ques-
tion answering (CQA) involves the utilization of
background knowledge that may not be explicitly
provided in the given context (Ostermann et al.,
2018). The challenge lies in effectively integrat-
ing a system’s comprehension of commonsense
knowledge and leveraging it to provide accurate
responses to questions. ECQA (Aggarwal et al.,
2021) is a dataset designed for CQA. Each instance
in ECQA consists of a question, multiple answer
choices, and a range of explanations. Positive ex-
planations aim to provide support for the correct
choice, while negative ones serve to refute incorrect
choices. Additionally, free-text explanations are
included as general natural language justifications.

5 Evaluation

We conducted evaluations for parsing and data aug-
mentation with LLMs using automated evaluation
metrics9. Among all the supported methods pre-
sented in Table 1, we chose data augmentation as
a representative operation to evaluate the perfor-
mance of different LLMs.

5.1 Parsing

To assess the ability of interpreting user intents
by LLMs, we quantify the performance of each
deployed model by calculating the exact match
parsing accuracy (Talmor et al., 2017; Yu et al.,

9Note that our evaluation does not involve any user study,
as that aspect is considered as future work and falls outside
the scope of our initial focus on engineering.
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Model #max_new_tokens Accuracy
Falcon 10 64.15
Falcon 20 64.15

Pythia 10 75.91
Pythia 20 63.03

Llama2 10 74.79
Llama2 20 82.35

Llama2-GPTQ 10 82.63
Llama2-GPTQ 20 87.40

Mistral 10 84.87
Mistral 20 71.43

Mistral-GPTQ 10 78.71
Mistral-GPTQ 20 68.91

Stable Beluga 2 10 88.24
Stable Beluga 2 20 86.55

Table 3: Parsing accuracy (in %) using MP with differ-
ent number of maximum new tokens. Note that for the
Llama2-7b and Mistral-7b models, we offer various
options for quantization. In this case, we have chosen
GPTQ as the representative method.

2018) on a manually created test set, which con-
sists of a total of 119 pairs of user questions and
corresponding SQL-like queries. As an additional
baseline, we employ the nearest neighbor approach
that relies on comparing semantic similarity.

We assess parsing accuracy of our two ap-
proaches, GD and MP (§2.2). Table 2 shows that,
as model size increases, the parsing accuracy tends
to increase and MP demonstrates a notable im-
provement over GD. Despite Stable Beluga 2
having a larger size compared to 7B models, its
parsing performance only marginally surpasses that
of Mistral and Llama2. This can be partially at-
tributed to the difficulty of the parsing task10 and
the number of demonstrations, as larger models
may require a greater number of demonstrations to
fully comprehend the context (Li et al., 2023b).

Table 3 summarizes our parsing evaluation re-
sults for different models with different number
of ’max_new_tokens‘ for generation. Llama-based
models showed better performance with more to-
kens to generate compared to the rest of the mod-
els. After looking at some generated outputs we
realized that Falcon-1B and Pythia-2.8B are not
good at extracting ids and often can only recog-
nize the main LLMCHECKUP operation. Hence,
for these two models we have an additional step
that extracts a potential ID from the user input and

10We have a total of 21 LLMCHECKUP operations displayed
in Table 1 (excluding the logic operations), and many of these
offer multiple options. For instance, score operation supports
F1, precision, recall and accuracy matrices.

adds it to the parsed operation. As expected, larger
models tend to perform better than the ones with
fewer parameters. However, we also found that the
quantized Llama model outperforms its full (non-
quantized) version on the parsing task.

5.2 Data augmentation
We assess the quality of the generated augmented
output based on two key aspects: (1) consistency:
the metric represents the proportion of instances
where the augmentation process does not lead to
a change in the label before and after the augmen-
tation (Li et al., 2023a; Dai et al., 2023); (2) flu-
ency: assesses how well the augmented output
aligns with the original data in terms of semantic
similarity (Ross et al., 2021) measured by SBERT.
Table 4 indicates that Mistral and Llama2 exhibit
comparable performance, while Stable Beluga
2 displays substantially higher consistency scores
on two tasks, although it may exhibit lower flu-
ency in certain cases. The overall performance on
ECQA is relatively low compared to COVID-Fact.
This difference in performance can be attributed to
the increased complexity of the ECQA task. Our
primary focus is to compare the performance of
different LMs (Table 4), rather than aiming for
state-of-the-art results on both downstream tasks or
demonstrating perfect fluency and consistency11.

6 Discussion

In contrast to previous dialogue-based XAI frame-
works CONVXAI (Shen et al., 2023) and INTER-
ROLANG (Feldhus et al., 2023), which require a
fine-tuned model for each specific use case, LLMs
used in LLMCHECKUP possess remarkable zero-
/few-shot capabilities (Brown et al., 2020) for ef-
fectively handling many tasks without requiring
fine-tuning. Although the quality of an explana-
tion could be enhanced with further fine-tuning,
LLMCHECKUP uses model outputs out of the box.

Our empirical results underline the feasibility of
conversational interpretability and the usefulness
of LLMCHECKUP for future studies, especially hu-
man evaluation. We focus on the ground work in
terms of engineering, implementation and user in-
terface, for connecting the human with the model.
This provides user studies (Wang et al., 2019; Feld-
hus et al., 2023; Zhang et al., 2023) in the future
with a head start, s.t. they can spend more time

11Creating gold data is out of scope for this work, because
it involves costly human annotations. For the lack of gold data,
we have intentionally omitted providing a baseline.
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Dataset COVID-Fact ECQA
Model Size Consistency Claim Fluency Evidence Fluency Consistency Question Fluency

Mistral 7B 0.66 0.88 0.96 0.50 0.76
Llama2 7B 0.65 0.88 0.94 0.50 0.76

Stable Beluga 2 70B 1.00 0.85 0.96 1.00 0.73

Table 4: Consistency and fluency scores of data augmentation from three models. falcon and pythia are not
considered due to poor performance because of small model size.

on conducting their study. We see evaluation mea-
sures for differences between users’ mental models
and model behavior and objective metrics beyond
simulatability as the most important gaps to fill.

7 Related work

Interfaces for interactive explanations LIT
(Tenney et al., 2020) is a GUI-based tool avail-
able for analyzing model behaviors across entire
datasets. However, LIT has less functionalities in
terms of prompting and lower accessibility, e.g.
no tutorial and a lower level of integration with
HUGGINGFACE. CROSSCHECK (Arendt et al., 2021)
exhibits the capability to facilitate quick cross-
model comparison and error analysis across var-
ious data types, but adapting it for other use cases
needs substantial code modification and customiza-
tion. XMD’s (Lee et al., 2023) primary purpose
is model debugging, but it shares similarities in
the focus on feature attributions, visualization of
single instances and user feedback options. It is,
however, limited to feature attribution explanations
and smaller, efficiently retrainable models. IFAN
(Mosca et al., 2023) enables real-time explanation-
based interaction with NLP models, but is limited
to the sequence-to-class format, restricting its ap-
plicability to other tasks and it offers only a limited
set of explainability methods.

Dialogue-based systems for interpretability
Carneiro et al. (2021) point out that conversational
interfaces have the potential to greatly enhance
the transparency and the level of trust that hu-
man decision-makers place in them. According
to Zhang et al.’s (2023) user studies, delivering ex-
planations in a conversational manner can improve
users’ understanding, satisfaction, and acceptance.
Jacovi et al. (2023) emphasizes the necessity of
interactive interrogation in order to build under-
standable explanation narratives. CONVXAI (Shen
et al., 2023), TALKTOMODEL (Slack et al., 2023),
INTERROLANG (Feldhus et al., 2023) and Brach-
man et al. (2023) share some similarities with our

framework, but are more complex in their setup
and consider fewer explainability methods. Ad-
ditionally, they might overrely on external LMs
to explain the deployed LM’s behavior, whereas
LLMCHECKUP places a strong emphasis on self-
explanation, which is crucial for faithfulness. Fi-
nally, LLMCHECKUP uses auto-regressive mod-
els, as they have become increasingly dominant
in various NLP applications nowadays. In ISEE

(Wijekoon et al., 2023), a chatbot adapts explana-
tions to the user’s persona, but they do not consider
LLMs.

8 Conclusion

We present the interpretability tool LLMCHECKUP,
designed as a dialogue-based system. LLM-
CHECKUP can provide explanations in a conversa-
tion with the user facilitated by any auto-regressive
LLM. By consolidating parsing, downstream task
prediction, explanation generation and response
generation within a unified framework, LLM-
CHECKUP streamlines the interpretability process
without switching between different LMs, mod-
ules or libraries and serves as a baseline for future
investigation.

Future work includes exploring RAG models
(Lewis et al., 2020) combined with explainability,
as currently LLMCHECKUP relies on search engines
for external information retrieval. We also want to
add multi-modal models, so that converting image
or audio input to texts would no longer be neces-
sary, but the current state of interpretability on such
models lags behind unimodal approaches (Liang
et al., 2023). Integrating our framework into HUG-
GINGCHAT12 would further increase the visibility
and accessibility through the web.

Limitations

In LLMCHECKUP, we do not focus on dataset anal-
ysis or data-centric interpretability, but on how a

12https://huggingface.co/chat/
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model responds to single inputs. There are a lot
of practical cases, e.g. medical report generation
(Messina et al., 2022), gender-aware translation
(Attanasio et al., 2023), where users are not in-
terested in raw performance metrics on standard
benchmarks, but are interested in detecting edge
cases and investigating a model’s behavior on cus-
tom inputs.

English is the main language of the current
framework. Multilinguality is not supported, as
both the interface, the responses, tutorial and the
explained models are monolingual. While it would
be possible to adapt it to other languages by translat-
ing interface texts and prompts and using a model
trained on data in another target language or mul-
tiple ones, it remains to be seen to which extent
multilingual LLMs can do quadruple duty as well
as the current model does for English.

In LLMCHECKUP, users have the flexibility to
input data in different modalities, including im-
ages and audio. However, for audio and images,
LLMCHECKUP will convert the audio content and
texts contained within the images into textual for-
mat for further processing and analysis. Besides,
the explanations and responses generated by our
framework are currently limited to the text format
– apart from the heatmap visualization of feature
attribution explanations.

The QA tutorial only aims to provide explana-
tions for supported operations in XAI to individuals
with different levels of expertise. However, the ex-
planations, e.g. rationales, generated by the LLM
may not inherently adapt to users’ specific exper-
tise levels (Zhang et al., 2023). In the future, we
will explore how to prompt the models to provide
simple explanations reliably.

In LLMCHECKUP, we employ a single LLM to
serve quadruple-duty simultaneously. However,
models with lower parameter counts may exhibit
limitations in certain types of explanation genera-
tion, particularly when using prompting techniques
like rationalization or counterfactual generation
(Marasovic et al., 2022).
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A Supported operations in
LLMCHECKUP

Table 1 lists all operations supported by LLM-
CHECKUP. Operations other than those related
to explanation (Table 5, Table 6) are considered
supplementary and are responsible for providing
statistics and meta-information about data, model
or LLMCHECKUP to make it more user-friendly.
For instance, predict operation enables users to
receive predictions and serves as an initial step
for starting an explanatory dialogue; data opera-
tion can offer meta-information about the dataset,
thereby sharing essential background knowledge
with the users, when they start a new dialogue.

B Explanation examples

Table 5 and Table 6 displays examples of explana-
tions for each supported explainability method. In
each screenshot, the operation name is highlighted
in blue.

C Details on feature attribution

In LLMCHECKUP, we do not exhaustively employ
all INSEQ’s methods for feature attribution. Instead,
we selectively choose certain representative meth-
ods from our perspective. Nevertheless, we would
like to emphasize that it is straightforward to in-
corporate addition methods such as Saliency (Si-
monyan et al., 2014), Occlusion (Zeiler and Fer-
gus, 2014), Sequential Integrated Gradients (En-
guehard, 2023).
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User LLMCHECKUP

Table 5: Sample dialogues for welcome words, prediction (predict), feature attribution (nlpattribute), data
augmentation (augment) and rationalization (rationalize) for the ECQA use case.

D QA tutorial

Figure 4 shows tutorials for data augmentation with
different levels of expertise in XAI.

E External information retrieval

Figure 5 shows the external information retrieval
for an instance from COVID-Fact.
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(a) QA Tutorial for data augmentation with beginner level of knowledge in XAI.

(b) QA Tutorial for data augmentation with expertise level of knowledge in XAI.

(c) QA Tutorial for data augmentation with expert level of knowledge in XAI.

Figure 4: QA tutorial with different knowledge level in XAI.
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User LLMCHECKUP

Table 6: Sample dialogues for counterfactual (nlpcfe), similar (similar) for the ECQA use case.

Figure 5: External information retrieval of an instance from COVID-Fact.

F Suggestion of follow-up questions

The suggestion mode can provide follow-up ques-
tions for metadata operations (e.g., dataset statis-
tics, model types etc.), prediction-related oper-
ations (e.g., predict, count or show mistakes),
explanation-based operations (e.g., attributions for
top k, attention scores and integrated gradients or
free-text rationale), NLU (similarity and keywords)
and input perturbations (counterfactuals and data
augmentation). These categories are also summa-
rized in Table 1.

The user always has an option to decline a sug-
gestion and ask something different. We check
whether the user agrees with the LLMCHECKUP

suggestions by computing the similarity scores be-
tween the input and the confirm/disconfirm tem-
plates with SBERT.

Additionally, for each generated suggestion we
check whether it already appears in the dialogue
history to make sure that the user does not receive
repetitive suggestions for the operations that have
already been performed. E.g., if the user inquires
about the counterfactual operation and the model
explains how it works, LLMCHECKUP will store
this information and will not suggest explaining
counterfactuals again.
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